This file is indexed.

/usr/share/acl2-6.3/books/bdd/alu.lisp is in acl2-books-source 6.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
; ACL2 books using the bdd hints
; Copyright (C) 1997  Computational Logic, Inc.

; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.

; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

; Written by:  Matt Kaufmann
; email:       Matt_Kaufmann@aus.edsr.eds.com
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

(in-package "ACL2")

; These definitions are based on definitions in the FM9001 events files, and
; lead up to a version of the theorem CORE-ALU-IS-V-ALU from
; "~hunt/fm9001-replay/core-alu.events", which had previously proved by Boyer
; and Hunt using Moore's BDD package.

(include-book "bdd-primitives")

(defun p-cell (a an b pa pan pb)
  (b-nand3 (b-nand a pa)
           (b-nand an pan)
           (b-nand b pb)))

(defun g-cell (a an bn ga gan gbn)
  (b-and3 (b-nand a ga)
          (b-nand an gan)
          (b-nand bn gbn)))

(defun alu-cell (c a b mpg)
  (let ((gbn (car mpg))
        (gan (cadr mpg))
        (ga  (caddr mpg))
        (pb  (cadddr mpg))
        (pan (caddddr mpg))
        (pa  (cadddddr mpg))
        (m   (caddddddr mpg)))
    (let ((an (b-not a))
          (bn (b-not b)))
      (let ((p (p-cell a an b pa pan pb))
            (g (g-cell a an bn ga gan gbn))
            (mc (b-nand c m)))
        (let ((z (b-equv3 mc p g)))
          (list p g z))))))

(defun tv-alu-help (c a b mpg tree)
  (if (nlistp tree)
      (alu-cell c (car a) (car b) mpg)
    (let ((a-car (tfirstn a tree))
          (b-car (tfirstn b tree))
          (a-cdr (trestn  a tree))
          (b-cdr (trestn  b tree)))
      (let ((lhs (tv-alu-help c a-car b-car mpg (car tree))))
        (let ((p-car (car lhs))
              (g-car (cadr lhs))
              (sum-car (cddr lhs)))
          (let ((c-car (t-carry c p-car g-car)))
            (let ((rhs (tv-alu-help c-car a-cdr b-cdr mpg (cdr tree))))
              (let ((p-cdr (car rhs))
                    (g-cdr (cadr rhs))
                    (sum-cdr (cddr rhs)))
                (cons (b-and p-car p-cdr)
                      (cons (t-carry g-car p-cdr g-cdr)
                            (append sum-car sum-cdr)))))))))))

(defun shift-or-buf-cntl (c an zero op0 op1 op2 op3)
  (let ((op0- (b-not op0))
        (op1- (b-not op1))
        (op2- (b-not op2)))
    (let ((decode-ror (b-and op0- op1-))
          (decode-asr op0))
      (let ((ror-si (b-and decode-ror c))
            (asr-si (b-and decode-asr an)))
        (let ((si (b-or asr-si ror-si))
              (t1 (b-nand op2- op3))
              (t2 (b-and op0 op1)))
          (list (b-or3 t2 t1 zero)
                si))))))

(defun shift-or-buf (c a an zero op0 op1 op2 op3)
  (let ((pass (car (shift-or-buf-cntl c an zero op0 op1 op2 op3)))
        (si   (cadr (shift-or-buf-cntl c an zero op0 op1 op2 op3))))
    (v-if pass a (v-shift-right a si))))

(defun carry-out-help (a0 result zero op0 op1 op2 op3)
  (let ((result- (b-not result))
        (zero-   (b-not zero))
        (op0-    (b-not op0))
        (op1-    (b-not op1))
        (op2-    (b-not op2))
        (op3-    (b-not op3)))
    (let ((op0    (b-not op0-))
          (op1    (b-not op1-))
          (op2    (b-not op2-))
          (op3    (b-not op3-)))
      
      (b-and (b-nand3 (b-nand4 op3- (b-nand op0- op1-) op2- result)
                      (b-nand3 op3- op2 result-)
                      (b-nand4 op3 op2- (b-nand op0 op1) a0))
             zero-))))

(defun overflow-help (rn an bn zero op0 op1 op2 op3)
  (let ((an-   (b-not an))
        (zero- (b-not zero))
        (op1-  (b-not op1))
        (op2-  (b-not op2))
        (op3-  (b-not op3)))
    (let ((an   (b-not an-))
          (op2  (b-not op2-)))
      (b-if rn
            (b-nor (b-nand (b-nor (b-nand3 op3-
                                           (b-or3 op1- op2- (b-xor an bn))
                                           (b-nand3 op1- op2 an-))
                                  (b-nand (b-nand3 op1 op2- (b-xor an bn))
                                          (b-nand3 op1- op2- an)))
                           zero-)
                   (b-nand3 (b-nand op2 an-)
                            (b-nand3 op0 op1- an)
                            (b-nand op2- an)))
            (b-nor (b-nand (b-nor (b-nand3 op3-
                                           (b-or3 op1- op2- (b-xor an bn))
                                           (b-nand3 op1- op2 an-))
                                  (b-nand (b-nand3 op1 op2- (b-xor an bn))
                                          (b-nand3 op1- op2- an)))
                           zero-)
                   (b-not (b-nand3 (b-nand op2 an-)
                                   (b-nand3 op0 op1- an)
                                   (b-nand op2- an)))))

      )))

(defun core-alu (c a b zero mpg op tree)
  (let ((op0 (car op))
        (op1 (cadr op))
        (op2 (caddr op))
        (op3 (cadddr op)))
    (let ((last-bit (sub1 (len a))))
      (let ((alu-help (tv-alu-help c a b mpg tree)))
        (let ((alu-p   (car alu-help))
              (alu-g   (cadr alu-help))
              (alu-sum (cddr alu-help)))
          (let ((alu-carry (t-carry c alu-p alu-g))
                (out (shift-or-buf c alu-sum (nth (sub1 (len a)) a)
                                   zero op0 op1 op2 op3)))
            (cons (carry-out-help (nth 0 a) alu-carry zero op0 op1 op2 op3)
                  (cons (overflow-help (nth last-bit alu-sum)
                                       (nth last-bit a)
                                       (nth last-bit b)
                                       zero op0 op1 op2 op3)
                        (cons (v-zerop out)
                              out)))))))))

;;;;;;;;;;;; v-alu

(defun cvzbv (carry overflow vector)
  (cons carry (cons overflow (cons (v-zerop vector) vector))))

(defun v-adder (c a b)
  (if (nlistp a)
      (cons (boolfix c) nil)
    (cons (b-xor3 c (car a) (car b))
          (v-adder (b-or (b-and (car a) (car b))
                         (b-or (b-and (car a) c)
                               (b-and (car b) c)))
                   (cdr a)
                   (cdr b)))))

(defun v-adder-carry-out (c a b)
  (nth (len a) (v-adder c a b)))

(defun v-adder-output (c a b)
  (firstn (len a) (v-adder c a b)))

(defun v-adder-overflowp (c a b)
  (b-and (b-equv (nth (sub1 (len a)) a)
                 (nth (sub1 (len b)) b))
         (b-xor (nth (sub1 (len a)) a)
                (nth (sub1 (len a)) (v-adder-output c a b)))))

(defun cvzbv-v-adder (c a b)
  (cvzbv (v-adder-carry-out c a b)
         (v-adder-overflowp c a b)
         (v-adder-output    c a b)))

(defun cvzbv-inc (a)
  (cvzbv-v-adder t a (nat-to-v 0 (len a))))

(defun v-subtracter-carry-out (c a b)
  (b-not (v-adder-carry-out (b-not c) (v-not a) b)))

(defun v-subtracter-overflowp (c a b)
  (v-adder-overflowp (b-not c) (v-not a) b))

(defun v-subtracter-output (c a b)
  (v-adder-output (b-not c) (v-not a) b))

(defun cvzbv-v-subtracter (c a b)
  (cvzbv (v-subtracter-carry-out c a b)
         (v-subtracter-overflowp c a b)
         (v-subtracter-output    c a b)))

(defun cvzbv-neg (a)
  (cvzbv-v-subtracter nil a (nat-to-v 0 (len a))))

(defun cvzbv-dec (a)
  (cvzbv-v-subtracter t (nat-to-v 0 (len a)) a))

(defun v-ror (a si)
  (v-shift-right a si))

(defun cvzbv-v-ror (c a)
  (cvzbv (if (nlistp a) c (nth 0 a)) nil (v-ror a c)))

(defun v-asr (a)
  (v-shift-right a (nth (sub1 (len a)) a)))

(defun cvzbv-v-asr (a)
  (cvzbv (if (listp a) (nth 0 a) nil) nil (v-asr a)))

(defun v-lsr (a)
  (v-shift-right a nil))

(defun cvzbv-v-lsr (a)
  (cvzbv (if (listp a) (nth 0 a) nil) nil (v-lsr a)))

(defun cvzbv-v-not (a)
  (cvzbv nil nil (v-not a)))

(defun v-alu (c a b op)
  (cond ((equal op '(nil nil nil nil)) (cvzbv nil nil (v-buf a)))
        ((equal op '(  t nil nil nil)) (cvzbv-inc a))                   
        ((equal op '(nil   t nil nil)) (cvzbv-v-adder c a b))           
        ((equal op '(  t   t nil nil)) (cvzbv-v-adder nil a b))           
        ((equal op '(nil nil   t nil)) (cvzbv-neg a))                   
        ((equal op '(t   nil   t nil)) (cvzbv-dec a))                   
        ((equal op '(nil   t   t nil)) (cvzbv-v-subtracter c a b))      
        ((equal op '(t     t   t nil)) (cvzbv-v-subtracter nil a b))      
        ((equal op '(nil nil nil   t)) (cvzbv-v-ror c a))               
        ((equal op '(  t nil nil   t)) (cvzbv-v-asr a))   
        ((equal op '(nil   t nil   t)) (cvzbv-v-lsr a))
        ((equal op '(  t   t nil   t)) (cvzbv nil nil (v-xor a b)))         
        ((equal op '(nil nil   t   t)) (cvzbv nil nil (v-or  a b)))
        ((equal op '(  t nil   t   t)) (cvzbv nil nil (v-and a b)))         
        ((equal op '(nil   t   t   t)) (cvzbv-v-not a))           
        (t                 (cvzbv nil nil (v-buf a)))))

(defun carry-in-help (czop)
  (let ((c   (car czop))
        (z   (cadr czop))
        (op0 (caddr czop))
        (op1 (cadddr czop))
        (op2 (caddddr czop))
        (op3 (cadddddr czop)))
    (declare (ignore z))
    (let ((c-   (b-not c))
          (op0- (b-not op0))
          (op1- (b-not op1))
          (op2- (b-not op2))
          (op3- (b-not op3)))
      (let ((c   (b-not c-))
            (op0 (b-not op0-))
            (op1 (b-not op1-))
            (op2 (b-not op2-))
            (op3 (b-not op3-)))

        (b-or (b-nand3 (b-nand3 op1- op2- op3-)
                       (b-nand3 op0- op1- op2)
                       (b-nand3 op0 op1 op2))
              (b-nand3 (b-nand op3 c)
                       (b-nand3 op0- op2- c)
                       (b-nand3 op0- op2 c-)))))))

(defun decode-gen (zero swap op0 op1 op2 op3)
  (let ((zero- (b-not zero))
        (swap- (b-not swap))
        (op0-  (b-not op0))
        (op1-  (b-not op1))
        (op2-  (b-not op2))
        (op3-  (b-not op3)))
    (let ((zero (b-not zero-))
          (swap (b-not swap-))
          (op0  (b-not op0-))
          (op1  (b-not op1-))
          (op2  (b-not op2-))
          (op3  (b-not op3-)))
      (declare (ignore swap))
      (list (b-nand3 (b-nand3 op0 op3 (b-xor op1 op2))
                     (b-nand3 op2 op3- (b-nand op1- swap-))
                     (b-nand3 op1 op2- op3-))
            (b-nor (b-nand (b-nand4 op0 op1 op2- op3)
                           (b-nand3 op2 op3- (b-nand op1- swap-)))
                   zero)
            (b-nor (b-nand3 (b-nand3 op0 op3 (b-xor op1 op2))
                            (b-nand3 op0 op1- op2)
                            (b-nand3 op1 op2- op3-))
                   zero)))))

(defun decode-prop (zero swap op0 op1 op2 op3)
  (let ((zero- (b-not zero))
        (swap- (b-not swap))
        (op0-  (b-not op0))
        (op1-  (b-not op1))
        (op2-  (b-not op2))
        (op3-  (b-not op3)))
    (let ((zerop (b-not zero-))
          (swap  (b-not swap-))
          (op0   (b-not op0-))
          (op1   (b-not op1-))
          (op2   (b-not op2-))
          (op3   (b-not op3-)))
      (declare (ignore zerop))
      (list (b-nand3 (b-nand4 op0- op1- op2 op3) 
                     (b-nand op1 op3-)
                     (b-nand3 op2- op3- swap))
            (b-nor op2- (b-nor op3- (b-nor op0 op1-)))
            (b-and (b-nand3 (b-nand op3 (b-equv op0 op1))
                            (b-nand op2- (b-nand swap op3-))
                            (b-nand4 op0 op1- op2 op3-))
                   zero-)))))

(defun decode-mode (op0 op1 op2 op3)
  (b-nor (b-nor3 op0 op1 op2)
         op3))

(defun mpg (zsop)
  (let ((zero (car zsop))
        (swap (cadr zsop))
        (op0 (caddr zsop))
        (op1 (cadddr zsop))
        (op2 (caddddr zsop))
        (op3 (cadddddr zsop)))
    (append (decode-gen zero swap op0 op1 op2 op3)
            (append (decode-prop zero swap op0 op1 op2 op3)
                    (list (decode-mode op0 op1 op2 op3))))))