/usr/share/acl2-6.3/books/misc/sin-cos.lisp is in acl2-books-source 6.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | ; sin-cos.lisp -- series approximations to SIN and COS
; Copyright (C) 1997 Computational Logic, Inc.
; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; sin-cos.lisp
;;;
;;; Unlimited series approximations to SIN and COS, plus functions for
;;; creating SIN/COS tables.
;;;
;;; Bishop Brock and Calvin Harrison
;;; Computational Logic, Inc.
;;; 1717 West 6th Street, Suite 290
;;; Austin, Texas 78703
;;; brock@cli.com
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;****************************************************************************
;;;
;;; Environment
;;;
;;;****************************************************************************
(in-package "ACL2")
(deflabel sin-cos
:doc ":doc-section miscellaneous
SIN/COS approximations.
~/~/~/")
;;;****************************************************************************
;;;
;;; Series approximations of sin/cos.
;;;
;;;****************************************************************************
(defun compute-series (x parity ex fact num itr ans)
":doc-section sin-cos
Series approximation to SIN/COS.
~/~/
This function is used to calculate the following Maclaurin series:
To compute SIN:
x - (x^3/3!) + (x^5/5!) - (x^7/7!) + ....
To compute COS:
1- (x^2/2!) + (x^4/4!) - (x^6/6!) + ....
Arguments:
x -- x
parity -- T to add the new term, NIL to subtract the new term.
ex -- x^num
fact -- num!
itr -- Number of iterations
ans -- Accumulated answer.
~/"
(declare (xargs :guard (and (rationalp x)
(booleanp parity)
(rationalp ex)
(integerp fact)
(> fact 0)
(integerp num)
(>= num 0)
(integerp itr)
(>= itr 0)
(rationalp ans))))
(if (zp itr)
ans
(compute-series x (not parity) (* x x ex) (* (+ 2 num) (+ 1 num) fact)
(+ 2 num) (1- itr) (if parity
(+ ans (/ ex fact))
(- ans (/ ex fact))))))
(local
(defthm type-of-compute-series
(implies
(and (rationalp x)
(rationalp ex)
(integerp fact)
(integerp num)
(rationalp ans))
(rationalp (compute-series x parity ex fact num itr ans)))
:rule-classes :type-prescription))
(defun fast-compute-series
(num-x^2 denom-x^2 num-x^n num-sum denom-sum n parity itr)
":doc-section sin-cos
Efficient series approximation to SIN/COS.
~/~/
This function is used to calculate the following Maclaurin series:
To compute SIN:
x - (x^3/3!) + (x^5/5!) - (x^7/7!) + ....
To compute COS:
1- (x^2/2!) + (x^4/4!) - (x^6/6!) + ....
Rather than accumulating each term as shown, we instead compute the
numerator and denominator of the sum, and return these two values. This
avoids the necessity of reducing each rational as it is accumulated. On
one set of examples this procudure was almost an order of magnitude faster
than the simple summation given by COMPUTE-SERIES.
Given x^2 as num-x^2/denom-x^2, and a partial sum num-sum/denom-sum,
we compute the next partial sum as:
num-sum denom-x^2 (n + 1) (n + 2) num-x^n num-x^2
--------- * ------------------------- + --------------------------
denom-sum denom-x^2 (n + 1) (n + 2) denom-x^2 (n + 1) (n + 2)
Again, the rationals are not actually computed, and instead we simply return
the numerator and denominator of the answer.
Arguments:
num-x^2 -- (Numerator of x)^2.
denom-x^2 -- (Denominator of x)^2.
num-x^n -- (num-x)^n
num-sum -- Numerator of partial sum.
denom-sum -- Denominator of partial sum.
n -- n
parity -- T to add next term, NIL to subtract next term.
itr -- Number of iterations to perform.
~/"
(declare (xargs :guard (and (integerp num-x^2)
(integerp denom-x^2)
(not (= denom-x^2 0))
(integerp num-x^n)
(integerp num-sum)
(integerp denom-sum)
(not (= denom-sum 0))
(integerp n)
(<= 0 n)
(booleanp parity)
(integerp itr)
(<= 0 itr))
:guard-hints (("Goal" :in-theory (disable DISTRIBUTIVITY)))))
(if (zp itr)
(mv num-sum denom-sum)
(let*
((n+1*n+2 (* (+ n 1) (+ n 2)))
(multiplier (* denom-x^2 n+1*n+2))
(new-denom-sum (* denom-sum multiplier))
(adjusted-num-sum (* num-sum multiplier))
(new-num-x^n (* num-x^n num-x^2))
(new-num-sum (if parity
(+ adjusted-num-sum new-num-x^n)
(- adjusted-num-sum new-num-x^n))))
(fast-compute-series num-x^2 denom-x^2 new-num-x^n
new-num-sum new-denom-sum
(+ 2 n) (not parity) (1- itr)))))
(local
(defthm type-of-fast-compute-series
(implies
(and (integerp num-x^2)
(integerp denom-x^2)
(not (= denom-x^2 0))
(integerp num-x^n)
(integerp num-sum)
(integerp denom-sum)
(not (= denom-sum 0))
(integerp n)
(<= 0 n)
(booleanp parity)
(integerp itr)
(<= 0 itr))
(and
(integerp
(mv-nth 0 (fast-compute-series num-x^2 denom-x^2 num-x^n num-sum denom-sum
n parity itr)))
(integerp
(mv-nth 1 (fast-compute-series num-x^2 denom-x^2 num-x^n num-sum denom-sum
n parity itr)))
(not
(equal
(mv-nth 1
(fast-compute-series num-x^2 denom-x^2 num-x^n num-sum denom-sum
n parity itr))
0))))
:rule-classes
((:type-prescription
:corollary
(implies
(and (integerp num-x^2)
(integerp denom-x^2)
(not (= denom-x^2 0))
(integerp num-x^n)
(integerp num-sum)
(integerp denom-sum)
(not (= denom-sum 0))
(integerp n)
(<= 0 n)
(booleanp parity)
(integerp itr)
(<= 0 itr))
(integerp
(mv-nth 0
(fast-compute-series num-x^2 denom-x^2 num-x^n num-sum denom-sum
n parity itr)))))
(:type-prescription
:corollary
(implies
(and (integerp num-x^2)
(integerp denom-x^2)
(not (= denom-x^2 0))
(integerp num-x^n)
(integerp num-sum)
(integerp denom-sum)
(not (= denom-sum 0))
(integerp n)
(<= 0 n)
(booleanp parity)
(integerp itr)
(<= 0 itr))
(and
(integerp
(mv-nth 1
(fast-compute-series num-x^2 denom-x^2 num-x^n num-sum denom-sum
n parity itr)))
(not
(equal
(mv-nth 1
(fast-compute-series num-x^2 denom-x^2 num-x^n
num-sum denom-sum n parity itr))
0))))))
:hints
(("Goal"
:in-theory (disable distributivity))))) ;Too slow
(defun fast-compute-cos (x itr)
":doc-section sin-cos
This function returns the numerator and denominator of a rational
approximation to cos(x) (in radians) by itr iterations of
FAST-COMPUTE-SERIES.
~/~/~/"
(declare (xargs :guard (and (rationalp x)
(integerp itr)
(>= itr 0))))
(fast-compute-series (* (numerator x) (numerator x))
(* (denominator x) (denominator x))
1 1 1 0 nil itr))
(defun fast-compute-sin (x itr)
":doc-section sin-cos
This function returns the numerator and denominator of a rational
approximation to sin(x) (in radians) by itr iterations of
FAST-COMPUTE-SERIES.
~/~/~/"
(declare (xargs :guard (and (rationalp x)
(integerp itr)
(>= itr 0))))
(fast-compute-series (* (numerator x) (numerator x))
(* (denominator x) (denominator x))
(numerator x) (numerator x) (denominator x) 1 nil itr))
(defun truncated-integer-cos (x itr scale)
":doc-section sin-cos
Integer approximation to cos(x) * scale.
~/~/
A rational approximation to cos(x), scaled up by scale, and then TRUNCATED
to an integer.~/"
(declare (xargs :guard (and (rationalp x)
(integerp itr)
(<= 0 itr)
(rationalp scale))
:guard-hints
(("Goal"
:in-theory (disable mv-nth)))))
(mv-let (num denom) (fast-compute-cos x itr)
(truncate (* num scale) denom)))
(defun truncated-integer-sin (x itr scale)
":doc-section sin-cos
Integer approximation to sin(x) * scale.
~/~/
A rational approximation to cos(x), scaled up by scale, and then TRUNCATED
to an integer.~/"
(declare (xargs :guard (and (rationalp x)
(integerp itr)
(<= 0 itr)
(rationalp scale))
:guard-hints
(("Goal"
:in-theory (disable mv-nth)))))
(mv-let (num denom) (fast-compute-sin x itr)
(truncate (* num scale) denom)))
(defun truncated-integer-sin/cos-table-fn (sin/cos i n pie itr scale)
":doc-section sin-cos
Helper for SIN/COS-TABLE-FN
~/~/
Note that this function has special code for 0, pi/2, pi, and (3/2)pi.
The convergence of the series at these points is problematic in the
context of truncation (vs. rounding).~/"
(declare (xargs :guard (and (or (eq sin/cos :SIN) (eq sin/cos :COS))
(integerp i)
(<= 0 i)
(integerp n)
(<= 0 n)
(<= i n)
(rationalp pie)
(integerp itr)
(<= 0 itr)
(rationalp scale))
:measure (ifix (if (<= n i) 0 (- n i)))))
(cond
((zp (- n i)) nil)
(t (let ((i/n (/ i n)))
(cons
(cons i (case sin/cos
(:sin
(case i/n
((0 1/2) 0) ;0, pi
(1/4 (truncate scale 1)) ;pi/2
(3/4 (truncate scale -1)) ;(3/2)pi
(t
(truncated-integer-sin (* 2 pie i/n) itr scale))))
(t
(case i/n
(0 (truncate scale 1)) ;0
((1/4 3/4) 0) ;pi/2, (3/2)pi
(1/2 (truncate scale -1)) ;pi
(t
(truncated-integer-cos (* 2 pie i/n) itr scale))))))
(truncated-integer-sin/cos-table-fn
sin/cos (1+ i) n pie itr scale))))))
(defun truncated-integer-sin/cos-table (sin/cos n pie itr scale)
":doc-section sin-cos
Create a scaled, truncated integer sin/cos table from 0 to 2*pi.
~/~/
This function creates a table of approximations to
sin[cos]( (2 pi i)/n ) * scale, i = 0,...,n-1.
The result is an alist ( ... (i . sin[cos](i) ) ... ).
Arguments:
sin/cos -- :SIN or :COS.
n -- Total number of table entries
pie -- An approximation to pi sufficiently accurate for the user's
purposes.
itr -- Required number of iterations of FAST-COMPUTE-SIN[COS]
sufficient for user's accuracy.
scale -- Scale factor.
~/"
(declare (xargs :guard (and (or (eq sin/cos :SIN) (eq sin/cos :COS))
(integerp n)
(<= 0 n)
(rationalp pie)
(integerp itr)
(<= 0 itr)
(rationalp scale))))
(truncated-integer-sin/cos-table-fn sin/cos 0 n pie itr scale))
|