/usr/share/acl2-6.3/books/paco/rewrite.lisp is in acl2-books-source 6.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 | (in-package "PACO")
; Next we develop clausify, the function that reduces an IF-expression
; to a set of clauses.
; The basic idea here is to normalize the term and then walk the
; branches that terminate in non-T, accumulating literals.
; For example,
; (if p
; (if q T r)
; (if s NIL T))
; generates ((P (NOT S)) ((NOT P) Q R)) which is equivalent to
; (implies (not P) (not S))
; and
; (implies (and P (not Q)) R).
; The ACL2 version of clausify is complicated by the fact that it
; avoids IF-normalization. It compiles the term into a program for a
; certain abstract machine and then explores all paths through the
; program. This makes its space-behavior linear in the size of the
; term, whereas the Paco function is exponential.
(defun strip-branches (term clause clauses)
; Term is in IF-normal form. All terminal literals are T, NIL, or
; function applications. No branch terminating in NIL is
; contradictory.
(cond ((variablep term)
(cons (revappend (cons term clause) nil) clauses))
((fquotep term)
(cond ((equal term *t*) clauses)
(t (cons (revappend clause nil) clauses))))
((eq (ffn-symb term) 'IF)
(let* ((test (fargn term 1))
(clauses (strip-branches (fargn term 2)
(cons (dumb-negate-lit test) clause)
clauses)))
(strip-branches (fargn term 3)
(cons test clause)
clauses)))
(t (cons (revappend (cons term clause) nil) clauses))))
(defun clausify (term ens wrld)
(strip-branches (normalize term t nil ens wrld) nil nil))
(defun if-tautologyp (term ens wrld)
; The main application of this function is to determine whether a
; rewritten hypothesis is a tautology. For that reason, we do not
; expand non-rec fns in term. Thus, we do not recognize certain
; common tautologies, like (IF P 'T (NOT P)), while we would if we
; expanded the NOT.
(equal (normalize term t nil ens wrld) *t*))
(mutual-recursion
(defun expand-some-non-rec-fns (fns term wrld)
(cond ((variablep term) term)
((fquotep term) term)
(t (let ((args (expand-some-non-rec-fns-lst fns (fargs term) wrld)))
(cond ((member-equal (ffn-symb term) fns)
(subcor-var (formals (ffn-symb term) wrld)
args
(body (ffn-symb term) t wrld)))
(t (cons-term (ffn-symb term) args)))))))
(defun expand-some-non-rec-fns-lst (fns lst wrld)
(cond ((endp lst) nil)
(t (cons (expand-some-non-rec-fns fns (car lst) wrld)
(expand-some-non-rec-fns-lst fns (cdr lst) wrld)))))
)
; We now begin the development of the rewriter itself.
(defun smallest-term (term terms)
; Return the smallest term in (cons term terms), under term-order.
(cond ((endp terms) term)
((term-order (car terms) term) (smallest-term (car terms) (cdr terms)))
(t (smallest-term term (cdr terms)))))
(defun find-smallest-equal-term (term type-alist eterms)
(cond
((endp type-alist)
(smallest-term term eterms))
((and (ts= (cdr (car type-alist)) *ts-t*)
(nvariablep (car (car type-alist)))
(eq (ffn-symb (car (car type-alist))) 'EQUAL))
(let ((arg1 (fargn (car (car type-alist)) 1))
(arg2 (fargn (car (car type-alist)) 2)))
(cond
((equal term arg1)
(find-smallest-equal-term term (cdr type-alist) (cons arg2 eterms)))
((equal term arg2)
(find-smallest-equal-term term (cdr type-alist) (cons arg1 eterms)))
((member-equal arg1 eterms)
(find-smallest-equal-term term (cdr type-alist) (cons arg2 eterms)))
((member-equal arg2 eterms)
(find-smallest-equal-term term (cdr type-alist) (cons arg1 eterms)))
(t (find-smallest-equal-term term (cdr type-alist) eterms)))))
(t (find-smallest-equal-term term (cdr type-alist) eterms))))
(defun rewrite-solidify (term type-alist iff-flg ens wrld)
; We simplify term wrt type-alist. In particular, if term is known to
; be in a singleton type-set, we return the corresponding constant
; (reduced mod iff-flg). In addition, if term is equated to a series
; of other terms, we return the smallest (in term-order). The
; type-set for all the equivalent terms should be the same.
(cond
((quotep term)
(cond ((equal term *nil*) *nil*)
(iff-flg *t*)
(t term)))
(t (let ((ts (type-set term type-alist nil ens wrld *type-set-nnn*)))
(cond
((ts= ts *ts-t*) *t*)
((ts= ts *ts-nil*) *nil*)
((and iff-flg (not (ts-intersectp ts *ts-nil*))) *t*)
((ts= ts *ts-zero*) *0*)
(t (find-smallest-equal-term term type-alist nil)))))))
(defun loop-stopperp-rec (loop-stopper unify-subst)
; Only call this at the top level when loop-stopper is non-nil.
(cond
((endp loop-stopper) nil)
(t
(let ((pre (cdr (assoc-eq (car (car loop-stopper)) unify-subst)))
(post (cdr (assoc-eq (cadr (car loop-stopper)) unify-subst))))
(cond
((equal pre post)
(loop-stopperp-rec (cdr loop-stopper) unify-subst))
(t (term-order post pre)))))))
(defun loop-stopperp (loop-stopper unify-subst)
(or (null loop-stopper)
(loop-stopperp-rec loop-stopper unify-subst)))
(defrec rewrite-rule ((nume . hyps)
(equiv lhs . rhs)
subclass . heuristic-info))
; Hyps is a list of terms, equiv is EQUAL or IFF, lhs and rhs are
; terms. The presence of such a rule means (implies hyps (equiv lhs
; rhs)) is a theorem. Subclass is either:
; 'backchain - the traditional rewrite rule. In this case, :heuristic-info is
; the loop-stopper for the rule: a list of elements of the form (x . y),
; indicating that in replacing lhs by rhs (the binding of) y moves forward to
; the spot occupied by (the binding of) x, and that x and y only appear on
; the left-hand side as arguments to functions in fns. Thus, to prevent
; loops we adopt the heuristic convention of replacing lhs by rhs only if
; there exists a pair (x . y) such that the binding of y is smaller than
; that of x and all earlier pairs have equal bindings.
; 'definition - a rule implementing a non-abbreviational definitional
; equation. In this case :heuristic-info is the pair (recursivep
; . controller-alists) where recursivep is nil (if this is a nonrec
; definition) or a truelist of symbols naming all the fns in the
; ``clique'' (singly recursive functions have a singleton list as
; their recursivep property); and controller-alists is a non-empty
; list of alists, each pairing each fn named in recursivep to a mask
; of t's and nil's in 1:1 correspondence with the formals of the fn
; and indicating with t's which arguments control the recursion for
; this definition.
; 'meta - a rule justified by a metatheorem. In this case, the lhs is
; the metafunction symbol to be applied and hyps is the
; metafunction symbol to generate the hyps. If the rhs is the
; symbol 'extended then both metafunctions are extended and take two
; arguments, the target term and the mfc. Otherwise, they just take
; one argument.
; This layout is unoptimized.
(defrec rewrite-constant
((expand-lst . terms-to-be-ignored-by-rewrite)
(top-clause . current-clause)
(ens . current-literal)
. fns-to-be-ignored))
; The expand-lst and the terms-to-be-ignored-by-rewrite have dual uses
; in ACL2. They are used by induct to communicate to rewrite and they
; are used to implement parts of the user-supplied hint mechanism. In
; Paco, they only see the use by induct.
; The current-literal is a record, not a literal. Its not-flg and atm
; are always used together so we bundle them so we can extract them
; both at once.
(defrec current-literal (not-flg . atm))
; We here implement the check that the term we are about to rewrite is
; not a member of :terms-to-be-ignored-by-rewrite. The trouble is,
; the ``term we are about to rewrite'' is represented by a term and a
; substitution alist. We do not want to create the instantiation. So
; we first need the concept of whether a term is equal to another term
; mod a substitution.
(mutual-recursion
(defun equal-mod-alist (term1 alist1 term2)
; We determine whether (sublis-var alist1 term1) is equal to term2.
; We just chase vars in term1 and use equal at the tips. There is
; one subtlety. Consider
; (equal-mod-alist '(foo x z (cons x y))
; '((x . '1) (y . '2))
; '(foo '1 z '(1 . 2)))
; The idea is that if term2 is a quoted constant and term1 is some
; function application, then it is possible that the sublis-var will
; convert term1 to a quoted constant. We know that only happens if
; the top-most function symbol in term1 is a primitive, so we check
; that and do the sublis-var if we have to. But it only happens on
; the ``tips.''
(cond ((variablep term1)
(let ((temp (assoc-eq term1 alist1)))
(cond (temp (equal (cdr temp) term2))
(t (equal term1 term2)))))
((fquotep term1)
(equal term1 term2))
((variablep term2) nil)
((fquotep term2)
(cond ((cons-term-primitivep (ffn-symb term1))
(equal term2 (sublis-var alist1 term1)))
(t nil)))
((equal (ffn-symb term1) (ffn-symb term2)) ; may be lambdas.
(equal-mod-alist-lst (fargs term1) alist1 (fargs term2)))
(t nil)))
(defun equal-mod-alist-lst (term1-lst alist1 term2-lst)
(cond
((endp term1-lst) t)
(t (and (equal-mod-alist (car term1-lst) alist1 (car term2-lst))
(equal-mod-alist-lst (cdr term1-lst) alist1 (cdr term2-lst))))))
)
(defun member-equal-mod-alist (term1 alist1 term2-lst)
; Is (sublis-var alist1 term1) a member-equal of term2-lst?
(cond ((endp term2-lst) nil)
((equal-mod-alist term1 alist1 (car term2-lst))
t)
(t (member-equal-mod-alist term1 alist1 (cdr term2-lst)))))
(defun not-to-be-rewrittenp1 (fn lst)
; This function determines whether fn is the ffn-symb of any term on
; lst. We assume lst is a true list of non-variablep non-quotep
; terms.
(cond ((endp lst)
nil)
((equal fn (ffn-symb (car lst))) ; Both may be LAMBDAs.
t)
(t (not-to-be-rewrittenp1 fn (cdr lst)))))
(defun not-to-be-rewrittenp (term alist terms-to-be-ignored-by-rewrite)
; We assume term is a nonvariable non-quotep and that
; terms-to-be-ignored-by-rewrite contains no vars or quoteps. Let
; term' be (sublis-var alist term). If term' is a member of
; terms-to-be-ignored-by-rewrite we return term' else nil. We have
; a faster preliminary check, namely, whether terms-to-be-ignored-
; by-rewrite contains any terms with the same top-level function
; symbol as term.
(cond ((not-to-be-rewrittenp1 (ffn-symb term)
terms-to-be-ignored-by-rewrite)
(member-equal-mod-alist term alist
terms-to-be-ignored-by-rewrite))
(t nil)))
(defrec metafunction-context
(type-alist obj iff-flg wrld fnstack ancestors rcnst))
(defun ev-synp (synp-term unify-subst mfc wrld)
; Synp-term is the quotation of the term to be evaluated. Unify-subst is the
; unifying substitution presently in force, and mfc is the meta-level context
; (formerly referred to as "metafunction-context").
(let* ((unify-subst1 (if mfc
(cons (cons 'mfc mfc)
unify-subst)
unify-subst)))
(eval (cadr synp-term) unify-subst1 wrld)))
(defun tautologyp (term ens wrld)
; If this function returns t, then term is a theorem. This function
; can be made as fancy as you want, as long as it recognizes theorems.
(let ((fns '(if iff not implies eq atom eql = /= null zerop synp plusp
minusp listp prog2$ force case-split)))
; Note that fns contains IF as its first element. If term mentions
; none of these functions, there is no point in doing expansion or
; if-distribution. We just reduce to catch the trivial cases like
; (consp (cons x y)). But if term does contain any of these
; functions, we expand all of them (cdring past the undefined IF on
; the front).
(if (ffnnamesp fns term)
(if-tautologyp
(expand-some-non-rec-fns (cdr fns) term wrld)
ens
wrld)
(equal (reduce term t nil ens wrld t)
*t*))))
(defun refinementp (equiv iff-flg)
; We determine whether equiv is a refinment of the equivalence relation
; indicated by iff-flg, where nil means EQUAL and t means IFF.
(if iff-flg
(or (eq equiv 'equal) (eq equiv 'iff))
(eq equiv 'equal)))
(defun being-openedp-rec (fn fnstack)
; The fnstack used by the rewriter is a list. Each element is a
; function symbol, a list of function symbols, or of the form (:term
; . term) for some term, term. The first case means we are expanding
; a definition of that symbol and the symbol is non-recursively
; defined. The second means we are expanding a singly or mutually
; recursive function. (In fact, the fnstack element is the recursivep
; flag of the function we're expanding.) The third means that we are
; rewriting the indicated term (through the recursive dive in the
; rewriter that rewrites the just-rewritten term). Lambda-expressions
; are not pushed onto the fnstack, though fn may be a
; lambda-expression. We determine whether fn is on fnstack (including
; being a member of a mutually recursive clique).
(cond ((endp fnstack) nil)
((consp (car fnstack))
(or (eq fn (caar fnstack)) ; and hence (not (eq (caar fnstack) :term))
(being-openedp-rec fn (cdr fnstack))))
(t (or (eq fn (car fnstack))
(being-openedp-rec fn (cdr fnstack))))))
(defmacro being-openedp (fn fnstack clique)
; We found a 1.8% slowdown when we modified the code, in a preliminary cut at
; v2-7, to improve the speed of being-openedp when large cliques are on the
; fnstack by looking up the representative of fn on the fnstack, rather than
; looking up fn itself. Presumably that slowdown resulted from the new calls
; to getprop to get the 'recursivep property. Here we avoid computing that
; getprop (in the case that clique is a getprop expression) in a case we
; suspect is pretty common: fnstack is empty. The fnstack argument will
; always be a symbolp expression, so we do not need to let-bind it below.
(declare (xargs :guard (symbolp fnstack)))
`(and ,fnstack
(let ((clique ,clique))
(being-openedp-rec (if clique
(car clique)
,fn)
,fnstack))))
(defun recursive-fn-on-fnstackp (fnstack)
; We return t iff there is an element of fnstack that is recursively
; defined. We assume that any mutually recursive clique on the stack
; is truly indicative of mutual recursion. See the description of the
; fnstack in being-openedp.
(cond ((endp fnstack) nil)
((and (consp (car fnstack))
(not (eq (caar fnstack) :term)))
t)
(t (recursive-fn-on-fnstackp (cdr fnstack)))))
(defun some-fnstack-term-dumb-occur (fnstack term)
(cond ((endp fnstack) nil)
((and (consp (car fnstack))
(eq (caar fnstack) :term)
(dumb-occur (cdar fnstack) term))
t)
(t (some-fnstack-term-dumb-occur (cdr fnstack) term))))
(mutual-recursion
(defun occur-cnt-rec (term1 term2 acc)
; Return a lower bound on the number of times term1 occurs in term2.
; We do not go inside of quotes.
(cond ((equal term1 term2) (1+ acc))
((variablep term2) acc)
((fquotep term2) acc)
(t (occur-cnt-lst term1 (fargs term2) acc))))
(defun occur-cnt-lst (term1 lst acc)
(cond ((endp lst) acc)
(t (occur-cnt-rec term1
(car lst)
(occur-cnt-lst term1 (cdr lst) acc)))))
)
(defun occur-cnt (term1 term2)
(occur-cnt-rec term1 term2 0))
(mutual-recursion
(defun count-ifs (term)
(cond ((variablep term) 0)
((fquotep term) 0)
((eq (ffn-symb term) 'if)
(+ 1
(count-ifs (fargn term 1))
(count-ifs (fargn term 2))
(count-ifs (fargn term 3))))
(t (count-ifs-lst (fargs term)))))
(defun count-ifs-lst (lst)
(cond ((endp lst) 0)
(t (+ (count-ifs (car lst))
(count-ifs-lst (cdr lst))))))
)
(defun too-many-ifs1 (args val lhs rhs)
(cond
((endp args) nil)
(t (let ((x (count-ifs (car args))))
(cond ((int= x 0)
(too-many-ifs1 (cdr args) val lhs rhs))
(t (let ((lhs (+ lhs (* x (occur-cnt (car args) val)))))
(cond ((> lhs rhs) t)
(t (too-many-ifs1 (cdr args) val lhs rhs))))))))))
(defun too-many-ifs (args val)
; Let args be the list of actuals to a nonrec fn. Let val be the
; rewritten body. We wish to determine whether the expansion of the
; fn call introduces too many IFs all at once. Our motivation comes
; from an example like (M2 (ZTAK & & &) (ZTAK & & &) (ZTAK & & &))
; where the careless opening up of everybody produces a formula with
; several hundred IFs in it because of M2's duplication of the IFs
; coming from the simplification of the ZTAKs. My first thought was
; to never expand a nonrec fn -- at the top level of the clause -- if
; it had some IFs in its args and to wait till CLAUSIFY has cleaned
; things up. That slowed a proveall down by a factor of 2 -- and by a
; factor of 13 in PRIME-LIST-TIMES-LIST -- because of the ridiculously
; slow expansion of such basic nonrec fns as AND, OR, NOT, and NLISTP.
; This function computes:
; (> (ITERATE FOR ARG IN ARGS SUM (* (COUNT-IFS ARG) (OCCUR-CNT ARG VAL)))
; (ITERATE FOR ARG IN ARGS SUM (COUNT-IFS ARG)))
; but does it slightly more efficiently by observing that if no IFs
; occur in any arg then there is no point in doing the OCCUR-CNTs and
; that once the left hand side has been pushed beyond the right there
; is no point in continuing.
(let ((rhs (count-ifs-lst args)))
(cond ((int= rhs 0) nil)
(t (too-many-ifs1 args val 0 rhs)))))
(defun all-args-occur-in-top-clausep (args top-clause)
(cond ((endp args) t)
(t (and (dumb-occur-lst (car args) top-clause)
(all-args-occur-in-top-clausep (cdr args) top-clause)))))
(defun cons-count-ac (x i)
(cond ((atom x) i)
(t (cons-count-ac (cdr x) (cons-count-ac (car x) (1+ i))))))
(defun cons-count (x)
(cons-count-ac x 0))
(mutual-recursion
(defun max-form-count (term)
; This function is used in the control of recursive fn expansion.
; Many years ago, we used the fn count part of var-fn-count in this
; role. Then we decided that for controlling expansion we should not
; count (IF x y z) to have size 1+|x|+|y|+|z| because the IF will be
; distributed and the y or the z will rest in the argument position of
; the recursive call. So we started to compute the maximum fn count
; in the branches. Then we added explicit values (this really was
; years ago!) and decided not to consider 1000 to be better than 999,
; since otherwise (< x 1000) would open. So we measure quoted
; constants by their Lisp size.
(cond ((variablep term) 0)
((fquotep term) (cons-count (cadr term)))
((eq (ffn-symb term) 'if)
(max (max-form-count (fargn term 2))
(max-form-count (fargn term 3))))
(t (1+ (max-form-count-lst (fargs term))))))
(defun max-form-count-lst (lst)
(cond ((endp lst) 0)
(t (+ (max-form-count (car lst))
(max-form-count-lst (cdr lst))))))
)
(defun controller-complexity1 (flg args controller-pocket)
; Flg is either t (meaning we measure the controllers) or nil
; (meaning we measure the non-controllers). Args is the arg list
; to a call of a fn with the given controller pocket.
; In this implementation a controller pocket is a list of
; Booleans in 1:1 correspondence with the formals. A t in an
; argument position indicates that the formal is a controller.
; We sum the max-form-counts of the arguments in controller (or
; non-controller, according to flg) positions.
(cond ((endp args) 0)
((eq (car controller-pocket) flg)
(+ (max-form-count (car args))
(controller-complexity1 flg
(cdr args)
(cdr controller-pocket))))
(t (controller-complexity1 flg
(cdr args)
(cdr controller-pocket)))))
(defun controller-complexity (flg term controller-alist)
; Term is a call of some recursive fn in a mutually recursive clique.
; Controller-alist is an alist that assigns to each fn in the clique a
; controller-pocket. We compute the controller complexity (or
; non-controller complexity, according to flg being t or nil) of term
; for the controller pocket assigned fn in the alist.
(controller-complexity1 flg
(fargs term)
(cdr (assoc-eq (ffn-symb term)
controller-alist))))
(defun some-controller-pocket-simplerp
(call result controller-alists)
; Call has rewritten to something involving result. Both call and
; result are applications of functions in the same mutually recursive
; clique.
; Controller-alists is a list of alists. Each alist associates a fn
; in the clique to a controller pocket. A controller pocket is a list
; in 1:1 correspondence with the formals of the fn with a t in those
; slots that are controllers and a nil in the others. Thus, each
; alist assigns a complexity to both call and to result.
; We determine whether there exists an alist in controller-alists that
; assigns a lower complexity to result than to call.
(cond ((endp controller-alists) nil)
((< (controller-complexity t result (car controller-alists))
(controller-complexity t call (car controller-alists)))
t)
(t (some-controller-pocket-simplerp call
result
(cdr controller-alists)))))
(defun constant-controller-pocketp1 (args controller-pocket)
(cond ((endp args) t)
((car controller-pocket)
(and (quotep (car args))
(constant-controller-pocketp1 (cdr args)
(cdr controller-pocket))))
(t (constant-controller-pocketp1 (cdr args)
(cdr controller-pocket)))))
(defun constant-controller-pocketp (term controller-alist)
; Term is a call of some fn in the clique for which controller-alist is
; a controller alist. That alist assigns a controller-pocket to fn.
; We determine whether the controller arguments to fn in term are all
; quoted.
(constant-controller-pocketp1 (fargs term)
(cdr (assoc-eq (ffn-symb term)
controller-alist))))
(defun some-controller-pocket-constant-and-non-controller-simplerp
(call result controller-alists)
; Call and result are both applications of functions in the same
; mutually recursive clique. Controller-alists is a list of alists.
; Each alist assigns to each fn in the clique a controller pocket.
; We determine whether some alist in controller-alists assigns
; controllers in such a way that the controllers of result are
; constant and the complexity of the non-controllers in result
; is less than that of the non-controllers in call.
(cond ((endp controller-alists) nil)
((and (constant-controller-pocketp result (car controller-alists))
(< (controller-complexity nil result (car controller-alists))
(controller-complexity nil call (car controller-alists))))
t)
(t (some-controller-pocket-constant-and-non-controller-simplerp
call result (cdr controller-alists)))))
(mutual-recursion
(defun rewrite-fncallp (call result cliquep top-clause current-clause
controller-alists)
; Call has rewritten to (some term involving) result. We want to know
; if we should replace call by result or leave the call unopened. The
; ffn-symb of call is known to be a recursive function symbol, fn. It
; is not a lambda-expression. Cliquep is nil if fn is singly
; recursive and is the list of functions in fn's clique if it is
; mutually recursive. Top-clause and current-clause are two clauses
; from simplify-clause0 (the input clause there and the result of
; removing trivial equations). Controller-alists is the
; 'controller-alists property of fn.
; The controller-alists property of fn is a list of alists. Each
; alist pairs every function in fn's mutually recursive clique with a
; controller pocket. Thus, if fn is singly recursive,
; controller-alists looks like this:
; (((fn . controller-pocket1))...((fn . controller-pocketk))).
; But if fn is mutually recursive with clique fn1...fnm, then each
; alist assigns a controller pocket to each fni.
(cond
((variablep result) t)
((fquotep result) t)
((flambda-applicationp result)
; This should not normally happen. The only time we refuse to open a
; lambda-application is (a) we are at the top level of the clause and
; it has too many ifs, or (b) we were told not to open it by the user.
; But (a) can't have happened while we were constructing result
; because we were opening up a recursive fn. Of course, the worry is
; that the body of this lambda-expression contains a recursive call
; that will somehow get loose and we will indefinitely recur. But if
; the only way we get here is via case (b) above, we won't ever open
; this lambda and so we're safe. We therefore act as though this
; lambda were just some ordinary function symbol.
(rewrite-fncallp-listp call (fargs result)
cliquep
top-clause
current-clause
controller-alists))
((if cliquep
(member-eq (ffn-symb result) cliquep)
(eq (ffn-symb result) (ffn-symb call)))
(and (or (all-args-occur-in-top-clausep (fargs result)
top-clause)
(dumb-occur-lst result current-clause)
(some-controller-pocket-simplerp
call
result
controller-alists)
(some-controller-pocket-constant-and-non-controller-simplerp
call
result
controller-alists))
(rewrite-fncallp-listp call (fargs result)
cliquep
top-clause
current-clause
controller-alists)))
(t (rewrite-fncallp-listp call (fargs result)
cliquep
top-clause
current-clause
controller-alists))))
(defun rewrite-fncallp-listp (call lst cliquep top-clause current-clause
controller-alists)
(cond ((endp lst) t)
(t (and (rewrite-fncallp call (car lst)
cliquep
top-clause
current-clause
controller-alists)
(rewrite-fncallp-listp call (cdr lst)
cliquep
top-clause
current-clause
controller-alists)))))
)
(mutual-recursion
(defun contains-rewriteable-callp
(fn term cliquep terms-to-be-ignored-by-rewrite)
; This function scans the non-quote part of term and determines
; whether it contains a call, t, of any fn in the mutually recursive
; clique of fn, such that t is not on terms-to-be-ignored-by-rewrite.
; Fn is known to be a symbol, not a lambda-expression. If cliquep is
; nil, fn is singly recursive. Otherwise, cliquep is the list of
; functions in the clique (including fn).
(cond ((variablep term) nil)
((fquotep term) nil)
((flambda-applicationp term)
; If term is a lambda-application then we know that it contains no recursive
; calls of fns in the clique, as described in the comment on the subject
; in rewrite-fncallp above.
(contains-rewriteable-callp-lst fn (fargs term)
cliquep
terms-to-be-ignored-by-rewrite))
((and (if cliquep
(member-eq (ffn-symb term) cliquep)
(eq (ffn-symb term) fn))
(not (member-equal term terms-to-be-ignored-by-rewrite)))
t)
(t (contains-rewriteable-callp-lst fn (fargs term)
cliquep
terms-to-be-ignored-by-rewrite))))
(defun contains-rewriteable-callp-lst
(fn lst cliquep terms-to-be-ignored-by-rewrite)
(cond ((endp lst) nil)
(t (or (contains-rewriteable-callp fn (car lst)
cliquep
terms-to-be-ignored-by-rewrite)
(contains-rewriteable-callp-lst
fn (cdr lst)
cliquep
terms-to-be-ignored-by-rewrite)))))
)
(defun free-p (x)
(and (consp x) (eq (car x) :free)))
(defun expand-permission-p (term expand-lst)
; This is a generalized version of member-equal that asks whether
; expand-lst gives term permission to be expanded. Here, term is a
; function application.
(if (endp expand-lst)
nil
(or (let ((x (car expand-lst)))
(or (and (eq x :LAMBDAS)
(flambda-applicationp term))
(if (free-p x)
(mv-let (flg sbst)
(one-way-unify1 (caddr x) term (cadr x))
(declare (ignore sbst))
flg)
(equal x term))))
(expand-permission-p term (cdr expand-lst)))))
; There are many discrepancies between Paco's rewriter and ACL2's.
; The most important is that Paco does not support linear arithmetic.
; Another major omission is that Paco does not support equivalence or
; congruence relations. Paco does not support enabling or disabling
; of runes -- indeed, it has no concept of rune or of an enabled
; structure. In addition, Paco does not support HIDE, FORCE,
; CASE-SPLIT, BIND-FREE or the search for multiple instantiations of
; free vars. HIDE would not be difficult to add but seemed to be too
; minor to warrant the complexity. FORCE and CASE-SPLIT require the
; presence of ttrees or other dependency tracking to implement.
; BIND-FREE seemed too complicated for the first pass. However, Paco
; does support SYNTAXP and metafunctions, which require some of the
; same basic machinery as BIND-FREE.
; Essay on Rewrite Entry and the Extra Arguments
; The next major concern is the fact that rewrite and its peers in the
; rewrite clique take so many arguments. Each function in the clique
; takes some arguments specific to itself and some other ``extra''
; arguments shared by every other function in the clique. Most often,
; when functions in the clique call other functions, the extra
; arguments are passed as is, e.g., type-alist and wrld. We make a
; convenient macro, (rewrite-entry term :key1 val1 ...) that extends
; term by passing all the extra args as is, except for the ones indicated
; by keywords.
; The extra arguments are
#|
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn
|#
; Important Note: The string "&extra formals" is included where ever
; this list has been copied.
; Convention: Not every function uses all 7 of the extra formals.
; Ignored formals are so declared and we pass nil into such a slot
; (to be consistent while avoiding the appearance of using the old value).
(defun plist-to-alist (lst)
; Convert '(key1 val1 key2 val2 ...) to '((key1 . val1) (key2 . val2) ...).
; In use here, the keys are all in the keyword package.
(cond ((endp lst) nil)
(t (cons (cons (car lst) (cadr lst))
(plist-to-alist (cddr lst))))))
(defun add-rewrite-args (extra-formals keyword-extra-formals alist)
; extra-formals is '(type-alist ...)
; keyword-extra-formals is '(:type-alist ...)
; alist pairs keyword extra formals and terms
; We return a list in 1:1 correspondence with extra-formals. The
; element corresponding to an extra-formal is the value specified by
; the alist if one is so specified, otherwise it is the extra-formal
; itself.
(cond ((endp extra-formals) nil)
(t (cons (let ((pair (assoc-eq (car keyword-extra-formals)
alist)))
(cond (pair (cdr pair))
(t (car extra-formals))))
(add-rewrite-args (cdr extra-formals)
(cdr keyword-extra-formals)
alist)))))
(defmacro rewrite-entry (&rest args)
(declare (xargs :guard (and (true-listp args)
(keyword-value-listp (cdr args)))))
(append (car args)
(add-rewrite-args '( ; &extra formals
type-alist obj iff-flg wrld fnstack
ancestors rcnst nnn)
'( ; &extra formals -- keyword versions
:type-alist :obj :iff-flg :wrld :fnstack
:ancestors :rcnst :nnn)
(plist-to-alist (cdr args)))))
; Theorems used to speed up the admission of the rewrite clique.
(defthm rewrite-clique-speedup-26
(implies
(not (zp nnn))
(e0-ord-<
(cons (cons (cons (+ 1 (nfix (+ -1 nnn))) 6)
(acl2-count (mv-nth 1
(let nil
(cond ((atom term) (list nil term))
((equal 'quote (car term))
(list nil term))
((equal (car term) 'not)
(list 'not (cadr term)))
((and (equal (car term) 'if)
(equal (caddr term) ''nil)
(equal (cadddr term) ''t))
(list 'if (cadr term)))
(t (list nil term)))))))
0)
(cons (cons (cons (+ 1 (nfix nnn)) 0) 0)
0))))
(defthm rewrite-clique-speedup-5
(implies
(not (zp nnn))
(e0-ord-<
(cons
(cons
(cons (+ 1 (nfix nnn)) 1)
any)
0)
(cons (cons (cons (+ 1 (nfix nnn)) 4) 0)
0)))
:rule-classes nil)
(defthm rewrite-clique-speedup-4
(implies
(not (zp nnn))
(e0-ord-<
(cons
(cons
(cons (+ 1 (nfix (+ -1 nnn))) 6)
any)
0)
(cons (cons (cons (+ 1 (nfix nnn)) 4) 0)
0)))
:rule-classes nil)
; The rewrite clique:
(ACL2::SET-WELL-FOUNDED-RELATION e0-ord-<)
(mutual-recursion
(defun rewrite (term alist
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
(declare (xargs :measure (lex4 (nfix nnn) 6 (acl2-count term) 0)
:hints (("Goal"
:in-theory
(disable assume-true-false
type-set))
("Subgoal 26" :do-not '(preprocess)
:by rewrite-clique-speedup-26)
("Subgoal 17" :do-not '(preprocess)
:by rewrite-clique-speedup-5)
("Subgoal 16" :do-not '(preprocess)
:by rewrite-clique-speedup-4)
; ("Subgoal 5" :do-not '(preprocess)
; :by rewrite-clique-speedup-5)
; ("Subgoal 4" :do-not '(preprocess)
; :by rewrite-clique-speedup-4)
)))
(cond ((zp nnn) (sublis-var alist term))
((variablep term)
(rewrite-solidify (sublis-var alist term)
type-alist iff-flg
(access rewrite-constant rcnst :ens) wrld))
((fquotep term)
(if iff-flg
(if (equal term *nil*) *nil* *t*)
term))
((eq (ffn-symb term) 'if)
; We handle (if x y y) as a special case since it allows us to avoid
; rewriting x.
(cond
((equal (fargn term 2) (fargn term 3))
(rewrite-entry
(rewrite (fargn term 2) alist)))
(t
(let ((rewritten-test
(rewrite-entry
(rewrite (fargn term 1) alist)
:obj
(case obj
((t)
(cond ((equal (fargn term 2) *nil*)
nil)
((equal (fargn term 3) *nil*)
t)
(t '?)))
((nil)
(cond ((equal (fargn term 2) *t*)
nil)
((equal (fargn term 3) *t*)
t)
(t '?)))
(t '?))
:iff-flg t)))
(rewrite-entry
(rewrite-if rewritten-test
(fargn term 1)
(fargn term 2)
(fargn term 3)
alist))))))
((eq (ffn-symb term) 'IMPLIES)
; We handle IMPLIES specially. We rewrite both the hyps and the concl
; under the original type-alist, and then immediately return the
; resulting expansion of the body of IMPLIES. This prevents the concl
; from being rewritten under the (presumably) more powerful type-alist
; gotten from assuming the hyps true until after any normalization has
; occurred.
(subcor-var (formals 'IMPLIES wrld)
(list (rewrite-entry (rewrite (fargn term 1) alist)
:obj '?
:iff-flg t)
(rewrite-entry (rewrite (fargn term 2) alist)
:obj '?
:iff-flg t))
(body 'IMPLIES t wrld)))
((not-to-be-rewrittenp term alist
(access rewrite-constant
rcnst
:terms-to-be-ignored-by-rewrite))
(rewrite-solidify (sublis-var alist term)
type-alist iff-flg
(access rewrite-constant rcnst :ens)
wrld))
(t
(let ((fn (ffn-symb term))
(rewritten-args (rewrite-entry (rewrite-args (fargs term) alist)
:obj '?
:iff-flg nil)))
(cond
((and (all-quoteps rewritten-args)
(enabled-numep (fn-nume :EXECUTABLE-COUNTERPART fn wrld)
(access rewrite-constant rcnst :ens)))
(mv-let (erp val)
(apply fn
(strip-cadrs rewritten-args)
wrld)
(cond (erp (cons-term fn rewritten-args))
(t
(<rewrite-id>
(kwote val))))))
(t
(rewrite-entry
(rewrite-with-lemmas
(rewrite-entry
(rewrite-primitive fn rewritten-args)
:nnn (- nnn 1))))))))))
(defun rewrite-if (test unrewritten-test left right alist
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
(declare (xargs :measure (lex4 (nfix nnn)
6
(+ 1
(acl2-count unrewritten-test)
(acl2-count left)
(acl2-count right))
(acl2-count test))))
; Test is the result of rewriting unrewritten-test under the same alist and
; extra formals. Except, unrewritten-test can be nil, in which case we of
; course make no such claim.
(cond
((zp nnn)
(fcons-term* 'if
test
(sublis-var alist left)
(sublis-var alist right)))
((and (nvariablep test)
(not (fquotep test))
(eq (ffn-symb test) 'if)
(equal (fargn test 2) *nil*)
(equal (fargn test 3) *t*))
(rewrite-entry (rewrite-if (fargn test 1) nil right left alist)))
((quotep test)
; It often happens that the test rewrites to *t* or *nil* and we can
; avoid the assume-true-false below.
(if (cadr test)
(if (and unrewritten-test ; optimization (see e.g. rewrite-if above)
iff-flg
(equal unrewritten-test left))
; We are in the process of rewriting a term of the form (if x x y), which
; presumably came from an untranslated term of the form (or x y). We do not
; want to rewrite x more than once if we can get away with it. We are using
; the fact that the following is a theorem: (iff (if x x y) (if x t y)).
; We will use this observation later in the body of this function as well.
*t*
(rewrite-entry (rewrite left alist)))
(rewrite-entry (rewrite right alist))))
(t (mv-let
(must-be-true must-be-false true-type-alist false-type-alist)
(assume-true-false test type-alist nil
(access rewrite-constant rcnst :ens)
wrld *type-set-nnn*)
(cond
(must-be-true
(if (and unrewritten-test
iff-flg
(equal unrewritten-test left))
*t*
(rewrite-entry (rewrite left alist)
:type-alist true-type-alist)))
(must-be-false
(rewrite-entry (rewrite right alist)
:type-alist false-type-alist))
(t (let ((rewritten-left
(if (and unrewritten-test
iff-flg
(equal unrewritten-test left))
*t*
(rewrite-entry (rewrite left alist)
:type-alist true-type-alist)))
(rewritten-right
(rewrite-entry (rewrite right alist)
:type-alist false-type-alist)))
(cons-term-if test rewritten-left rewritten-right
iff-flg type-alist
(access rewrite-constant rcnst :ens)
wrld))))))))
(defun rewrite-args (args alist
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
(declare (xargs :measure (lex4 (nfix nnn) 6 (acl2-count args) 0))
(ignore iff-flg))
(cond ((zp nnn)
(sublis-var-lst alist args))
((endp args)
nil)
(t (cons
(rewrite-entry (rewrite (car args) alist)
:iff-flg nil)
(rewrite-entry (rewrite-args (cdr args) alist)
:iff-flg nil)))))
(defun rewrite-primitive (fn args
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
(declare (xargs :measure (lex4 (nfix nnn) 6 (acl2-count args) 0))
(ignore obj))
(cond
((zp nnn) (cons-term fn args))
((flambdap fn) (fcons-term fn args))
((eq fn 'equal)
(rewrite-entry (rewrite-equal (car args) (cadr args))
:obj nil
:iff-flg nil))
(t (rewrite-solidify (cons-term fn args) type-alist iff-flg
(access rewrite-constant rcnst :ens)
wrld))))
(defun rewrite-equal (lhs rhs
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
; We rewrite and return a term equivalent to (EQUAL lhs rhs).
(declare (xargs :measure (lex4 (nfix nnn)
5
(+ 1
(acl2-count lhs)
(acl2-count rhs))
0))
(ignore obj iff-flg))
(cond
((zp nnn) (cons-term 'equal (list lhs rhs)))
((equal lhs rhs) *t*)
((and (quotep lhs)
(quotep rhs))
*nil*)
(t
(let* ((ens (access rewrite-constant rcnst :ens))
(ts-lhs (type-set lhs type-alist nil ens wrld *type-set-nnn*))
(ts-rhs (type-set rhs type-alist nil ens wrld *type-set-nnn*)))
(cond
((not (ts-intersectp ts-lhs ts-rhs)) *nil*)
((equal-x-cons-x-yp lhs rhs) *nil*)
((and (ts-subsetp ts-lhs *ts-boolean*)
(equal rhs *t*))
lhs)
((and (ts-subsetp ts-rhs *ts-boolean*)
(equal lhs *t*))
rhs)
((equal lhs *nil*)
(fcons-term* 'if rhs *nil* *t*))
((equal rhs *nil*)
(fcons-term* 'if lhs *nil* *t*))
((equalityp lhs)
(fcons-term* 'if lhs
(fcons-term* 'equal rhs *t*)
(fcons-term* 'if rhs *nil* *t*)))
((equalityp rhs)
(fcons-term* 'if rhs
(fcons-term* 'equal lhs *t*)
(fcons-term* 'if lhs *nil* *t*)))
((and (ts-subsetp ts-lhs *ts-cons*)
(ts-subsetp ts-rhs *ts-cons*))
; If lhs and rhs are both of type cons, we recursively rewrite the
; equality of their cars and then of their cdrs. If either of these
; two tests fails, this equality is nil. If both succeed, this one is
; t. Otherwise, we don't rewrite term.
(let* ((alist (list (cons 'lhs lhs)
(cons 'rhs rhs)))
(rewritten-car
(rewrite-entry (rewrite '(equal (car lhs) (car rhs))
alist)
:obj '?
:iff-flg t
:nnn (- nnn 1))))
(cond
((equal rewritten-car *t*)
(let ((rewritten-cdr
(rewrite-entry (rewrite '(equal (cdr lhs)
(cdr rhs))
alist)
:obj '?
:iff-flg t
:nnn (- nnn 1))))
(cond ((equal rewritten-cdr *t*)
*t*)
((equal rewritten-cdr *nil*)
*nil*)
(t (fcons-term* 'equal lhs rhs)))))
((equal rewritten-car *nil*)
*nil*)
(t
(let ((rewritten-cdr
(rewrite-entry (rewrite '(equal (cdr lhs)
(cdr rhs))
alist)
:obj '?
:iff-flg t
:nnn (- nnn 1))))
(cond ((equal rewritten-cdr *nil*)
*nil*)
(t (fcons-term* 'equal lhs rhs))))))))
(t (fcons-term* 'equal lhs rhs)))))))
(defun relieve-hyp (term unify-subst
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
; This function is a No-Change Loser.
(declare (xargs :measure (lex4 (nfix nnn) 0 0 0))
(ignore obj iff-flg))
(cond ((zp nnn) (mv nil unify-subst))
((and (nvariablep term)
(not (fquotep term))
(eq (ffn-symb term) 'synp))
(let ((mfc (if (member-eq 'mfc (all-vars (cadr (fargn term 3))))
(make metafunction-context
:type-alist type-alist
:obj '?
:iff-flg nil
:wrld wrld
:fnstack fnstack
:ancestors ancestors
:rcnst rcnst)
nil))
(synp-fn (car (cadr (fargn term 2)))))
(mv-let (erp val)
(ev-synp (fargn term 3) unify-subst mfc wrld)
(cond
((or erp (null val)) (mv nil unify-subst))
((eq synp-fn 'SYNTAXP) (mv val unify-subst))
; Here we could handle BIND-FREE forms as in ACL2, but I don't want to be
; distracted by them.
(t (mv nil unify-subst))))))
((and (equalityp term)
(variablep (fargn term 1))
(not (assoc-eq (fargn term 1) unify-subst))
(not (free-varsp (fargn term 2) unify-subst)))
(let ((rewritten-rhs
(rewrite-entry
(rewrite (fargn term 2)
unify-subst)
:obj '?
:iff-flg nil
:nnn (- nnn 1))))
(mv t
(cons (cons (fargn term 1) rewritten-rhs)
unify-subst))))
(t
(mv-let
(flg unify-subst)
(lookup-hyp term type-alist wrld unify-subst)
(cond
(flg (mv t unify-subst))
((free-varsp term unify-subst) (mv nil unify-subst))
(t
(let ((inst-hyp (sublis-var unify-subst term)))
(mv-let
(on-ancestorsp assumed-true)
(ancestors-check inst-hyp ancestors)
(cond
(on-ancestorsp (mv assumed-true unify-subst))
(t
(mv-let
(knownp nilp)
(known-whether-nil inst-hyp type-alist
(access rewrite-constant rcnst :ens)
wrld)
(cond
(knownp (mv (not nilp) unify-subst))
(t
(mv-let
(not-flg atm)
(strip-not term)
(let ((rewritten-atm
(rewrite-entry
(rewrite atm unify-subst)
:obj (if not-flg nil t)
:iff-flg t
:ancestors (push-ancestor
(dumb-negate-lit inst-hyp)
ancestors)
:nnn (- nnn 1))))
(cond
(not-flg
(mv (equal rewritten-atm *nil*) unify-subst))
((if-tautologyp rewritten-atm
(access rewrite-constant rcnst :ens)
wrld)
(mv t unify-subst))
(t (mv nil unify-subst))))))))))))))))))
(defun relieve-hyps (hyps unify-subst
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors
rcnst nnn)
; We return t or nil indicating success and an extended unify-subst.
; This function is a No-Change Loser.
(declare (xargs :measure (lex4 (nfix nnn) 1 (acl2-count hyps) 0))
(ignore obj iff-flg))
(cond ((endp hyps) (mv t unify-subst))
(t (mv-let (flg unify-subst)
(rewrite-entry (relieve-hyp (car hyps) unify-subst)
:obj nil
:iff-flg nil)
(cond
(flg
(rewrite-entry (relieve-hyps (cdr hyps) unify-subst)
:obj nil
:iff-flg nil))
(t (mv nil unify-subst)))))))
(defun rewrite-with-lemma (term lemma
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
; The two values returned by this function are t or nil, indicating
; whether lemma was used to rewrite term, and the rewritten version of
; term. This is a No-Change Loser.
(declare (xargs :measure (lex4 (nfix nnn) 4 0 0)))
(cond
((zp nnn) (mv nil term))
((eq (access rewrite-rule lemma :subclass) 'meta)
(cond
((refinementp (access rewrite-rule lemma :equiv) iff-flg)
; Metafunctions come in two flavors. Vanilla metafunctions take just
; one arg, the term to be rewritten. Extended metafunctions take
; three args. We cons up the args here and use this list of args
; twice below, once to eval the metafunction and once to eval the hyp
; fn. The :rhs of the rewrite-rule is the special flag 'extended
; if we are in the extended case; otherwise, :rhs is nil. We must
; manufacture a context in the former case.
(let* ((args
(cond
((eq (access rewrite-rule lemma :rhs)
'extended)
(list term
(make metafunction-context
:type-alist type-alist
:obj obj
:iff-flg iff-flg
:wrld wrld
:fnstack fnstack
:ancestors ancestors
:rcnst rcnst)))
(t (list term)))))
(mv-let
(erp val)
(apply (access rewrite-rule lemma :lhs) args wrld)
(cond
(erp
(mv nil term))
((equal term val)
(mv nil term))
((termp val wrld)
(let ((hyp-fn (access rewrite-rule lemma :hyps)))
(mv-let
(erp evaled-hyp)
(if (eq hyp-fn nil)
(mv nil *t*)
(apply hyp-fn args wrld))
(cond
(erp (mv nil term))
((termp evaled-hyp wrld)
(cond
((ffnnamep 'synp evaled-hyp)
(mv nil term))
(t
(mv-let
(relieve-hyps-ans unify-subst)
(rewrite-entry (relieve-hyps
(flatten-ands-in-lit
; Note: The sublis-var below normalizes the explicit constant
; constructors in evaled-hyp, e.g., (cons '1 '2) becomes '(1 . 2).
(sublis-var nil evaled-hyp))
; The meta function has rewritten term to val and has generated a
; hypothesis called evaled-hyp. Now ignore the metafunction and just
; imagine that we have a rewrite rule (implies evaled-hyp (equiv term
; val)). The unifying substitution just maps the vars of term to
; themselves. There may be additional vars in both evaled-hyp and in
; val. But they are free at the time we do this relieve-hyps.
(let ((vars (all-vars term)))
(pairlis vars vars)))
:obj nil
:geneqv nil)
(cond
(relieve-hyps-ans
(let ((rewritten-rhs
(rewrite-entry
(rewrite
; Note: The sublis-var below normalizes the explicit constant
; constructors in val, e.g., (cons '1 '2) becomes '(1 . 2).
(sublis-var nil val)
; At one point we ignored the unify-subst constructed above and used a
; nil here. That was unsound if val involved free vars bound by the
; relief of the evaled-hyp. We must rewrite val under the extended
; substitution. Often that is just the identity substitution.
unify-subst)
:nnn (- nnn 1))))
(mv t rewritten-rhs)))
(t (mv nil term)))))))
(t (mv nil term))))))
(t (mv nil term))))))
(t (mv nil term))))
((not (refinementp (access rewrite-rule lemma :equiv) iff-flg))
(mv nil term))
((eq (access rewrite-rule lemma :subclass) 'definition)
(let ((rewritten-term
(rewrite-entry (rewrite-fncall lemma term))))
(mv (not (equal term rewritten-term)) rewritten-term)))
((and (or (null (access rewrite-rule lemma :hyps))
(not (eq obj t))
(not (equal (access rewrite-rule lemma :rhs) *nil*)))
(or (flambdap (ffn-symb term)) ; hence not on fnstack
(not (being-openedp (ffn-symb term) fnstack
(getprop (ffn-symb term) 'recursivep nil
wrld)))
(not (ffnnamep (ffn-symb term)
(access rewrite-rule lemma :rhs)))))
(let ((lhs (access rewrite-rule lemma :lhs)))
(mv-let (unify-ans unify-subst)
(one-way-unify lhs term)
(cond
(unify-ans
(cond
((null (loop-stopperp
(access rewrite-rule lemma :heuristic-info)
unify-subst))
(mv nil term))
(t
(mv-let
(relieve-hyps-ans unify-subst)
(rewrite-entry
(relieve-hyps (access rewrite-rule lemma :hyps)
unify-subst)
:obj nil
:geneqv nil)
(cond
(relieve-hyps-ans
(let ((rewritten-rhs
(rewrite-entry
(rewrite
(access rewrite-rule lemma :rhs)
unify-subst)
:nnn (- nnn 1))))
(mv t rewritten-rhs)))
(t (mv nil term)))))))
(t (mv nil term))))))
(t (mv nil term))))
(defun rewrite-with-lemmas1 (term lemmas
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
; Try to rewrite term with the lemmas in lemmas. Return t or nil
; indicating success, and the rewritten term. This function is a
; No-Change Loser.
(declare (xargs :measure (lex4 (nfix nnn) 5 (acl2-count lemmas) 0)))
(cond ((zp nnn) (mv nil term))
((endp lemmas) (mv nil term))
((not (enabled-numep (access rewrite-rule (car lemmas) :nume)
(access rewrite-constant rcnst :ens)))
(rewrite-entry
(rewrite-with-lemmas1 term (cdr lemmas))))
(t
(mv-let
(rewrittenp rewritten-term)
(<rewrite-with-lemmas1-id>
(rewrite-entry (rewrite-with-lemma term (car lemmas))))
(cond (rewrittenp
(mv t rewritten-term))
(t (rewrite-entry
(rewrite-with-lemmas1 term (cdr lemmas)))))))))
(defun rewrite-fncall (rule term
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
; Rule is a :REWRITE rule of subclass DEFINITION or else it is nil.
; Rule is nil iff term is a lambda application. The value returned by
; this function is the (possibly) rewritten term.
; Term is of the form (fn . args).
(declare (xargs :measure (lex4 (nfix nnn) 3 0 0)))
(let* ((fn (ffn-symb term))
(args (fargs term))
(body (if (null rule)
(lambda-body fn)
(access rewrite-rule rule :rhs)))
(recursivep (and rule ; it's a don't-care if (flambdap fn)
(car (access rewrite-rule rule :heuristic-info))))
(ens (access rewrite-constant rcnst :ens)))
(cond ((zp nnn) term)
((and (not (flambdap fn))
(being-openedp fn fnstack recursivep))
(rewrite-solidify term type-alist iff-flg ens wrld))
((null rule) ; i.e., (flambdap fn)
(let ((rewritten-body
(rewrite-entry (rewrite body
(pairlis (lambda-formals fn) args))
:fnstack fnstack
:nnn (- nnn 1))))
; Observe that we do not put the lambda-expression onto the fnstack.
; We act just as though we were rewriting a term under a substitution.
; But we do decide on heuristic grounds whether to keep the expansion.
; See the handling of non-recursive functions below for some comments
; relating to the too-many-ifs code.
(cond
((and (not (recursive-fn-on-fnstackp fnstack))
(too-many-ifs args rewritten-body))
(rewrite-solidify term type-alist iff-flg ens wrld))
(t rewritten-body))))
(t
(let* ((new-fnstack (cons (or recursivep fn) fnstack)))
(mv-let
(unify-ans unify-subst)
(one-way-unify (access rewrite-rule rule :lhs)
term)
(cond
(unify-ans
(mv-let
(relieve-hyps-ans unify-subst)
(rewrite-entry
(relieve-hyps (access rewrite-rule rule :hyps)
unify-subst)
:obj nil
:iff-flg nil)
(cond
(relieve-hyps-ans
(let ((rewritten-body
(rewrite-entry (rewrite body unify-subst)
:fnstack new-fnstack
:nnn (- nnn 1))))
(cond
((null recursivep)
; We are dealing with a nonrecursive fn. If we are at the top-level of the
; clause but the expanded body has too many IFs in it compared to the number
; in the args, we do not use the expanded body. We know the IFs in
; the args will be clausified out soon and then this will be permitted to
; open.
(cond
((and (not (recursive-fn-on-fnstackp fnstack))
(too-many-ifs args rewritten-body))
(rewrite-solidify term type-alist iff-flg ens wrld))
(t rewritten-body)))
((rewrite-fncallp
term rewritten-body
(if (cdr recursivep) recursivep nil)
(access rewrite-constant rcnst
:top-clause)
(access rewrite-constant rcnst
:current-clause)
(cdr (access rewrite-rule rule :heuristic-info)))
(cond
((contains-rewriteable-callp
fn rewritten-body
(if (cdr recursivep)
recursivep
nil)
(access rewrite-constant
rcnst :terms-to-be-ignored-by-rewrite))
; Ok, we are prepared to rewrite the once rewritten body. But beware! There
; is an infinite loop lurking here. It can be broken by using :fnstack
; new-fnstack below, but we do something weaker; more on this below. The
; problem is the interaction between opening up function definitions and use of
; equalities on the type-alist. Suppose that (foo x) is defined to be (bar
; (foo (cdr x))) in a certain case. But imagine that on the type-alist we have
; (foo (cdr x)) = (foo x). Then rewritten-body, here, is (bar (foo x)).
; Because it contains a rewriteable call we rewrite it again. If we do so with
; the old fnstack, we will open (foo x) to (bar (foo x)) again and infinitely
; regress.
; This same loop occurs in Nqthm, though it has never been fired in anger, as
; far as we know. While the loop can be broken by using new-fnstack, that
; approach has a bad side-effect: (member x '(a b c)) is not runout. It opens
; to (if (equal x 'a) (member x '(b c))) and because new-fnstack mentions
; member, we don't expand the inner call.
; In Version 2.5 and before we handled this rare loop in a very non-rugged
; way, using fnstack unchanged in the recursive call below: If the term we're
; expanding reoccurs in the rewritten body, we won't rewrite the rewritten
; body. In that approach, if we're expanding (foo x a) and it rewrites to (bar
; (foo (cdr x) a)) and thence to (bar (foo x a)), we'll break the loop. BUT if
; it goes instead to (bar (foo x a')), we'll just naively go around the loop.
; Starting with Version 2.6, we extend fnstack with (:term . rewritten-body)
; in the recursive call to rewrite, below. But first, we check the fnstack to
; see if an entry (:term . x) is already there for some subterm x of the
; rewritten body. This is the only place that we pay attention to elements of
; fnstack of the form (:term . x).
(cond
((or (dumb-occur term rewritten-body)
(some-fnstack-term-dumb-occur fnstack
rewritten-body))
rewritten-body)
(t
(let ((rewritten-body
(rewrite-entry
(rewrite rewritten-body nil)
; See the reference to fnstack in the comment above.
:fnstack (cons (cons :term term)
fnstack)
:nnn (- nnn 1))))
rewritten-body))))
(t
rewritten-body)))
(t (rewrite-solidify term type-alist iff-flg ens wrld)))))
(t (rewrite-solidify term type-alist iff-flg ens wrld)))))
(t (rewrite-solidify term type-alist iff-flg ens wrld)))))))))
(defun rewrite-with-lemmas (term
; &extra formals
type-alist obj iff-flg wrld fnstack ancestors rcnst nnn)
(declare (xargs :measure (lex4 (nfix nnn) 6 0 0)))
(cond
((zp nnn) term)
((variablep term)
(rewrite-solidify term type-alist iff-flg
(access rewrite-constant rcnst :ens)
wrld))
((fquotep term) term)
((member-equal (ffn-symb term)
(access rewrite-constant rcnst :fns-to-be-ignored))
term)
((flambda-applicationp term)
(cond ((expand-permission-p term
(access rewrite-constant rcnst :expand-lst))
(rewrite-entry
(rewrite (lambda-body (ffn-symb term))
(pairlis (lambda-formals (ffn-symb term))
(fargs term)))
:nnn (- nnn 1)))
(t (rewrite-entry (rewrite-fncall nil term)))))
(t (mv-let
(rewrittenp rewritten-term)
(rewrite-entry
(rewrite-with-lemmas1 term
(getprop (ffn-symb term) 'lemmas nil wrld)))
(cond
(rewrittenp rewritten-term)
((and (expand-permission-p term
(access rewrite-constant rcnst :expand-lst))
(not (being-openedp (ffn-symb term) fnstack
(getprop (ffn-symb term) 'recursivep nil
wrld))))
(rewrite-entry (rewrite
(body (ffn-symb term) t wrld)
(pairlis (formals (ffn-symb term) wrld)
(fargs term)))
:nnn (- nnn 1)))
(t (rewrite-solidify term type-alist iff-flg
(access rewrite-constant rcnst :ens)
wrld)))))))
)
(defconst *rewrite-nnn* 100)
|