This file is indexed.

/usr/share/acl2-6.3/books/str/istrpos.lisp is in acl2-books-source 6.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
; ACL2 String Library
; Copyright (C) 2009-2013 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; This program is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free Software
; Foundation; either version 2 of the License, or (at your option) any later
; version.  This program is distributed in the hope that it will be useful but
; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
; more details.  You should have received a copy of the GNU General Public
; License along with this program; if not, write to the Free Software
; Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
;
; Original author: Jared Davis <jared@centtech.com>

(in-package "STR")
(include-book "iprefixp")
(include-book "istrprefixp")
(local (include-book "arithmetic"))

(defsection istrpos
  :parents (substrings)
  :short "Case-insensitivly locate the first occurrence of a substring."

  :long "<p>@(call istrpos) is like @(see strpos), but the comparisons are done
in a case insensitive manner.  It returns @('nil') if @('x') never occurs in
@('y'), or returns the index of the first character of the first occurrence
otherwise.</p>

<p>The function is \"efficient\" in the sense that it does not coerce its
arguments into lists, but rather traverses both strings with @(see char).  On
the other hand, it is a naive string search which operates by repeatedly
calling @(see istrprefixp) rather than some better algorithm.</p>

<p>The \"soundness\" and \"completness\" of strpos are established in the
theorems @('iprefixp-of-istrpos') and @('completeness-of-istrpos').</p>"

  (defund istrpos-impl (x y n xl yl)
    (declare (type string x y)
             (type (integer 0 *) n xl yl)
             (xargs :guard (and (stringp x)
                                (stringp y)
                                (natp xl)
                                (natp yl)
                                (natp n)
                                (<= n (length y))
                                (= xl (length x))
                                (= yl (length y)))
                    :measure (nfix (- (nfix yl) (nfix n)))))
    (cond ((mbe :logic (iprefixp (explode x)
                                 (nthcdr n (explode y)))
                :exec (istrprefixp-impl (the string x)
                                        (the string y)
                                        (the (integer 0 *) 0)
                                        (the (integer 0 *) n)
                                        (the (integer 0 *) xl)
                                        (the (integer 0 *) yl)))
           (lnfix n))
          ((mbe :logic (zp (- (nfix yl) (nfix n)))
                :exec (int= n yl))
           nil)
          (t
           (istrpos-impl (the string x)
                         (the string y)
                         (the (integer 0 *) (+ 1 (the (integer 0 *) (lnfix n))))
                         (the (integer 0 *) xl)
                         (the (integer 0 *) yl)))))

  (definlined istrpos (x y)
    (declare (type string x y))
    (let* ((xl (mbe :logic (len (explode x))
                    :exec (length (the string x))))
           (yl (mbe :logic (len (explode y))
                    :exec (length (the string y)))))
      (declare (type (integer 0 *) xl yl))
      (istrpos-impl (the string x)
                    (the string y)
                    (the (integer 0 *) 0)
                    xl
                    yl)))

  (local (in-theory (enable istrpos istrpos-impl)))

  (defthm istrpos-type
    (or (and (integerp (istrpos x y))
             (<= 0 (istrpos x y)))
        (not (istrpos x y)))
    :rule-classes :type-prescription)

  (encapsulate
    ()
    (local (defthm lemma
             (implies (and (istrpos-impl x y n xl yl)
                           (natp xl)
                           (natp yl)
                           (natp n)
                           (<= n (len (explode y)))
                           (= xl (len (explode x)))
                           (= yl (len (explode y))))
                      (iprefixp (explode x)
                                (nthcdr (istrpos-impl x y n xl yl)
                                        (explode y))))
             :hints(("Goal" :induct (istrpos-impl x y n xl yl)))))

    (defthm iprefixp-of-istrpos
      (implies (istrpos x y)
               (iprefixp (explode x)
                         (nthcdr (istrpos x y) (explode y))))))

  (encapsulate
    ()
    (local (defun my-induction (x y n m xl yl)
             (declare (xargs :measure (nfix (- (nfix yl) (nfix n)))))
             (cond ((iprefixp (explode x)
                              (nthcdr n (explode y)))
                    nil)
                   ((zp (- (nfix yl) (nfix n)))
                    (list x y n m xl yl))
                   (t
                    (my-induction x y
                                  (+ (nfix n) 1)
                                  (if (= (nfix n) (nfix m))
                                      (+ (nfix m) 1)
                                    (nfix m))
                                  xl yl)))))

    (local (defthm lemma
             (implies (and (iprefixp (explode x)
                                     (nthcdr m (explode y)))
                           (natp xl)
                           (natp yl)
                           (natp n)
                           (natp m)
                           (<= n (nfix m))
                           (<= n (len (explode y)))
                           (= xl (len (explode x)))
                           (= yl (len (explode y))))
                      (and (natp (istrpos-impl x y n xl yl))
                           (<= (istrpos-impl x y n xl yl) m)))
             :hints(("Goal"
                     :induct (my-induction x y n m xl yl)
                     :do-not '(generalize fertilize)))))

    (defthm completeness-of-istrpos
      (implies (and (iprefixp (explode x)
                              (nthcdr m (explode y)))
                    (force (natp m)))
               (and (natp (istrpos x y))
                    (<= (istrpos x y) m)))))

  (defcong istreqv equal (istrpos-impl x y n xl yl) 1)
  (defcong istreqv equal (istrpos-impl x y n xl yl) 2)

  (local (in-theory (disable istreqv)))

  (defcong istreqv equal (istrpos x y) 1)
  (defcong istreqv equal (istrpos x y) 2))