This file is indexed.

/usr/share/acl2-6.3/books/str/strnatless.lisp is in acl2-books-source 6.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
; ACL2 String Library
; Copyright (C) 2009-2013 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; This program is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free Software
; Foundation; either version 2 of the License, or (at your option) any later
; version.  This program is distributed in the hope that it will be useful but
; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
; more details.  You should have received a copy of the GNU General Public
; License along with this program; if not, write to the Free Software
; Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
;
; Original author: Jared Davis <jared@centtech.com>

(in-package "STR")
(include-book "digitp")
(include-book "tools/mv-nth" :dir :system)
(local (include-book "arithmetic"))


(defsection parse-nat-from-charlist
  :parents (numbers)
  :short "Parse a natural number from the beginning of a character list."

  :long "<p>@(call parse-nat-from-charlist) tries to read a natural number from
the beginning of the character list @('x').</p>

<ul>

<li>@('val') is an accumulator for the value of the digits we have read so far,
and typically should be set to 0 to begin with.</li>

<li>@('len') is an accumulator for the number of digits we have read, and
should typically be set to 0 to begin with.</li>

</ul>

<p>We return @('(mv val len rest)'), where @('x') after reading as many digits
as possible.</p>

<p>See also @(call digit-list-value), which is simpler for interpreting strings
where all of the characters are digits.</p>"

  (defund parse-nat-from-charlist (x val len)
    (declare (type integer val)
             (type integer len)
             (xargs :guard (and (character-listp x)
                                (natp val)
                                (natp len))
                    :verify-guards nil))
    (mbe :logic
         (cond ((atom x)
                (mv (nfix val) (nfix len) nil))
               ((digitp (car x))
                (let ((digit-val (digit-val (car x))))
                  (parse-nat-from-charlist (cdr x)

; A silly idea I have (for the purposes of strnatless, at least) would be to
; instead multiply each character by 16, which would mean that the operation
; could be done via ash and logior.  I think the values produced by such a
; scheme would be ordered in the same way that the values here are ordered.
; And, rudimentary speed test suggests it could be as much as 50% faster.  The
; proof seems difficult, so for now I don't have the patience to attempt it.

                                           (+ digit-val (* 10 (nfix val)))
                                           (+ 1 (nfix len)))))
               (t
                (mv (nfix val) (nfix len) x)))
         :exec
         (cond ((atom x)
                (mv val len nil))
               (t
                (let ((code (the (unsigned-byte 8) (char-code (the character (car x))))))
                  (declare (type (unsigned-byte 8) code))
                  (if (and (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code))
                           (<= (the (unsigned-byte 8) code) (the (unsigned-byte 8) 57)))
                      (let ((digit-val (the (unsigned-byte 8)
                                         (- (the (unsigned-byte 8) code)
                                            (the (unsigned-byte 8) 48)))))
                        (parse-nat-from-charlist
                         (cdr x)
                         (the integer (+ (the (unsigned-byte 8) digit-val)
                                         (the integer (* 10 (the integer val)))))
                         (the integer (+ 1 (the integer len)))))
                    (mv val len x)))))))

  (local (in-theory (enable parse-nat-from-charlist)))

  (verify-guards parse-nat-from-charlist
    :hints(("Goal" :in-theory (enable digitp
                                      digit-val
                                      char-fix))))


  (encapsulate
    ()
    (local (defund leading-digits-value (x val)
             (declare (xargs :verify-guards nil))
             (if (consp x)
                 (if (digitp (car x))
                     (leading-digits-value (cdr x)
                                           (+ (digit-val (car x)) (* 10 (nfix val))))
                   (nfix val))
               (nfix val))))

    (local (defthm lemma-1
             (equal (mv-nth 0 (parse-nat-from-charlist x val len))
                    (leading-digits-value x val))
             :hints(("Goal" :in-theory (enable leading-digits-value)))))

    (local (defthm lemma-2
             (equal (leading-digits-value x val)
                    (digit-list-value1 (take-leading-digits x) val))
             :hints(("Goal" :in-theory (e/d (leading-digits-value
                                             digit-list-value1
                                             take-leading-digits)
                                            (digit-list-value1-removal))))))

    (defthm val-of-parse-nat-from-charlist
      (equal (mv-nth 0 (parse-nat-from-charlist x val len))
             (+ (digit-list-value (take-leading-digits x))
                (* (nfix val) (expt 10 (len (take-leading-digits x))))))))


  (encapsulate
    ()
    (local (defund count-leading-digits1 (x len)
             (declare (xargs :verify-guards nil))
             (if (consp x)
                 (if (digitp (car x))
                     (count-leading-digits1 (cdr x) (+ 1 (nfix len)))
                   (nfix len))
               (nfix len))))

    (local (defthm lemma-1
             (equal (mv-nth 1 (parse-nat-from-charlist x val len))
                    (count-leading-digits1 x len))
             :hints(("Goal" :in-theory (enable count-leading-digits1)))))

    (local (defthm lemma-2
             (equal (count-leading-digits1 x len)
                    (+ (nfix len)
                       (len (take-leading-digits x))))
             :hints(("Goal" :in-theory (enable count-leading-digits1
                                               take-leading-digits)))))

    (defthm len-of-parse-nat-from-charlist
      (equal (mv-nth 1 (parse-nat-from-charlist x val len))
             (+ (nfix len) (len (take-leading-digits x))))))



  (defthm rest-of-parse-nat-from-charlist
    (equal (mv-nth 2 (parse-nat-from-charlist x val len))
           (skip-leading-digits x))
    :hints(("Goal" :in-theory (enable skip-leading-digits)))))



(defsection parse-nat-from-string
  :parents (numbers)
  :short "Parse a natural number from a string, at some offset."

  :long "<p>@(call parse-nat-from-string) is somewhat elaborate:</p>

<ul>

<li>@('x') is a string that we want to parse a value from</li>

<li>@('val') is an accumulator for the value we have parsed, and it should
generally be 0 to begin with.</li>

<li>@('len') is an accumulator for the number of characters we have read so
far, and should generally be 0 to begin with.</li>

<li>@('n') is an offset into @('x') where we should begin parsing.  It must be
a valid index into the string, i.e., @('0 <= n < (length x)').</li>

<li>@('xl') must be exactly equal to @('(length x)'), and only serves as a
cache to avoid recomputing the length.</li>

</ul>

<p>We return @('(mv val len)'), the final values of the accumulators, which are
respectively the natural number we have just parsed and the number of digits
that we parsed.</p>

<p>Both @('val') and @('len') are guaranteed to be natural numbers; failure is
indicated by a return @('len') of zero.</p>

<p>Because of leading zeroes, the @('len') may be much larger than you would
expect based on @('val') alone.  The @('len') argument is generally useful if
you want to continue parsing through the string, i.e., the @('n') you started
with plus the @('len') you got out will be the next position in the string
after the number.</p>

<p>See also @(see parse-nat-from-charlist) for a simpler function that reads a
number from the start of a character list.  This function also serves as part
of our logical definition.</p>"

  (local (in-theory (disable acl2::nth-when-bigger
                             acl2::negative-when-natp
                             default-+-2
                             default-+-1
                             default-<-2
                             commutativity-of-+
                             default-<-1
                             ACL2::|x < y  =>  0 < y-x|
                             )))


  (defund parse-nat-from-string (x val len n xl)
    (declare (type string x)
             (type (integer 0 *) val len n xl)
             (xargs :guard (and (stringp x)
                                (natp val)
                                (natp len)
                                (natp n)
                                (equal xl (length x))
                                (<= n xl))
                    :measure (nfix (- (nfix xl) (nfix n)))
                    :verify-guards nil))

    (mbe :logic
         (cond ((zp (- (nfix xl) (nfix n)))
                (mv (nfix val) (nfix len)))
               ((digitp (char x n))
                (let ((digit-val (digit-val (char x n))))
                  (parse-nat-from-string x
                                         (+ digit-val (* 10 (nfix val)))
                                         (+ 1 (nfix len))
                                         (+ 1 (nfix n))
                                         (nfix xl))))
               (t
                (mv (nfix val) (nfix len))))
         :exec
         (cond ((int= n xl)
                (mv val len))
               (t
                (let ((code (the (unsigned-byte 8)
                              (char-code (the character
                                           (char (the string x)
                                                 (the (integer 0 *) n)))))))
                  (declare (type (unsigned-byte 8) code))
                  (if (and (<= (the (unsigned-byte 8) 48)
                               (the (unsigned-byte 8) code))
                           (<= (the (unsigned-byte 8) code)
                               (the (unsigned-byte 8) 57)))
                      (let ((digit-val (the (unsigned-byte 8)
                                         (- (the (unsigned-byte 8) code)
                                            (the (unsigned-byte 8) 48)))))
                        (parse-nat-from-string
                         (the string x)
                         (the (integer 0 *)
                           (+ (the (unsigned-byte 8) digit-val)
                              (the (integer 0 *) (* 10 (the (integer 0 *) val)))))
                         (the (integer 0 *) (+ 1 (the (integer 0 *) len)))
                         (the (integer 0 *) (+ 1 (the (integer 0 *) n)))
                         (the (integer 0 *) xl)))
                    (mv val len)))))))

  (local (in-theory (enable parse-nat-from-string)))

  (verify-guards parse-nat-from-string
    :hints(("Goal" :in-theory (enable digitp digit-val))))

  (defthm natp-of-val-of-parse-nat-from-string
    (and (integerp (mv-nth 0 (parse-nat-from-string x val len n xl)))
         (<= 0 (mv-nth 0 (parse-nat-from-string x val len n xl))))
    :rule-classes :type-prescription
    :hints(("Goal" :in-theory (disable nth nfix))))

  (defthm natp-of-len-of-parse-nat-from-string
    (and (integerp (mv-nth 1 (parse-nat-from-string x val len n xl)))
         (<= 0 (mv-nth 1 (parse-nat-from-string x val len n xl))))
    :rule-classes :type-prescription
    :hints(("Goal" :in-theory (disable nth nfix))))

  (defthm progress-of-parse-nat-from-string
    ;; If there's a digit there, we read at least one character.
    (implies (and (equal xl (length x))
                  (or (< 0 (nfix len))
                      (digitp (char x (nfix n)))))
             (< 0 (mv-nth 1 (parse-nat-from-string x val len n xl))))
    :rule-classes ((:rewrite) (:linear))
    :hints(("Goal"
            :induct (parse-nat-from-string x val len n xl))))

  (defthm val-of-parse-nat-from-string
    (implies (and (natp val)
                  (natp len)
                  (natp n)
                  (equal xl (len (explode x)))
                  (<= n xl))
             (equal (mv-nth 0 (parse-nat-from-string x val len n xl))
                    (mv-nth 0 (parse-nat-from-charlist (nthcdr n (explode x)) val len))))
    :hints(("Goal"
            :induct (parse-nat-from-string x val len n xl)
            :in-theory (e/d (parse-nat-from-charlist)
                            (val-of-parse-nat-from-charlist))
            :do-not '(generalize fertilize))))

  (defthm len-of-parse-nat-from-string
    (implies (and (natp val)
                  (natp len)
                  (natp n)
                  (equal xl (len (explode x)))
                  (<= n xl))
             (equal (mv-nth 1 (parse-nat-from-string x val len n xl))
                    (mv-nth 1 (parse-nat-from-charlist (nthcdr n (explode x)) val len))))
    :hints(("Goal"
            :induct (parse-nat-from-string x val len n xl)
            :in-theory (e/d (parse-nat-from-charlist)
                            (len-of-parse-nat-from-charlist))
            :do-not '(generalize fertilize)))))



(defsection charlistnat<
  :parents (ordering)
  :short "Mixed alphanumeric character-list less-than test."

  :long "<p>@(call charlistnat<) determines if the character list @('x') is
\"smaller\" than the character list @('y'), using an ordering that is nice for
humans.</p>

<p>This is almost an ordinary case-sensitive lexicographic ordering.  But,
unlike a simple lexicographic order, we identify sequences of natural number
digits and group them together so that they can be sorted numerically.</p>

<p>Even though this function operates on character lists, let's just talk about
strings instead since they are easier to write down.  If you give most string
sorts a list of inputs like \"x0\" through \"x11\", they will end up in a
peculiar order:</p>

@({\"x0\", \"x1\", \"x10\", \"x11\", \"x2\", \"x3\", ... \"x9\"})

<p>But in @('charlistnat<'), we see the adjacent digits as bundles and sort
them as numbers.  This leads to a nicer ordering:</p>

@({\"x0\", \"x1\", \"x2\", ..., \"x9\", \"x10\", \"x11\"})

<p>This is almost entirely straightforward.  One twist is how to accommodate
leading zeroes.  Our approach is: instead of grouping adjacent digits and
treating them as a natural number, treat them as a pair with a value and a
length.  We then sort these pairs first by value, and then by length.  Hence, a
string such as \"x0\" is considered to be less than \"x00\", etc.</p>

<p>See also @(see strnat<) and @(see icharlist<).</p>"

  (local (in-theory (disable acl2::nth-when-bigger
                             acl2::negative-when-natp
                             default-+-2
                             default-+-1
                             default-<-2
                             commutativity-of-+
                             default-<-1
                             ACL2::|x < y  =>  0 < y-x|
                             char<-trichotomy-strong
                             char<-antisymmetric
                             char<-trichotomy-weak
                             char<-transitive
                             expt
                             default-car
                             default-cdr)))

  (defund charlistnat< (x y)
    (declare (xargs :guard (and (character-listp x)
                                (character-listp y))
                    :measure (len x)))

    (cond ((atom y)
           nil)
          ((atom x)
           t)
          ((and (digitp (car x))
                (digitp (car y)))
           (b* (((mv v1 l1 rest-x) (parse-nat-from-charlist x 0 0))
                ((mv v2 l2 rest-y) (parse-nat-from-charlist y 0 0)))

; The basic idea is to order numbers by their values, and then by their
; lengths.  This second part only is necessary to accomodate leading zeroes.

             (cond ((or (< v1 v2)
                        (and (int= v1 v2)
                             (< l1 l2)))
                    t)
                   ((or (< v2 v1)
                        (and (int= v1 v2)
                             (< l2 l1)))
                    nil)
                   (t
                    (charlistnat< rest-x rest-y)))))

          ((char< (car x) (car y))
           t)
          ((char< (car y) (car x))
           nil)
          (t
           (charlistnat< (cdr x) (cdr y)))))

  (local (in-theory (enable charlistnat<)))

  (defcong charlisteqv equal (charlistnat< x y) 1)
  (defcong charlisteqv equal (charlistnat< x y) 2)

  (defthm charlistnat<-irreflexive
    (not (charlistnat< x x)))

  (defthm charlistnat<-antisymmetric
    (implies (charlistnat< x y)
             (not (charlistnat< y x)))
    :hints(("goal" :in-theory (enable char<-antisymmetric))))

  (encapsulate
    ()
    (local (defthm char<-nonsense-2
             (implies (and (char< a y)
                           (not (digitp a))
                           (digitp y)
                           (digitp z))
                      (char< a z))
             :rule-classes ((:rewrite :backchain-limit-lst 0))
             :hints(("Goal" :in-theory (enable char< digitp)))))

    (local (defthm char<-nonsense-3
             (implies (and (char< y a)
                           (not (digitp a))
                           (digitp x)
                           (digitp y))
                      (char< x a))
             :rule-classes ((:rewrite :backchain-limit-lst 0))
             :hints(("Goal" :in-theory (enable char< digitp)))))

    (local (defthm char<-nonsense-4
             (implies (and (char< x y)
                           (not (digitp y))
                           (digitp x)
                           (digitp z))
                      (not (char< y z)))
             :rule-classes ((:rewrite :backchain-limit-lst 0))
             :hints(("Goal" :in-theory (enable digitp char<)))))



    (defthm charlistnat<-transitive
      (implies (and (charlistnat< x y)
                    (charlistnat< y z))
               (charlistnat< x z))
      :hints(("Goal" :in-theory (e/d ((:induction charlistnat<)
                                      char<-trichotomy-strong
                                      char<-transitive)
                                     (expt charlistnat<-antisymmetric
                                           take-leading-digits-when-digit-listp
                                           default-+-2 default-+-1
                                           BOUND-OF-LEN-OF-TAKE-LEADING-DIGITS
                                           LEN-OF-PARSE-NAT-FROM-CHARLIST))
              :induct t
              :expand ((:free (y) (charlistnat< x y))
                       (:free (z) (charlistnat< y z)))))))


  (encapsulate
    ()

    (local
     (encapsulate ()
       ;; A slightly tricky lemma about arithmetic.

       (local (defun expr (a x b n)
                (+ a (* x (expt b n)))))

       (local (include-book "arithmetic-3/floor-mod/floor-mod" :dir :system))

       (local (defthm mod-of-expr
                (implies (and (natp a1)
                              (natp x1)
                              (natp n)
                              (natp b)
                              (< a1 (expt b n))
                              (<= x1 b))
                         (equal (mod (expr a1 x1 b n)
                                     (expt b n))
                                a1))))

       (local (defthm main-lemma
                (implies (and (natp a1)
                              (natp a2)
                              (natp x1)
                              (natp x2)
                              (natp n)
                              (natp b)
                              (< a1 (expt b n))
                              (< a2 (expt b n))
                              (<= x1 b)
                              (<= x2 b)
                              (not (equal a1 a2)))
                         (not (equal (expr a1 x1 b n)
                                     (expr a2 x2 b n))))
                :hints(("Goal" :in-theory (disable expr mod-of-expr)
                        :use ((:instance mod-of-expr)
                              (:instance mod-of-expr (a1 a2) (x1 x2)))))))

       (defthmd arith-lemma-1
         (implies (and (natp a1)
                       (natp a2)
                       (natp x1)
                       (natp x2)
                       (natp n)
                       (natp b)
                       (< a1 (expt b n))
                       (< a2 (expt b n))
                       (<= x1 b)
                       (<= x2 b)
                       (not (equal a1 a2)))
                  (not (equal (+ a1 (* x1 (expt b n)))
                              (+ a2 (* x2 (expt b n))))))
         :hints(("Goal"
                 :in-theory (enable expr)
                 :use ((:instance main-lemma)))))))

; The main proof of trichotomy

    (local (defthm lemma-1
             (IMPLIES (AND (NOT (EQUAL (DIGIT-LIST-VALUE X2)
                                       (DIGIT-LIST-VALUE Y2)))
                           (NOT (EQUAL X2 Y2))
                           (CHARACTERP X1)
                           (CHARACTERP Y1)
                           (CHARACTER-LISTP X2)
                           (CHARACTER-LISTP Y2)
                           (DIGITP X1)
                           (DIGITP Y1)
                           (DIGIT-LISTP X2)
                           (DIGIT-LISTP Y2)
                           (EQUAL (LEN X2) (LEN Y2)))
                      (NOT (EQUAL (+ (DIGIT-LIST-VALUE X2)
                                     (* (DIGIT-VAL X1) (EXPT 10 (LEN X2))))
                                  (+ (DIGIT-LIST-VALUE Y2)
                                     (* (DIGIT-VAL Y1) (EXPT 10 (LEN X2)))))))
             :hints(("Goal"
                     :use ((:instance arith-lemma-1
                                      (a1 (digit-list-value x2))
                                      (a2 (digit-list-value y2))
                                      (x1 (digit-val x1))
                                      (x2 (digit-val y1))
                                      (b 10)
                                      (n (len x2))))))))

    (local (defun my-induction (x y)
             (if (and (consp x)
                      (consp y))
                 (my-induction (cdr x) (cdr y))
               nil)))

    (local (defthm lemma-2
             (implies (and (equal (len x) (len y))
                           (character-listp x)
                           (character-listp y)
                           (digit-listp x)
                           (digit-listp y))
                      (equal (equal (digit-list-value x)
                                    (digit-list-value y))
                             (equal x y)))
             :hints(("Goal"
                     :induct (my-induction x y)
                     :in-theory (enable digit-listp
                                        digit-list-value
                                        commutativity-of-+)))))

    (local (defthm lemma-3
             (implies (and (equal (len (take-leading-digits y))
                                  (len (take-leading-digits x)))
                           (equal (digit-list-value (take-leading-digits y))
                                  (digit-list-value (take-leading-digits x)))
                           (charlisteqv (skip-leading-digits x)
                                        (skip-leading-digits y)))
                      (equal (charlisteqv x y)
                             t))
             :hints(("Goal" :in-theory (enable take-leading-digits
                                               skip-leading-digits
                                               charlisteqv
                                               digit-list-value)))))

    (defthm charlistnat<-trichotomy-weak
      (implies (and (not (charlistnat< x y))
                    (not (charlistnat< y x)))
               (equal (charlisteqv x y)
                      t))
      :hints(("Goal" :in-theory (e/d (char<-trichotomy-strong)
                                     (BOUND-OF-LEN-OF-TAKE-LEADING-DIGITS
                                      TAKE-LEADING-DIGITS-WHEN-DIGIT-LISTP
                                      ACL2::RIGHT-CANCELLATION-FOR-+
                                      CHARLISTNAT<-ANTISYMMETRIC
                                      CHARLISTNAT<-IRREFLEXIVE
                                      )))))

    (defthm charlistnat<-trichotomy-strong
      (equal (charlistnat< x y)
             (and (not (charlisteqv x y))
                  (not (charlistnat< y x))))
      :rule-classes ((:rewrite :loop-stopper ((x y)))))))




(defsection strnat<-aux
  :parents (strnat<)
  :short "Implementation of @(see strnat<)."

  :long "<p>@(call strnat<-aux) is basically the adaptation of @(see
charlistnat<) for strings.  Here, X and Y are the strings being compared, and
XL and YL are their pre-computed lengths.  XN and YN are the indices into the
two strings that are our current positions.</p>

<p>BOZO why do we have XN and YN separately?  It seems like we should only need
one index.</p>"

  (local (in-theory (disable acl2::nth-when-bigger
                             acl2::negative-when-natp
                             default-+-2
                             default-+-1
                             default-<-2
                             commutativity-of-+
                             default-<-1
                             ACL2::|x < y  =>  0 < y-x|
                             ACL2::|x < y  =>  0 < -x+y|
                             char<-trichotomy-strong
                             char<-antisymmetric
                             char<-trichotomy-weak
                             char<-transitive
                             acl2::negative-when-natp
                             acl2::natp-rw
                             expt
                             default-car
                             default-cdr
                             (:rewrite PROGRESS-OF-PARSE-NAT-FROM-STRING)
                             )))


  (defund strnat<-aux (x y xn yn xl yl)
    (declare (type string x)
             (type string y)
             (type integer xn)
             (type integer yn)
             (type integer xl)
             (type integer yl)
             (xargs :guard (and (stringp x)
                                (stringp y)
                                (natp xn)
                                (natp yn)
                                (equal xl (length x))
                                (equal yl (length y))
                                (<= xn xl)
                                (<= yn yl))
                    :verify-guards nil
                    :measure
                    (let* ((x  (if (stringp x) x ""))
                           (y  (if (stringp y) y ""))
                           (xn (nfix xn))
                           (yn (nfix yn))
                           (xl (length x))
                           (yl (length y)))
                      (nfix (+ (- yl yn) (- xl xn))))
                    :hints(("Goal" :in-theory (disable val-of-parse-nat-from-string
                                                       len-of-parse-nat-from-string))))
             (ignorable xl yl))
    (mbe :logic
         (let* ((x  (if (stringp x) x ""))
                (y  (if (stringp y) y ""))
                (xn (nfix xn))
                (yn (nfix yn))
                (xl (length x))
                (yl (length y)))
           (cond ((zp (- yl yn))
                  nil)
                 ((zp (- xl xn))
                  t)
                 ((and (digitp (char x xn))
                       (digitp (char y yn)))
                  (b* (((mv v1 l1)
                        (parse-nat-from-string x 0 0 xn xl))
                       ((mv v2 l2)
                        (parse-nat-from-string y 0 0 yn yl)))
                    (cond ((or (< v1 v2)
                               (and (int= v1 v2)
                                    (< l1 l2)))
                           t)
                          ((or (< v2 v1)
                               (and (int= v1 v2)
                                    (< l2 l1)))
                           nil)
                          (t
                           (strnat<-aux x y (+ xn l1) (+ yn l2) xl yl)))))
                 ((char< (char x xn)
                         (char y yn))
                  t)
                 ((char< (char y yn)
                         (char x xn))
                  nil)
                 (t
                  (strnat<-aux x y (+ 1 xn) (+ 1 yn) xl yl))))
         :exec
         (cond ((int= yn yl)
                nil)
               ((int= xn xl)
                t)
               (t
                (let* ((char-x (the character (char (the string x) (the integer xn))))
                       (char-y (the character (char (the string y) (the integer yn))))
                       (code-x (the (unsigned-byte 8) (char-code (the character char-x))))
                       (code-y (the (unsigned-byte 8) (char-code (the character char-y)))))
                  (declare (type character char-x)
                           (type character char-y)
                           (type (unsigned-byte 8) code-x)
                           (type (unsigned-byte 8) code-y))
                  (cond
                   ((and
                     ;; (digitp (char x xn))
                     (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code-x))
                     (<= (the (unsigned-byte 8) code-x) (the (unsigned-byte 8) 57))
                     ;; (digitp (char y yn))
                     (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code-y))
                     (<= (the (unsigned-byte 8) code-y) (the (unsigned-byte 8) 57)))
                    (b* (((mv v1 l1)
                          (parse-nat-from-string (the string x)
                                                 (the integer 0)
                                                 (the integer 0)
                                                 (the integer xn)
                                                 (the integer xl)))
                         ((mv v2 l2)
                          (parse-nat-from-string (the string y)
                                                 (the integer 0)
                                                 (the integer 0)
                                                 (the integer yn)
                                                 (the integer yl))))
                      (cond ((or (< (the integer v1) (the integer v2))
                                 (and (int= v1 v2)
                                      (< (the integer l1) (the integer l2))))
                             t)
                            ((or (< (the integer v2) (the integer v1))
                                 (and (int= v1 v2)
                                      (< (the integer l2) (the integer l1))))
                             nil)
                            (t
                             (strnat<-aux (the string x)
                                          (the string y)
                                          (the integer (+ (the integer xn) (the integer l1)))
                                          (the integer (+ (the integer yn) (the integer l2)))
                                          (the integer xl)
                                          (the integer yl))))))
                   ((< (the (unsigned-byte 8) code-x) (the (unsigned-byte 8) code-y))
                    t)
                   ((< (the (unsigned-byte 8) code-y) (the (unsigned-byte 8) code-x))
                    nil)
                   (t
                    (strnat<-aux (the string x)
                                 (the string y)
                                 (the integer (+ (the integer 1) (the integer xn)))
                                 (the integer (+ (the integer 1) (the integer yn)))
                                 (the integer xl)
                                 (the integer yl)))))))))

  (local (in-theory (enable strnat<-aux)))
  (set-inhibit-warnings "theory") ;; implicitly local

  (encapsulate
    nil
    (local (in-theory (disable acl2::nth-when-bigger
                               take-leading-digits-when-digit-listp
                               digit-listp-when-not-consp
                               (:type-prescription character-listp)
                               (:type-prescription eqlable-listp)
                               (:type-prescription atom-listp)
                               (:type-prescription digitp$inline)
                               (:type-prescription strnat<-aux)
                               (:type-prescription char<)
                               default-char-code
                               char<-antisymmetric
                               char<-trichotomy-strong
                               default-<-1 default-<-2
                               default-+-1 default-+-2
                               acl2::open-small-nthcdr
                               acl2::nthcdr-when-zp
                               acl2::nthcdr-when-atom
                               ACL2::|x < y  =>  0 < -x+y|
                               nthcdr len nth not
                               strnat<-aux
                               acl2::natp-fc-1
                               acl2::natp-fc-2
                               (:FORWARD-CHAINING EQLABLE-LISTP-FORWARD-TO-ATOM-LISTP)
                               (:FORWARD-CHAINING CHARACTER-LISTP-FORWARD-TO-EQLABLE-LISTP)
                               (:FORWARD-CHAINING ATOM-LISTP-FORWARD-TO-TRUE-LISTP)
                               )))
    (verify-guards strnat<-aux
      :hints((and stable-under-simplificationp
                  '(:in-theory (enable digitp
                                       digit-val
                                       char-fix
                                       char<))))))

  (local (defthm skip-leading-digits-to-nthcdr
           (implies (force (true-listp x))
                    (equal (skip-leading-digits x)
                           (nthcdr (len (take-leading-digits x)) x)))
           :hints(("Goal" :in-theory (enable skip-leading-digits take-leading-digits)))))

  (defthm strnat<-aux-correct
    (implies (and (stringp x)
                  (stringp y)
                  (natp xn)
                  (natp yn)
                  (equal xl (length x))
                  (equal yl (length y))
                  (<= xn xl)
                  (<= yn yl))
             (equal (strnat<-aux x y xn yn xl yl)
                    (charlistnat< (nthcdr xn (explode x))
                                  (nthcdr yn (explode y)))))
    :hints(("Goal"
            :induct (strnat<-aux x y xn yn xl yl)
            :expand ((charlistnat< (nthcdr xn (explode x))
                                   (nthcdr yn (explode y)))
                     (:free (xl yl) (strnat<-aux x y xn yn xl yl)))
            :in-theory (e/d (charlistnat<
                             commutativity-of-+
                             )
                            (charlistnat<-antisymmetric
                             charlistnat<-trichotomy-strong
                             take-leading-digits-when-digit-listp
                             digit-listp-when-not-consp
                             charlistnat<
                             (:definition strnat<-aux)
                             default-+-1 default-+-2
                             acl2::nth-when-bigger))
            :do-not '(generalize fertilize)))))



(defsection strnat<
  :parents (ordering)
  :short "Mixed alphanumeric string less-than test."

  :long "<p>@(call strnat<) determines if the string @('x') is \"smaller\"
than the string @('y'), using an ordering that is nice for humans.</p>

<p>See @(see charlistnat<) for a description of this order.</p>

<p>We avoid coercing the strings into character lists, and this is altogether
pretty fast.</p>"

  (definlined strnat< (x y)
    (declare (type string x y))
    (mbe :logic
         (charlistnat< (explode x) (explode y))
         :exec
         (strnat<-aux (the string x)
                      (the string y)
                      (the integer 0)
                      (the integer 0)
                      (the integer (length (the string x)))
                      (the integer (length (the string y))))))

  (local (in-theory (enable strnat<)))

  (defcong streqv equal (strnat< x y) 1)
  (defcong streqv equal (strnat< x y) 2)

  (defthm strnat<-irreflexive
    (not (strnat< x x)))

  (defthm strnat<-antisymmetric
    (implies (strnat< x y)
             (not (strnat< y x))))

  (defthm strnat<-transitive
    (implies (and (strnat< x y)
                  (strnat< y z))
             (strnat< x z)))

  (defthm strnat<-transitive-alt
    (implies (and (strnat< y z)
                  (strnat< x y))
             (strnat< x z))))