/usr/share/acl2-6.3/axioms.lisp is in acl2-source 6.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 48049 48050 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 48111 48112 48113 48114 48115 48116 48117 48118 48119 48120 48121 48122 48123 48124 48125 48126 48127 48128 48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 48239 48240 48241 48242 48243 48244 48245 48246 48247 48248 48249 48250 48251 48252 48253 48254 48255 48256 48257 48258 48259 48260 48261 48262 48263 48264 48265 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 48281 48282 48283 48284 48285 48286 48287 48288 48289 48290 48291 48292 48293 48294 48295 48296 48297 48298 48299 48300 48301 48302 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312 48313 48314 48315 48316 48317 48318 48319 48320 48321 48322 48323 48324 48325 48326 48327 48328 48329 48330 48331 48332 48333 48334 48335 48336 48337 48338 48339 48340 48341 48342 48343 48344 48345 48346 48347 48348 48349 48350 48351 48352 48353 48354 48355 48356 48357 48358 48359 48360 48361 48362 48363 48364 48365 48366 48367 48368 48369 48370 48371 48372 48373 48374 48375 48376 48377 48378 48379 48380 48381 48382 48383 48384 48385 48386 48387 48388 48389 48390 48391 48392 48393 48394 48395 48396 48397 48398 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 48423 48424 48425 48426 48427 48428 48429 48430 48431 48432 48433 48434 48435 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 48449 48450 48451 48452 48453 48454 48455 48456 48457 48458 48459 48460 48461 48462 48463 48464 48465 48466 48467 48468 48469 48470 48471 48472 48473 48474 48475 48476 48477 48478 48479 48480 48481 48482 48483 48484 48485 48486 48487 48488 48489 48490 48491 48492 48493 48494 48495 48496 48497 48498 48499 48500 48501 48502 48503 48504 48505 48506 48507 48508 48509 48510 48511 48512 48513 48514 48515 48516 48517 48518 48519 48520 48521 48522 48523 48524 48525 48526 48527 48528 48529 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 48557 48558 48559 48560 48561 48562 48563 48564 48565 48566 48567 48568 48569 48570 48571 48572 48573 48574 48575 48576 48577 48578 48579 48580 48581 48582 48583 48584 48585 48586 48587 48588 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 48659 48660 48661 48662 48663 48664 48665 48666 48667 48668 48669 48670 48671 48672 48673 48674 48675 48676 48677 48678 48679 48680 48681 48682 48683 48684 48685 48686 48687 48688 48689 48690 48691 48692 48693 48694 48695 48696 48697 48698 48699 48700 48701 48702 48703 48704 48705 48706 48707 48708 48709 48710 48711 48712 48713 48714 48715 48716 48717 48718 48719 48720 48721 48722 48723 48724 48725 48726 48727 48728 48729 48730 48731 48732 48733 48734 48735 48736 48737 48738 48739 48740 48741 48742 48743 48744 48745 48746 48747 48748 48749 48750 48751 48752 48753 48754 48755 48756 48757 48758 48759 48760 48761 48762 48763 48764 48765 48766 48767 48768 48769 48770 48771 48772 48773 48774 48775 48776 48777 48778 48779 48780 48781 48782 48783 48784 48785 48786 48787 48788 48789 48790 48791 48792 48793 48794 48795 48796 48797 48798 48799 48800 48801 48802 48803 48804 48805 48806 48807 48808 48809 48810 48811 48812 48813 48814 48815 48816 48817 48818 48819 48820 48821 48822 48823 48824 48825 48826 48827 48828 48829 48830 48831 48832 48833 48834 48835 48836 48837 48838 48839 48840 48841 48842 48843 48844 48845 48846 48847 48848 48849 48850 48851 48852 48853 48854 48855 48856 48857 48858 48859 48860 48861 48862 48863 48864 48865 48866 48867 48868 48869 48870 48871 48872 48873 48874 48875 48876 48877 48878 48879 48880 48881 48882 48883 48884 48885 48886 48887 48888 48889 48890 48891 48892 48893 48894 48895 48896 48897 48898 48899 48900 48901 48902 48903 48904 48905 48906 48907 48908 48909 48910 48911 48912 48913 48914 48915 48916 48917 48918 48919 48920 48921 48922 48923 48924 48925 48926 48927 48928 48929 48930 48931 48932 48933 48934 48935 48936 48937 48938 48939 48940 48941 48942 48943 48944 48945 48946 48947 48948 48949 48950 48951 48952 48953 48954 48955 48956 48957 48958 48959 48960 48961 48962 48963 48964 48965 48966 48967 48968 48969 48970 48971 48972 48973 48974 48975 48976 48977 48978 48979 48980 48981 48982 48983 48984 48985 48986 48987 48988 48989 48990 48991 48992 48993 48994 48995 48996 48997 48998 48999 49000 49001 49002 49003 49004 49005 49006 49007 49008 49009 49010 49011 49012 49013 49014 49015 49016 49017 49018 49019 49020 49021 49022 49023 49024 49025 49026 49027 49028 49029 49030 49031 49032 49033 49034 49035 49036 49037 49038 49039 49040 49041 49042 49043 49044 49045 49046 49047 49048 49049 49050 49051 49052 49053 49054 49055 49056 49057 49058 49059 49060 49061 49062 49063 49064 49065 49066 49067 49068 49069 49070 49071 49072 49073 49074 49075 49076 49077 49078 49079 49080 49081 49082 49083 49084 49085 49086 49087 49088 49089 49090 49091 49092 49093 49094 49095 49096 49097 49098 49099 49100 49101 49102 49103 49104 49105 49106 49107 49108 49109 49110 49111 49112 49113 49114 49115 49116 49117 49118 49119 49120 49121 49122 49123 49124 49125 49126 49127 49128 49129 49130 49131 49132 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 49148 49149 49150 49151 49152 49153 49154 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 49167 49168 49169 49170 49171 49172 49173 49174 49175 49176 49177 49178 49179 49180 49181 49182 49183 49184 49185 49186 49187 49188 49189 49190 49191 49192 49193 49194 49195 49196 49197 49198 49199 49200 49201 49202 49203 49204 49205 49206 49207 49208 49209 49210 49211 49212 49213 49214 49215 49216 49217 49218 49219 49220 49221 49222 49223 49224 49225 49226 49227 49228 49229 49230 49231 49232 49233 49234 49235 49236 49237 49238 49239 49240 49241 49242 49243 49244 49245 49246 49247 49248 49249 49250 49251 49252 49253 49254 49255 49256 49257 49258 49259 49260 49261 49262 49263 49264 49265 49266 49267 49268 49269 49270 49271 49272 49273 49274 49275 49276 49277 49278 49279 49280 49281 49282 49283 49284 49285 49286 49287 49288 49289 49290 49291 49292 49293 49294 49295 49296 49297 49298 49299 49300 49301 49302 49303 49304 49305 49306 49307 49308 49309 49310 49311 49312 49313 49314 49315 49316 49317 49318 49319 49320 49321 49322 49323 49324 49325 49326 49327 49328 49329 49330 49331 49332 49333 49334 49335 49336 49337 49338 49339 49340 49341 49342 49343 49344 49345 49346 49347 49348 49349 49350 49351 49352 49353 49354 49355 49356 49357 49358 49359 49360 49361 49362 49363 49364 49365 49366 49367 49368 49369 49370 49371 49372 49373 49374 49375 49376 49377 49378 49379 49380 49381 49382 49383 49384 49385 49386 49387 49388 49389 49390 49391 49392 49393 49394 49395 49396 49397 49398 49399 49400 49401 49402 49403 49404 49405 49406 49407 49408 49409 49410 49411 49412 49413 49414 49415 49416 49417 49418 49419 49420 49421 49422 49423 49424 49425 49426 49427 49428 49429 49430 49431 49432 49433 49434 49435 49436 49437 49438 49439 49440 49441 49442 49443 49444 49445 49446 49447 49448 49449 49450 49451 49452 49453 49454 49455 49456 49457 49458 49459 49460 49461 49462 49463 49464 49465 49466 49467 49468 49469 49470 49471 49472 49473 49474 49475 49476 49477 49478 49479 49480 49481 49482 49483 49484 49485 49486 49487 49488 49489 49490 49491 49492 49493 49494 49495 49496 49497 49498 49499 49500 49501 49502 49503 49504 49505 49506 49507 49508 49509 49510 49511 49512 49513 49514 49515 49516 49517 49518 49519 49520 49521 49522 49523 49524 49525 49526 49527 49528 49529 49530 49531 49532 49533 49534 49535 49536 49537 49538 49539 49540 49541 49542 49543 49544 49545 49546 49547 49548 49549 49550 49551 49552 49553 49554 49555 49556 49557 49558 49559 49560 49561 49562 49563 49564 49565 49566 49567 49568 49569 49570 49571 49572 49573 49574 49575 49576 49577 49578 49579 49580 49581 49582 49583 49584 49585 49586 49587 49588 49589 49590 49591 49592 49593 49594 49595 49596 49597 49598 49599 49600 49601 49602 49603 49604 49605 49606 49607 49608 49609 49610 49611 49612 49613 49614 49615 49616 49617 49618 49619 49620 49621 49622 49623 49624 49625 49626 49627 49628 49629 49630 49631 49632 49633 49634 49635 49636 49637 49638 49639 49640 49641 49642 49643 49644 49645 49646 49647 49648 49649 49650 49651 49652 49653 49654 49655 49656 49657 49658 49659 49660 49661 49662 49663 49664 49665 49666 49667 49668 49669 49670 49671 49672 49673 49674 49675 49676 49677 49678 49679 49680 49681 49682 49683 49684 49685 49686 49687 49688 49689 49690 49691 49692 49693 49694 49695 49696 49697 49698 49699 49700 49701 49702 49703 49704 49705 49706 49707 49708 49709 49710 49711 49712 49713 49714 49715 49716 49717 49718 49719 49720 49721 49722 49723 49724 49725 49726 49727 49728 49729 49730 49731 49732 49733 49734 49735 49736 49737 49738 49739 49740 49741 49742 49743 49744 49745 49746 49747 49748 49749 49750 49751 49752 49753 49754 49755 49756 49757 49758 49759 49760 49761 49762 49763 49764 49765 49766 49767 49768 49769 49770 49771 49772 49773 49774 49775 49776 49777 49778 49779 49780 49781 49782 49783 49784 49785 49786 49787 49788 49789 49790 49791 49792 49793 49794 49795 49796 49797 49798 49799 49800 49801 49802 49803 49804 49805 49806 49807 49808 49809 49810 49811 49812 49813 49814 49815 49816 49817 49818 49819 49820 49821 49822 49823 49824 49825 49826 49827 49828 49829 49830 49831 49832 49833 49834 49835 49836 49837 49838 49839 49840 49841 49842 49843 49844 49845 49846 49847 49848 49849 49850 49851 49852 49853 49854 49855 49856 49857 49858 49859 49860 49861 49862 49863 49864 49865 49866 49867 49868 49869 49870 49871 49872 49873 49874 49875 49876 49877 49878 49879 49880 49881 49882 49883 49884 49885 49886 49887 49888 49889 49890 49891 49892 49893 49894 49895 49896 49897 49898 49899 49900 49901 49902 49903 49904 49905 49906 49907 49908 49909 49910 49911 49912 49913 49914 49915 49916 49917 49918 49919 49920 49921 49922 49923 49924 49925 49926 49927 49928 49929 49930 49931 49932 49933 49934 49935 49936 49937 49938 49939 49940 49941 49942 49943 49944 49945 49946 49947 49948 49949 49950 49951 49952 49953 49954 49955 49956 49957 49958 49959 49960 49961 49962 49963 49964 49965 49966 49967 49968 49969 49970 49971 49972 49973 49974 49975 49976 49977 49978 49979 49980 49981 49982 49983 49984 49985 49986 49987 49988 49989 49990 49991 49992 49993 49994 49995 49996 49997 49998 49999 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009 50010 50011 50012 50013 50014 50015 50016 50017 50018 50019 50020 50021 50022 50023 50024 50025 50026 50027 50028 50029 50030 50031 50032 50033 50034 50035 50036 50037 50038 50039 50040 50041 50042 50043 50044 50045 50046 50047 50048 50049 50050 50051 50052 50053 50054 50055 50056 50057 50058 50059 50060 50061 50062 50063 50064 50065 50066 50067 50068 50069 50070 50071 50072 50073 50074 50075 50076 50077 50078 50079 50080 50081 50082 50083 50084 50085 50086 50087 50088 50089 50090 50091 50092 50093 50094 50095 50096 50097 50098 50099 50100 50101 50102 50103 50104 50105 50106 50107 50108 50109 50110 50111 50112 50113 50114 50115 50116 50117 50118 50119 50120 50121 50122 50123 50124 50125 50126 50127 50128 50129 50130 50131 50132 50133 50134 50135 50136 50137 50138 50139 50140 50141 50142 50143 50144 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 50160 50161 50162 50163 50164 50165 50166 50167 50168 50169 50170 50171 50172 50173 50174 50175 50176 50177 50178 50179 50180 50181 50182 50183 50184 50185 50186 50187 50188 50189 50190 50191 50192 50193 50194 50195 50196 50197 50198 50199 50200 50201 50202 50203 50204 50205 50206 50207 50208 50209 50210 50211 50212 50213 50214 50215 50216 50217 50218 50219 50220 50221 50222 50223 50224 50225 50226 50227 50228 50229 50230 50231 50232 50233 50234 50235 50236 50237 50238 50239 50240 50241 50242 50243 50244 50245 50246 50247 50248 50249 50250 50251 50252 50253 50254 50255 50256 50257 50258 50259 50260 50261 50262 50263 50264 50265 50266 50267 50268 50269 50270 50271 50272 50273 50274 50275 50276 50277 50278 50279 50280 50281 50282 50283 50284 50285 50286 50287 50288 50289 50290 50291 50292 50293 50294 50295 50296 50297 50298 50299 50300 50301 50302 50303 50304 50305 50306 50307 50308 50309 50310 50311 50312 50313 50314 50315 50316 50317 50318 50319 50320 50321 50322 50323 50324 50325 50326 50327 50328 50329 50330 50331 50332 50333 50334 50335 50336 50337 50338 50339 50340 50341 50342 50343 50344 50345 50346 50347 50348 50349 50350 50351 50352 50353 50354 50355 50356 50357 50358 50359 50360 50361 50362 50363 50364 50365 50366 50367 50368 50369 50370 50371 50372 50373 50374 50375 50376 50377 50378 50379 50380 50381 50382 50383 50384 50385 50386 50387 50388 50389 50390 50391 50392 50393 50394 50395 50396 50397 50398 50399 50400 50401 50402 50403 50404 50405 50406 50407 50408 50409 50410 50411 50412 50413 50414 50415 50416 50417 50418 50419 50420 50421 50422 50423 50424 50425 50426 50427 50428 50429 50430 50431 50432 50433 50434 50435 50436 50437 50438 50439 50440 50441 50442 50443 50444 50445 50446 50447 50448 50449 50450 50451 50452 50453 50454 50455 50456 50457 50458 50459 50460 50461 50462 50463 50464 50465 50466 50467 50468 50469 50470 50471 50472 50473 50474 50475 50476 50477 50478 50479 50480 50481 50482 50483 50484 50485 50486 50487 50488 50489 50490 50491 50492 50493 50494 50495 50496 50497 50498 50499 50500 50501 50502 50503 50504 50505 50506 50507 50508 50509 50510 50511 50512 50513 50514 50515 50516 50517 50518 50519 50520 50521 50522 50523 50524 50525 50526 50527 50528 50529 50530 50531 50532 50533 50534 50535 50536 50537 50538 50539 50540 50541 50542 50543 50544 50545 50546 50547 50548 50549 50550 50551 50552 50553 50554 50555 50556 50557 50558 50559 50560 50561 50562 50563 50564 50565 50566 50567 50568 50569 50570 50571 50572 50573 50574 50575 50576 50577 50578 50579 50580 50581 50582 50583 50584 50585 50586 50587 50588 50589 50590 50591 50592 50593 50594 50595 50596 50597 50598 50599 50600 50601 50602 50603 50604 50605 50606 50607 50608 50609 50610 50611 50612 50613 50614 50615 50616 50617 50618 50619 50620 50621 50622 50623 50624 50625 50626 50627 50628 50629 50630 50631 50632 50633 50634 50635 50636 50637 50638 50639 50640 50641 50642 50643 50644 50645 50646 50647 50648 50649 50650 50651 50652 50653 50654 50655 50656 50657 50658 50659 50660 50661 50662 50663 50664 50665 50666 50667 50668 50669 50670 50671 50672 50673 50674 50675 50676 50677 50678 50679 50680 50681 50682 50683 50684 50685 50686 50687 50688 50689 50690 50691 50692 50693 50694 50695 50696 50697 50698 50699 50700 50701 50702 50703 50704 50705 50706 50707 50708 50709 50710 50711 50712 50713 50714 50715 50716 50717 50718 50719 50720 50721 50722 50723 50724 50725 50726 50727 50728 50729 50730 50731 50732 50733 50734 50735 50736 50737 50738 50739 50740 50741 50742 50743 50744 50745 50746 50747 50748 50749 50750 50751 50752 50753 50754 50755 50756 50757 50758 50759 50760 50761 50762 50763 50764 50765 50766 50767 50768 50769 50770 50771 50772 50773 50774 50775 50776 50777 50778 50779 50780 50781 50782 50783 50784 50785 50786 50787 50788 50789 50790 50791 50792 50793 50794 50795 50796 50797 50798 50799 50800 50801 50802 50803 50804 50805 50806 50807 50808 50809 50810 50811 50812 50813 50814 50815 50816 50817 50818 50819 50820 50821 50822 50823 50824 50825 50826 50827 50828 50829 50830 50831 50832 50833 50834 50835 50836 50837 50838 50839 50840 50841 50842 50843 50844 50845 50846 50847 50848 50849 50850 50851 50852 50853 50854 50855 50856 50857 50858 50859 50860 50861 50862 50863 50864 50865 50866 50867 50868 50869 50870 50871 50872 50873 50874 50875 50876 50877 50878 50879 50880 50881 50882 50883 50884 50885 50886 50887 50888 50889 50890 50891 50892 50893 50894 50895 50896 50897 50898 50899 50900 50901 50902 50903 50904 50905 50906 50907 50908 50909 50910 50911 50912 50913 50914 50915 50916 50917 50918 50919 50920 50921 50922 50923 50924 50925 50926 50927 50928 50929 50930 50931 50932 50933 50934 50935 50936 50937 50938 50939 50940 50941 50942 50943 50944 50945 50946 50947 50948 50949 50950 50951 50952 50953 50954 50955 50956 50957 50958 50959 50960 50961 50962 50963 50964 50965 50966 50967 50968 50969 50970 50971 50972 50973 50974 50975 50976 50977 50978 50979 50980 50981 50982 50983 50984 50985 50986 50987 50988 50989 50990 50991 50992 50993 50994 50995 50996 50997 50998 50999 51000 51001 51002 51003 51004 51005 51006 51007 51008 51009 51010 51011 51012 51013 51014 51015 51016 51017 51018 51019 51020 51021 51022 51023 51024 51025 51026 51027 51028 51029 51030 51031 51032 51033 51034 51035 51036 51037 51038 51039 51040 51041 51042 51043 51044 51045 51046 51047 51048 51049 51050 51051 51052 51053 51054 51055 51056 51057 51058 51059 51060 51061 51062 51063 51064 51065 51066 51067 51068 51069 51070 51071 51072 51073 51074 51075 51076 51077 51078 51079 51080 51081 51082 51083 51084 51085 51086 51087 51088 51089 51090 51091 51092 51093 51094 51095 51096 51097 51098 51099 51100 51101 51102 51103 51104 51105 51106 51107 51108 51109 51110 51111 51112 51113 51114 51115 51116 51117 51118 51119 51120 51121 51122 51123 51124 51125 51126 51127 51128 51129 51130 51131 51132 51133 51134 51135 51136 51137 51138 | ; ACL2 Version 6.3 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2013, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78701 U.S.A.
; This file, axioms.lisp, serves two purposes. First, it describes
; the theory of ACL2 by enumerating the axioms and definitions.
; Second, it implements in Common Lisp those functions of the theory
; which are not already provided in Common Lisp. In some cases, the
; implementation of a function is identical to its axiomatization (cf.
; implies). In other cases, we provide functions whose semantics are
; applicative but whose implementations are decidely ``von
; Neumann-esque''. For example, we implement the array, property
; list, and io primitives with non-applicative techniques.
; This file is read by Common Lisp in two ways. First, we bring ACL2
; into its initial state with the function boot-strap, which loads
; this file. Second, this file is read and compiled in the
; implementation of ACL2 itself. To support these two readings, we
; use the #+ and #- read macro feature of Common Lisp. While we are
; loading this file in boot-strap, we arrange for *features* to
; contain the symbol :acl2-loop-only; otherwise, *features* does not
; contain :acl2-loop-only. Thus, during boot-strap, forms immediately
; preceded by #+acl2-loop-only are ``seen'', whereas those
; immediately preceded by #-acl2-loop-only are invisible. The
; converse is true when we are compiling and loading the code for
; ACL2.
; If a symbol described in CLTL is axiomatized here, then we give it
; exactly the same semantics as it has in CLTL, under restrictions for
; which we check. (Actually, this is currently a lie about DEFUN,
; DEFMACRO, and PROGN, but we will provide someday a check that that
; those are only used in files in ways such that their ACL2 and Common
; Lisp meanings are prefectly consistent.) Thus, when we talk about
; +, we really mean the Common Lisp +. However, our + does not handle
; floating point numbers, so there is a guard on + that checks that
; its args are rationals. The symbols in the list
; acl2::*common-lisp-symbols-from-main-lisp-package* are the symbols
; that we take as having a meaning in Common Lisp. If a user wishes
; access to these in a package, then he can use the permanent value of
; the global *common-lisp-symbols-from-main-lisp-package* as an import
; list for defpkg.
; If we use a symbol that has a $ suffix, it is a symbol we have
; defined with a meaning that it is similar to the Common Lisp symbol
; without the $ suffix, but different in some way, e.g. princ$ takes a
; state arg and returns a state.
(in-package "ACL2")
; Leave the following as the second form in axioms.lisp. It is read
; by acl2.lisp. Leave the acl2:: prefix there, too.
; We are aware that as of this writing, various Lisp implementations deviate
; from the dpANS specification of the external symbols of the main Lisp
; package. However, we will guarantee that variable names and logical names
; that lie in the main Lisp package will all come from this list, and in the
; case of variables, we will guarantee that they are not special variables.
; Note that however we handle this constant, it is crucial that its value be
; independent of the implementation, lest we can prove something about its
; length (say) in one Lisp that is false in another. Our requirement on this
; list is that it allow the compiler to deal correctly with Common Lisp functions
; such as CAR that we are bringing into the ACL2 environment, and the dpANS list
; certainly satisfies that requirement.
(acl2::defconst acl2::*common-lisp-symbols-from-main-lisp-package*
; From the info page for dpANS, node "Symbols in the COMMON-LISP Package."
; The comments are from that page as well, though we have inserted "; "
; in front of each.
'(
; The figures on the next twelve pages contain a complete enumeration of the
; 978 external symbols in the COMMON-LISP package.
&allow-other-keys *print-miser-width*
&aux *print-pprint-dispatch*
&body *print-pretty*
&environment *print-radix*
&key *print-readably*
&optional *print-right-margin*
&rest *query-io*
&whole *random-state*
* *read-base*
** *read-default-float-format*
*** *read-eval*
*break-on-signals* *read-suppress*
*compile-file-pathname* *readtable*
*compile-file-truename* *standard-input*
*compile-print* *standard-output*
*compile-verbose* *terminal-io*
*debug-io* *trace-output*
*debugger-hook* +
*default-pathname-defaults* ++
*error-output* +++
*features* -
*gensym-counter* /
*load-pathname* //
*load-print* ///
*load-truename* /=
*load-verbose* 1+
*macroexpand-hook* 1-
*modules* <
*package* <=
*print-array* =
*print-base* >
*print-case* >=
*print-circle* abort
*print-escape* abs
*print-gensym* acons
*print-length* acos
*print-level* acosh
*print-lines* add-method
; Figure 1-4: Symbols in the COMMON-LISP package (part one of twelve).
adjoin atom boundp
adjust-array base-char break
adjustable-array-p base-string broadcast-stream
allocate-instance bignum broadcast-stream-streams
alpha-char-p bit built-in-class
alphanumericp bit-and butlast
and bit-andc1 byte
append bit-andc2 byte-position
apply bit-eqv byte-size
apropos bit-ior caaaar
apropos-list bit-nand caaadr
aref bit-nor caaar
arithmetic-error bit-not caadar
arithmetic-error-operands bit-orc1 caaddr
arithmetic-error-operation bit-orc2 caadr
array bit-vector caar
array-dimension bit-vector-p cadaar
array-dimension-limit bit-xor cadadr
array-dimensions block cadar
array-displacement boole caddar
array-element-type boole-1 cadddr
array-has-fill-pointer-p boole-2 caddr
array-in-bounds-p boole-and cadr
array-rank boole-andc1 call-arguments-limit
array-rank-limit boole-andc2 call-method
array-row-major-index boole-c1 call-next-method
array-total-size boole-c2 car
array-total-size-limit boole-clr case
arrayp boole-eqv catch
ash boole-ior ccase
asin boole-nand cdaaar
asinh boole-nor cdaadr
assert boole-orc1 cdaar
assoc boole-orc2 cdadar
assoc-if boole-set cdaddr
assoc-if-not boole-xor cdadr
atan boolean cdar
atanh both-case-p cddaar
; Figure 1-5: Symbols in the COMMON-LISP package (part two of twelve).
cddadr clear-input copy-tree
cddar clear-output cos
cdddar close cosh
cddddr clrhash count
cdddr code-char count-if
cddr coerce count-if-not
cdr compilation-speed ctypecase
ceiling compile debug
cell-error compile-file decf
cell-error-name compile-file-pathname declaim
cerror compiled-function declaration
change-class compiled-function-p declare
char compiler-macro decode-float
char-code compiler-macro-function decode-universal-time
char-code-limit complement defclass
char-downcase complex defconstant
char-equal complexp defgeneric
char-greaterp compute-applicable-methods define-compiler-macro
char-int compute-restarts define-condition
char-lessp concatenate define-method-combination
char-name concatenated-stream define-modify-macro
char-not-equal concatenated-stream-streams define-setf-expander
char-not-greaterp cond define-symbol-macro
char-not-lessp condition defmacro
char-upcase conjugate defmethod
char/= cons defpackage
char< consp defparameter
char<= constantly defsetf
char= constantp defstruct
char> continue deftype
char>= control-error defun
character copy-alist defvar
characterp copy-list delete
check-type copy-pprint-dispatch delete-duplicates
cis copy-readtable delete-file
class copy-seq delete-if
class-name copy-structure delete-if-not
class-of copy-symbol delete-package
; Figure 1-6: Symbols in the COMMON-LISP package (part three of twelve).
denominator eq
deposit-field eql
describe equal
describe-object equalp
destructuring-bind error
digit-char etypecase
digit-char-p eval
directory eval-when
directory-namestring evenp
disassemble every
division-by-zero exp
do export
do* expt
do-all-symbols extended-char
do-external-symbols fboundp
do-symbols fceiling
documentation fdefinition
dolist ffloor
dotimes fifth
double-float file-author
double-float-epsilon file-error
double-float-negative-epsilon file-error-pathname
dpb file-length
dribble file-namestring
dynamic-extent file-position
ecase file-stream
echo-stream file-string-length
echo-stream-input-stream file-write-date
echo-stream-output-stream fill
ed fill-pointer
eighth find
elt find-all-symbols
encode-universal-time find-class
end-of-file find-if
endp find-if-not
enough-namestring find-method
ensure-directories-exist find-package
ensure-generic-function find-restart
; Figure 1-7: Symbols in the COMMON-LISP package (part four of twelve).
find-symbol get-internal-run-time
finish-output get-macro-character
first get-output-stream-string
fixnum get-properties
flet get-setf-expansion
float get-universal-time
float-digits getf
float-precision gethash
float-radix go
float-sign graphic-char-p
floating-point-inexact handler-bind
floating-point-invalid-operation handler-case
floating-point-overflow hash-table
floating-point-underflow hash-table-count
floatp hash-table-p
floor hash-table-rehash-size
fmakunbound hash-table-rehash-threshold
force-output hash-table-size
format hash-table-test
formatter host-namestring
fourth identity
fresh-line if
fround ignorable
ftruncate ignore
ftype ignore-errors
funcall imagpart
function import
function-keywords in-package
function-lambda-expression incf
functionp initialize-instance
gcd inline
generic-function input-stream-p
gensym inspect
gentemp integer
get integer-decode-float
get-decoded-time integer-length
get-dispatch-macro-character integerp
get-internal-real-time interactive-stream-p
; Figure 1-8: Symbols in the COMMON-LISP package (part five of twelve).
intern lisp-implementation-type
internal-time-units-per-second lisp-implementation-version
intersection list
invalid-method-error list*
invoke-debugger list-all-packages
invoke-restart list-length
invoke-restart-interactively listen
isqrt listp
keyword load
keywordp load-logical-pathname-translations
labels load-time-value
lambda locally
lambda-list-keywords log
lambda-parameters-limit logand
last logandc1
lcm logandc2
ldb logbitp
ldb-test logcount
ldiff logeqv
least-negative-double-float logical-pathname
least-negative-long-float logical-pathname-translations
least-negative-normalized-double-float logior
least-negative-normalized-long-float lognand
least-negative-normalized-short-float lognor
least-negative-normalized-single-float lognot
least-negative-short-float logorc1
least-negative-single-float logorc2
least-positive-double-float logtest
least-positive-long-float logxor
least-positive-normalized-double-float long-float
least-positive-normalized-long-float long-float-epsilon
least-positive-normalized-short-float long-float-negative-epsilon
least-positive-normalized-single-float long-site-name
least-positive-short-float loop
least-positive-single-float loop-finish
length lower-case-p
let machine-instance
let* machine-type
; Figure 1-9: Symbols in the COMMON-LISP package (part six of twelve).
machine-version mask-field
macro-function max
macroexpand member
macroexpand-1 member-if
macrolet member-if-not
make-array merge
make-broadcast-stream merge-pathnames
make-concatenated-stream method
make-condition method-combination
make-dispatch-macro-character method-combination-error
make-echo-stream method-qualifiers
make-hash-table min
make-instance minusp
make-instances-obsolete mismatch
make-list mod
make-load-form most-negative-double-float
make-load-form-saving-slots most-negative-fixnum
make-method most-negative-long-float
make-package most-negative-short-float
make-pathname most-negative-single-float
make-random-state most-positive-double-float
make-sequence most-positive-fixnum
make-string most-positive-long-float
make-string-input-stream most-positive-short-float
make-string-output-stream most-positive-single-float
make-symbol muffle-warning
make-synonym-stream multiple-value-bind
make-two-way-stream multiple-value-call
makunbound multiple-value-list
map multiple-value-prog1
map-into multiple-value-setq
mapc multiple-values-limit
mapcan name-char
mapcar namestring
mapcon nbutlast
maphash nconc
mapl next-method-p
maplist nil
; Figure 1-10: Symbols in the COMMON-LISP package (part seven of twelve).
nintersection package-error
ninth package-error-package
no-applicable-method package-name
no-next-method package-nicknames
not package-shadowing-symbols
notany package-use-list
notevery package-used-by-list
notinline packagep
nreconc pairlis
nreverse parse-error
nset-difference parse-integer
nset-exclusive-or parse-namestring
nstring-capitalize pathname
nstring-downcase pathname-device
nstring-upcase pathname-directory
nsublis pathname-host
nsubst pathname-match-p
nsubst-if pathname-name
nsubst-if-not pathname-type
nsubstitute pathname-version
nsubstitute-if pathnamep
nsubstitute-if-not peek-char
nth phase
nth-value pi
nthcdr plusp
null pop
number position
numberp position-if
numerator position-if-not
nunion pprint
oddp pprint-dispatch
open pprint-exit-if-list-exhausted
open-stream-p pprint-fill
optimize pprint-indent
or pprint-linear
otherwise pprint-logical-block
output-stream-p pprint-newline
package pprint-pop
; Figure 1-11: Symbols in the COMMON-LISP package (part eight of twelve).
pprint-tab read-char
pprint-tabular read-char-no-hang
prin1 read-delimited-list
prin1-to-string read-from-string
princ read-line
princ-to-string read-preserving-whitespace
print read-sequence
print-not-readable reader-error
print-not-readable-object readtable
print-object readtable-case
print-unreadable-object readtablep
probe-file real
proclaim realp
prog realpart
prog* reduce
prog1 reinitialize-instance
prog2 rem
progn remf
program-error remhash
progv remove
provide remove-duplicates
psetf remove-if
psetq remove-if-not
push remove-method
pushnew remprop
quote rename-file
random rename-package
random-state replace
random-state-p require
rassoc rest
rassoc-if restart
rassoc-if-not restart-bind
ratio restart-case
rational restart-name
rationalize return
rationalp return-from
read revappend
read-byte reverse
; Figure 1-12: Symbols in the COMMON-LISP package (part nine of twelve).
room simple-bit-vector
rotatef simple-bit-vector-p
round simple-condition
row-major-aref simple-condition-format-arguments
rplaca simple-condition-format-control
rplacd simple-error
safety simple-string
satisfies simple-string-p
sbit simple-type-error
scale-float simple-vector
schar simple-vector-p
search simple-warning
second sin
sequence single-float
serious-condition single-float-epsilon
set single-float-negative-epsilon
set-difference sinh
set-dispatch-macro-character sixth
set-exclusive-or sleep
set-macro-character slot-boundp
set-pprint-dispatch slot-exists-p
set-syntax-from-char slot-makunbound
setf slot-missing
setq slot-unbound
seventh slot-value
shadow software-type
shadowing-import software-version
shared-initialize some
shiftf sort
short-float space
short-float-epsilon special
short-float-negative-epsilon special-operator-p
short-site-name speed
signal sqrt
signed-byte stable-sort
signum standard
simple-array standard-char
simple-base-string standard-char-p
; Figure 1-13: Symbols in the COMMON-LISP package (part ten of twelve).
standard-class sublis
standard-generic-function subseq
standard-method subsetp
standard-object subst
step subst-if
storage-condition subst-if-not
store-value substitute
stream substitute-if
stream-element-type substitute-if-not
stream-error subtypep
stream-error-stream svref
stream-external-format sxhash
streamp symbol
string symbol-function
string-capitalize symbol-macrolet
string-downcase symbol-name
string-equal symbol-package
string-greaterp symbol-plist
string-left-trim symbol-value
string-lessp symbolp
string-not-equal synonym-stream
string-not-greaterp synonym-stream-symbol
string-not-lessp t
string-right-trim tagbody
string-stream tailp
string-trim tan
string-upcase tanh
string/= tenth
string< terpri
string<= the
string= third
string> throw
string>= time
stringp trace
structure translate-logical-pathname
structure-class translate-pathname
structure-object tree-equal
style-warning truename
; Figure 1-14: Symbols in the COMMON-LISP package (part eleven of twelve).
truncate values-list
two-way-stream variable
two-way-stream-input-stream vector
two-way-stream-output-stream vector-pop
type vector-push
type-error vector-push-extend
type-error-datum vectorp
type-error-expected-type warn
type-of warning
typecase when
typep wild-pathname-p
unbound-slot with-accessors
unbound-slot-instance with-compilation-unit
unbound-variable with-condition-restarts
undefined-function with-hash-table-iterator
unexport with-input-from-string
unintern with-open-file
union with-open-stream
unless with-output-to-string
unread-char with-package-iterator
unsigned-byte with-simple-restart
untrace with-slots
unuse-package with-standard-io-syntax
unwind-protect write
update-instance-for-different-class write-byte
update-instance-for-redefined-class write-char
upgraded-array-element-type write-line
upgraded-complex-part-type write-sequence
upper-case-p write-string
use-package write-to-string
use-value y-or-n-p
user-homedir-pathname yes-or-no-p
values zerop
; Figure 1-15: Symbols in the COMMON-LISP package (part twelve of twelve).
))
; Leave this here. It is read when loading acl2.lisp.
(defconst *common-lisp-specials-and-constants*
; In acl2-check.lisp we ensure that this constant is consistent with the
; underlying Common Lisp. The draft proposed ANSI standard for Common Lisp
; specifies (see "The COMMON-LISP Package") exactly which symbols are external
; symbols of the Common Lisp package (not just initially, but always). It also
; states, in "Constraints on the COMMON-LISP Package for Conforming
; Implementations," that: "conforming programs can use external symbols of the
; COMMON-LISP package as the names of local lexical variables with confidence
; that those names have not been proclaimed special by the implementation
; unless those symbols are names of standardized global variables."
; Unfortunately, we cannot seem to find out in a direct fashion just which
; variables are standardized global variables, i.e., global variables defined
; in the standard. Our check handles this.
; Shortly before releasing Version 2.5 (6/00), we have checked that the above
; form returns NIL on Unix systems running Allegro 5.0 and 5.0.1 and GCL 2.2.1
; and 2.2.2, on a Windows 98 system (via John Cowles) running Allegro 5.0.1,
; and (after defining the requisite constants) on CMU Common Lisp 18a on a Unix
; system at UT.
; It is completely acceptable to add symbols to this list. If one certifies a
; book in such an ACL2, it will be a legal certification in an ACL2 in which
; the following list has not been modified. The only potential source of
; concern here is if one certifies a book in an ACL2 where this list has not
; been modified and then includes it, without recertification, in an ACL2 where
; this list has been added to. At this point we have not checked that such an
; include-book would catch an inappropriate use of one of those added symbols.
; But that seems a relatively minor concern.
'(* ** *** *BREAK-ON-SIGNALS* *COMPILE-FILE-PATHNAME*
*COMPILE-FILE-TRUENAME* *COMPILE-PRINT* *COMPILE-VERBOSE* *DEBUG-IO*
*DEBUGGER-HOOK* *DEFAULT-PATHNAME-DEFAULTS* *ERROR-OUTPUT*
*FEATURES* *GENSYM-COUNTER* *LOAD-PATHNAME* *LOAD-PRINT*
*LOAD-TRUENAME* *LOAD-VERBOSE* *MACROEXPAND-HOOK* *MODULES*
*PACKAGE* *PRINT-ARRAY* *PRINT-BASE* *PRINT-CASE* *PRINT-CIRCLE*
*PRINT-ESCAPE* *PRINT-GENSYM* *PRINT-LENGTH* *PRINT-LEVEL*
*PRINT-LINES* *PRINT-MISER-WIDTH* *PRINT-PPRINT-DISPATCH*
*PRINT-PRETTY* *PRINT-RADIX* *PRINT-READABLY* *PRINT-RIGHT-MARGIN*
*QUERY-IO* *RANDOM-STATE* *READ-BASE* *READ-DEFAULT-FLOAT-FORMAT*
*READ-EVAL* *READ-SUPPRESS* *READTABLE* *STANDARD-INPUT*
*STANDARD-OUTPUT* *TERMINAL-IO* *TRACE-OUTPUT* + ++ +++ - / // ///
ARRAY-DIMENSION-LIMIT ARRAY-RANK-LIMIT ARRAY-TOTAL-SIZE-LIMIT
BOOLE-1 BOOLE-2 BOOLE-AND BOOLE-ANDC1 BOOLE-ANDC2 BOOLE-C1 BOOLE-C2
BOOLE-CLR BOOLE-EQV BOOLE-IOR BOOLE-NAND BOOLE-NOR BOOLE-ORC1
BOOLE-ORC2 BOOLE-SET BOOLE-XOR CALL-ARGUMENTS-LIMIT CHAR-CODE-LIMIT
DOUBLE-FLOAT-EPSILON DOUBLE-FLOAT-NEGATIVE-EPSILON
INTERNAL-TIME-UNITS-PER-SECOND LAMBDA-LIST-KEYWORDS
LAMBDA-PARAMETERS-LIMIT LEAST-NEGATIVE-DOUBLE-FLOAT
LEAST-NEGATIVE-LONG-FLOAT LEAST-NEGATIVE-NORMALIZED-DOUBLE-FLOAT
LEAST-NEGATIVE-NORMALIZED-LONG-FLOAT
LEAST-NEGATIVE-NORMALIZED-SHORT-FLOAT
LEAST-NEGATIVE-NORMALIZED-SINGLE-FLOAT LEAST-NEGATIVE-SHORT-FLOAT
LEAST-NEGATIVE-SINGLE-FLOAT LEAST-POSITIVE-DOUBLE-FLOAT
LEAST-POSITIVE-LONG-FLOAT LEAST-POSITIVE-NORMALIZED-DOUBLE-FLOAT
LEAST-POSITIVE-NORMALIZED-LONG-FLOAT
LEAST-POSITIVE-NORMALIZED-SHORT-FLOAT
LEAST-POSITIVE-NORMALIZED-SINGLE-FLOAT LEAST-POSITIVE-SHORT-FLOAT
LEAST-POSITIVE-SINGLE-FLOAT LONG-FLOAT-EPSILON
LONG-FLOAT-NEGATIVE-EPSILON MOST-NEGATIVE-DOUBLE-FLOAT
MOST-NEGATIVE-FIXNUM MOST-NEGATIVE-LONG-FLOAT
MOST-NEGATIVE-SHORT-FLOAT MOST-NEGATIVE-SINGLE-FLOAT
MOST-POSITIVE-DOUBLE-FLOAT MOST-POSITIVE-FIXNUM
MOST-POSITIVE-LONG-FLOAT MOST-POSITIVE-SHORT-FLOAT
MOST-POSITIVE-SINGLE-FLOAT MULTIPLE-VALUES-LIMIT NIL PI
SHORT-FLOAT-EPSILON SHORT-FLOAT-NEGATIVE-EPSILON
SINGLE-FLOAT-EPSILON SINGLE-FLOAT-NEGATIVE-EPSILON T
; Added in Version 2.6 to support Allegro 6.0 on Windows 2000:
REPLACE FILL CHARACTER =
; Added in Version 2.6 to support GCL on Windows:
BREAK PRIN1
))
(defconst *stobj-inline-declare*
; This constant is being introduced in v2-8. In this file it is only used in
; raw Lisp, specifically in the progn just below. But it is also used in
; defstobj-field-fns-raw-defs so we define it in the ACL2 loop.
'(declare (stobj-inline-fn t)))
; Essay on Hidden Packages
; Before Version_2.8, ACL2 was unsound because of a hole in its handling of
; packages. The books in the example below can all be certified in
; Version_2.7, including the top-level book top.lisp, which concludes with a
; proof of nil. The details are slightly tricky, but the basic idea is simple:
; it was possible for traces of a defpkg event, including the axiom it added
; about symbol-package-name, to disappear by making include-books local. And
; thus, it was possible to prove contradictory theorems, using contradictory
; defpkg events in different locally included books, about the
; symbol-package-name of a symbol. One solution would be to disallow defpkg
; events in the context of a local include-book (much as we do for defaxiom),
; but that is too restrictive to be practical, especially since non-local
; include-book forms are prohibited inside encapsulate. So instead we track
; such "hidden" defpkg events; more on that below.
; Here is the example promised above. The idea is to define a package "FOO"
; that does not import any symbol of name "A", so that the symbol FOO::A has
; symbol-package-name "FOO". But we do this twice, where one time package
; "FOO" imports ACL2::B and the other time it does not. The two cases
; introduce symbols (wit1) and (wit2), which we can prove are equal, basically
; because both are FOO::A. But the result of interning "B" in the package of
; (wit1) or (wit2) is "FOO" in one case and "ACL2" in the other, which allows
; us to prove nil. We have tried simpler approaches but ACL2 caught us in
; those cases. We use local include-books below in order to avoid some of
; those catches by avoiding the use of FOO:: in wit1.lisp and wit2.lisp.
; ;;; file top.lisp
;
; (in-package "ACL2")
;
; (include-book "wit1")
; (include-book "wit2")
;
; ; The idea:
; ; (wit1) = (wit2) by symbol-equality
; ; But by evaluation (see wit1-prop and wit2-prop in the included books):
; ; (symbol-package-name (intern-in-package-of-symbol "B" (wit1))) = "FOO"
; ; (symbol-package-name (intern-in-package-of-symbol "B" (wit2))) = "ACL2"
;
; (defthm bug
; nil
; :hints (("Goal" :use (wit1-prop
; wit2-prop
; (:instance symbol-equality
; (s1 (wit1))
; (s2 (wit2))))))
; :rule-classes nil)
;
; ;;; file wit1.lisp
;
; (in-package "ACL2")
;
; (local (include-book "sub1"))
;
; (encapsulate
; ((wit1 () t))
; (local (defun wit1 () (sub1)))
; (local (in-theory (disable (wit1))))
; (defthm wit1-prop
; (and (symbolp (wit1))
; (equal (symbol-name (wit1)) "A")
; (equal (symbol-package-name (wit1)) "FOO")
; (equal (symbol-package-name
; (intern-in-package-of-symbol "B" (wit1)))
; "FOO"))
; :rule-classes nil))
;
; ;;; file sub1.lisp
;
; (in-package "ACL2")
;
; ; Portcullis:
; ; (defpkg "FOO" nil)
;
; (encapsulate
; ((sub1 () t))
; (local (defun sub1 () 'foo::a))
; (defthm sub1-prop
; (and (symbolp (sub1))
; (equal (symbol-name (sub1)) "A")
; (equal (symbol-package-name (sub1)) "FOO")
; (equal (symbol-package-name
; (intern-in-package-of-symbol "B" (sub1)))
; "FOO"))))
;
; ;;; file wit2.lisp
;
; (in-package "ACL2")
;
; (local (include-book "sub2"))
;
; (encapsulate
; ((wit2 () t))
; (local (defun wit2 () (sub2)))
; (local (in-theory (disable (wit2))))
; (defthm wit2-prop
; (and (symbolp (wit2))
; (equal (symbol-name (wit2)) "A")
; (equal (symbol-package-name (wit2)) "FOO")
; (equal (symbol-package-name
; (intern-in-package-of-symbol "B" (wit2)))
; "ACL2"))
; :rule-classes nil))
;
; ;;; file sub2.lisp
;
; (in-package "ACL2")
;
; ; Portcullis:
; ; (defpkg "FOO" '(b))
;
; (encapsulate
; ((sub2 () t))
; (local (defun sub2 () 'foo::a))
; (defthm sub2-prop
; (and (symbolp (sub2))
; (equal (symbol-name (sub2)) "A")
; (equal (symbol-package-name (sub2)) "FOO")
; (equal (symbol-package-name
; (intern-in-package-of-symbol "B" (sub2)))
; "ACL2"))))
;
; ;;; file sub1.acl2 (portcullis for sub1.lisp)
;
; (value :q)
; (lp)
; (defpkg "FOO" nil)
; (certify-book "sub1" 1)
;
; ;;; file sub2.acl2 (portcullis for sub2.lisp)
;
; (value :q)
; (lp)
; (defpkg "FOO" '(b))
; (certify-book "sub2" 1)
; The key to disallowing this unfortunate exploitation of defpkg axioms is to
; maintain an invariant, which we call "the package invariant on logical
; worlds." Roughly put, this invariant states that if the world depends in any
; way on a defpkg event, then that defpkg event occurs explicitly in that
; world. (This invariant, like many others, depends on not having executed any
; event in the world when state global ld-skip-proofsp has a non-nil value.
; Note that we guarantee that this property holds for any certification world;
; see chk-acceptable-certify-book.) Let us say that a defpkg event "supports"
; a world if it is either in that world or it is in some book (including its
; portcullis) that is hereditarily included in the current world via a chain of
; include-book events, some of which may be local to books or to encapsulate
; events. Then we can be more precise by stating the package invariant on
; logical worlds as follows: Every defpkg event that supports a logical world
; is present in the known-package-alist of that world.
; It is convenient to introduce the notion of a "hidden" defpkg event in a
; logical world as one that supports that world but is not present as an event
; in that world. The discussion below relies on the presence of several fields
; in a known-package-alist entry; see make-package-entry.
; We guarantee the (above) package invariant on logical worlds starting with
; Version_2.8 by way of the following two actions, which allow include-book and
; encapsulate (respectively) to preserve this invariant. Roughly speaking:
; action (1) extends a book's portcullis by any hidden defpkg supporting the
; book, so that the defpkg will not be missing from the world (thus violating
; the invariant) when we include the book; and action (2) puts a
; known-package-alist entry for each (hidden) defpkg introduced by a given
; encapsulate.
; (1) Recall that when a book is successfully certified in an existing
; certification world, we write the commands of that world to the book's
; certificate, as so-called "portcullis commands." We extend those
; portcullis commands with defpkg events in two ways. First, we add a defpkg
; at the end of the portcullis commands for every known-package-alist entry
; that has hidden-p fields equal to t (for example, because of a local
; include-book in a top-level encapsulate), and hence is not an event in the
; certification world. We will of course not count these extra defpkgs when
; checking against a numeric argument given to certify-book. Second, for
; each package entry present in the known-package-alist at the end of the
; proof pass of certify-book that is not present at the end of the
; include-book pass, we add a corresponding defpkg event to the end of the
; portcullis commands.
; Each defpkg event added to the portcullis as described above will have a
; :book-path argument derived from the book-path field of a package-entry in
; the known-package-alist, intended to represent the list of full book names
; leading from the innermost book actually containing the corresponding
; defpkg (in the car), up to the top-level such include-book (at the end of
; the list). Thus, when we evaluate that defpkg, the new package-entry in
; known-package-alist is obtained by appending the current world's
; include-book-path to the event's book-path. The book-path field in the
; package-entry can be used later when reporting an error during a package
; conflict, so that the user can see the source of the defpkg that was added
; to the portcullis under the hood. Documentation topic hidden-death-package
; explains hidden defpkgs in detail, and is referenced during such errors.
; In order to keep the certificate size under control, we will check whether
; the body of a hidden defpkg event to be added to the portcullis is a term
; in the world where it will be evaluated, and that this term's value is
; indeed the list of symbols associated with that package in the
; known-package-alist (a necessary check for a hidden defpkg since that term
; may have a different value in the world present at the time of the
; executing of the defpkg). If so, then we leave that term in place.
; Otherwise, we replace it by the appropriate quoted list of symbols, though
; we might still optimize by removing subsets that are commonly-used
; constants (e.g. *acl2-exports* and
; *common-lisp-symbols-from-main-lisp-package*), in favor of suitable calls
; of append or union-eq. Note that for hidden defpkg events encountered in a
; book during its certification, our decision to put them at the end of the
; certificate's portcullis commands, rather than the beginning, increases the
; chances that the original defpkg's term can be retained.
; (2) At the end of any encapsulate, the known-package-alist will be extended
; with an entry for each introduced defpkg. (We do this for every package in
; the known-package-alist at the end of the first pass of the encapsulate
; that was not there in the beginning, since these must all have been
; introduced by include-book, and only local include-books are allowed by
; encapsulate.) Each such entry will have appropriate package-entry fields,
; including hidden-p = t.
; Note that when we evaluate a defpkg in a world where that package exists but
; is hidden, the event will not be redundant, and we will change the hidden-p
; field to nil in the known-package-alist entry. Other fields can be used for
; error reporting. For example, if we attempt to introduce a defpkg when there
; is already a hidden defpkg conflicting with it, we can report the
; include-book path to the defpkg.
; Finally, we discuss how to ensure that :puff preserves the package invariant.
; Recall that the basic idea behind the implementation of :puff is the
; execution of function puffed-command-sequence to obtain a sequence of
; commands to execute after backing up through the given command. It is
; straightforward to find the hidden defpkg events that occur in the
; known-package-alist of the world just after the command but not just before,
; and add corresponding defpkg events to the front of the
; puffed-command-sequence. This preserves the invariant.
; End of Essay on Hidden Packages
(defmacro make-package-entry (&key name imports hidden-p book-path
defpkg-event-form tterm)
; Normally we would use defrec here. But defrec is defined in basis.lisp.
; Rather than move all the code relevant to defrec into axioms.lisp, we make
; our lives easy for now and simply define the relevant macros directly. For
; the record (pun intended), here is the defrecord:
; (defrec package-entry
; (name imports hidden-p book-path defpkg-event-form . tterm)
; t)
; WARNING: We allow assoc-equal (actually its macro form, find-package-entry)
; to look up names in the known-package-alist, so keep the name as the car.
; Also note that name, imports, and hidden-p are accessed much more frequently
; than the rest, so these should all get relatively fast access.
`(list* ,name ; the package name
,imports ; the list of imported symbols
,hidden-p ; t if the introducing defpkg is hidden, else nil
; The remaining fields are used for messages only; they have no logical import.
,book-path ; a true list of full book names, where the path
; from the first to the last in the list is intended to
; give the location of the introducing defpkg, starting
; with the innermost book
; The final fields are def and tterm, where def is the defpkg event that
; introduced this package and tterm is the translation of the body of that
; defpkg. If this package-entry becomes hidden, we may use these fields to
; extend the portcullis commands in a book's certificate file. In doing so, we
; use tterm if it is a term in the world w that is present at the point of
; insertion into the portcullis commands, except that better yet, we will use
; the originating untranslated term from the defpkg if that is the result of
; untranslating tterm in w.
,defpkg-event-form
,tterm
))
(defmacro find-package-entry (name known-package-alist)
`(assoc-equal ,name ,known-package-alist))
(defmacro package-entry-name (package-entry)
`(car ,package-entry))
(defmacro package-entry-imports (package-entry)
`(cadr ,package-entry))
(defmacro package-entry-hidden-p (package-entry)
`(caddr ,package-entry))
(defmacro package-entry-book-path (package-entry)
`(cadddr ,package-entry))
(defmacro package-entry-defpkg-event-form (package-entry)
`(car (cddddr ,package-entry)))
(defmacro package-entry-tterm (package-entry)
`(cdr (cddddr ,package-entry)))
(defmacro find-non-hidden-package-entry (name known-package-alist)
`(let ((entry (assoc-equal ,name ,known-package-alist)))
(and (not (package-entry-hidden-p entry))
entry)))
(defmacro remove-package-entry (name known-package-alist)
`(delete-assoc-equal ,name ,known-package-alist))
(defmacro change-package-entry-hidden-p (entry value)
`(let ((entry ,entry))
(make-package-entry
:name (package-entry-name entry)
:imports (package-entry-imports entry)
:hidden-p ,value
:book-path (package-entry-book-path entry)
:defpkg-event-form (package-entry-defpkg-event-form entry)
:tterm (package-entry-tterm entry))))
(defmacro getprop (symb key default world-name world-alist)
; This definition formerly occurred after fgetprop and sgetprop, but since
; getprop is used in defpkg-raw we move it before defpkg-raw. This move would
; not be necessary if we were always to load a source file before we load the
; corresponding compiled file, but with *suppress-compile-build-time* we do not
; load the latter (nor do we re-load the source file, as of this writing, for
; efficiency).
; We avoid cond here because it hasn't been defined yet!
(if (equal world-name ''current-acl2-world)
`(fgetprop ,symb ,key ,default ,world-alist)
`(sgetprop ,symb ,key ,default ,world-name ,world-alist)))
#-acl2-loop-only
(progn
(defvar *user-stobj-alist* nil)
; The value of the above variable is an alist that pairs user-defined
; single-threaded object names with their live ones. It does NOT
; contain an entry for STATE, which is not user-defined.
; The following SPECIAL VARIABLE, *wormholep*, when non-nil, means that we
; are within a wormhole and are obliged to undo every change visited upon
; *the-live-state*. Clearly, we can undo some of them, e.g., f-put-globals, by
; remembering the first time we make a change to some component. But other
; changes, e.g., printing to a file, we can't undo and so must simply disallow.
; We disallow all modifications to user stobjs.
; This feature is implemented so that we can permit the "wormhole window" to
; manipulate a "copy" of state without changing it. The story is that wormhole,
; which does not take state as an arg and which always returns nil, is
; "actually" implemented by calling the familiar LD on a near image of the
; current state. That near image is like the current state except that certain
; state globals have been set for wormhole. In addition, we assume that the
; physical map between ACL2 channels and the outside world has been altered so
; that *standard-co*, *standard-ci*, and *standard-oi* now actually interact
; with the "wormhole window" streams. Thus, even when *wormholep* is non-nil, we
; can allow i/o to those standard channels because it causes no change to the
; streams normally identified with those channels. If, while *wormholep* is
; non-nil we are asked to make a change that would undoably alter the state, we
; print a soft-looking error message and abort. If the requested change can be
; undone, we make the change after remembering enough to undo it. When we exit
; the wormhole we undo the changes.
(defparameter *wormholep* nil)
; Below we define the function that generates the error message when
; non-undoable state changes are attempted within wormholes. It throws
; to a tag that is set up within LP. We do all that later. Right now
; we just define the error handler so we can code the primitives.
(defun-one-output replace-bad-lisp-object (x)
(if (bad-lisp-objectp x)
(let ((pair (rassoc x *user-stobj-alist*)))
(if pair
(car pair)
; The following will be printed if we are looking at the value of a local stobj
; or of a stobj bound by stobj-let.
'|<Unknown value>|))
x))
(defun-one-output replace-bad-lisp-object-list (x)
(if (null x)
nil
(cons (replace-bad-lisp-object (car x))
(replace-bad-lisp-object-list (cdr x)))))
(defun-one-output wormhole-er (fn args)
(error-fms nil 'wormhole
"It is not possible to apply ~x0~#1~[~/ to ~&2~] in the current ~
context because we are in a wormhole state."
(list (cons #\0 fn)
(cons #\1 (if args 1 0))
(cons #\2 (replace-bad-lisp-object-list args)))
*the-live-state*)
(throw 'local-top-level :wormhole-er))
; The following parameter is where we will accumulate changes to
; state components that we will undo.
(defparameter *wormhole-cleanup-form* nil)
; The value of *wormhole-cleanup-form* is a lisp (but not ACL2) form that will
; be executed to cleanup the live state. This form is built up incrementally
; by certain state changing primitives (e.g., f-put-global) so as to enable us
; to "undo" the effects of those primitives. We store this undo information
; as an executable form (rather than, say, a list of "undo tuples") because of
; the interaction between this mechanism and our acl2-unwind-protect
; mechanism. In particular, it will just happen to be the case that the
; *wormhole-cleanup-form* is always on the unwind protection stack (a true
; lisp global variable) so that if an abort happens while executing in a
; wormhole and we get ripped all the way out because of perfectly timed
; aborts, the undo cleanup form(s) will be at their proper places on the stack
; of cleanup forms and it will just look like certain acl2-unwind-protects were
; interrupted. See the discussion in and around LD-FN. The value of
; *wormhole-cleanup-form* is (PROGN save-globals undo-form1 ... undo-formk
; safety-set STATE). The individual undo-formi are created and added to the
; *wormhole-cleanup-form* by push-wormhole-undo- formi, below. The initial
; value of the cleanup form is (PROGN save-globals safety-set STATE) and new
; formis are added immediately after save-globals, making the final form a
; stack with save-globals always on top and the formi succeeding it in reverse
; order of their storage. The save-globals form will save into a lisp special
; the final values of the global variables that are available only in the
; wormhole. The save-globals form is complicated because it also contains a
; check that the cleanup form has never been completely executed. It does
; this by checking the car of a cons that ``belongs'' to this incarnation of
; the form. The safety-set at the end of the form sets the car of that cons
; to t. We cannot prevent the possible partial re-execution of the unwind
; protection form in the face of repeated ill-timed ctrl-c's and we cannot
; really guarantee that a ctrl-c doesn't prevent the execution of the
; safety-set even though the ``real'' cleanup work has been successfully done.
; But the re-execution of the cleanup form can confuse the tracking of the
; brr-stack gstack and we installed this check just for an increased sense of
; sanity. See the comment after wormhole1.
; We introduce a CLTL structure for the sole purpose of preventing the
; accidental printing of huge objects like the world. If, in raw lisp, you
; write (make-cloaking-device :hint "world" :obj (w *the-live-state*)) then you
; get an object, x, that CLTL will print as <cloaked world> and from which the
; actual world can be recovered via (cloaking-device-obj x).
(defstruct (cloaking-device
(:print-function
(lambda (x stream k)
(declare (ignore k))
(format stream "<cloaked ~a>" (cloaking-device-hint x)))))
hint obj)
(defun-one-output cloaked-set-w! (x state)
; We invented this function, which is merely set-w! but takes a cloaked world,
; just so we can print the *acl2-unwind-protect-stack* during debugging without
; getting the world printed.
(set-w! (cloaking-device-obj x) state))
(defun-one-output assoc-eq-butlast-2 (x alist)
; This variant of assoc-eq is used in push-wormhole-undo-formi, for which alist
; is not a true alist but rather has two final elements that we do not want to
; consider. It is run only in raw Lisp on "alists" of the form mentioned
; above.
(cond ((endp (cddr alist)) nil)
((eq x (car (car alist))) (car alist))
(t (assoc-eq-butlast-2 x (cdr alist)))))
(defun-one-output assoc-eq-equal-butlast-2 (x y alist)
; This variant of assoc-eq-equal is used in push-wormhole-undo-formi, for which
; alist is not a true alist but rather has two final elements that we do not
; want to consider. It is run only in raw Lisp on "alists" of the form
; mentioned above.
(cond ((endp (cddr alist)) nil)
((and (eq (car (car alist)) x)
(equal (car (cdr (car alist))) y))
(car alist))
(t (assoc-eq-equal-butlast-2 x y (cdr alist)))))
(defun-one-output push-wormhole-undo-formi (op arg1 arg2)
; When a primitive state changing function is called while *wormholep*
; is non-nil it actually carries out the change (in many cases) but
; saves some undo information on the special *wormhole-cleanup-form*.
; The value of that special is (PROGN save-globals form1 ... formk
; safety-set STATE). In response to this call we will add a new form,
; say form0, and will destructively modify *wormhole-cleanup-form* so
; that it becomes (PROGN save-globals form0 form1 ... formk
; safety-set STATE).
; We modify *wormhole-cleanup-form* destructively because it shares
; structure with the *acl2-unwind-protect-stack* as described above.
; The convention is that the primitive state changer calls this function before
; making any change. It passes us the essential information about the
; operation that must be performed to undo what it is about to do. Thus, if we
; store a new value for a global var, v, whose old value was x, then op will be
; 'put-global, arg1 will be v, and arg2 will be x. The formi we create will be
; (put-global 'v 'x *the-live-state*) and when that is executed it will undo
; the primitive state change. Note that we do not know what the primitive
; actually was, e.g., it might have been a put-global but it might also have
; been a makunbound-global. The point is that the 'put-global in our note is
; the operation that must be done at undo-time, not the operation that we are
; undoing.
; Furthermore, we need not save undo information after the first time
; we smash v. So we don't necessarily store a formi. But to implement this we
; have to know every possible formi and what its effects are. That is why we
; insist that this function (rather than our callers) create the forms.
; To think about the avoidance of formi saving, consider the fact that the
; cleanup form, being a PROGN, will be executed sequentially -- -- undoing the
; state changes in the reverse order of their original execution. Imagine that
; we in fact added a new formi at the front of the PROGN for each state change.
; Now think about it: if later on down the PROGN there is a form that will
; overwrite the effects of the form we are about to add, then there is no need
; to add it. In particular, the result of evaluating all the forms is the same
; whether we add the redundant one or not.
(cond ((null *wormhole-cleanup-form*)
(interface-er
"push-wormhole-undo-formi was called with an empty ~
*wormhole-cleanup-form*. Supposedly, push-wormhole-undo-formi is ~
only called when *wormholep* is non-nil and, supposedly, when ~
*wormholep* is non-nil, the *wormhole-cleanup-form* is too.")))
(let ((qarg1 (list 'quote arg1))
(undo-forms-and-last-two (cddr *wormhole-cleanup-form*)))
(case op
(put-global
; So we want to push (put-global 'arg1 'arg2 state). But if there is already a
; form that will set arg1 or one that unbinds arg1, there is no point.
(or (assoc-eq-equal-butlast-2 'put-global qarg1
undo-forms-and-last-two)
(assoc-eq-equal-butlast-2 'makunbound-global qarg1
undo-forms-and-last-two)
(and (eq arg1 'current-acl2-world)
(assoc-eq-butlast-2 'cloaked-set-w!
undo-forms-and-last-two))
(setf (cddr *wormhole-cleanup-form*)
(cons (let ((put-global-form
`(put-global ,qarg1 (quote ,arg2)
*the-live-state*)))
; We compress arrays for side-effect only, to ensure that we do not install a
; different global value than was there before. Fortunately, we know that the
; arrays in question are already in compressed form, i.e., they satisfy
; array1p; so we believe that these side-effects do not change the array's
; alist (in the sense of eq), and hence the restored global value will be
; installed as an ACL2 array. (If we're wrong, it's not a soundness issue --
; rather, we will see slow-array-warning messages.)
(cond ((eq arg1 'global-enabled-structure)
`(progn (let ((qarg2 (quote ,arg2)))
(compress1 (access enabled-structure
qarg2
:array-name)
(access enabled-structure
qarg2
:theory-array)))
,put-global-form))
((and (eq arg1 'iprint-ar)
arg2)
`(progn (let ((qarg2 (quote ,arg2)))
(compress1 'iprint-ar qarg2))
,put-global-form))
((eq arg1 'trace-specs)
nil) ; handled by fix-trace-specs
(t put-global-form)))
(cddr *wormhole-cleanup-form*)))))
(makunbound-global
; We want to push (makunbound-global 'arg1 state). But if there is already
; a form that will make arg1 unbound or if there is a form that will
; give it a binding, this is redundant.
(or (assoc-eq-equal-butlast-2 'put-global qarg1
undo-forms-and-last-two)
(assoc-eq-equal-butlast-2 'makunbound-global qarg1
undo-forms-and-last-two)
(and (eq arg1 'current-acl2-world)
(assoc-eq-butlast-2 'cloaked-set-w!
undo-forms-and-last-two))
(setf (cddr *wormhole-cleanup-form*)
(cons `(makunbound-global ,qarg1 *the-live-state*)
(cddr *wormhole-cleanup-form*)))))
(cloaked-set-w!
(or (assoc-eq-butlast-2 'cloaked-set-w! undo-forms-and-last-two)
(setf (cddr *wormhole-cleanup-form*)
(cons `(cloaked-set-w!
,(make-cloaking-device
:hint "world"
:obj arg1)
*the-live-state*)
(cddr *wormhole-cleanup-form*)))))
(otherwise
(interface-er "Unrecognized op in push-wormhole-undo-formi,~
~x0." op)))))
; The following symbol is the property under which we store Common
; Lisp streams on the property lists of channels.
(defconstant *open-input-channel-key*
'acl2_invisible::|Open Input Channel Key|)
; The following symbol is the property under which we store the types
; of Common Lisp streams on the property lists of channels.
(defconstant *open-input-channel-type-key*
'acl2_invisible::|Open Input Channel Type Key|)
(defconstant *open-output-channel-key*
'acl2_invisible::|Open Output Channel Key|)
(defconstant *open-output-channel-type-key*
'acl2_invisible::|Open Output Channel Type Key|)
(defconstant *non-existent-stream*
'acl2_invisible::|A Non-Existent Stream|)
; We get ready to handle errors in such a way that they return to the
; top level logic loop if we are under it.
(defvar *acl2-error-p* nil)
(defun interface-er (&rest args)
; This function can conceivably be called before ACL2 has been fully
; compiled and loaded, so we check whether the usual error handler is
; around.
(cond
((macro-function 'er)
(eval
`(let ((state *the-live-state*)
(*acl2-error-p* t))
(er soft 'acl2-interface
,@(let (ans)
(dolist (a args)
(push (list 'quote a) ans))
(reverse ans)))
(error "ACL2 Halted"))))
(t (error "ACL2 error: ~a." args))))
#-acl2-loop-only
(declaim (inline
; Here we take a suggestion from Jared Davis and inline built-in functions,
; starting after Version_6.2, based on successful use of such inlining at
; Centaur Technology for many months on their local copy of ACL2. Indeed, the
; original list below (added on June 16, 2013) comes directly from that copy,
; except for inclusion of aref1 and aref2 (as noted below). As Jared said in a
; log message when he added inline declarations for 33 functions to a local
; copy of ACL2 at Centaur:
; This should give us a useful speedup on CCL for many functions that recur
; with ZP at the end. I measured a 12% speedup for a naive FIB function.
; We are seeing perhaps 2% speedup on regressions, but we believe that this
; inlining could provide much greater benefit in some cases.
; Some of these functions could probably be inlined using the defun-inline
; feature of ACL2, but we prefer not to fight with the likely resulting
; boot-strapping problem during the ACL2 build.
; We may modify this list from time to time, for example based on user request.
; It surely is safe to add any function symbol to the list that is not defined
; recursively in raw Lisp (and maybe even if it is). But of course that could
; interfere with tracing and redefinition, so care should be taken before
; adding a function symbol that might be traced or redefined.
; We endeavor to keep the list sorted alphabetically, simply to make it easy to
; search visually.
acl2-numberp
add-to-set-eq-exec
aref1 ; already inlined in Version_6.2 and before
aref2 ; already inlined in Version_6.2 and before
booleanp
complex-rationalp
eqlablep
fix
fn-symb
iff
ifix
implies
integer-abs
integer-range-p
len
member-equal
natp
nfix
peek-char$
posp
quotep
random$
read-byte$
read-char$
realfix
rfix
signed-byte-p
strip-cars
strip-cdrs
symbol-<
unsigned-byte-p
xor
zip
zp
zpf
)
; For ACL2 built on CMUCL 20D Unicode, an attempt failed on 9/12/2013 to
; certify the community book books/models/jvm/m1/defsys.lisp. During
; debugging, we found a note that mentioned "*Inline-Expansion-Limit* (400)
; exceeded". The following declaim form, which may be quite harmless, solves
; the problem.
#+cmu
(notinline len))
; We provide here ``raw'' implementations of basic functions that we
; ``wish'' were already in Common Lisp, to support primitives of the
; ACL2 logic.
; Some of the Common Lisp arithmetic primitives are n-ary functions.
; However, ACL2 supports only functions of fixed arity, to keep the
; logic simple. But in practice we find we want to use the n-ary
; arithmetic symbols ourselves. So in the logic we have binary-+ as
; the primitive binary addition function symbol, but we also have the
; macro +, which expands into a suitable number of uses of binary-+.
; Similarly for *, -, and /. (The ACL2 user cannot invoke
; symbol-function, fboundp, macro-function or macroexpand, so it is no
; concern to the user whether we implement + as a macro or a
; function.)
(defun-one-output acl2-numberp (x)
(numberp x))
(defun-one-output binary-+ (x y) (+ x y))
(defun-one-output binary-* (x y) (* x y))
(defun-one-output unary-- (x) (- x))
(defun-one-output unary-/ (x) (/ x))
; Below we define our top-level events as seen by the Common Lisp
; compiler. For example, (defuns a b c) expands into a progn of defun
; forms, (defthm ...) is a no-op, etc.
(defparameter *in-recover-world-flg* nil)
; Warning: Keep the initial value of the following defparameter identical to
; that of the ACL2 constant *initial-known-package-alist* below.
(defparameter *ever-known-package-alist*
(list (make-package-entry :name "ACL2-INPUT-CHANNEL"
:imports nil)
(make-package-entry :name "ACL2-OUTPUT-CHANNEL"
:imports nil)
(make-package-entry :name "ACL2"
:imports *common-lisp-symbols-from-main-lisp-package*)
(make-package-entry :name
; Warning: The following is just *main-lisp-package-name* but that is not
; defined yet. If you change the following line, change the defconst of
; *main-lisp-package-name* below.
"COMMON-LISP"
:imports nil)
(make-package-entry :name "KEYWORD"
:imports nil)))
; The known-package-alist of the state will grow and shrink as packages are
; defined and undone. But *ever-known-package-alist* will just grow. A
; package can be redefined only if its imports list is identical to that in its
; old definition.
(defvar **1*-symbol-key* (make-symbol "**1*-SYMBOL-KEY*"))
(defun *1*-symbol (x)
; Keep this in sync with *1*-symbol?.
(or (get x **1*-symbol-key*)
(setf (get x **1*-symbol-key*)
(intern (symbol-name x)
(find-package-fast
(concatenate 'string
*1*-package-prefix*
(symbol-package-name x)))))))
(defun *1*-symbol? (x)
; Keep this in sync with *1*-symbol. Returns nil if the *1* package doesn't
; exist.
(let ((pack (find-package-fast (concatenate 'string
*1*-package-prefix*
(symbol-package-name x)))))
(and pack
(or (get x **1*-symbol-key*)
(setf (get x **1*-symbol-key*)
(intern (symbol-name x)
pack))))))
(defmacro defun-*1* (fn &rest args)
`(defun ,(*1*-symbol fn) ,@args))
(defparameter *defun-overrides* nil)
(defmacro defun-overrides (name formals &rest rest)
; This is basically defun, for a function that takes the live state and has a
; guard of t. We push name onto *defun-overrides* so that add-trip knows to
; leave the *1* definition in place.
(assert (member 'state formals :test 'eq))
`(progn (push ',name *defun-overrides*) ; see add-trip
(defun ,name ,formals
,@(butlast rest 1)
(progn (chk-live-state-p ',name state)
,(car (last rest))))
(defun-*1* ,name ,formals
(,name ,@formals))))
(defmacro defpkg (&whole event-form name imports
&optional doc book-path hidden-p)
; Keep this in sync with get-cmds-from-portcullis1, make-hidden-defpkg,
; equal-modulo-hidden-defpkgs, and (of course) the #+acl2-loop-only definition
; of defpkg.
(declare (ignore doc hidden-p))
(or (stringp name)
(interface-er "Attempt to call defpkg on a non-string, ~x0."
name))
`(defpkg-raw ,name ,imports ',book-path ',event-form))
(defmacro defuns (&rest lst)
`(progn ,@(mapcar #'(lambda (x) `(defun ,@x))
lst)))
#+:non-standard-analysis
(defmacro defun-std (name formals &rest args)
(list* 'defun
name
formals
(append (butlast args 1)
(list (non-std-body name formals (car (last args)))))))
#+:non-standard-analysis
(defmacro defuns-std (&rest args)
`(defuns ,@args))
(defmacro defthm (&rest args)
(declare (ignore args))
nil)
(defmacro defthmd (&rest args)
(declare (ignore args))
nil)
#+:non-standard-analysis
(defmacro defthm-std (&rest args)
(declare (ignore args))
nil)
(defmacro defaxiom (&rest args)
(declare (ignore args))
nil)
(defmacro skip-proofs (arg)
arg)
(defmacro deflabel (&rest args)
(declare (ignore args))
nil)
(defmacro defdoc (&rest args)
(declare (ignore args))
nil)
(defmacro deftheory (&rest args)
(declare (ignore args))
nil)
(defun-one-output stobj-initial-statep-arr (n i arr init)
(or (zp n)
(and (equal (aref arr i) init)
(stobj-initial-statep-arr (1- n) (1+ i) arr init))))
(defun-one-output stobj-initial-statep-entry (temp entry)
; Keep this function in sync with defstobj-raw-init-fields. (See the comments
; about this function, below.)
(let ((type (cadr temp))
(init (caddr temp)))
(cond
((and (consp type)
(eq (car type) 'ARRAY))
; For stobj array fields, we need to check each entry in the array to make sure
; it is the initial value and we also need to check that the array has not been
; resized to a size different than the initial size.
(let ((size (car (caddr type))))
(and (equal (length entry) size)
(stobj-initial-statep-arr size 0 entry init))))
((equal type t)
; For type "T", the stobj field is not "boxed" by defstobj-raw-init-fields.
(equal entry init))
(t
; For other types, the value is "boxed" by defstobj-raw-init-fields in a single
; entry array.
(equal (aref entry 0) init)))))
(defun-one-output stobj-initial-statep1 (field-templates ndx stobj)
(cond ((endp field-templates) t)
(t (and (stobj-initial-statep-entry (car field-templates)
(aref stobj ndx))
(stobj-initial-statep1 (cdr field-templates)
(1+ ndx)
stobj)))))
(defun-one-output stobj-initial-statep (stobj field-templates)
; Stobj is the live object corresponding to some defstobj and
; field-templates is the field templates for the defstobj. We return
; t or nil according to whether the live object is in the initial
; state.
; Each element of field-templates is of the form (recog-fn type
; init-val acc-fn upd-fn ...). If type indicates an array, then it
; has the form (ARRAY typ (max)), and the indices of the array range
; from 0 to max-1, i.e., max is the first illegal index.
(stobj-initial-statep1 field-templates 0 stobj))
(defun remove-stobj-inline-declare (x)
(cond ((atom x) x)
((equal (car x) *stobj-inline-declare*)
(cdr x))
(t (cons (car x)
(remove-stobj-inline-declare (cdr x))))))
(defun congruent-stobj-rep-raw (name)
(assert name)
(let* ((d (get (the-live-var name)
'redundant-raw-lisp-discriminator))
(ans (cddddr d)))
(assert ans)
ans))
; Note: The code below bothers me a little because of its impact on
; the toothbrush model. In particular, it uses defstobj-raw-defs,
; which is defined far away in other-events.lisp.
(defmacro defstobj (name &rest args)
; Warning: If you change this definition, consider the possibility of making
; corresponding changes to the #-acl2-loop-only definition of defabsstobj.
; This function is run when we evaluate (defstobj name . args) in raw lisp.
; A typical such form is
; (defstobj $st
; (flag :type t :initially run)
; (pc :type (integer 0 255) :initially 128)
; (mem :type (array (integer 0 255) (256)) :initially 0))
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
; This function must contend with a problem analogous to the one addressed by
; acl2::defconst in acl2.lisp: the need to avoid re-declaration of the same
; stobj. We use redundant-raw-lisp-discriminator in much the same way as in
; the raw lisp defmacro of acl2::defconst.
(let* ((template (defstobj-template name args nil))
(congruent-to (sixth template))
(congruent-stobj-rep (if congruent-to
(congruent-stobj-rep-raw congruent-to)
name))
(init (defstobj-raw-init template))
(the-live-name (the-live-var name)))
`(progn
; We place the defvar above the subsequent let*, in order to avoid
; warnings in Lisps such as CCL that compile on-the-fly.
(defvar ,the-live-name)
#+hons ,@(and (null congruent-to)
`((defg ,(st-lst name) nil)))
; Now we lay down the defuns of the recognizers, accessors and updaters as
; generated by defstob-raw-defs. The boilerplate below just adds the DEFUN to
; the front of each def generated, preserving the order of the defs as
; generated. We deal here with the :inline case; note that
; *stobj-inline-declare* was added in defstobj-field-fns-raw-defs.
,@(mapcar (function (lambda (def)
(if (member-equal *stobj-inline-declare* def)
(cons 'DEFABBREV
(remove-stobj-inline-declare def))
(cons 'DEFUN def))))
(defstobj-raw-defs name template congruent-stobj-rep nil))
,@(defstobj-defconsts (strip-accessor-names (caddr template)) 0)
(let* ((template ',template)
(congruent-stobj-rep ',congruent-stobj-rep)
(boundp (boundp ',the-live-name))
(d (and boundp
(get ',the-live-name
'redundant-raw-lisp-discriminator)))
; d is expected to be of the form (DEFSTOBJ namep creator field-templates
; . congruent-stobj-rep).
(ok-p (and boundp
(consp d)
(eq (car d) 'defstobj)
(consp (cdr d))
(eq (cadr d) (car template))
(consp (cddr d))
(eq (caddr d) (cadr template))
(equal (cadddr d) (caddr template))
(eq (cddddr d) congruent-stobj-rep)
; We also formerly required:
; (stobj-initial-statep (symbol-value ',the-live-name)
; (caddr template))
; However, the stobj need not have its initial value; consider a redundant
; defstobj in a book whose certification world has already modified the stobj,
; or a defstobj in a book whose value is modified in a make-event later in that
; book. Either way, ok-p would be false when this code is executed by loading
; the compiled file.
; We do not check the :doc, :inline, or :congruent-to fields, because these
; incur no proof obligations. If a second pass of encapsulate, or inclusion of
; a book, exposes a later non-local defstobj that is redundant with an earlier
; local one, then any problems will be caught during local compatibility
; checks.
)))
(cond
(ok-p ',name)
((and boundp (not (raw-mode-p *the-live-state*)))
(interface-er
"Illegal attempt to redeclare the single-threaded object ~s0."
',name))
(t
; Memoize-flush expects the variable (st-lst name) to be bound.
(setf ,the-live-name ,init)
(setf (get ',the-live-name 'redundant-raw-lisp-discriminator)
(list* 'defstobj (car template) (cadr template)
(caddr template) congruent-stobj-rep))
(let ((old (and boundp
; Since boundp, then by a test made above, we also know (raw-mode-p state).
; This boundp test could be omitted, since otherwise we know that the assoc-eq
; call below will return nil; the boundp check is just an optimization.
(assoc-eq ',name *user-stobj-alist*))))
(cond
(old ; hence raw-mode
(fms "Note: Redefining and reinitializing stobj ~x0 in raw ~
mode.~%"
(list (cons #\0 ',name))
(standard-co *the-live-state*) *the-live-state* nil)
(setf (cdr old)
(symbol-value ',the-live-name)))
(t
(assert$
(not (assoc-eq ',name *user-stobj-alist*))
(setq *user-stobj-alist*
(cons (cons ',name (symbol-value ',the-live-name))
*user-stobj-alist*))))))
',name))))))
(defmacro value-triple (&rest args)
(declare (ignore args))
nil)
(defmacro verify-termination-boot-strap (&rest args)
(declare (ignore args))
nil)
(defmacro verify-guards (&rest args)
(declare (ignore args))
nil)
(defmacro in-theory (&rest args)
(declare (ignore args))
nil)
(defmacro in-arithmetic-theory (&rest args)
(declare (ignore args))
nil)
(defmacro regenerate-tau-database (&rest args)
(declare (ignore args))
nil)
(defmacro push-untouchable (&rest args)
(declare (ignore args))
nil)
(defmacro remove-untouchable (&rest args)
(declare (ignore args))
nil)
(defmacro set-body (&rest args)
(declare (ignore args))
nil)
(defmacro table (&rest args)
; Note: The decision to make table a no-op in compiled files was not
; taken lightly. But table, like defthm, has no effect on the logic.
; Indeed, like defthm, table merely modifies the world and if it is
; permitted in compiled code to ignore defthm's effects on the world
; then so too the effects of table.
(declare (ignore args))
nil)
(defmacro encapsulate (signatures &rest lst)
; The code we generate for the constrained functions in signatures is
; the same (except, possibly, for the formals) as executed in
; extend-world1 when we introduce an undefined function.
; Sig below may take on any of several forms, illustrated by
; the examples:
; ((fn * * $S * STATE) => (MV * STATE))
; (fn (x y $S z STATE) (MV t STATE))
; (fn (x y $S z STATE) (MV t STATE) :stobjs ($S))
; Because the first form above does not provide explicit formals, we
; generate them with gen-formals-from-pretty-flags when we process
; ENCAPSULATE in the logic. So what do we do here in raw Lisp when an
; encapsulate is loaded? We ignore all but the arity and generate (x1
; x2 ... xn). We did not want to have to include
; gen-formals-from-pretty-flags in the toothbrush model.
; See the comment in defproxy about benign redefinition in raw Lisp by an
; encapsulate of a function introduced by defproxy.
`(progn ,@(mapcar
(function
(lambda (sig)
(let* ((fn (if (consp (car sig)) (caar sig) (car sig)))
(formals
(if (consp (car sig))
(let ((i 0))
(mapcar (function
(lambda (v)
(declare (ignore v))
(setq i (+ 1 i))
(intern (format nil "X~a" i)
"ACL2")))
(cdar sig)))
(cadr sig))))
(list 'defun fn formals
(null-body-er fn formals t)))))
signatures)
,@lst))
(defparameter *inside-include-book-fn*
; We trust include-book-fn and certify-book-fn to take care of all include-book
; processing without any need to call the raw Lisp include-book. It seems that
; the only way this could be a bad idea is if include-book or certify-book
; could be called from a user utility, rather than at the top level, while
; inside a call of include-book-fn or certify-book-fn. We disallow this in
; translate11.
nil)
(defmacro include-book (user-book-name
&key
(load-compiled-file ':default)
uncertified-okp
defaxioms-okp
skip-proofs-okp
ttags
dir
doc)
(declare (ignore uncertified-okp defaxioms-okp skip-proofs-okp ttags doc))
`(include-book-raw ,user-book-name nil ,load-compiled-file ,dir
'(include-book . ,user-book-name)
*the-live-state*))
(defmacro certify-book (&rest args)
(declare (ignore args))
; Unlike the embedded event forms such as DEFTHM, it is safe to cause an error
; here. We want embedded event forms such as DEFTHM to be quietly ignored
; when books are included, but CERTIFY-BOOK is not an embedded event form, so
; it has no business being called from raw Lisp.
(interface-er "Apparently you have called CERTIFY-BOOK from outside the ~
top-level ACL2 loop. Perhaps you need to call (LP) first."))
(defmacro local (x)
(declare (ignore x))
nil)
(defmacro defchoose (&rest args)
(let ((free-vars (caddr args)))
`(defun ,(car args) ,free-vars
,(null-body-er (car args) free-vars nil))))
; Although defuns provides us conceptually with the right function for
; packaging together mutually recursive functions, we never use it
; because it hides things from standard Lisp editor indexing programs
; such as etags. Instead, we use mutual-recursion.
(defmacro mutual-recursion (&rest lst)
(cons 'progn lst))
(defmacro make-event (&whole event-form
form
&key
expansion? check-expansion on-behalf-of)
(declare (ignore form on-behalf-of))
(cond ((consp check-expansion)
check-expansion)
(expansion?)
(t `(error ; not er; so certify-book and include-book fail
"It is illegal to execute make-event in raw Lisp (including ~%~
raw mode) unless :check-expansion is a cons, which represents ~%~
the expected expansion. If this error occurs when executing ~%~
an include-book form in raw mode or raw Lisp, consider loading a ~%~
corresponding file *@expansion.lsp instead; see :DOC ~%~
certify-book. If you are not in raw Lisp, then this is an ~%~
ACL2 bug; please contact the ACL2 implementors and report the ~%~
offending form:~%~%~s~%"
',event-form))))
)
(deflabel programming
; Be sure to include documentation for all functions in
; primitive-formals-and-guards.
:doc
":Doc-Section Programming
programming in ACL2~/
This ~il[documentation] topic is a parent topic under which we include
documentation topics for built-in functions, macros, and special forms
(~pl[acl2-built-ins]) as well as topics for notions important to programming
with ACL2. If you don't find what you're looking for, see the Index or see
individual topics that may be more directly appropriate; for example,
~pl[events] for top-level event constructorsr like ~ilc[defun].~/~/")
(deflabel acl2-built-ins
:doc
":Doc-Section ACL2::Programming
built-in ACL2 functions~/
This ~il[documentation] topic is a parent topic under which we include
documentation for built-in functions, macros, and special forms that are
typically used in programming. For others, including those typically used as
top-level commands or those that create ~il[events] (~ilc[defun],
~ilc[defthm], and so on), documentation may be found as a subtopic of some
other parent topic. We do not document some of the more obscure functions
provided by ACL2 that do not correspond to functions of Common Lisp.~/
See any documentation for Common Lisp for more details on many of these
functions.~/")
(deflabel miscellaneous
:doc
":Doc-Section Miscellaneous
a miscellany of documented functions and concepts
(often cited in more accessible ~il[documentation])~/~/
Perhaps as the system matures this section will become more
structured.~/")
; STANDARD CHANNELS
; Documentation is deferred until after (deflabel IO ...).
(defconst *standard-co* 'acl2-output-channel::standard-character-output-0)
(defconst *standard-oi* 'acl2-input-channel::standard-object-input-0)
(defconst *standard-ci* 'acl2-input-channel::standard-character-input-0)
; IF and EQUAL
; Convention: when a term t is used as a formula it means
; (not (equal t nil))
; The following four axioms define if and equal but are not expressed
; in the ACL2 language.
; (if NIL y z) = z
; x/=NIL -> (if x y z) = y
; (equal x x) = T
; x/=y -> (equal x y) = NIL
; LOGIC
#+acl2-loop-only
(defconst nil 'nil
; We cannot document a NIL symbol.
" NIL, a symbol, represents in Common Lisp both the false truth value
and the empty list.")
#+acl2-loop-only
(defconst t 't
; We cannot document a NIL symbol. So, we do not document T either.
"T, a symbol, represents the true truth value in Common Lisp.")
(defun insist (x)
; This function is used in guard-clauses-for-fn, so in order to be sure that
; it's in place early, we define it now.
(declare (xargs :guard x :mode :logic :verify-guards t)
(ignore x))
nil)
(defun iff (p q)
":Doc-Section ACL2::ACL2-built-ins
logical ``if and only if''~/
~c[Iff] is the ACL2 biconditional, ``if and only if''. ~c[(iff P Q)]
means that either ~c[P] and ~c[Q] are both false (i.e., ~c[nil]) or both true
(i.e., not ~c[nil]).
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(if p (if q t nil) (if q nil t)))
(defun xor (p q)
":Doc-Section ACL2::ACL2-built-ins
logical ``exclusive or''~/
~c[Xor] is the ACL2 exclusive-or function. ~c[(xor P Q)] means that either
~c[P] or ~c[Q], but not both, is false (i.e., ~c[nil]).
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(if p (if q nil t) (if q t nil)))
#+acl2-loop-only
(defun eq (x y)
":Doc-Section ACL2::ACL2-built-ins
equality of symbols~/
~c[Eq] is the function for determining whether two objects are
identical (i.e., have the exact same store address in the current
von Neumann implementation of Common Lisp). It is the same as
~ilc[equal] in the ACL2 logic.~/
~c[Eq] is a Common Lisp function. In order to ensure conformance
with Common Lisp, the ACL2 ~il[guard] on ~c[eq] requires at least one of
the arguments to ~c[eq] to be a symbol. Common Lisp guarantees that
if ~c[x] is a symbol, then ~c[x] is ~c[eq] to ~c[y] if and only if ~c[x]
is ~ilc[equal] to ~c[y]. Thus, the ACL2 user should think of ~c[eq] as
nothing besides a fast means for checking ~ilc[equal] when one argument
is known to be a symbol. In particular, it is possible that an
~c[eq] test will not even require the cost of a function call but
will be as fast as a single machine instruction.~/"
(declare (xargs :guard (if (symbolp x)
t
(symbolp y))
:mode :logic :verify-guards t))
(equal x y))
(defun booleanp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for booleans~/
~c[(Booleanp x)] is ~c[t] if ~c[x] is ~c[t] or ~c[nil], and is ~c[nil] otherwise.~/
~l[generalized-booleans] for a discussion of a potential
soundness problem for ACL2 related to the question: Which Common
Lisp functions are known to return Boolean values?
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(if (eq x t)
t
(eq x nil)))
; We do not want to try to define defequiv at this point, so we use the
; expansion of (defequiv iff).
(defthm iff-is-an-equivalence
(and (booleanp (iff x y))
(iff x x)
(implies (iff x y) (iff y x))
(implies (and (iff x y) (iff y z))
(iff x z)))
:rule-classes (:equivalence))
(defun implies (p q)
":Doc-Section ACL2::ACL2-built-ins
logical implication~/
~c[Implies] is the ACL2 implication function. ~c[(implies P Q)] means
that either ~c[P] is false (i.e., ~c[nil]) or ~c[Q] is true (i.e., not
~c[nil]).
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :mode :logic :guard t))
(if p (if q t nil) t))
(defthm iff-implies-equal-implies-1
(implies (iff y y-equiv)
(equal (implies x y) (implies x y-equiv)))
:rule-classes (:congruence))
(defthm iff-implies-equal-implies-2
(implies (iff x x-equiv)
(equal (implies x y) (implies x-equiv y)))
:rule-classes (:congruence))
#+acl2-loop-only
(defun not (p)
":Doc-Section ACL2::ACL2-built-ins
logical negation~/
~c[Not] is the ACL2 negation function. The negation of ~c[nil] is ~c[t] and
the negation of anything else is ~c[nil].~/
~c[Not] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic :guard t))
(if p nil t))
(defthm iff-implies-equal-not
(implies (iff x x-equiv)
(equal (not x) (not x-equiv)))
:rule-classes (:congruence))
(defun hide (x)
":Doc-Section Miscellaneous
hide a term from the rewriter~/
~c[Hide] is actually the ~il[identity] function: ~c[(hide x) = x] for
all ~c[x]. However, terms of the form ~c[(hide x)] are ignored by the
ACL2 rewriter, except when explicit ~c[:expand] ~il[hints] are given
for such terms (~pl[hints]) or when rewrite rules explicitly
about ~c[hide] are available. An ~c[:expand] hint that removes all
calls of ~c[hide] is:
~bv[]
:expand ((:free (x) (hide x)))
~ev[]
The above hint can be particularly useful when ACL2's equality heuristics
apply ~c[hide] to an equality after substituting it into the rest of the
goal, if that goal (or a subgoal of it) fails to be proved.
~c[Hide] terms are also ignored by the induction heuristics.~/
Sometimes the ACL2 simplifier inserts ~c[hide] terms into a proof
attempt out of the blue, as it were. Why and what can you do about
it? Suppose you have a constrained function, say ~c[constrained-fn], and
you define another function, say ~c[another-fn], in terms of it, as in:
~bv[]
(defun another-fn (x y z)
(if (big-hairy-test x y z)
(constrained-fn x y z)
t))
~ev[]
Suppose the term ~c[(another-fn 'a 'b 'c)] arises in a proof. Since
the arguments are all constants, ACL2 will try to reduce such a term
to a constant by executing the definition of ~c[another-fn].
However, after a possibly extensive computation (because of
~c[big-hairy-test]) the execution fails because of the unevaluable
call of ~c[constrained-fn]. To avoid subsequent attempts to evaluate
the term, ACL2 embeds it in a ~c[hide] expression, i.e., rewrites it
to ~c[(hide (another-fn 'a 'b 'c))].
You might think this rarely occurs since all the arguments of
~c[another-fn] must be constants. You would be right except for one
special case: if ~c[another-fn] takes no arguments, i.e., is a
constant function, then every call of it fits this case. Thus, if
you define a function of no arguments in terms of a constrained
function, you will often see ~c[(another-fn)] rewrite to
~c[(hide (another-fn))].
We do not hide the term if the executable counterpart of the
function is disabled -- because we do not try to evaluate it in the
first place. Thus, to prevent the insertion of a ~c[hide] term into
the proof attempt, you can globally disable the executable
counterpart of the offending defined function, e.g.,
~bv[]
(in-theory (disable (:executable-counterpart another-fn))).
~ev[]
It is conceivable that you cannot afford to do this: perhaps some
calls of the offending function must be computed while others cannot
be. One way to handle this situation is to leave the executable
counterpart enabled, so that ~c[hide] terms are introduced on the
calls that cannot be computed, but prove explicit :~ilc[rewrite]
rules for each of those ~c[hide] terms. For example, suppose that in
the proof of some theorem, thm, it is necessary to leave the
executable counterpart of ~c[another-fn] enabled but that the call
~c[(another-fn 1 2 3)] arises in the proof and cannot be computed.
Thus the proof attempt will introduce the term
~c[(hide (another-fn 1 2 3))]. Suppose that you can show that
~c[(another-fn 1 2 3)] is ~c[(contrained-fn 1 2 3)] and that such
a step is necessary to the proof. Unfortunately, proving the rewrite
rule
~bv[]
(defthm thm-helper
(equal (another-fn 1 2 3) (constrained-fn 1 2 3)))
~ev[]
would not help the proof of thm because the target term is hidden
inside the ~c[hide]. However,
~bv[]
(defthm thm-helper
(equal (hide (another-fn 1 2 3)) (constrained-fn 1 2 3)))
~ev[]
would be applied in the proof of thm and is the rule you should
prove.
Now to prove ~c[thm-helper] you need to use the two ``tricks'' which
have already been discussed. First, to eliminate the ~c[hide] term
in the proof of ~c[thm-helper] you should include the hint
~c[:expand] ~c[(hide (another-fn 1 2 3))]. Second, to prevent the
~c[hide] term from being reintroduced when the system tries and fails
to evaluate ~c[(another-fn 1 2 3)] you should include the hint
~c[:in-theory] ~c[(disable (:executable-counterpart another-fn))].
Thus, ~c[thm-helper] will actually be:
~bv[]
(defthm thm-helper
(equal (hide (another-fn 1 2 3)) (constrained-fn 1 2 3))
:hints
((\"Goal\" :expand (hide (another-fn 1 2 3))
:in-theory (disable (:executable-counterpart another-fn)))))
~ev[]
~l[eviscerate-hide-terms] for how to affect the printing of ~c[hide]
terms."
(declare (xargs :guard t))
x)
(defun rewrite-equiv (x)
; Documentation to be written. This is experimental for Version_3.1, to be
; tried out by Dave Greve.
(declare (xargs :mode :logic :guard t))
x)
; As of ACL2 Version_2.5, we can compile with or without support for
; non-standard analysis. To make maintenance of the two versions simpler,
; we define the macro "real/rationalp" which is defined as either realp or
; rationalp depending on whether the reals exist in the current ACL2
; universe or not.
(defmacro real/rationalp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for rational numbers (including real number in ACL2(r))~/
For most ACL2 users, this is a macro abbreviating ~ilc[rationalp]. In
ACL2(r) (~pl[real]), this macro abbreviates the predicate ~c[realp], which
holds for real numbers as well (including rationals). Most ACL2 users can
ignore this macro and use ~ilc[rationalp] instead, but many community books
use ~c[real/rationalp] so that these books will be suitable for ACL2(r) as
well.~/~/"
#+:non-standard-analysis
`(realp ,x)
#-:non-standard-analysis
`(rationalp ,x))
(defmacro complex/complex-rationalp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for complex numbers~/
For most ACL2 users, this is a macro abbreviating ~c[complex-rationalp];
~pl[complex-rationalp]. In ACL2(r) (~pl[real]), a complex number ~c[x] may
have irrational real and imaginary parts. This macro abbreviates the
predicate ~c[complexp] in ACL2(r), which holds for such ~c[x]. Most ACL2
users can ignore this macro and use ~ilc[complex-rationalp] instead. Some
community books use ~c[complex/complex-rationalp] so that they are suitable
for ACL2(r) as well.~/~/"
#+:non-standard-analysis
`(complexp ,x)
#-:non-standard-analysis
`(complex-rationalp ,x))
; Comments labeled "RAG" are from Ruben Gamboa, pertaining to his work
; in creating ACL2(r) (see :doc real).
(defun true-listp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for proper (null-terminated) lists~/
~c[True-listp] is the function that checks whether its argument is a
list that ends in, or equals, ~c[nil].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t :mode :logic))
(if (consp x)
(true-listp (cdr x))
(eq x nil)))
(defun list-macro (lst)
(declare (xargs :guard t))
(if (consp lst)
(cons 'cons
(cons (car lst)
(cons (list-macro (cdr lst)) nil)))
nil))
#+acl2-loop-only
(defmacro list (&rest args)
":Doc-Section ACL2::ACL2-built-ins
build a list~/
~c[List] is the macro for building a list of objects. For example,
~c[(list 5 6 7)] returns a list of length 3 whose elements are ~c[5],
~c[6], and ~c[7] respectively. Also ~pl[list*].~/
~c[List] is defined in Common Lisp. See any Common Lisp documentation
for more information.~/"
(list-macro args))
(defun and-macro (lst)
(declare (xargs :guard t))
(if (consp lst)
(if (consp (cdr lst))
(list 'if (car lst)
(and-macro (cdr lst))
nil)
(car lst))
t))
#+acl2-loop-only
(defmacro and (&rest args)
":Doc-Section ACL2::ACL2-built-ins
conjunction~/
~c[And] is the macro for conjunctions. ~c[And] takes any number of
arguments. ~c[And] returns ~c[nil] if one of the arguments is ~c[nil],
but otherwise returns the last argument. If there are no arguments,
~c[and] returns ~c[t].~/
~c[And] is a Common Lisp macro. See any Common Lisp documentation
for more information.~/"
(and-macro args))
(defun or-macro (lst)
(declare (xargs :guard t))
(if (consp lst)
(if (consp (cdr lst))
(list 'if
(car lst)
(car lst)
(or-macro (cdr lst)))
(car lst))
nil))
#+acl2-loop-only
(defmacro or (&rest args)
":Doc-Section ACL2::ACL2-built-ins
disjunction~/
~c[Or] is the macro for disjunctions. ~c[Or] takes any number of
arguments and returns the first that is non-~c[nil], or ~c[nil] if
there is no non-~c[nil] element.~/
In the ACL2 logic, the macroexpansion of ~c[(or x y)] is an ~c[IF] term that
appears to cause ~c[x] to be evaluated twice:
~bv[]
ACL2 !>:trans (or x y)
(IF X X Y)
=> *
ACL2 !>
~ev[]
If ~c[x] were replaced by an expression whose evaluation takes a long time,
then such an expansion would be ineffecient. However, don't be fooled: you
can expect Common Lisp implementations to avoid this problem, say by
generating a new variable, for example:
~bv[]
ACL2 !>:q ; Exit the ACL2 loop and go into raw Common Lisp
Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
ACL2>(macroexpand '(or x y))
(LET ((#:G5374 X)) (IF #:G5374 #:G5374 Y))
T
ACL2>
~ev[]
~c[Or] is a Common Lisp macro. See any Common Lisp documentation
for more information.~/"
(or-macro args))
#+acl2-loop-only
(defmacro - (x &optional (y 'nil binary-casep))
; In the general case, (- x y) expands to (binary-+ x (unary-- y)). But in the
; special case that y is a numeric constant we go ahead and run the unary--
; and we put it in front of x in the binary-+ expression so that it is in the
; expected "normal" form. Thus, (- x 1) expands to (binary-+ -1 x). Two forms
; of y allow this "constant folding": explicit numbers and the quotations of
; explicit numbers.
; Constant folding is important in processing definitions. If the user has
; written (1- x), we translate that to (binary-+ -1 x) instead of to the more
; mechanical (binary-+ (unary-- 1) x). Note that the type of the former is
; easier to determine that the latter because type-set knows about the effect
; of adding the constant -1 to a positive, but not about adding the term (- 1).
(if binary-casep
; First we map 'n to n so we don't have so many cases.
(let ((y (if (and (consp y)
(eq (car y) 'quote)
(consp (cdr y))
(acl2-numberp (car (cdr y)))
(eq (cdr (cdr y)) nil))
(car (cdr y))
y)))
(if (acl2-numberp y)
(cons 'binary-+
(cons (unary-- y)
(cons x nil)))
(cons 'binary-+
(cons x
(cons (cons 'unary-- (cons y nil))
nil)))))
(let ((x (if (and (consp x)
(eq (car x) 'quote)
(consp (cdr x))
(acl2-numberp (car (cdr x)))
(eq (cdr (cdr x)) nil))
(car (cdr x))
x)))
(if (acl2-numberp x)
(unary-- x)
(cons 'unary-- (cons x nil))))))
(defthm booleanp-compound-recognizer
(equal (booleanp x)
(or (equal x t)
(equal x nil)))
:rule-classes :compound-recognizer)
(in-theory (disable booleanp))
; integer-abs is just abs if x is an integer and is 0 otherwise.
; integer-abs is used because we don't know that that (abs x) is a
; nonnegative integer when x is an integer. By using integer-abs in
; the defun of acl2-count below we get that the type-prescription for
; acl2-count is a nonnegative integer.
(defun integer-abs (x)
(declare (xargs :guard t))
(if (integerp x)
(if (< x 0) (- x) x)
0))
(defun xxxjoin (fn args)
" (xxxjoin fn args) spreads the binary function symbol fn over args, a list
of arguments. For example,
(xxxjoin '+ '(1 2 3)) = '(+ 1 (+ 2 3)))."
(declare (xargs :guard (if (true-listp args)
(cdr args)
nil)
:mode :program))
(if (cdr (cdr args))
(cons fn
(cons (car args)
(cons (xxxjoin fn (cdr args))
nil)))
(cons fn args)))
#+acl2-loop-only
(defmacro + (&rest rst)
(if rst
(if (cdr rst)
(xxxjoin 'binary-+ rst)
(cons 'binary-+ (cons 0 (cons (car rst) nil))))
0))
; We now define length (and its subroutine len) so we can use them in
; acl2-count.
#-acl2-loop-only
(defun-one-output len2 (x acc)
(cond ((atom x) acc)
(t (len2 (cdr x) (1+ acc)))))
#-acl2-loop-only
(defun len1 (x acc)
; This function is an optimized version of len2 above, which is a simple
; tail-recursive implementation of len.
(declare (type fixnum acc))
(the fixnum ; to assist in ACL2's proclaiming
(cond ((atom x) acc)
((eql (the fixnum acc) most-positive-fixnum)
#+(or gcl ccl allegro sbcl cmu
(and lispworks lispworks-64bit))
; The error below is entirely optional, and can be safely removed from the
; code. Here is the story.
; We cause an error for the Lisps listed above in order to highlight the
; violation of the following expectation for those Lisps: the length of a list
; is always bounded by most-positive-fixnum. To be safe, we omit CLISP and
; 32-bit LispWorks (where most-positive-fixnum is only 16777215 and 8388607,
; respectively; see the Essay on Fixnum Declarations). But for the Lisps in
; the above readtime conditional, we believe the above expectation because a
; cons takes at least 8 bytes and each of the lisps below has
; most-positive-fixnum of at least approximately 2^29.
(error "We have encountered a list whose length exceeds ~
most-positive-fixnum!")
-1)
(t (len1 (cdr x) (the fixnum (+ (the fixnum acc) 1)))))))
(defun len (x)
":Doc-Section ACL2::ACL2-built-ins
length of a list~/
~c[Len] returns the length of a list.~/
A Common Lisp function that is appropriate for both strings and
proper lists is ~c[length]; ~pl[length]. The guard for ~c[len] is ~c[t].
(Low-level implementation note. ACL2 provides a highly-optimized
implementation of ~c[len], which is tail-recursive and fixnum-aware, that
differs from its simple ACL2 definition.)
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t :mode :logic))
#-acl2-loop-only
(return-from len
(let ((val (len1 x 0)))
(if (eql val -1)
(len2 x 0)
val)))
(if (consp x)
(+ 1 (len (cdr x)))
0))
#+acl2-loop-only
(defun length (x)
":Doc-Section ACL2::ACL2-built-ins
length of a string or proper list~/
~c[Length] is the function for determining the length of a sequence.
In ACL2, the argument is required to be either a ~ilc[true-listp] or a
string.~/
~c[Length] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (if (true-listp x)
t
(stringp x))
:mode :logic))
(if (stringp x)
(len (coerce x 'list))
(len x)))
#-acl2-loop-only
(defun-one-output complex-rationalp (x)
(complexp x))
(defun acl2-count (x)
":Doc-Section ACL2::ACL2-built-ins
a commonly used measure for justifying recursion~/
~c[(Acl2-count x)] returns a nonnegative integer that indicates the
``size'' of its argument ~c[x].~/
All ~il[characters] and symbols have ~c[acl2-count 0]. The ~c[acl2-count] of a
string is the number of ~il[characters] in it, i.e., its length. The
~c[acl2-count] of a ~ilc[cons] is one greater than the sum of the ~c[acl2-count]s
of the ~ilc[car] and ~ilc[cdr]. The ~c[acl2-count] of an integer is its absolute
value. The ~c[acl2-count] of a rational is the sum of the ~c[acl2-count]s
of the numerator and denominator. The ~c[acl2-count] of a complex
rational is one greater than the sum of the ~c[acl2-count]s of the real
and imaginary parts."
; We used to define the acl2-count of symbols to be (+ 1 (length
; (symbol-name x))) but then found it useful to make the acl2-count of
; NIL be 0 so that certain normalizations didn't explode the count.
; We then made the count of all symbols 0. This broad stroke was not
; strictly necessary, as far as we can see, it just simplifies the
; definition of acl2-count and does not seem to affect the common
; recursions and inductions.
(declare (xargs :guard t))
(if (consp x)
(+ 1
(acl2-count (car x))
(acl2-count (cdr x)))
(if (rationalp x)
(if (integerp x)
(integer-abs x)
(+ (integer-abs (numerator x))
(denominator x)))
(if (complex/complex-rationalp x)
(+ 1
(acl2-count (realpart x))
(acl2-count (imagpart x)))
(if (stringp x)
(length x)
0)))))
; The following rewrite rule may be useful for termination proofs, but
; at this point it seems premature to claim any kind of understanding
; of how to integrate such rules with appropriate linear rules.
; (defthm acl2-count-consp
; (implies (consp x)
; (equal (acl2-count x)
; (+ 1
; (acl2-count (car x))
; (acl2-count (cdr x))))))
(defun cond-clausesp (clauses)
(declare (xargs :guard t))
(if (consp clauses)
(and (consp (car clauses))
(true-listp (car clauses))
(< (len (car clauses)) 3)
(cond-clausesp (cdr clauses)))
(eq clauses nil)))
(defun cond-macro (clauses)
(declare (xargs :guard (cond-clausesp clauses)))
(if (consp clauses)
(if (and (eq (car (car clauses)) t)
(eq (cdr clauses) nil))
(if (cdr (car clauses))
(car (cdr (car clauses)))
(car (car clauses)))
(if (cdr (car clauses))
(list 'if
(car (car clauses))
(car (cdr (car clauses)))
(cond-macro (cdr clauses)))
; We could instead generate the IF term corresponding to the expansion of the
; following OR term, and that is what we did through Version_3.3. But the
; extra cost of further expanding this OR call is perhaps outweighed by the
; advantage that tools using macroexpand1 can see the OR, which is an odd macro
; in that its logical expansion can result in evaluating the first argument
; twice.
(list 'or
(car (car clauses))
(cond-macro (cdr clauses)))))
nil))
#+acl2-loop-only
(defmacro cond (&rest clauses)
":Doc-Section ACL2::ACL2-built-ins
conditional based on if-then-else~/
~c[Cond] is the construct for IF, THEN, ELSE IF, ... The test is
against ~c[nil]. The argument list for ~c[cond] is a list of
``clauses'', each of which is a list. In ACL2, clauses must have
length 1 or 2.~/
~c[Cond] is a Common Lisp macro. See any Common Lisp
documentation for more information.~/"
(declare (xargs :guard (cond-clausesp clauses)))
(cond-macro clauses))
; The function eqlablep is :common-lisp-compliant even during the first pass,
; in order to support the definition of eql, which is in
; *expandable-boot-strap-non-rec-fns* and hence needs to be
; :common-lisp-compliant.
(defun eqlablep (x)
":Doc-Section ACL2::ACL2-built-ins
the ~il[guard] for the function ~ilc[eql]~/
The predicate ~c[eqlablep] tests whether its argument is suitable for
~ilc[eql], at least one of whose arguments must satisfy this predicate
in Common Lisp. ~c[(Eqlablep x)] is true if and only if its argument
is a number, a symbol, or a character.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :mode :logic :guard t))
(or (acl2-numberp x)
(symbolp x)
(characterp x)))
; Note: Eqlablep is the guard on the function eql. Eql is on *expandable-boot-
; strap-non-rec-fns* and is hence expanded by type-set and assume-true-false
; when its guard is established. Thus, the system works best if eqlablep is
; known to be a compound recognizer so that type-set can work with it when it
; sees it in the guard of eql.
(defthm eqlablep-recog
(equal (eqlablep x)
(or (acl2-numberp x)
(symbolp x)
(characterp x)))
:rule-classes :compound-recognizer)
(in-theory (disable eqlablep))
(defun eqlable-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of objects each suitable for ~ilc[eql]~/
The predicate ~c[eqlable-listp] tests whether its argument is a
~ilc[true-listp] of objects satisfying ~ilc[eqlablep].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :mode :logic :guard t))
(if (consp l)
(and (eqlablep (car l))
(eqlable-listp (cdr l)))
(equal l nil)))
#+acl2-loop-only
(defun eql (x y)
(declare (xargs :mode :logic
:guard (or (eqlablep x)
(eqlablep y))))
":Doc-Section ACL2::ACL2-built-ins
test equality (of two numbers, symbols, or ~il[characters])~/
~c[(eql x y)] is logically equivalent to ~c[(equal x y)].~/
Unlike ~ilc[equal], ~c[eql] has a ~il[guard] requiring at least one of its
arguments to be a number, a symbol, or a character. Generally,
~c[eql] is executed more efficiently than ~ilc[equal].
For a discussion of the various ways to test against 0,
~l[zero-test-idioms].
~c[Eql] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(equal x y))
#+acl2-loop-only
(defun atom (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for atoms~/
~c[(atom x)] is true if and only if ~c[x] is an atom, i.e., not a
~ilc[cons] pair.~/
~c[Atom] has a ~il[guard] of ~c[t], and is a Common Lisp function. See any
Common Lisp documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic :guard t))
(not (consp x)))
; We use this in the *1* code for coerce.
(defun make-character-list (x)
":Doc-Section ACL2::ACL2-built-ins
~il[coerce] to a list of characters~/
Non-characters in the given list are ~il[coerce]d to the character with
code 0.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom x) nil)
((characterp (car x))
(cons (car x) (make-character-list (cdr x))))
(t
; There's nothing special about (code-char 0), but at least it will look
; strange when people come across it.
(cons (code-char 0) (make-character-list (cdr x))))))
(defun eqlable-alistp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of pairs whose ~ilc[car]s are suitable for ~ilc[eql]~/
The predicate ~c[eqlable-alistp] tests whether its argument is a
~ilc[true-listp] of ~ilc[consp] objects whose ~ilc[car]s all satisfy
~ilc[eqlablep].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (consp (car x))
(eqlablep (car (car x)))
(eqlable-alistp (cdr x))))))
(defun alistp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for association lists~/
~c[(alistp x)] is true if and only if ~c[x] is a list of ~ilc[cons] pairs.~/
~c[(alistp x)] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(cond ((atom l) (eq l nil))
(t (and (consp (car l)) (alistp (cdr l))))))
(defthm alistp-forward-to-true-listp
(implies (alistp x)
(true-listp x))
:rule-classes :forward-chaining)
(defthm eqlable-alistp-forward-to-alistp
(implies (eqlable-alistp x)
(alistp x))
:rule-classes :forward-chaining)
#+acl2-loop-only
(defun acons (key datum alist)
":Doc-Section ACL2::ACL2-built-ins
constructor for association lists~/
~c[(Acons key datum alist)] equals the result of consing the pair
~c[(cons key datum)] to the front of the association list ~c[alist].~/
~c[(Acons key datum alist)] has a ~il[guard] of ~c[(alistp alist)].
~c[Acons] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (alistp alist)))
(cons (cons key datum) alist))
#+acl2-loop-only
(defun endp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for empty lists~/
In the ACL2 logic, ~c[(endp x)] is the same as ~c[(atom x)].
~l[atom].~/
Unlike ~ilc[atom], the ~il[guard] for ~c[endp] requires that ~c[x] is a
~ilc[cons] pair or is ~c[nil]. Thus, ~c[endp] is typically used as a
termination test for functions that recur on a ~ilc[true-listp]
argument. ~l[guard] for general information about ~il[guard]s.
~c[Endp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic
:guard (or (consp x) (eq x nil))))
(atom x))
#+acl2-loop-only
(defmacro caar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[car]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'car x)))
#+acl2-loop-only
(defmacro cadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cdr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cdr x)))
#+acl2-loop-only
(defmacro cdar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[car]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'car x)))
#+acl2-loop-only
(defmacro cddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cdr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cdr x)))
#+acl2-loop-only
(defmacro caaar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[caar]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'caar x)))
#+acl2-loop-only
(defmacro caadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cadr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cadr x)))
#+acl2-loop-only
(defmacro cadar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cdar]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cdar x)))
#+acl2-loop-only
(defmacro caddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cddr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cddr x)))
#+acl2-loop-only
(defmacro cdaar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[caar]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'caar x)))
#+acl2-loop-only
(defmacro cdadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cadr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cadr x)))
#+acl2-loop-only
(defmacro cddar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cdar]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cdar x)))
#+acl2-loop-only
(defmacro cdddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cddr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cddr x)))
#+acl2-loop-only
(defmacro caaaar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[caaar]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'caaar x)))
#+acl2-loop-only
(defmacro caaadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[caadr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'caadr x)))
#+acl2-loop-only
(defmacro caadar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cadar]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cadar x)))
#+acl2-loop-only
(defmacro caaddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[caddr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'caddr x)))
#+acl2-loop-only
(defmacro cadaar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cdaar]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cdaar x)))
#+acl2-loop-only
(defmacro cadadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cdadr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cdadr x)))
#+acl2-loop-only
(defmacro caddar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cddar]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cddar x)))
#+acl2-loop-only
(defmacro cadddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[car] of the ~ilc[cdddr]~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cdddr x)))
#+acl2-loop-only
(defmacro cdaaar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[caaar]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'caaar x)))
#+acl2-loop-only
(defmacro cdaadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[caadr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'caadr x)))
#+acl2-loop-only
(defmacro cdadar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cadar]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cadar x)))
#+acl2-loop-only
(defmacro cdaddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[caddr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'caddr x)))
#+acl2-loop-only
(defmacro cddaar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cdaar]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cdaar x)))
#+acl2-loop-only
(defmacro cddadr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cdadr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cdadr x)))
#+acl2-loop-only
(defmacro cdddar (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cddar]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cddar x)))
#+acl2-loop-only
(defmacro cddddr (x)
":Doc-Section ACL2::ACL2-built-ins
~ilc[cdr] of the ~ilc[cdddr]~/
See any Common Lisp documentation for details.~/~/"
(list 'cdr (list 'cdddr x)))
#+acl2-loop-only
(defun null (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for the empty list~/
~c[Null] is the function that checks whether its argument is ~c[nil].
For recursive definitions it is often preferable to test for the end
of a list using ~ilc[endp] instead of ~c[null]; ~pl[endp].~/
~c[Null] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic :guard t))
(eq x nil))
(defun symbol-listp (lst)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of symbols~/
The predicate ~c[symbol-listp] tests whether its argument is a
true list of symbols.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t :mode :logic))
(cond ((atom lst) (eq lst nil))
(t (and (symbolp (car lst))
(symbol-listp (cdr lst))))))
(defthm symbol-listp-forward-to-true-listp
(implies (symbol-listp x)
(true-listp x))
:rule-classes :forward-chaining)
(defun symbol-doublet-listp (lst)
; This function returns t iff lst is a true-list and each element is
; a doublet of the form (symbolp anything).
(declare (xargs :guard t))
(cond ((atom lst) (eq lst nil))
(t (and (consp (car lst))
(symbolp (caar lst))
(consp (cdar lst))
(null (cddar lst))
(symbol-doublet-listp (cdr lst))))))
; Essay on Strip-cars -- To Tail Recur or not to Tail Recur?
; We have seen instances where strip-cdrs causes a segmentation fault because
; it overflows the stack. We therefore decided to recode strip-cdrs in a
; tail-recursive way. We therefore decided to do the same thing to strip-cars.
; This essay is about strip-cars but the issues are the same for strip-cdrs, we
; believe.
; First, what is the longest list you can strip-cars without a segmentation
; fault. The answer for
; GCL (GNU Common Lisp) Version(2.2.1) Wed Mar 12 00:47:19 CST 1997
; is 74790, when the test form is (length (strip-cars test-lst)). Because our
; test forms below are a little more elaborate, we will do our tests on a list
; of length 74000:
; (defvar test-lst
; (loop for i from 1 to 74000 collect (cons i i)))
; Just for the record, how long does it take to do strip-cars 30 times on this
; test-lst? Answer: 6.190 seconds.
; (proclaim-form
; (defun test1 (n)
; (loop for i from 1 to n do (strip-cars test-lst))))
;
; (compile 'test1)
;
; (time (test1 30))
; Now the obvious tail recursive version of strip-cars is:
; (proclaim-form
; (defun strip-cars2 (x a)
; (if (endp x)
; (reverse a)
; (strip-cars2 (cdr x) (cons (car (car x)) a)))))
;
; (compile 'strip-cars2)
;
; (proclaim-form
; (defun test2 (n)
; (loop for i from 1 to n do (strip-cars2 test-lst))))
;
; (compile 'test2)
;
; (time (test2 30))
; This function is actually faster than strip-cars: 5.530 seconds! That is
; surprising because this function does TWICE as many conses, since it conses
; up the final answer from the accumulated partial one. The reason this
; function beats strip-cars can only be that that the tail-recursive jump is
; quite a lot faster than a function call.
; But Common Lisp allows to avoid consing to do a reverse if we are willing to
; smash the existing spine. And in this case we are, since we have just consed
; it up. So here is a revised function that only does as many conses as
; strip-cars:
; (proclaim-form
; (defun strip-cars3 (x a)
; (if (endp x)
; (nreverse a) ;;; Note destructive reverse!
; (strip-cars3 (cdr x) (cons (car (car x)) a)))))
;
; (compile 'strip-cars3)
;
; (proclaim-form
; (defun test3 (n)
; (loop for i from 1 to n do (strip-cars3 test-lst))))
;
; (compile 'test3)
;
; (time (test3 30))
; This function takes 2.490 seconds.
; Therefore, we decided to code strip-cars (and strip-cdrs) in the style of
; strip-cars3 above.
; However, we did not want to do define strip-cars tail-recursively because
; proofs about strip-cars -- both in our system build and in user theorems
; about strip-cars -- would have to use the accumulator-style generalization.
; So we decided to keep strip-cars defined, logically, just as it was and to
; make its #-acl2-loop-only executable code be tail recursive, as above.
; The next paragraph is bogus! But it used to read as follows (where
; strip-cars1 was essentially what we now call reverse-strip-cars).
; Furthermore, we decided that strip-cars1 is a perfectly nice
; function the user might want, so we added it to the logic first --
; changing the nreverse to a reverse for logical purposes but leaving
; the nreverse in for execution. This way, if the user wants an
; accumulator-version of strip-cars, he can have it and it will be
; very fast. But if he wants a simple recursive version he can have
; it too.
; That is unsound because we don't know that the accumulator is all new conses
; and so we can't smash it! So the use of nreverse is hidden from the user.
; We could, of course, use mbe (which was not available when strip-cars and
; strip-cdrs were originally defined in ACL2). However, we wish to cheat using
; nreverse, so it doesn't seem that nreverse buys us anything. We do note that
; ACL2 can prove the following theorems.
; (defthm reverse-strip-cars-property
; (equal (reverse-strip-cars x acc)
; (revappend (strip-cars x) acc)))
;
; (defthm reverse-strip-cdrs-property
; (equal (reverse-strip-cdrs x acc)
; (revappend (strip-cdrs x) acc)))
(defun reverse-strip-cars (x a)
(declare (xargs :guard (alistp x)))
(cond ((endp x) a)
(t (reverse-strip-cars (cdr x)
(cons (car (car x)) a)))))
(defun strip-cars (x)
":Doc-Section ACL2::ACL2-built-ins
collect up all first components of pairs in a list~/
~c[(strip-cars x)] is the list obtained by walking through the list ~c[x] and
collecting up all first components (~ilc[car]s). This function is
implemented in a tail-recursive way, despite its logical definition.~/
~c[(strip-cars x)] has a ~il[guard] of ~c[(alistp x)].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (alistp x)))
; See the Essay on Strip-cars -- To Tail Recur or not to Tail Recur? above.
#-acl2-loop-only
(nreverse (reverse-strip-cars x nil))
#+acl2-loop-only
(cond ((endp x) nil)
(t (cons (car (car x))
(strip-cars (cdr x))))))
(defun reverse-strip-cdrs (x a)
(declare (xargs :guard (alistp x)))
(cond ((endp x) a)
(t (reverse-strip-cdrs (cdr x)
(cons (cdr (car x)) a)))))
(defun strip-cdrs (x)
":Doc-Section ACL2::ACL2-built-ins
collect up all second components of pairs in a list~/
~c[(strip-cdrs x)] has a ~il[guard] of ~c[(alistp x)], and returns the list
obtained by walking through the list ~c[x] and collecting up all second
components (~ilc[cdr]s). This function is implemented in a tail-recursive
way, despite its logical definition.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard (alistp x)))
; See the Essay on Strip-cars -- To Tail Recur or not to Tail Recur? above.
#-acl2-loop-only
(nreverse (reverse-strip-cdrs x nil))
#+acl2-loop-only
(cond ((endp x) nil)
(t (cons (cdr (car x))
(strip-cdrs (cdr x))))))
(defmacro let-mbe (bindings &key logic exec)
`(let ,bindings
(mbe :logic ,logic
:exec ,exec)))
#+acl2-loop-only
(defun return-last (fn eager-arg last-arg)
; Return-last is the one "function" in ACL2 that has no fixed output signature.
; Rather, (return-last expr1 expr2) inherits its stobjs-out from expr2.
; Because of this, we make it illegal to call stobjs-out on the symbol
; return-last. We think of expr1 as being evaluated eagerly because even in
; the raw Lisp implementation of return-last, that argument is always evaluated
; first just as with a function call. By contrast, if fn is a macro then it
; can manipulate last-arg arbitrarily before corresponding evaluation occurs.
; In many applications of return-last, eager-arg will be nil; for others, such
; as with-prover-time-limit, eager-arg will be used to control the evaluation
; of (some version of) last-arg.
; The following little example provides a small check on our handling of
; return-last, both via ev-rec (for evaluating top-level forms) and via more
; direct function evaluation (either *1* functions or their raw Lisp
; counterparts).
; (defun foo (x)
; (time$ (mbe :logic (prog2$ (cw "**LOGIC~%") x)
; :exec (prog2$ (cw "**EXEC~%") x))))
; (defun bar (x) (foo x))
; (foo 3) ; logic
; (bar 3) ; logic
; (verify-guards foo)
; (foo 3) ; exec
; (bar 3) ; exec
":Doc-Section ACL2::ACL2-built-ins
return the last argument, perhaps with side effects~/
~c[Return-last] is an ACL2 function that returns its last argument. It is
used to implement common utilities such as ~ilc[prog2$] and ~ilc[time$]. For
most users, this may already be more than one needs to know about
~c[return-last]; for example, ACL2 tends to avoid printing calls of
~c[return-last] in its output, printing calls of ~ilc[prog2$] or
~ilc[time$] (or other such utilities) instead.
If you encounter a call of ~c[return-last] during a proof, then you may find
it most useful to consider ~c[return-last] simply as a function defined by
the following equation.
~bv[]
(equal (return-last x y z) z)
~ev[]
It may also be useful to know that unlike other ACL2 functions,
~c[return-last] can take a multiple value as its last argument, in which case
this multiple value is returned. The following contrived definition
illustrates this point.
~bv[]
ACL2 !>(defun foo (fn x y z)
(return-last fn x (mv y z)))
Since FOO is non-recursive, its admission is trivial. We observe that
the type of FOO is described by the theorem
(AND (CONSP (FOO FN X Y Z)) (TRUE-LISTP (FOO FN X Y Z))). We used
primitive type reasoning.
(FOO * * * *) => (MV * *).
Summary
Form: ( DEFUN FOO ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
FOO
ACL2 !>(foo 'bar 3 4 5)
(4 5)
ACL2 !>(mv-let (a b)
(foo 'bar 3 4 5)
(cons b a))
(5 . 4)
ACL2 !>
~ev[]
Most readers would be well served to avoid reading the rest of this
documentation of ~c[return-last]. For reference, however, below we document
it in some detail. We include some discussion of its evaluation, in
particular its behavior in raw Lisp, because we expect that most who read
further are working with raw Lisp code (and trust tags).~/
~c[Return-last] is an ACL2 function that can arise from macroexpansion of
certain utilities that return their last argument, which may be a multiple
value. Consider for example the simplest of these, ~ilc[prog2$]:
~bv[]
ACL2 !>:trans1 (prog2$ (cw \"Some CW printing...~~%\") (+ 3 4))
(RETURN-LAST 'PROGN
(CW \"Some CW printing...~~%\")
(+ 3 4))
ACL2 !>
~ev[]
Notice that a call of ~c[prog2$] macroexpands to a call of ~c[return-last] in
which the first argument is ~c[(quote progn)]. Although ~c[return-last] is a
function in the ACL2 world, it is implemented ``under the hood'' as a macro
in raw Lisp, as the following log (continuing the example above) illustrates.
~bv[]
ACL2 !>:q
Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
? [RAW LISP] (macroexpand-1 '(RETURN-LAST 'PROGN
(CW \"Some CW printing...~~%\")
(+ 3 4)))
(PROGN (LET ((*AOKP* T)) (CW \"SOME CW PRINTING...~~%\")) (+ 3 4))
T
? [RAW LISP]
~ev[]
Thus, the original ~c[prog2$] call generates a corresponding call of
~c[progn] in raw Lisp, which in turn causes evaluation of each argument and
returns whatever is returned by evaluation of the last (second) argument.
(Remark for those who use ~ilc[defattach]. The binding of ~c[*aokp*] to
~c[t] is always included for the second argument as shown except when the
first argument is of the form ~c[(QUOTE M)] where ~c[M] is a macro, or (less
important) when the first argument is a symbol or a cons whose car is
~c[QUOTE]. This binding allows ACL2 to use attachments in the second
argument of ~c[return-last] (hence, in the first argument of ~ilc[prog2$]),
even in contexts such as proofs in which attachments are normally not
allowed. Those who use the experimental HONS version of ACL2
(~pl[hons-and-memoization]) will see an additional binding in the above
single-step macroexpansion, which allows the storing of memoized results even
when that would otherwise be prevented because of the use of attachments.)
In general, a form ~c[(return-last (quote F) X Y)] macroexpands to
~c[(F X Y)], where ~c[F] is defined in raw Lisp to return its last argument.
The case that ~c[F] is ~c[progn] is a bit misleading, because it is so
simple. More commonly, macroexpansion produces a call of a macro defined in
raw Lisp that may produce side effects. Consider for example the ACL2
utility ~ilc[with-guard-checking], which is intended to change the
~il[guard]-checking mode to the indicated value (~pl[with-guard-checking]).
~bv[]
ACL2 !>(with-guard-checking :none (car 3)) ; no guard violation
NIL
ACL2 !>:trans1 (with-guard-checking :none (car 3))
(WITH-GUARD-CHECKING1 (CHK-WITH-GUARD-CHECKING-ARG :NONE)
(CAR 3))
ACL2 !>:trans1 (WITH-GUARD-CHECKING1 (CHK-WITH-GUARD-CHECKING-ARG :NONE)
(CAR 3))
(RETURN-LAST 'WITH-GUARD-CHECKING1-RAW
(CHK-WITH-GUARD-CHECKING-ARG :NONE)
(CAR 3))
ACL2 !>:q
Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
? [RAW LISP] (macroexpand-1
'(RETURN-LAST 'WITH-GUARD-CHECKING1-RAW
(CHK-WITH-GUARD-CHECKING-ARG :NONE)
(CAR 3)))
(WITH-GUARD-CHECKING1-RAW (CHK-WITH-GUARD-CHECKING-ARG :NONE) (CAR 3))
T
? [RAW LISP] (pprint
(macroexpand-1
'(WITH-GUARD-CHECKING1-RAW
(CHK-WITH-GUARD-CHECKING-ARG :NONE)
(CAR 3))))
(LET ((ACL2_GLOBAL_ACL2::GUARD-CHECKING-ON
(CHK-WITH-GUARD-CHECKING-ARG :NONE)))
(DECLARE (SPECIAL ACL2_GLOBAL_ACL2::GUARD-CHECKING-ON))
(CAR 3))
? [RAW LISP]
~ev[]
The above raw Lisp code binds the state global variable ~c[guard-checking-on]
to ~c[:none], as ~c[chk-with-guard-checking-arg] is just the identity
function except for causing a hard error for an illegal input.
The intended use of ~c[return-last] is that the second argument is evaluated
first in a normal manner, and then the third argument is evaluated in an
environment that may depend on the value of the second argument. (For
example, the macro ~ilc[with-prover-time-limit] macroexpands to a call of
~c[return-last] with a first argument of ~c['WITH-PROVER-TIME-LIMIT1-RAW], a
second argument that evaluates to a numeric time limit, and a third argument
that is evaluated in an environment where the theorem prover is restricted to
avoid running longer than that time limit.) Although this intended usage
model is not strictly enforced, it is useful to keep in mind in the following
description of how calls of ~c[return-last] are handled by the ACL2
evaluator.
When a form is submitted in the top-level loop, it is handled by ACL2's
custom evaluator. That evaluator is specified to respect the semantics of
the expression supplied to it: briefly put, if an expression ~c[E] evaluates
to a value ~c[V], then the equality ~c[(equal E (quote V))] should be a
theorem. Notice that this specification does not discuss the side-effects
that may occur when evaluating a call of ~c[return-last], so we discuss that
now. Suppose that the ACL2 evaluator encounters the call
~c[(return-last 'fn expr1 expr2)]. First it evaluates ~c[expr1]. If this
evaluation succeeds without error, then it constructs an expression of the
form ~c[(fn *x* ev-form)], where *x* is a Lisp variable bound to the result
of evaluating ~c[expr1] and ~c[ev-form] is a call of the evaluator for
~c[expr2]. (Those who want implementation details are invited to look at
function ~c[ev-rec-return-last] in ACL2 source file ~c[translate.lisp].)
There are exceptions if ~c[fn] is ~c[progn], ~c[ec-call1-raw],
~c[with-guard-checking1-raw], or ~c[mbe1-raw], but the main idea is the same:
do a reasonable job emulating the behavior of a raw-Lisp call of
~c[return-last].
The following log shows how a ~ilc[time$] call can generate a call of the
evaluator for the last argument of ~c[return-last] (arguent ~c[expr2],
above). We use ~c[:]~ilc[trans1] to show single-step macroexpansions, which
indicate how a call of ~ilc[time$] expands to a call of ~c[return-last]. The
implementation actually binds the Lisp variable ~c[*RETURN-LAST-ARG3*] to
~c[expr2] before calling the ACL2 evaluator, ~c[ev-rec].
~bv[]
ACL2 !>:trans1 (time$ (+ 3 4))
(TIME$1 (LIST 0 NIL NIL NIL NIL)
(+ 3 4))
ACL2 !>:trans1 (TIME$1 (LIST 0 NIL NIL NIL NIL)
(+ 3 4))
(RETURN-LAST 'TIME$1-RAW
(LIST 0 NIL NIL NIL NIL)
(+ 3 4))
ACL2 !>(time$ (+ 3 4))
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 0.00 seconds realtime, 0.00 seconds runtime
; (1,120 bytes allocated).
7
ACL2 !>
~ev[]
We now show how things can go wrong in other than the ``intended use'' case
described above. In the example below, the macro ~c[mac-raw] is operating
directly on the syntactic representation of its first argument, which it
obtains of course as the second argument of a ~c[return-last] call. Again
this ``intended use'' of ~c[return-last] requires that argument to be
evaluated and then only its result is relevant; its syntax is not supposed to
matter. We emphasize that only top-level evaluation depends on this
``intended use''; once evaluation is passed to Lisp, the issue disappears.
We illustrate below how to use the ~ilc[top-level] utility to avoid this
issue; ~pl[top-level]. The example uses the utility ~c[defmacro-last] to
``install'' special handling of the raw-Lisp macro ~c[mac-raw] by
~c[return-last]; later below we discuss ~c[defmacro-last].
~bv[]
ACL2 !>(defttag t)
TTAG NOTE: Adding ttag :T from the top level loop.
T
ACL2 !>(progn!
(set-raw-mode t)
(defmacro mac-raw (x y)
`(progn (print (quote ,(cadr x)))
(terpri) ; newline
,y)))
Summary
Form: ( PROGN! (SET-RAW-MODE T) ...)
Rules: NIL
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
NIL
ACL2 !>(defmacro-last mac)
[[ ... output omitted ... ]]
RETURN-LAST-TABLE
ACL2 !>(return-last 'mac-raw '3 nil)
***********************************************
************ ABORTING from raw Lisp ***********
Error: Fault during read of memory address #x120000300006
***********************************************
If you didn't cause an explicit interrupt (Control-C),
then the root cause may be call of a :program mode
function that has the wrong guard specified, or even no
guard specified (i.e., an implicit guard of t).
See :DOC guards.
To enable breaks into the debugger (also see :DOC acl2-customization):
(SET-DEBUGGER-ENABLE T)
ACL2 !>(top-level (return-last 'mac-raw '3 nil))
3
NIL
ACL2 !>
~ev[]
We next describe how to extend the behavior of ~c[return-last]. This
requires an active trust tag (~pl[defttag]), and is accomplished by extending
a ~il[table] provided by ACL2, ~pl[return-last-table]. Rather than using
~ilc[table] ~il[events] directly for this purpose, it is probably more
convenient to use a macro, ~c[defmacro-last]. We describe the community book
~c[books/misc/profiling.lisp] in order to illustrate how this works. The
events in that book include the following, which are described below.
~bv[]
(defttag :profiling)
(progn!
(set-raw-mode t)
(load (concatenate 'string (cbd) \"profiling-raw.lsp\")))
(defmacro-last with-profiling)
~ev[]
The first event introduces a trust tag. The second loads a file into raw
Lisp that defines a macro, ~c[with-profiling-raw], which can do profiling for
the form to be evaluated. The third introduces an ACL2 macro
~c[with-profiling], whose calls expand into calls of the form
~c[(return-last (quote with-profiling-raw) & &)]. The third event also
extends ~ilc[return-last-table] so that these calls will expand in raw Lisp
to calls of ~c[with-profiling-raw].
The example above illustrates the following methodology for introducing a
macro that returns its last argument but produces useful side-effects with
raw Lisp code.
~bq[]
(1) Introduce a trust tag (~pl[defttag]).
(2) Using ~ilc[progn!], load into raw Lisp a file defining a macro,
~c[RAW-NAME], that takes two arguments, returning its last (second) argument
but using the first argument to produce desired side effects during
evaluation of that last argument.
(3) Evaluate the form ~c[(defmacro-last NAME :raw RAW-NAME)]. This will
introduce ~c[NAME] as an ACL2 macro that expands to a corresponding call of
~c[RAW-NAME] (see (2) above) in raw Lisp. The specification of keyword value
of ~c[:raw] as ~c[RAW-NAME] may be omitted if ~c[RAW-NAME] is the result of
modifying the symbol ~c[NAME] by suffixing the string ~c[\"-RAW\"] to the
~ilc[symbol-name] of ~c[NAME].~eq[]
WARNING: Not every use of ~c[return-last] can be soundly evaluated outside a
function body. The reason is that ACL2's evaluator, ~c[ev-rec], recurs
through terms that are presented in the top-level loop, and handles
~c[return-last] calls in a special manner: basically, the call of ~c[ev-rec]
on the form ~c[(return-last 'mac-raw x y)] leads to evaluation of a macro
call of the form ~c[(mac-raw *return-last-arg2* (ev-rec ...))], where
*return-last-arg2* is a global variable bound to the result of evaluating
~c[x] with ~c[ev-rec]. Consider the following example.
~bv[]
(defttag t)
(set-raw-mode-on state)
(defmacro mac-raw (str y) ; print message is an atom
`(let ((result (consp ,y))
(str ,str))
(or result
(prog2$ (fmx ,str ',y)
nil))))
(set-raw-mode-off state)
(defmacro-last mac)
; Horrible error:
(mac \"Not a cons: ~~x0\~~%\" 17)
; Works, but probably many would consider it awkward to use top-level:
(top-level (mac \"Not a cons: ~~x0\~~%\" 17))
~ev[]
In such cases we suggest supplying keyword ~c[:top-level-ok nil] to the call
of ~c[defmacro-last], for example:
~bv[]
(defmacro-last mac :top-level-ok nil)
~ev[]
Then any attempt to call ~c[mac] at the top level, as opposed to inside a
function body, will cause a clean error before evaluation begins.
It is useful to explore what is done by ~c[defmacro-last].
~bv[]
ACL2 !>:trans1 (defmacro-last with-profiling)
(PROGN (DEFMACRO WITH-PROFILING (X Y)
(LIST 'RETURN-LAST
(LIST 'QUOTE 'WITH-PROFILING-RAW)
X Y))
(TABLE RETURN-LAST-TABLE 'WITH-PROFILING-RAW
'WITH-PROFILING))
ACL2 !>:trans1 (with-profiling '(assoc-eq fgetprop rewrite) (mini-proveall))
(RETURN-LAST 'WITH-PROFILING-RAW
'(ASSOC-EQ FGETPROP REWRITE)
(MINI-PROVEALL))
ACL2 !>:q
Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
? [RAW LISP] (macroexpand-1
'(RETURN-LAST 'WITH-PROFILING-RAW
'(ASSOC-EQ FGETPROP REWRITE)
(MINI-PROVEALL)))
(WITH-PROFILING-RAW '(ASSOC-EQ FGETPROP REWRITE) (MINI-PROVEALL))
T
? [RAW LISP]
~ev[]
To understand the macro ~c[with-profiling-raw] you could look at the
community book loaded above: ~c[books/misc/profiling-raw.lsp].
We mentioned above that ACL2 tends to print calls of ~ilc[prog2$] or
~ilc[time$] (or other such utilities) instead of calls of ~c[return-last].
Here we elaborate that point. ACL2's `~c[untranslate]' utility treats
~c[(return-last (quote F) X Y)] as ~c[(G X Y)] if ~c[F] corresponds to the
symbol ~c[G] in ~c[return-last-table]. However, it is generally rare to
encounter such a term during a proof, since calls of ~c[return-last] are
generally expanded away early during a proof.
Calls of ~c[return-last] that occur in code ~-[] forms submitted in the
top-level ACL2 loop, and definition bodies other than those marked as
~ilc[non-executable] (~pl[defun-nx]) ~-[] have the following restriction: if
the first argument is of the form ~c[(quote F)], then ~c[F] must be an entry
in ~c[return-last-table]. There are however four exceptions: the following
symbols are considered to be keys of ~c[return-last-table] even if they are
no longer associated with non-~c[nil] values, say because of a ~ilc[table]
event with keyword ~c[:clear].
~bq[]
* ~c[progn], associated with ~ilc[prog2$]~nl[]
* ~c[mbe1-raw], associated with ~c[mbe1], a version of ~c[mbe]~nl[]
* ~c[ec-call1-raw], associated with ~c[ec-call1] (a variant of
~ilc[ec-call])~nl[]
* ~c[with-guard-checking1-raw], associated with ~c[with-guard-checking1] (a
variant of ~ilc[with-guard-checking])
~eq[]
Note that because of its special status, it is illegal to trace
~c[return-last].
We conclude by warning that as a user, you take responsibility for not
compromising the soundness or error handling of ACL2 when you define a macro
in raw Lisp and especially when you install it as a key of
~ilc[return-last-table], either directly or (more likely) using
~c[defmacro-last]. In particular, be sure that you are defining a macro of
two arguments that always returns the value of its last argument, returning
the complete multiple value if that last argument evaluates to a multiple
value.
The following is correct, and illustrates care taken to return multiple
values.
~bv[]
:q
(defmacro my-time1-raw (val form)
(declare (ignore val))
`(let ((start-time (get-internal-run-time))
(result (multiple-value-list ,form))
(end-time (get-internal-run-time)))
(format t \"Total time: ~~s~~%\"
(float (/ (- end-time start-time)
internal-time-units-per-second)))
(values-list result)))
(lp)
(defttag t)
(defmacro-last my-time1)
(defmacro my-time (form)
`(my-time1 nil ,form))
~ev[]
Then for example:
~bv[]
ACL2 !>(my-time (equal (make-list 1000000) (make-list 1000000)))
Total time: 0.12
T
ACL2 !>
~ev[]
But if instead we provide the following more naive implementation, of the
above raw Lisp macro, the above evaluation can produce an error, for example
if the host Lisp is CCL.
~bv[]
(defmacro my-time1-raw (val form)
(declare (ignore val))
`(let ((start-time (get-internal-run-time))
(result ,form)
(end-time (get-internal-run-time)))
(format t \"Total time: ~~s~~%\"
(float (/ (- end-time start-time)
internal-time-units-per-second)))
result)) ; WRONG -- need multiple values returned!
~ev[]
Here is a second, similar example. This time we'll start with the error; can
you spot it?
~bv[]
(defttag t)
(progn!
(set-raw-mode t)
(defmacro foo-raw (x y)
`(prog1
,y
(cw \"Message showing argument 1: ~~x0~~%\" ,x))))
(defmacro-last foo)
~ev[]
We then can wind up with a hard Lisp error:
~bv[]
ACL2 !>(foo 3 (mv 4 5))
Message showing argument 1: 3
***********************************************
************ ABORTING from raw Lisp ***********
Error: value NIL is not of the expected type REAL.
***********************************************
If you didn't cause an explicit interrupt (Control-C),
then the root cause may be call of a :program mode
function that has the wrong guard specified, or even no
guard specified (i.e., an implicit guard of t).
See :DOC guards.
To enable breaks into the debugger (also see :DOC acl2-customization):
(SET-DEBUGGER-ENABLE T)
ACL2 !>
~ev[]
Here is a corrected version of the above macro. The point here is that
~c[prog1] returns a single value, while ~c[our-multiple-value-prog1] returns
all the values that are returned by its first argument.
~bv[]
(progn!
(set-raw-mode t)
(defmacro foo-raw (x y)
`(our-multiple-value-prog1 ;; better
,y
(cw \"Message showing argument 1: ~~x0~~%\" ,x))))
~ev[]
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (ignore fn eager-arg)
(xargs :guard
; Warning: If you change this guard, also consider changing the handling of
; return-last in oneify, which assumes that the guard is t except for the
; 'mbe1-raw case.
; We produce a guard to handle the mbe1 case (from expansion of mbe forms). In
; practice, fn is likely to be a constant, in which case we expect this guard
; to resolve to its true branch or its false branch.
(if (equal fn 'mbe1-raw)
(equal last-arg eager-arg)
t)
:mode :logic))
last-arg)
#-acl2-loop-only
(defmacro return-last (qfn arg2 arg3)
(let* ((fn (and (consp qfn)
(eq (car qfn) 'quote)
(consp (cdr qfn))
(symbolp (cadr qfn))
(null (cddr qfn))
(cadr qfn)))
(arg2
; There is no logical problem with using attachments when evaluating the second
; argument of return-last, because logically the third argument provides the
; value(s) of a return-last call -- the exception being the evaluation of the
; :exec argument of an mbe call (or, equivalent evaluation by way of mbe1,
; etc.). We not only bind *aokp* to t, but we also bind *attached-fn-called*
; so that no changes to this variable will prevent the storing of memoization
; results.
; See also the related treatment of aokp in ev-rec-return-last.
(cond
((or (eq fn 'mbe1-raw) ; good test, though subsumed by the next line
(and fn (macro-function fn))
(symbolp arg2) ; no point in doing extra bindings below
(and (consp arg2)
(eq (car arg2) ; no point in doing extra bindings below
'quote)))
arg2)
(t `(let ((*aokp* t)
#+hons (*attached-fn-called* t))
,arg2)))))
(cond ((and fn (fboundp fn))
; Translation for evaluation requires that if the first argument is a quoted
; non-nil symbol, then that symbol (here, fn) must be a key in
; return-last-table. The function chk-return-last-entry checks that when fn
; was added to the table, it was fboundp in raw Lisp. Note that fboundp holds
; for functions, macros, and special operators.
; An alternative may seem to be to lay down code that checks to see if fn is in
; return-last-table, and if not then replace it by progn. But during early
; load of compiled files we skip table events (which are always skipped in raw
; Lisp), yet the user may expect a call of return-last on a quoted symbol to
; have the desired side-effects in that case.
(list fn arg2 arg3))
(t (list 'progn arg2 arg3)))))
#-acl2-loop-only
(defmacro mbe1-raw (exec logic)
; We rely on this macroexpansion in raw Common Lisp. See in particular the
; code and comment regarding mbe1-raw in guard-clauses.
(declare (ignore logic))
exec)
(defmacro mbe1 (exec logic)
; See also must-be-equal.
; Suppose that during a proof we encounter a term such as (return-last
; 'mbe1-raw exec logic), but we don't know that logic and exec are equal.
; Fortunately, ev-rec will only evaluate the logic code for this return-last
; form, as one might expect.
":Doc-Section ACL2::ACL2-built-ins
attach code for execution~/
The form ~c[(mbe1 exec logic)] is equivalent to the forms
~c[(mbe :logic logic :exec exec)] and ~c[(must-be-equal logic exec)].
~l[mbe].~/~/"
`(return-last 'mbe1-raw ,exec ,logic))
(defmacro must-be-equal (logic exec)
; We handle must-be-equal using return-last, so that must-be-equal isn't a
; second function that needs special stobjs-out handling. But then we need a
; version of must-be-equal with the logic input as the last argument, since
; that is what is returned in the logic. We call that mbe1, but we leave
; must-be-equal as we move the the return-last implementation (after v4-1,
; released Sept., 2010), since must-be-equal has been around since v2-8 (March,
; 2004).
":Doc-Section ACL2::ACL2-built-ins
attach code for execution~/~/
The form ~c[(must-be-equal logic exec)] evaluates to ~c[logic] in the ACL2
logic but evaluates to ~c[exec] in raw Lisp. The point is to be able to
write one definition to reason about logically but another for evaluation.
Please ~pl[mbe] and ~pl[mbt] for appropriate macros to use, rather than
calling ~c[must-be-equal] directly, since it is easy to commute the arguments
of ~c[must-be-equal] by accident.
In essence, the guard for ~c[(must-be-equal x y)] is ~c[(equal x y)].
However, note that ~c[must-be-equal] is a macro:
~c[(must-be-equal logic exec)] expands to ~c[(mbe1 exec logic)], which
expands to a call of ~ilc[return-last]."
`(mbe1 ,exec ,logic))
(defmacro mbe (&key (exec 'nil exec-p) (logic 'nil logic-p))
":Doc-Section ACL2::ACL2-built-ins
attach code for execution~/
The macro ~c[mbe] (``must be equal'') can be used in function definitions in
order to cause evaluation to use alternate code to that provided for the
logic. An example is given below. However, the use of ~c[mbe] can lead to
non-terminating computations. ~l[defexec], perhaps after reading the present
documentation, for a way to prove termination.
In the ACL2 logic, ~c[(mbe :exec exec-code :logic logic-code)] equals
~c[logic-code]; the value of ~c[exec-code] is ignored. However, in raw Lisp
it is the other way around: this form macroexpands simply to ~c[exec-code].
ACL2's ~il[guard] verification mechanism ensures that the raw Lisp code is
only evaluated when appropriate, since the guard proof obligations generated
for (the macroexpansion of) this call of ~c[mbe] include not only the guard
proof obligations from ~c[exec-code], but also, under suitable contextual
assumptions, the term ~c[(equal exec-code logic-code)]. ~l[verify-guards]
(in particular, for discussion of the contextual assumptions from the
~c[:guard] and ~ilc[IF]-tests) and, for general discussion of guards,
~pl[guard].
Normally, during evaluation of an ~c[mbe] call, only the ~c[:logic] code is
evaluated unless the call is in the body of a ~il[guard]-verified function,
in which case only the ~c[:exec] code is evaluated. This implies that
equality of ~c[:exec] and ~c[:logic] code is never checked at runtime.
(Rather, such equality is proved when verifying guards.) We started with
``normally'' above because there is an exception: during a ``safe mode'',
which is used in macroexpansion and evaluation of ~ilc[defconst] forms, the
~c[:logic] and ~c[:exec] code are both evaluated and their equality is
checked.
Note that the ~c[:exec] and the ~c[:logic] code in an ~c[mbe] call must have
the same return type. For example, one cannot return ~c[(]~ilc[mv]~c[ * *)]
while the other returns just a single value.
Also ~pl[mbt], which stands for ``must be true.'' You may find it more
natural to use ~ilc[mbt] for certain applications, as described in its
~il[documentation].~/
Here is an example of the use of ~c[mbe]. Suppose that you want to define
factorial in the usual recursive manner, as follows.
~bv[]
(defun fact (n)
(if (zp n)
1
(* n (fact (1- n)))))
~ev[]
But perhaps you want to be able to execute calls of ~c[fact] on large
arguments that cause stack overflows, perhaps during proofs. (This isn't a
particularly realistic example, but it should serve.) So, instead you can
define this tail-recursive version of factorial:
~bv[]
(defun fact1 (n acc)
(declare (xargs :guard (and (integerp n) (>= n 0) (integerp acc))))
(if (zp n)
acc
(fact1 (1- n) (* n acc))))
~ev[]
We are now ready to define ~c[fact] using ~c[mbe]. Our intention is that
logically, ~c[fact] is as shown in the first definition above, but that
~c[fact] should be executed by calling ~c[fact1]. Notice that we defer
~il[guard] verification, since we are not ready to prove the correspondence
between ~c[fact1] and ~c[fact].
~bv[]
(defun fact (n)
(declare (xargs :guard (and (integerp n) (>= n 0))
:verify-guards nil))
(mbe :exec (fact1 n 1)
:logic (if (zp n)
1
(* n (fact (1- n))))))
~ev[]
Next, we prove the necessary correspondence lemmas. Notice the inclusion of
a community book to help with the arithmetic reasoning.
~bv[]
(include-book \"books/arithmetic/top-with-meta\")
(defthm fact1-fact
(implies (integerp acc)
(equal (fact1 n acc)
(* acc (fact n)))))
~ev[]
We may now do guard verification for ~c[fact], which will allow the execution
of the raw Lisp ~c[fact] function, where the above ~c[mbe] call expands
simply to ~c[(fact1 n 1)].
~bv[]
(verify-guards fact)
~ev[]
Now that guards have been verified, a trace of function calls illustrates
that the evaluation of calls of ~c[fact] is passed to evaluation of calls of
~c[fact1]. The outermost call below is of the logical function stored for
the definition of ~c[fact]; all the others are of actual raw Common Lisp
functions.
~bv[]
ACL2 !>(trace$ fact fact1)
NIL
ACL2 !>(fact 3)
1> (ACL2_*1*_ACL2::FACT 3)
2> (FACT 3)
3> (FACT1 3 1)
4> (FACT1 2 3)
5> (FACT1 1 6)
6> (FACT1 0 6)
<6 (FACT1 6)
<5 (FACT1 6)
<4 (FACT1 6)
<3 (FACT1 6)
<2 (FACT 6)
<1 (ACL2_*1*_ACL2::FACT 6)
6
ACL2 !>
~ev[]
You may occasionally get warnings when you compile functions defined using
~c[mbe]. (For commands that invoke the compiler, ~pl[compilation].) These
can be inhibited by using an ~c[ignorable] ~ilc[declare] form. Here is a
simple but illustrative example. Note that the declarations can optionally
be separated into two ~ilc[declare] forms.
~bv[]
(defun foo (x y)
(declare (ignorable x)
(xargs :guard (equal x y)))
(mbe :logic x :exec y))
~ev[]
Finally, we observe that when the body of a function contains a term of the
form ~c[(mbe :exec exec-code :logic logic-code)], the user is very unlikely
to see any logical difference than if this were replaced by ~c[logic-code].
ACL2 takes various steps to ensure this. For example, the proof obligations
generated for admitting a function treat the above ~c[mbe] term simply as
~c[logic-code]. Function expansion, ~c[:use] ~il[hints],
~c[:]~ilc[definition] rules, generation of ~il[constraint]s for functional
instantiation, and creation of rules of class ~c[:]~ilc[rewrite] and
~c[:]~ilc[forward-chaining] also treat ~c[mbe] calls as their ~c[:logic]
code."
(declare (xargs :guard (and exec-p logic-p))
(ignorable exec-p logic-p))
`(mbe1 ,exec ,logic))
(defmacro mbt (x)
":Doc-Section ACL2::ACL2-built-ins
introduce a test not to be evaluated~/
The macro ~c[mbt] (``must be true'') can be used in order to add code in
order to admit function definitions in ~c[:]~ilc[logic] mode, without paying
a cost in execution efficiency. Examples below illustrate its intended use.
Semantically, ~c[(mbt x)] equals ~c[x]. However, in raw Lisp ~c[(mbt x)]
ignores ~c[x] entirely, and macroexpands to ~c[t]. ACL2's ~il[guard]
verification mechanism ensures that the raw Lisp code is only evaluated when
appropriate, since a guard proof obligation ~c[(equal x t)] is generated.
~l[verify-guards] and, for general discussion of guards, ~pl[guard].
Also ~pl[mbe], which stands for ``must be equal.'' Although ~c[mbt] is more
natural in many cases, ~c[mbe] has more general applicability. In fact,
~c[(mbt x)] is essentially defined to be ~c[(mbe :logic x :exec t)].~/
We can illustrate the use of ~c[mbt] on the following generic example, where
~c[<g>], ~c[<test>], ~c[<rec-x>], and ~c[<base>] are intended to be terms
involving only the variable ~c[x].
~bv[]
(defun foo (x)
(declare (xargs :guard <g>))
(if <test>
(foo <rec-x>)
<base>))
~ev[]
In order to admit this function, ACL2 needs to discharge the proof obligation
that ~c[<rec-x>] is smaller than ~c[x], namely:
~bv[]
(implies <test>
(o< (acl2-count ~c[<rec-x>])
(acl2-count x)))
~ev[]
But suppose we need to know that ~c[<g>] is true in order to prove this.
Since ~c[<g>] is only the ~il[guard], it is not part of the logical
definition of ~c[foo]. A solution is to add the guard to the definition of
~c[foo], as follows.
~bv[]
(defun foo (x)
(declare (xargs :guard <g>))
(if (mbt <g>)
(if <test>
(foo <rec-x>)
<base>)
nil))
~ev[]
If we do this using ~c[<g>] rather than ~c[(mbt <g>)], then evaluation of
every recursive call of ~c[foo] will cause the evaluation of (the appropriate
instance of) ~c[<g>]. But since ~c[(mbt <g>)] expands to ~c[t] in raw Lisp,
then once we verify the guards of ~c[foo], the evaluations of ~c[<g>] will be
avoided (except at the top level, when we check the guard before allowing
evaluation to take place in Common Lisp).
Other times, the guard isn't the issue, but rather, the problem is that a
recursive call has an argument that itself is a recursive call. For example,
suppose that ~c[<rec-x>] is of the form ~c[(foo <expr>)]. There is no way we
can hope to discharge the termination proof obligation shown above. A
standard solution is to add some version of this test:
~bv[]
(mbt (o< (acl2-count ~c[<rec-x>]) (acl2-count x)))
~ev[]
Here is a specific example based on one sent by Vernon Austel.
~bv[]
(defun recurX2 (n)
(declare (xargs :guard (and (integerp n) (<= 0 n))
:verify-guards nil))
(cond ((zp n) 0)
(t (let ((call (recurX2 (1- n))))
(if (mbt (< (acl2-count call) n))
(recurX2 call)
1 ;; this branch is never actually taken
)))))
(defthm recurX2-0
(equal (recurX2 n) 0))
(verify-guards recurX2)
~ev[]
If you ~c[(]~ilc[trace$]~c[ acl2-count)], you will see that evaluation of
~c[(recurX2 2)] causes several calls of ~ilc[acl2-count] before the
~ilc[verify-guards]. But this evaluation does not call ~c[acl2-count] after
the ~c[verify-guards], because the ACL2 evaluation mechanism uses raw Lisp to
do the evaluation, and the form ~c[(mbt (< (acl2-count call) n))]
macroexpands to ~c[t] in Common Lisp.
You may occasionally get warnings when you compile functions defined using
~c[mbt]. (For commands that invoke the compiler, ~pl[compilation].) These
can be inhibited by using an ~c[ignorable] ~ilc[declare] form. Here is a
simple but illustrative example. Note that the declarations can optionally
be separated into two ~ilc[declare] forms.
~bv[]
(defun foo (x y)
(declare (ignorable x)
(xargs :guard (equal x t)))
(and (mbt x) y))
~ev[]"
`(mbe1 t ,x))
(defdoc equality-variants
; Consider position, remove-duplicates, and remove. In Common Lisp, all three
; of these primitives can take strings. Through Version_4.2, position and
; remove-duplicates supported string arguments, while remove did not. Note
; however that remove-duplicates-eql and remove-duplicates-equal did not
; support string arguments. For backward compatibility with Version_4.2 and
; earlier, we leave remove-duplicates-equal unchanged. When there is
; sufficient demand we can extend remove.
":Doc-Section ACL2::Programming
versions of a function using different equality tests~/
The ACL2 environment includes not only a logic but also a programming
language, which is based on Common Lisp. Execution efficiency may be
increased by using fast equality tests: ~ilc[eq] for symbols and ~ilc[eql]
for numbers, symbols, and characters (~pl[eqlablep]). Several
list-processing functions built into ACL2 thus have three variants, depending
on whether the equality function used is ~ilc[eq], ~ilc[eql], or ~ilc[equal];
a list is provided below. ACL2 has taken measures to ensure that one can
reason about a single logical function even when one uses these different
variants.
Consider for example the case of list membership. Common Lisp provides a
utility for this purposes, ~ilc[member], which can take a ~c[:TEST] keyword
argument, default ~ilc[eql]. So for example, one might write
~bv[]
(member a x :TEST 'eq)
~ev[]
if either ~c[a] is a symbol or ~c[x] is a list of symbols, so that the
fastest equality test (~ilc[eq]) may be used when comparing ~c[a] to
successive elements of the list, ~c[x]. One might elsewhere write
~c[(member b (foo y))], which is equivalent to
~c[(member b (foo y) :TEST 'eql)], for example if ~c[b] is a number. If one
wants to reason about both ~c[(member a x :TEST 'eq)] and ~c[(member b y)],
it might be helpful for both calls of ~c[member] to be the same logically,
even though Common Lisp will execute them differently (using ~ilc[eq] or
~ilc[eql], respectively). ACL2 arranges that in fact, both references to
~ilc[member] generate calls of ~ilc[member-equal] in the theorem prover.
In fact, since ~ilc[member] can take the optional ~c[:TEST] keyword argument,
then in ACl2 it must be defined as a macro, not a function (~pl[defun]).
ACL2 arranges that a call of ~c[member] generates a corresponding call of the
function ~ilc[member-equal], regardless of the value of ~c[TEST], in a manner
that produces ~ilc[member-equal] in prover output. More generally, you can
expect ACL2 to treat your use of ~ilc[member] as though you had written
~ilc[member-equal], for example in the way it stores ~ilc[rewrite] rules and
other kinds of rules as well (~pl[rule-classes]). We say little here about
how this is all arranged by ACL2, other than to mention that ~ilc[mbe] is
utilized (so, you might see mention in proof logs) of the function
~ilc[return-last] that implements ~ilc[mbe]. Such details, which probably
can be ignored by most users, may be found elsewhere;
~pl[equality-variants-details].
As a convenience to the user, the macro ~c[member-eq] is provided that
expands to a corresponding call of ~c[member] with ~c[:TEST 'eq], as
follows.
~bv[]
ACL2 !>:trans1 (member-eq (foo x) (bar y))
(MEMBER (FOO X) (BAR Y) :TEST 'EQ)
ACL2 !>
~ev[]
For efficiency we recommend using the ~c[-equal] equality variant, for
example ~ilc[member-equal] or ~ilc[member ... :TEST 'equal], in certain
contexts: ~ilc[defmacro], ~ilc[defpkg], ~ilc[defconst], and
~ilc[value-triple] forms. However, the implementation of equality variants
has been designed so that when defining a function, one may choose freely in
a definition an equality variant of primitive ~c[F], to get efficient
execution but where subsequent reasoning is about ~c[F-equal]. For details
about the above recommendation and for a discussion of the implementation,
~pl[equality-variants-details].
The following alphabetical list includes all primitives that have equality
variants. Each macro ~c[F] listed below takes an optional ~c[:TEST] keyword
argument of ~c['eq], ~c['eql], or ~c['equal], where ~c['eql] is the default.
For each such ~c[F], a function ~c[F-equal] is defined such that for logical
purposes (in particular theorem proving), each call of ~c[F] expands to a
corresponding call of ~c[F-equal]. For convenience, a macro ~c[F-eq] is also
defined, so that a call of ~c[F-eq] expands to a corresponding call of ~c[F]
with ~c[:TEST 'eq].
~bf[]
~ilc[add-to-set]
~ilc[assoc]
~ilc[delete-assoc]
~ilc[intersection$] ; (see Note below)
~ilc[intersectp]
~ilc[member]
~ilc[no-duplicatesp]
~c[position-ac]
~ilc[position]
~ilc[put-assoc]
~ilc[rassoc]
~ilc[remove-duplicates]
~ilc[remove1]
~ilc[remove]
~ilc[set-difference$] ; (see Note below)
~ilc[subsetp]
~ilc[union$] ; (see Note below)
~ef[]
Note: Three of the macros above have names ending with the character,
`~c[$]': ~ilc[intersection$], ~ilc[set-difference$], and ~ilc[union$]. In
each case there is a corresponding Common Lisp primitive without the trailing
`~c[$]': ~c[intersection], ~c[set-difference], and ~c[union]. However,
Common Lisp does not specify the order of elements in the list returned by
those primitives, so ACL2 has its own. Nevertheless, the only use of the
trailing `~c[$]' is to distinguish the primitives; associated functions and
macros, for example ~c[union-eq] and ~c[intersection-equal], do not include
the `~c[$]' character in their names.~/~/")
(defdoc equality-variants-details
":Doc-Section equality-variants
details about ~il[equality-variants]~/
Here we present details about equality variants, none of which is likely
to be important to the majority of ACL2 users. Please ~pl[equality-variants]
for relevant background.
We begin by presenting ~il[events] that implement the equality variants for
~ilc[member], as these illustrate the events introduced for all macros having
equality variants. The definition of ~ilc[member], just below, calls the
macro ~c[let-mbe], which in turn is just an abbreviation for a combination of
~ilc[let] and ~ilc[mbe].
~bv[]
(defmacro let-mbe (bindings &key logic exec)
`(let ,bindings
(mbe :logic ,logic
:exec ,exec)))
~ev[]
This use of ~ilc[let] arranges that each argument of a call of ~c[member] is
evaluated only once.
~bv[]
(defmacro member (x l &key (test ''eql))
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (l ,l))
:logic (member-equal x l)
:exec (member-eq-exec x l)))
((equal test ''eql)
`(let-mbe ((x ,x) (l ,l))
:logic (member-equal x l)
:exec (member-eql-exec x l)))
(t ; (equal test 'equal)
`(member-equal ,x ,l))))
~ev[]
Inspection of the definition above shows that every call of ~ilc[member]
expands to one that is logically equivalent to the corresponding call of
~ilc[member-equal], which is defined as follows.
~bv[]
(defun member-equal (x lst)
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
((equal x (car lst)) lst)
(t (member-equal x (cdr lst)))))
~ev[]
The following two definitions model equality variants of ~ilc[member] for
tests ~ilc[eq] and ~ilc[eql], respectively.
~bv[]
(defun member-eq-exec (x lst)
(declare (xargs :guard (if (symbolp x)
(true-listp lst)
(symbol-listp lst))))
(cond ((endp lst) nil)
((eq x (car lst)) lst)
(t (member-eq-exec x (cdr lst)))))
(defun member-eql-exec (x lst)
(declare (xargs :guard (if (eqlablep x)
(true-listp lst)
(eqlable-listp lst))))
(cond ((endp lst) nil)
((eql x (car lst)) lst)
(t (member-eql-exec x (cdr lst)))))
~ev[]
At this point the user can write ~c[(member x y)] or ~c[(member-equal x y)]
to call equality variants of ~c[member] with test ~c[eql] or ~c[equal],
respectively. We thus provide the following macro for the ~c[eq] variant.
~bv[]
(defmacro member-eq (x lst)
`(member ,x ,lst :test 'eq))
~ev[]
~il[Guard] proof obligations generated by calls of ~c[member] will include
those based on its use of ~c[mbe], and are supported by the following two
lemmas.
~bv[]
(defthm member-eq-exec-is-member-equal
(equal (member-eq-exec x l)
(member-equal x l)))
(defthm member-eql-exec-is-member-equal
(equal (member-eql-exec x l)
(member-equal x l)))
~ev[]
Finally, the following two events arrange that in certain contexts such as
~il[theories] (including the use of ~ilc[in-theory] in ~il[events] and
~il[hints]), ~ilc[member-eq] and ~ilc[member] are treated as references to
~ilc[member-equal].
~bv[]
(add-macro-alias member-eq member-equal)
(add-macro-alias member member-equal)
~ev[]
We conclude this topic by exploring the following recommendation made in the
~il[documentation] for ~il[equality-variants].
~bq[]
For efficiency we recommend using the ~c[-equal] equality variant, for
example ~ilc[member-equal] or ~ilc[member ... :TEST 'equal], in certain
contexts: ~ilc[defmacro], ~ilc[defpkg], ~ilc[defconst], and
~ilc[value-triple] forms.~eq[]
ACL2 reliies on the underlying Common Lisp for evaluation. It also processes
events in the ACL2 logic. In order to guarantee consistency of its logical
and Common Lisp evaluations, ACL2 uses a ``safe mode'' to avoid ill-guarded
calls. In particular, consider the use of ~ilc[mbe] in execution of a call
of an equality variant of a primitive, ~c[F], other than its ~c[F-equal]
variant. The ~ilc[mbe] call discussed above requires a connection to be
established between the ~c[:logic] and ~c[:exec] forms. For example, if
~c[F] is called with ~c[:TEST 'eql] (either explicitly or as the default),
then ACL2 will call both ~c[F-eql-exec] and ~c[F-equal], and check that the
two results are equal.
The following partial log illustrates the point above. We define a macro
that calls ~ilc[member], and when a call of this macro is expanded during
processing of a subsequent definition, we see that two membership functions
are called on the same arguments.
~bv[]
ACL2 !>(defmacro mac (lst)
(list 'quote (and (true-listp lst)
(member 'c lst :test 'eq))))
Summary
Form: ( DEFMACRO MAC ...)
Rules: NIL
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
MAC
ACL2 !>(trace$ member-equal member-eq-exec)
((MEMBER-EQUAL) (MEMBER-EQ-EXEC))
ACL2 !>(defun f () (mac (a b c d)))
1> (ACL2_*1*_ACL2::MEMBER-EQ-EXEC C (A B C D))
2> (MEMBER-EQ-EXEC C (A B C D))
<2 (MEMBER-EQ-EXEC (C D))
<1 (ACL2_*1*_ACL2::MEMBER-EQ-EXEC (C D))
1> (ACL2_*1*_ACL2::MEMBER-EQUAL C (A B C D))
2> (MEMBER-EQUAL C (A B C D))
<2 (MEMBER-EQUAL (C D))
<1 (ACL2_*1*_ACL2::MEMBER-EQUAL (C D))
Since F is non-recursive, its admission is trivial.
~ev[]
If performance is an issue then we can avoid such a problem, for example as
follows. In a fresh session, let us define a suitable wrapper for calling
~ilc[member] with ~c[:TEST 'eq]. This time, the trace in our partial log
shows that we have avoided calling two membership functions.
~bv[]
ACL2 !>(defun mem-eq (x lst)
(declare (xargs :guard (if (symbolp x)
(true-listp lst)
(symbol-listp lst))))
(member x lst :test 'eq))
[[ ... output omitted here ... ]]
MEM-EQ
ACL2 !>(defmacro mac (lst)
(list 'quote (and (true-listp lst)
(mem-eq 'c lst))))
Summary
Form: ( DEFMACRO MAC ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MAC
ACL2 !>(trace$ member-equal member-eq-exec mem-eq)
((MEMBER-EQUAL)
(MEMBER-EQ-EXEC)
(MEM-EQ))
ACL2 !>(defun f () (mac (a b c d)))
1> (ACL2_*1*_ACL2::MEM-EQ C (A B C D))
2> (MEM-EQ C (A B C D))
<2 (MEM-EQ (C D))
<1 (ACL2_*1*_ACL2::MEM-EQ (C D))
Since F is non-recursive, its admission is trivial.
~ev[]~/~/")
; Member
(defun member-eq-exec (x lst)
(declare (xargs :guard (if (symbolp x)
(true-listp lst)
(symbol-listp lst))))
(cond ((endp lst) nil)
((eq x (car lst)) lst)
(t (member-eq-exec x (cdr lst)))))
(defun member-eql-exec (x lst)
(declare (xargs :guard (if (eqlablep x)
(true-listp lst)
(eqlable-listp lst))))
(cond ((endp lst) nil)
((eql x (car lst)) lst)
(t (member-eql-exec x (cdr lst)))))
(defun member-equal (x lst)
(declare (xargs :guard (true-listp lst)))
#-acl2-loop-only ; for assoc-equal, Jared Davis found native assoc efficient
(member x lst :test #'equal)
#+acl2-loop-only
(cond ((endp lst) nil)
((equal x (car lst)) lst)
(t (member-equal x (cdr lst)))))
(defmacro member-eq (x lst)
`(member ,x ,lst :test 'eq))
(defthm member-eq-exec-is-member-equal
(equal (member-eq-exec x l)
(member-equal x l)))
(defthm member-eql-exec-is-member-equal
(equal (member-eql-exec x l)
(member-equal x l)))
#+acl2-loop-only
(defmacro member (x l &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
membership predicate~/
~bv[]
General Forms:
(member x lst)
(member x lst :test 'eql) ; same as above (eql as equality test)
(member x lst :test 'eq) ; same, but eq is equality test
(member x lst :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Member x lst)] equals the longest tail of the list ~c[lst] that begins
with ~c[x], or else ~c[nil] if no such tail exists. The optional keyword,
~c[:TEST], has no effect logically, but provides the test (default ~ilc[eql])
used for comparing ~c[x] with successive elements of ~c[lst].~/
The ~il[guard] for a call of ~c[member] depends on the test. In all cases,
the second argument must satisfy ~ilc[true-listp]. If the test is ~ilc[eql],
then either the first argument must be suitable for ~ilc[eql] (~pl[eqlablep])
or the second argument must satisfy ~ilc[eqlable-listp]. If the test is
~ilc[eq], then either the first argument must be a symbol or the second
argument must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between ~c[member] and
its variants:
~bq[]
~c[(member-eq x lst)] is equivalent to ~c[(member x lst :test 'eq)];
~c[(member-equal x lst)] is equivalent to ~c[(member x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[member-equal].
~c[Member] is defined by Common Lisp. See any Common Lisp documentation for
more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (l ,l))
:logic (member-equal x l)
:exec (member-eq-exec x l)))
((equal test ''eql)
`(let-mbe ((x ,x) (l ,l))
:logic (member-equal x l)
:exec (member-eql-exec x l)))
(t ; (equal test 'equal)
`(member-equal ,x ,l))))
; Subsetp
(defun subsetp-eq-exec (x y)
(declare (xargs :guard (if (symbol-listp y)
(true-listp x)
(if (symbol-listp x)
(true-listp y)
nil))))
(cond ((endp x) t)
((member-eq (car x) y)
(subsetp-eq-exec (cdr x) y))
(t nil)))
(defun subsetp-eql-exec (x y)
(declare (xargs :guard
(if (eqlable-listp y)
(true-listp x)
(if (eqlable-listp x)
(true-listp y)
nil))))
(cond ((endp x) t)
((member (car x) y)
(subsetp-eql-exec (cdr x) y))
(t nil)))
(defun subsetp-equal (x y)
(declare (xargs :guard (and (true-listp y)
(true-listp x))))
#-acl2-loop-only ; for assoc-eq, Jared Davis found native assoc efficient
(subsetp x y :test #'equal)
#+acl2-loop-only
(cond ((endp x) t)
((member-equal (car x) y)
(subsetp-equal (cdr x) y))
(t nil)))
(defmacro subsetp-eq (x y)
`(subsetp ,x ,y :test 'eq))
(defthm subsetp-eq-exec-is-subsetp-equal
(equal (subsetp-eq-exec x y)
(subsetp-equal x y)))
(defthm subsetp-eql-exec-is-subsetp-equal
(equal (subsetp-eql-exec x y)
(subsetp-equal x y)))
#+acl2-loop-only
(defmacro subsetp (x y &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
test if every ~ilc[member] of one list is a ~ilc[member] of the other~/
~bv[]
General Forms:
(subsetp x y)
(subsetp x y :test 'eql) ; same as above (eql as equality test)
(subsetp x y :test 'eq) ; same, but eq is equality test
(subsetp x y :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Subsetp x y)] is true if and only if every ~ilc[member] of the list ~c[x]
is a ~c[member] of the list ~c[y]. The optional keyword, ~c[:TEST],
has no effect logically, but provides the test (default ~ilc[eql]) used for
comparing members of the two lists.~/
The ~il[guard] for a call of ~c[subsetp] depends on the test. In all cases,
both arguments must satisfy ~ilc[true-listp]. If the test is ~ilc[eql], then
one of the arguments must satisfy ~ilc[eqlable-listp]. If the test is
~ilc[eq], then one of the arguments must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between ~c[subsetp] and
its variants:
~bq[]
~c[(subsetp-eq x lst)] is equivalent to ~c[(subsetp x lst :test 'eq)];
~c[(subsetp-equal x lst)] is equivalent to ~c[(subsetp x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[subsetp-equal].
~c[Subsetp] is defined by Common Lisp. See any Common Lisp documentation for
more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (y ,y))
:logic (subsetp-equal x y)
:exec (subsetp-eq-exec x y)))
((equal test ''eql)
`(let-mbe ((x ,x) (y ,y))
:logic (subsetp-equal x y)
:exec (subsetp-eql-exec x y)))
(t ; (equal test 'equal)
`(subsetp-equal ,x ,y))))
(defun symbol-alistp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for association lists with symbols as keys~/
~c[(Symbol-alistp x)] is true if and only if ~c[x] is a list of pairs of the
form ~c[(cons key val)] where ~c[key] is a ~ilc[symbolp].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom x) (eq x nil))
(t (and (consp (car x))
(symbolp (car (car x)))
(symbol-alistp (cdr x))))))
(defthm symbol-alistp-forward-to-eqlable-alistp
(implies (symbol-alistp x)
(eqlable-alistp x))
:rule-classes :forward-chaining)
; Assoc
(defun assoc-eq-exec (x alist)
(declare (xargs :guard (if (symbolp x)
(alistp alist)
(symbol-alistp alist))))
(cond ((endp alist) nil)
((eq x (car (car alist))) (car alist))
(t (assoc-eq-exec x (cdr alist)))))
(defun assoc-eql-exec (x alist)
(declare (xargs :guard (if (eqlablep x)
(alistp alist)
(eqlable-alistp alist))))
(cond ((endp alist) nil)
((eql x (car (car alist))) (car alist))
(t (assoc-eql-exec x (cdr alist)))))
(defun assoc-equal (x alist)
(declare (xargs :guard (alistp alist)))
#-acl2-loop-only ; Jared Davis found efficiencies in using native assoc
(assoc x alist :test #'equal)
#+acl2-loop-only
(cond ((endp alist) nil)
((equal x (car (car alist))) (car alist))
(t (assoc-equal x (cdr alist)))))
(defmacro assoc-eq (x lst)
`(assoc ,x ,lst :test 'eq))
(defthm assoc-eq-exec-is-assoc-equal
(equal (assoc-eq-exec x l)
(assoc-equal x l)))
(defthm assoc-eql-exec-is-assoc-equal
(equal (assoc-eql-exec x l)
(assoc-equal x l)))
#+acl2-loop-only
(defmacro assoc (x alist &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
look up key in association list~/
~bv[]
General Forms:
(assoc x alist)
(assoc x alist :test 'eql) ; same as above (eql as equality test)
(assoc x alist :test 'eq) ; same, but eq is equality test
(assoc x alist :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Assoc x alist)] is the first member of ~c[alist] whose ~ilc[car] is
~c[x], or ~c[nil] if no such member exists. The optional keyword, ~c[:TEST],
has no effect logically, but provides the test (default ~ilc[eql]) used for
comparing ~c[x] with the ~ilc[car]s of successive elements of ~c[alist].~/
The ~il[guard] for a call of ~c[assoc] depends on the test. In all cases,
the second argument must satisfy ~ilc[alistp]. If the test is ~ilc[eql],
then either the first argument must be suitable for ~ilc[eql] (~pl[eqlablep])
or the second argument must satisfy ~ilc[eqlable-alistp]. If the test is
~ilc[eq], then either the first argument must be a symbol or the second
argument must satisfy ~ilc[symbol-alistp].
~l[equality-variants] for a discussion of the relation between ~c[assoc] and
its variants:
~bq[]
~c[(assoc-eq x alist)] is equivalent to ~c[(assoc x alist :test 'eq)];
~c[(assoc-equal x alist)] is equivalent to ~c[(assoc x alist :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[assoc-equal].
~c[Assoc] is defined by Common Lisp. See any Common Lisp documentation for
more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (alist ,alist))
:logic (assoc-equal x alist)
:exec (assoc-eq-exec x alist)))
((equal test ''eql)
`(let-mbe ((x ,x) (alist ,alist))
:logic (assoc-equal x alist)
:exec (assoc-eql-exec x alist)))
(t ; (equal test 'equal)
`(assoc-equal ,x ,alist))))
(defun assoc-eq-equal-alistp (x)
(declare (xargs :guard t))
(cond ((atom x) (eq x nil))
(t (and (consp (car x))
(symbolp (car (car x)))
(consp (cdr (car x)))
(assoc-eq-equal-alistp (cdr x))))))
(defun assoc-eq-equal (x y alist)
; We look for a pair on alist of the form (x y . val) where we compare the
; first key using eq and the second using equal. We return the pair or nil.
; The guard could be weakened so that if x is a symbol, then alist need only be
; a true-listp whose elements are of the form (x y . val). But there seems to
; be little advantage in having such a guard, considering the case splits that
; it could induce.
(declare (xargs :guard (assoc-eq-equal-alistp alist)))
(cond ((endp alist) nil)
((and (eq (car (car alist)) x)
(equal (car (cdr (car alist))) y))
(car alist))
(t (assoc-eq-equal x y (cdr alist)))))
; DATA TYPES
#+acl2-loop-only
(defmacro <= (x y)
":Doc-Section ACL2::ACL2-built-ins
less-than-or-equal test~/
~c[<=] is a macro, and ~c[(<= x y)] expands to the same thing as
~c[(not (< y x))]. ~l[<].~/
~c[<=] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(List 'not (list '< y x)))
#+acl2-loop-only
(defun = (x y)
":Doc-Section ACL2::ACL2-built-ins
test equality of two numbers~/
~c[(= x y)] is logically equivalent to ~c[(equal x y)].~/
Unlike ~ilc[equal], ~c[=] has a ~il[guard] requiring both of its arguments
to be numbers. Generally, ~c[=] is executed more efficiently than
~ilc[equal].
For a discussion of the various ways to test against 0,
~l[zero-test-idioms].
~c[=] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(declare (xargs :mode :logic
:guard (and (acl2-numberp x)
(acl2-numberp y))))
(equal x y))
#+acl2-loop-only
(defun /= (x y)
":Doc-Section ACL2::ACL2-built-ins
test inequality of two numbers~/
~c[(/= x y)] is logically equivalent to ~c[(not (equal x y))].~/
Unlike ~ilc[equal], ~c[/=] has a ~il[guard] requiring both of its arguments
to be numbers. Generally, ~c[/=] is executed more efficiently than
a combination of ~ilc[not] and ~ilc[equal].
For a discussion of the various ways to test against 0,
~l[zero-test-idioms].
~c[/=] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(Declare (xargs :mode :logic
:guard (and (acl2-numberp x)
(acl2-numberp y))))
(not (equal x y)))
#+acl2-loop-only
(defmacro > (x y)
":Doc-Section ACL2::ACL2-built-ins
greater-than test~/
~c[>] is a macro, and ~c[(> x y)] expands to the same thing as
~c[(< y x)]. ~l[<].~/
~c[>] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(list '< y x))
#+acl2-loop-only
(defmacro >= (x y)
":Doc-Section ACL2::ACL2-built-ins
greater-than-or-equal test~/
~c[>=] is a macro, and ~c[(>= x y)] expands to the same thing as
~c[(not (< x y))]. ~l[<].~/
~c[>=] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(list 'not (list '< x y)))
(deflabel zero-test-idioms
:doc
":Doc-Section ACL2::Programming
how to test for 0~/
Below are six commonly used idioms for testing whether ~c[x] is ~c[0].
~ilc[Zip] and ~ilc[zp] are the preferred termination tests for recursions
down the integers and naturals, respectively.
~bv[]
idiom logical guard primary
meaning compiled code*
(equal x 0) (equal x 0) t (equal x 0)
(eql x 0) (equal x 0) t (eql x 0)
(zerop x) (equal x 0) x is a number (= x 0)
(= x 0) (equal x 0) x is a number (= x 0)
(zip x) (equal (ifix x) 0) x is an integer (= x 0)
(zp x) (equal (nfix x) 0) x is a natural (int= x 0)
(zpf x) (equal (nfix x) 0) x is a fixnum >= 0 (eql (the-fixnum x) 0)
~ev[]
*~l[guards-and-evaluation], especially the subsection titled
``Guards and evaluation V: efficiency issues''. Primary code is
relevant only if ~il[guard]s are verified. The ``compiled code'' shown
is only suggestive.~/
The first four idioms all have the same logical meaning and differ
only with respect to their executability and efficiency. In the
absence of compiler optimizing, ~c[(= x 0)] is probably the most
efficient, ~c[(equal x 0)] is probably the least efficient, and
~c[(eql x 0)] is in between. However, an optimizing compiler could
always choose to compile ~c[(equal x 0)] as ~c[(eql x 0)] and, in
situations where ~c[x] is known at compile-time to be numeric,
~c[(eql x 0)] as ~c[(= x 0)]. So efficiency considerations must, of
course, be made in the context of the host compiler.
Note also that ~c[(zerop x)] and ~c[(= x 0)] are indistinguishable.
They have the same meaning and the same ~il[guard], and can reasonably be
expected to generate equally efficient code.
Note that ~c[(zip x)] and ~c[(zp x)] do not have the same logical
meanings as the others or each other. They are not simple tests for
equality to ~c[0]. They each coerce ~c[x] into a restricted domain,
~ilc[zip] to the integers and ~ilc[zp] to the natural numbers, choosing
~c[0] for ~c[x] when ~c[x] is outside the domain. Thus, ~c[1/2], ~c[#c(1 3)],
and ~c['abc], for example, are all ``recognized'' as zero by both
~ilc[zip] and ~ilc[zp]. But ~ilc[zip] reports that ~c[-1] is different from
~c[0] while ~ilc[zp] reports that ~c[-1] ``is'' ~c[0]. More precisely,
~c[(zip -1)] is ~c[nil] while ~c[(zp -1)] is ~c[t].
Note that the last five idioms all have ~il[guard]s that restrict their
Common Lisp executability. If these last five are used in
situations in which ~il[guard]s are to be verified, then proof
obligations are incurred as the price of using them. If guard
verification is not involved in your project, then the first five
can be thought of as synonymous.
~ilc[Zip] and ~ilc[zp] are not provided by Common Lisp but are
ACL2-specific functions. Why does ACL2 provide these functions?
The answer has to do with the admission of recursively defined
functions and efficiency. ~ilc[Zp] is provided as the zero-test in
situations where the controlling formal parameter is understood to
be a natural number. ~ilc[Zip] is analogously provided for the integer
case. We illustrate below.
Here is an admissible definition of factorial
~bv[]
(defun fact (n) (if (zp n) 1 (* n (fact (1- n)))))
~ev[]
Observe the classic recursion scheme: a test against ~c[0] and recursion
by ~ilc[1-]. Note however that the test against ~c[0] is expressed with the
~ilc[zp] idiom. Note also the absence of a ~il[guard] making explicit our
intention that ~c[n] is a natural number.
This definition of factorial is readily admitted because when ~c[(zp n)]
is false (i.e., ~c[nil]) then ~c[n] is a natural number other than
~c[0] and so ~c[(1- n)] is less than ~c[n]. The base case, where ~c[(zp n)]
is true, handles all the ``unexpected'' inputs, such as arise with
~c[(fact -1)] and ~c[(fact 'abc)]. When calls of ~c[fact] are
evaluated, ~c[(zp n)] checks ~c[(integerp n)] and ~c[(> n 0)]. ~il[Guard]
verification is unsuccessful for this definition of ~c[fact] because
~ilc[zp] requires its argument to be a natural number and there is no
~il[guard] on ~c[fact], above. Thus the primary raw lisp for ~c[fact] is
inaccessible and only the ~c[:]~ilc[logic] definition (which does runtime
``type'' checking) is used in computation. In summary, this
definition of factorial is easily admitted and easily manipulated by
the prover but is not executed as efficiently as it could be.
Runtime efficiency can be improved by adding a ~il[guard] to the definition.
~bv[]
(defun fact (n)
(declare (xargs :guard (and (integerp n) (>= n 0))))
(if (zp n) 1 (* n (fact (1- n)))))
~ev[]
This ~il[guard]ed definition has the same termination conditions as
before -- termination is not sensitive to the ~il[guard]. But the ~il[guard]s
can be verified. This makes the primary raw lisp definition
accessible during execution. In that definition, the ~c[(zp n)] above
is compiled as ~c[(= n 0)], because ~c[n] will always be a natural number
when the primary code is executed. Thus, by adding a ~il[guard] and
verifying it, the elegant and easily used definition of factorial is
also efficiently executed on natural numbers.
Now let us consider an alternative definition of factorial in which
~c[(= n 0)] is used in place of ~c[(zp n)].
~bv[]
(defun fact (n) (if (= n 0) 1 (* n (fact (1- n)))))
~ev[]
This definition does not terminate. For example ~c[(fact -1)] gives
rise to a call of ~c[(fact -2)], etc. Hence, this alternative is
inadmissible. A plausible response is the addition of a ~il[guard]
restricting ~c[n] to the naturals:
~bv[]
(defun fact (n)
(declare (xargs :guard (and (integerp n) (>= n 0))))
(if (= n 0) 1 (* n (fact (1- n)))))
~ev[]
But because the termination argument is not sensitive to the ~il[guard],
it is still impossible to admit this definition. To influence the
termination argument one must change the conditions tested. Adding
a runtime test that ~c[n] is a natural number would suffice and allow
both admission and ~il[guard] verification. But such a test would slow
down the execution of the compiled function.
The use of ~c[(zp n)] as the test avoids this dilemma. ~ilc[Zp]
provides the logical equivalent of a runtime test that ~c[n] is a
natural number but the execution efficiency of a direct ~ilc[=]
comparison with ~c[0], at the expense of a ~il[guard] conjecture to prove.
In addition, if ~il[guard] verification and most-efficient execution are
not needed, then the use of ~c[(zp n)] allows the admission of the
function without a ~il[guard] or other extraneous verbiage.
While general rules are made to be broken, it is probably a good
idea to get into the habit of using ~c[(zp n)] as your terminating
``~c[0] test'' idiom when recursing down the natural numbers. It
provides the logical power of testing that ~c[n] is a non-~c[0]
natural number and allows efficient execution.
We now turn to the analogous function, ~ilc[zip]. ~ilc[Zip] is the
preferred ~c[0]-test idiom when recursing through the integers toward
~c[0]. ~ilc[Zip] considers any non-integer to be ~c[0] and otherwise
just recognizes ~c[0]. A typical use of ~ilc[zip] is in the definition
of ~ilc[integer-length], shown below. (ACL2 can actually accept this
definition, but only after appropriate lemmas have been proved.)
~bv[]
(defun integer-length (i)
(declare (xargs :guard (integerp i)))
(if (zip i)
0
(if (= i -1)
0
(+ 1 (integer-length (floor i 2))))))
~ev[]
Observe that the function recurses by ~c[(floor i 2)]. Hence,
calling the function on ~c[25] causes calls on ~c[12], ~c[6], ~c[3],
~c[1], and ~c[0], while calling it on ~c[-25] generates calls on
~c[-13], ~c[-7], ~c[-4], ~c[-2], and ~c[-1]. By making ~c[(zip i)] the
first test, we terminate the recursion immediately on non-integers.
The ~il[guard], if present, can be verified and allows the primary raw
lisp definition to check ~c[(= i 0)] as the first terminating
condition (because the primary code is executed only on integers).")
(defmacro int= (i j)
":Doc-Section ACL2::ACL2-built-ins
test equality of two integers~/
~c[(int= x y)] is logically equivalent to ~c[(equal x y)].~/
Unlike ~ilc[equal], ~c[int=] requires its arguments to be numbers (or
else causes a ~il[guard] violation; ~pl[guard]). Generally, ~c[int=]
is executed more efficiently than ~ilc[equal] or ~ilc[=] on integers."
(list 'eql
; The extra care taken below not to wrap (the integer ...) around integers is
; there to overcome an inefficiency in Allegro 5.0.1 (and probably other
; Allegro releases). Rob Sumners has reported this problem (6/25/00) to Franz.
(if (integerp i) i (list 'the 'integer i))
(if (integerp j) j (list 'the 'integer j))))
#+acl2-loop-only
(defun zp (x)
(declare (xargs :mode :logic
:guard (and (integerp x) (<= 0 x))))
":Doc-Section ACL2::ACL2-built-ins
testing a ``natural'' against 0~/
~c[(Zp n)] is logically equivalent to ~c[(equal (nfix n) 0)] and is
the preferred termination test for recursion down the natural
numbers. ~c[(Zp n)] returns ~c[t] if ~c[n] is ~c[0] or not a natural
number; it returns ~c[nil] otherwise. Thus, in the ACL2 logic
(ignoring the issue of ~il[guard]s):
~bv[]
n (zp n)
3 nil
0 t
-1 t
5/2 t
#c(1 3) t
'abc t
~ev[]~/
~c[(Zp n)] has a ~il[guard] requiring ~c[n] to be a natural number.
For a discussion of the various idioms for testing against ~c[0],
~pl[zero-test-idioms].
~c[Zp] is typically used as the termination test in recursions down
the natural numbers. It has the advantage of ``coercing'' its
argument to a natural and hence allows the definition to be admitted
without an explicit type check in the body. ~il[Guard] verification
allows ~c[zp] to be compiled as a direct ~ilc[=]-comparision with ~c[0]."
(if (integerp x)
(<= x 0)
t))
#-acl2-loop-only
; Consider using mbe to avoid this cheat.
(defun-one-output zp (x)
(declare (type integer x))
(int= x 0))
(defthm zp-compound-recognizer
; This rule improves the ability of ACL2 to compute useful type prescriptions
; for functions. For example, the following function is typed using
; acl2-numberp instead of integerp unless we have this rule:
; (defun foo (index lst)
; (if (zp index)
; nil
; (let ((i (1- index))) (or (foo i lst) (and (not (bar i lst)) i)))))
(equal (zp x)
(or (not (integerp x))
(<= x 0)))
:rule-classes :compound-recognizer)
(defthm zp-open
; The preceding event avoids some case-splitting when the
; zp-compound-recognizer (above) provides all the information needed about an
; argument of zp. However, the following example illustrates the need to open
; up zp on some non-variable terms:
; (thm (implies (and (zp (+ (- k) n))
; (integerp k)
; (integerp n)
; (<= k j))
; (<= n j)))
; The present rule allows the theorem above to go through. This example
; theorem was distilled from the failure (without this rule) of event
; compress11-assoc-property-1 in community book
; books/data-structures/array1.lisp.
(implies (syntaxp (not (variablep x)))
(equal (zp x)
(if (integerp x)
(<= x 0)
t))))
(in-theory (disable zp))
#+acl2-loop-only
(defun zip (x)
(declare (xargs :mode :logic
:guard (integerp x)))
":Doc-Section ACL2::ACL2-built-ins
testing an ``integer'' against 0~/
~c[(Zip i)] is logically equivalent to ~c[(equal (ifix i) 0)] and is
the preferred termination test for recursion through the integers.
~c[(Zip i)] returns ~c[t] if ~c[i] is ~c[0] or not an integer; it
returns ~c[nil] otherwise. Thus,
~bv[]
i (zip i)
3 nil
0 t
-2 nil
5/2 t
#c(1 3) t
'abc t
~ev[]~/
~c[(Zip i)] has a ~il[guard] requiring ~c[i] to be an integer.
For a discussion of the various idioms for testing against ~c[0],
~pl[zero-test-idioms].
~c[Zip] is typically used as the termination test in recursions
through the integers. It has the advantage of ``coercing'' its
argument to an integer and hence allows the definition to be
admitted without an explicit type check in the body. ~il[Guard]
verification allows ~c[zip] to be compiled as a direct
~ilc[=]-comparision with ~c[0]."
(if (integerp x)
(= x 0)
t))
#-acl2-loop-only
; If we had :body we wouldn't need this cheat.
(defun-one-output zip (x) (= x 0))
(defthm zip-compound-recognizer
; See the comment for zp-compound-recognizer.
(equal (zip x)
(or (not (integerp x))
(equal x 0)))
:rule-classes :compound-recognizer)
(defthm zip-open
(implies (syntaxp (not (variablep x)))
(equal (zip x)
(or (not (integerp x))
(equal x 0)))))
(in-theory (disable zip))
#+acl2-loop-only
(defun nth (n l)
":Doc-Section ACL2::ACL2-built-ins
the nth element (zero-based) of a list~/
~c[(Nth n l)] is the ~c[n]th element of ~c[l], zero-based. If ~c[n] is
greater than or equal to the length of ~c[l], then ~c[nth] returns ~c[nil].~/
~c[(Nth n l)] has a ~il[guard] that ~c[n] is a non-negative integer and
~c[l] is a ~ilc[true-listp].
~c[Nth] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp n)
(>= n 0)
(true-listp l))))
(if (endp l)
nil
(if (zp n)
(car l)
(nth (- n 1) (cdr l)))))
#+acl2-loop-only
(defun char (s n)
":Doc-Section ACL2::ACL2-built-ins
the ~il[nth] element (zero-based) of a string~/
~c[(Char s n)] is the ~c[n]th element of ~c[s], zero-based. If ~c[n] is
greater than or equal to the length of ~c[s], then ~c[char] returns
~c[nil].~/
~c[(Char s n)] has a ~il[guard] that ~c[n] is a non-negative integer and
~c[s] is a ~ilc[stringp].
~c[Char] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp s)
(integerp n)
(>= n 0)
(< n (length s)))))
(nth n (coerce s 'list)))
(defun proper-consp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for proper (null-terminated) non-empty lists~/
~c[Proper-consp] is the function that checks whether its argument is
a non-empty list that ends in ~c[nil]. Also ~pl[true-listp].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(and (consp x)
(true-listp x)))
(defun improper-consp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for improper (non-null-terminated) non-empty lists~/
~c[Improper-consp] is the function that checks whether its argument
is a non-empty list that ends in other than ~c[nil].
~l[proper-consp] and also ~pl[true-listp].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(and (consp x)
(not (true-listp x))))
#+acl2-loop-only
(defmacro * (&rest rst)
":Doc-Section ACL2::ACL2-built-ins
multiplication macro~/
~c[*] is really a macro that expands to calls of the function
~ilc[binary-*]. So for example
~bv[]
(* x y 4 z)
~ev[]
represents the same term as
~bv[]
(binary-* x (binary-* y (binary-* 4 z))).
~ev[]~/
~l[binary-*].
~c[*] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(cond ((null rst) 1)
((null (cdr rst)) (list 'binary-* 1 (car rst)))
(t (xxxjoin 'binary-* rst))))
;; RAG - This function was modified to accept all complex arguments,
;; not just the complex-rationalps
#+acl2-loop-only
(defun conjugate (x)
":Doc-Section ACL2::ACL2-built-ins
complex number conjugate~/
~c[Conjugate] takes an ACL2 number as an argument, and returns its
complex conjugate (i.e., the result of negating its imaginary
part.).~/
~c[Conjugate] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (acl2-numberp x)))
(if (complex/complex-rationalp x)
(complex (realpart x)
(- (imagpart x)))
x))
(defmacro prog2$ (x y)
; This odd little duck is not as useless as it may seem. Its original purpose
; was to serve as a messenger for translate to use to send a message to the
; guard checker. Guards that are created by declarations in lets and other
; places are put into the first arg of a prog2$. Once the guards required by x
; have been noted, x's value may be ignored. If this definition is changed,
; consider the places prog2$ is mentioned, including the mention of 'prog2$ in
; distribute-first-if.
; We have since found other uses for prog2$, which are documented in the doc
; string below.
":Doc-Section ACL2::ACL2-built-ins
execute two forms and return the value of the second one~/
~l[hard-error], ~pl[illegal], and ~pl[cw] for examples of functions to call
in the first argument of ~c[prog2$]. Also ~pl[progn$] for an extension of
~c[prog2$] that handles than two arguments.~/
Semantically, ~c[(Prog2$ x y)] equals ~c[y]; the value of ~c[x] is ignored.
However, ~c[x] is first evaluated for side effect. Since the ACL2
~il[programming] language is applicative, there can be no logical impact of
evaluating ~c[x]. However, ~c[x] may involve a call of a function such as
~ilc[hard-error] or ~ilc[illegal], which can cause so-called ``hard errors'',
or a call of ~ilc[cw] to perform output.
Here is a simple, contrived example using ~ilc[hard-error]. The intention
is to check at run-time that the input is appropriate before calling
function ~c[bar].
~bv[]
(defun foo-a (x)
(declare (xargs :guard (consp x)))
(prog2$
(or (good-car-p (car x))
(hard-error 'foo-a
\"Bad value for x: ~~p0\"
(list (cons #\\0 x))))
(bar x)))
~ev[]
The following similar function uses ~ilc[illegal] instead of ~c[hard-error].
Since ~c[illegal] has a guard of ~c[nil], ~il[guard] verification would
guarantee that the call of ~c[illegal] below will never be made (at
least when guard checking is on; ~pl[set-guard-checking]).
~bv[]
(defun foo-b (x)
(declare (xargs :guard (and (consp x) (good-car-p (car x)))))
(prog2$
(or (good-car-p (car x))
(illegal 'foo-b
\"Bad value for x: ~~p0\"
(list (cons #\\0 x))))
(bar x)))
~ev[]
We conclude with a simple example using ~ilc[cw] from the ACL2 sources.
~bv[]
(defun print-terms (terms iff-flg wrld)
; Print untranslations of the given terms with respect to iff-flg, following
; each with a newline.
; We use cw instead of the fmt functions because we want to be able to use this
; function in print-type-alist-segments (used in brkpt1), which does not return
; state.
(if (endp terms)
terms
(prog2$
(cw \"~~q0\" (untranslate (car terms) iff-flg wrld))
(print-terms (cdr terms) iff-flg wrld))))
~ev[]~/"
`(return-last 'progn ,x ,y))
(deflabel Other
:doc
":Doc-Section Other
other commonly used top-level functions~/~/
This section contains an assortment of top-level functions that fit into none
of the other categories and yet are suffiently useful as to merit
``~c[advertisement]'' in the ~c[:]~ilc[help] command.~/")
(deflabel acl2-help
:doc
":Doc-Section Other
the acl2-help mailing list~/
You can email questions about ACL2 usage to the acl2-help mailing list:
~c[acl2-help@utlists.utexas.edu]. If you have more general questions about
ACL2, for example, about projects completed using ACL2, you may prefer the
acl2 mailing list, ~c[acl2@utlists.utexas.edu], which tends to have wider
distribution.~/~/")
#-acl2-loop-only
(defmacro ec-call1-raw (ign x)
(declare (ignore ign))
(assert (and (consp x) (symbolp (car x)))) ; checked by translate11
(let ((*1*fn (*1*-symbol (car x))))
`(funcall
(cond
(*safe-mode-verified-p* ; see below for discussion of this case
',(car x))
((fboundp ',*1*fn) ',*1*fn)
(t
; We should never hit this case, unless the user is employing trust tags or raw
; Lisp. For ACL2 events that might hit this case, such as a defconst using
; ec-call in a book (see below), we should ensure that *safe-mode-verified-p*
; is bound to t. For example, we do so in the raw Lisp definition of defconst,
; which is justified because when ACL2 processes the defconst it will evaluate
; in safe-mode to ensure that no raw Lisp error could occur.
; Why is the use above of *safe-mode-verified-p* necessary? If an event in a
; book calls ec-call in raw Lisp, then we believe that the event is a defpkg or
; defconst event. In such cases, ec-call may be expected to invoke a *1*
; function. Unfortunately, the *1* function definitions are laid down (by
; write-expansion-file) at the end of the expansion file. However, we cannot
; simply move the *1* definitions to the front of the expansion file, because
; some may refer to constants or packages defined in the book. We might wish
; to consider interleaving *1* definitions with events from the book but that
; seems difficult to do. Instead, we arrange with *safe-mode-verified-p* to
; avoid the *1* function calls entirely when loading the expansion file (or its
; compilation).
(error "Undefined function, ~s. Please contact the ACL2 implementors."
',*1*fn)))
,@(cdr x))))
(defmacro ec-call1 (ign x)
; We introduce ec-call1 inbetween the utlimate macroexpansion of an ec-call
; form to a return-last form, simply because untranslate will produce (ec-call1
; nil x) from (return-last 'ec-call1-raw nil x).
`(return-last 'ec-call1-raw ,ign ,x))
(defmacro ec-call (x)
":Doc-Section ACL2::ACL2-built-ins
execute a call in the ACL2 logic instead of raw Lisp~/
The name ``~c[ec-call]'' represents ``executable-counterpart call.'' This
utility is intended for users who are familiar with guards. ~l[guard] for a
general discussion of guards.
Logically, ~c[ec-call] behaves like the identity macro; during proofs,
~c[(ec-call TERM)] is typically replaced quickly by ~c[TERM] during a proof
attempt. However, ~c[ec-call] causes function calls to be evaluated in the
ACL2 logic rather than raw Lisp, as explained below.~/
~bv[]
General Form:
(ec-call (fn term1 ... termk))
~ev[]
where ~c[fn] is a known function symbol other than those in the list that is
the value of the constant ~c[*ec-call-bad-ops*]. In particular, ~c[fn] is
not a macro. Semantically, ~c[(ec-call (fn term1 ... termk))] equals
~c[(fn term1 ... termk)]. However, this use of ~c[ec-call] has two effects.
~bq[]
(1) ~il[Guard] verification generates no proof obligations from the guard of
~c[fn] for this call. Indeed, guards need not have been verified for
~c[fn].
(2) During evaluation, after the arguments of ~c[fn] are evaluated as usual,
the executable counterpart of ~c[fn] is called, rather than ~c[fn] as defined
in raw Lisp. That is, the call of ~c[fn] is made on its evaluated arguments
as though this call is being made in the ACL2 top-level loop, rather than in
raw Lisp. In particular, the ~il[guard] of ~c[fn] is checked, at least by
default (~pl[set-guard-checking]).~eq[]
Note that in the term (ec-call (fn term1 ... termk))~c[], only the indicated
call of ~c[fn] is made in the logic; each ~c[termi] is evaluated in the
normal manner. If you want an entire term evaluated in the logic, wrap
~c[ec-call] around each function call in the term (other than calls of ~c[if]
and ~c[ec-call]).
~st[Technical Remark] (probably best ignored). During evaluation of a call
of ~ilc[defconst] or ~ilc[defpkg] in raw Lisp, a form
~c[(ec-call (fn term1 ... termk))] is treated as ~c[(fn term1 ... termk)],
that is, without calling the executable counterpart of ~c[fn]. This
situation occurs when loading a compiled file (or expansion file) on behalf
of an ~ilc[include-book] event. The reason is technical: executable
counterparts are defined below a book's events in the book's compiled file.
End of Technical Remark.
Here is a small example. We define ~c[foo] recursively but with guard
verification inhibited on the recursive call, which is to be evaluated in the
ACL2 logic.
~bv[]
ACL2 !>(defun foo (x y)
(declare (xargs :guard (consp y)))
(if (consp x)
(cons (car x) (ec-call (foo (cdr x) (cdr y))))
(car y)))
The admission of FOO is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X). We could deduce no constraints on the type of FOO.
Computing the guard conjecture for FOO....
The guard conjecture for FOO is trivial to prove. FOO is compliant
with Common Lisp.
Summary
Form: ( DEFUN FOO ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
FOO
ACL2 !>(foo '(2 3 4 5) '(6 7))
ACL2 Error in TOP-LEVEL: The guard for the function call (FOO X Y),
which is (CONSP Y), is violated by the arguments in the call
(FOO '(4 5) NIL). To debug see :DOC print-gv, see :DOC trace, and
see :DOC wet. See :DOC set-guard-checking for information about suppressing
this check with (set-guard-checking :none), as recommended for new
users.
ACL2 !>
~ev[]
The error above arises because eventually, ~c[foo] recurs down to a value of
parameter ~c[y] that violates the guard. This is clear from tracing
(~pl[trace$] and ~pl[trace]). Each call of the executable counterpart of
~c[foo] (the so-called ``*1*'' function for ~c[foo]) checks the guard and
then invokes the raw Lisp version of ~c[foo]. The raw Lisp version calls
the executable counterpart on the recursive call. When the guard check fails
we get a violation.
~bv[]
ACL2 !>(trace$ foo)
((FOO))
ACL2 !>(foo '(2 3 4 5) '(6 7))
1> (ACL2_*1*_ACL2::FOO (2 3 4 5) (6 7))
2> (FOO (2 3 4 5) (6 7))
3> (ACL2_*1*_ACL2::FOO (3 4 5) (7))
4> (FOO (3 4 5) (7))
5> (ACL2_*1*_ACL2::FOO (4 5) NIL)
ACL2 Error in TOP-LEVEL: The guard for the function call (FOO X Y),
which is (CONSP Y), is violated by the arguments in the call
(FOO '(4 5) NIL). To debug see :DOC print-gv, see :DOC trace, and
see :DOC wet. See :DOC set-guard-checking for information about suppressing
this check with (set-guard-checking :none), as recommended for new
users.
ACL2 !>
~ev[]
If we turn off guard errors then we can see the trace as above, but where we
avoid calling the raw Lisp function when the guard fails to hold.
~bv[]
ACL2 !>:set-guard-checking nil
Masking guard violations but still checking guards except for self-
recursive calls. To avoid guard checking entirely, :SET-GUARD-CHECKING
:NONE. See :DOC set-guard-checking.
ACL2 >(foo '(2 3 4 5) '(6 7))
1> (ACL2_*1*_ACL2::FOO (2 3 4 5) (6 7))
2> (FOO (2 3 4 5) (6 7))
3> (ACL2_*1*_ACL2::FOO (3 4 5) (7))
4> (FOO (3 4 5) (7))
5> (ACL2_*1*_ACL2::FOO (4 5) NIL)
6> (ACL2_*1*_ACL2::FOO (5) NIL)
7> (ACL2_*1*_ACL2::FOO NIL NIL)
<7 (ACL2_*1*_ACL2::FOO NIL)
<6 (ACL2_*1*_ACL2::FOO (5))
<5 (ACL2_*1*_ACL2::FOO (4 5))
<4 (FOO (3 4 5))
<3 (ACL2_*1*_ACL2::FOO (3 4 5))
<2 (FOO (2 3 4 5))
<1 (ACL2_*1*_ACL2::FOO (2 3 4 5))
(2 3 4 5)
ACL2 >
~ev[]
~/"
(declare (xargs :guard t))
`(ec-call1 nil ,x))
(defmacro non-exec (x)
":Doc-Section ACL2::ACL2-built-ins
mark code as non-executable~/
~c[Non-exec] is a macro such that logically, ~c[(non-exec x)] is equal to
~c[x]. However, the argument to a call of ~c[non-exec] need not obey the
usual syntactic restrictions for executable code, and indeed, evaluation of a
call of ~c[non-exec] will result in an error. Moreover, for any form
occurring in the body of a function (~pl[defun]) that is a call of
~c[non-exec], no guard proof obligations are generated for that form.
The following example, although rather contrived, illustrates the use of
~c[non-exec]. One can imagine a less contrived example that efficiently
computes return values for a small number of fixed inputs and, for other
inputs, returns something logically ``consistent'' with those return values.
~bv[]
(defun double (x)
(case x
(1 2)
(2 4)
(3 6)
(otherwise (non-exec (* 2 x)))))
~ev[]
We can prove that ~c[double] is compliant with Common Lisp (~pl[guard]) and
that it always computes ~c[(* 2 x)].
~bv[]
(verify-guards double)
(thm (equal (double x) (* 2 x)))
~ev[]
We can evaluate double on the specified arguments. But a call of
~c[non-exec] results in an error message that reports the form that was
supplied to ~c[non-exec].
~bv[]
ACL2 !>(double 3)
6
ACL2 !>(double 10)
ACL2 Error in TOP-LEVEL: ACL2 has been instructed to cause an error
because of an attempt to evaluate the following form (see :DOC non-
exec):
(* 2 X).
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>
~ev[]~/
During proofs, the error is silent; it is ``caught'' by the proof mechanism
and generally results in the introduction of a call of ~ilc[hide] during a
proof.
Also ~pl[defun-nx] for a utility that makes every call of a function
non-executable, rather than a specified form. The following examples
contrast ~c[non-exec] with ~ilc[defun-nx], in particular illustratating the
role of ~ilc[non-exec] in avoiding guard proof obligations.
~bv[]
; Guard verification fails:
(defun-nx f1 (x)
(declare (xargs :guard t))
(car x))
; Guard verification succeeds after changing the guard above:
(defun-nx f1 (x)
(declare (xargs :guard (consp x)))
(car x))
; Guard verification succeeds:
(defun f2 (x)
(declare (xargs :guard t))
(non-exec (car x)))
; Evaluating (g1) prints \"Hello\" before signaling an error.
(defun g1 ()
(f1 (cw \"Hello\")))
; Evaluating (g2) does not print before signaling an error.
(defun g2 ()
(non-exec (cw \"Hello\")))
; Evaluating (h1) gives a guard violation for taking reciprocal of 0.
(defun h1 ()
(f1 (/ 1 0)))
; Evaluating (h2) does not take a reciprocal, hence there is no guard
; violation for that; we just get the error expected from using non-exec.
(defun h2 ()
(non-exec (/ 0)))
~ev[]"
(declare (xargs :guard t))
`(prog2$ (throw-nonexec-error :non-exec ',x)
,x))
#+acl2-loop-only
(defmacro / (x &optional (y 'nil binary-casep))
":Doc-Section ACL2::ACL2-built-ins
macro for division and reciprocal~/
~l[binary-*] for multiplication and ~pl[unary-/] for reciprocal.~/
Note that ~c[/] represents division as follows:
~bv[]
(/ x y)
~ev[]
represents the same term as
~bv[]
(* x (/ y))
~ev[]
which is really
~bv[]
(binary-* x (unary-/ y)).
~ev[]
Also note that ~c[/] represents reciprocal as follows:
~bv[]
(/ x)
~ev[]
expands to
~bv[]
(unary-/ x).
~ev[]
~c[/] is a Common Lisp macro. See any Common Lisp documentation
for more information.~/"
(cond (binary-casep (list 'binary-* x (list 'unary-/ y)))
(t (list 'unary-/ x))))
; This, and many of the axioms that follow, could be defthms. However, we want
; to make explicit what our axioms are, rather than relying on (e.g.) linear
; arithmetic. This is a start.
(defaxiom closure
(and (acl2-numberp (+ x y))
(acl2-numberp (* x y))
(acl2-numberp (- x))
(acl2-numberp (/ x)))
:rule-classes nil)
(defaxiom Associativity-of-+
(equal (+ (+ x y) z) (+ x (+ y z))))
(defaxiom Commutativity-of-+
(equal (+ x y) (+ y x)))
(defun fix (x)
":Doc-Section ACL2::ACL2-built-ins
coerce to a number~/
~c[Fix] simply returns any numeric argument unchanged, returning ~c[0]
on a non-numeric argument. Also ~pl[nfix], ~pl[ifix], and
~pl[rfix] for analogous functions that coerce to a natural
number, an integer, and a rational number, respectively.~/
~c[Fix] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(if (acl2-numberp x)
x
0))
(defaxiom Unicity-of-0
(equal (+ 0 x)
(fix x)))
(defaxiom Inverse-of-+
(equal (+ x (- x)) 0))
(defaxiom Associativity-of-*
(equal (* (* x y) z) (* x (* y z))))
(defaxiom Commutativity-of-*
(equal (* x y) (* y x)))
(defaxiom Unicity-of-1
(equal (* 1 x)
(fix x)))
(defaxiom Inverse-of-*
(implies (and (acl2-numberp x)
(not (equal x 0)))
(equal (* x (/ x)) 1)))
(defaxiom Distributivity
(equal (* x (+ y z))
(+ (* x y) (* x z))))
(defaxiom <-on-others
(equal (< x y)
(< (+ x (- y)) 0))
:rule-classes nil)
(defaxiom Zero
(not (< 0 0))
:rule-classes nil)
(defaxiom Trichotomy
(and
(implies (acl2-numberp x)
(or (< 0 x)
(equal x 0)
(< 0 (- x))))
(or (not (< 0 x))
(not (< 0 (- x)))))
:rule-classes nil)
;; RAG - This axiom was weakened to accomodate real x and y
(defaxiom Positive
(and (implies (and (< 0 x) (< 0 y))
(< 0 (+ x y)))
(implies (and (real/rationalp x)
(real/rationalp y)
(< 0 x)
(< 0 y))
(< 0 (* x y))))
:rule-classes nil)
(defaxiom Rational-implies1
(implies (rationalp x)
(and (integerp (denominator x))
(integerp (numerator x))
(< 0 (denominator x))))
:rule-classes nil)
(defaxiom Rational-implies2
(implies (rationalp x)
; We use the left-hand side below out of respect for the fact that
; unary-/ is invisible with respect to binary-*.
(equal (* (/ (denominator x)) (numerator x)) x)))
(defaxiom integer-implies-rational
(implies (integerp x) (rationalp x))
:rule-classes nil)
#+:non-standard-analysis
(defaxiom rational-implies-real
(implies (rationalp x) (realp x))
:rule-classes nil)
;; RAG - This axiom was weakened to accomodate the reals.
(defaxiom complex-implies1
(and (real/rationalp (realpart x))
(real/rationalp (imagpart x)))
:rule-classes nil)
;; RAG - This axiom was strengthened to include the reals.
(defaxiom complex-definition
(implies (and (real/rationalp x)
(real/rationalp y))
(equal (complex x y)
(+ x (* #c(0 1) y))))
:rule-classes nil)
;; RAG - This axiom was weakened to accomodate the reals.
; This rule was called complex-rationalp-has-nonzero-imagpart before
; Version_2.5.
(defaxiom nonzero-imagpart
(implies (complex/complex-rationalp x)
(not (equal 0 (imagpart x))))
:rule-classes nil)
(defaxiom realpart-imagpart-elim
(implies (acl2-numberp x)
(equal (complex (realpart x) (imagpart x)) x))
:rule-classes (:REWRITE :ELIM))
; We think that the following two axioms can be proved from the others.
;; RAG - This axiom was strengthened to include the reals.
(defaxiom realpart-complex
(implies (and (real/rationalp x)
(real/rationalp y))
(equal (realpart (complex x y))
x)))
;; RAG - This axiom was also strengthened to include the reals.
(defaxiom imagpart-complex
(implies (and (real/rationalp x)
(real/rationalp y))
(equal (imagpart (complex x y))
y)))
;; RAG - Another axiom strengthened to include the reals.
(defthm complex-equal
(implies (and (real/rationalp x1)
(real/rationalp y1)
(real/rationalp x2)
(real/rationalp y2))
(equal (equal (complex x1 y1) (complex x2 y2))
(and (equal x1 x2)
(equal y1 y2))))
:hints (("Goal" :use
((:instance imagpart-complex
(x x1) (y y1))
(:instance imagpart-complex
(x x2) (y y2))
(:instance realpart-complex
(x x1) (y y1))
(:instance realpart-complex
(x x2) (y y2)))
:in-theory (disable imagpart-complex realpart-complex))))
(defun force (x)
":Doc-Section Miscellaneous
identity function used to force a hypothesis~/
~c[Force] is the identity function: ~c[(force x)] is equal to ~c[x].
However, for rules of many classes (~pl[rule-classes]), a hypothesis of the
form ~c[(force term)] is given special treatment, as described below. This
treatment takes place for rule classes ~c[:]~ilc[rewrite], ~c[:]~ilc[linear],
~c[:]~ilc[type-prescription], ~c[:]~ilc[definition], ~c[:]~ilc[meta] (actually
in that case, the result of evaluating the hypothesis metafunction call), and
~c[:]~ilc[forward-chaining].
When a hypothesis of a conditional rule (of one of the classes listed above)
has the form ~c[(force hyp)], it is logically equivalent to ~c[hyp] but has a
pragmatic effect. In particular, when the rule is considered, the needed
instance of the hypothesis, ~c[hyp'], may be assumed if the usual process
fails to prove it or its negation. In that situation, if the rule is
eventually applied, then a special case is generated, requiring the system to
prove that ~c[hyp'] is true in the current context. The proofs of all such
``forced assumptions'' are, by default, delayed until the successful
completion of the main goal. ~l[forcing-round] and
~pl[immediate-force-modep].
Forcing is generally used on hypotheses that are always expected to be true,
as is commonly the case for ~il[guard]s of functions. All the power of the
theorem prover is brought to bear on a forced hypothesis and no backtracking
is possible. Forced goals can be attacked immediately
(~pl[immediate-force-modep]) or in a subsequent forcing round
(~pl[forcing-round]). Also ~pl[case-split] for a related utility. If the
~c[:]~ilc[executable-counterpart] of the function ~c[force] is ~il[disable]d,
then no hypothesis is forced. For more on enabling and disabling forcing,
~pl[enable-forcing] and ~pl[disable-forcing].~/
It sometimes happens that a conditional rule is not applied because
some hypothesis, ~c[hyp], could not be relieved, even though the
required instance of ~c[hyp], ~c[hyp'], can be shown true in the context.
This happens when insufficient resources are brought to bear on ~c[hyp']
at the time we try to relieve it. A sometimes desirable alternative
behavior is for the system to assume ~c[hyp'], apply the rule, and to
generate explicitly a special case to show that ~c[hyp'] is true in the
context. This is called ``forcing'' ~c[hyp]. It can be arranged by
restating the rule so that the offending hypothesis, ~c[hyp], is
embedded in a call of ~c[force], as in ~c[(force hyp)]. By using the
~c[:]~ilc[corollary] field of the ~ilc[rule-classes] entry, a hypothesis
can be forced without changing the statement of the theorem from
which the rule is derived.
Technically, ~c[force] is just a function of one argument that returns
that argument. It is generally ~il[enable]d and hence evaporates during
simplification. But its presence among the hypotheses of a
conditional rule causes case splitting to occur if the hypothesis
cannot be conventionally relieved.
Since a forced hypothesis must be provable whenever the rule is
otherwise applicable, forcing should be used only on hypotheses that
are expected always to be true.
A particularly common situation in which some hypotheses should be
forced is in ``most general'' ~il[type-prescription] lemmas. If a single
lemma describes the ``expected'' type of a function, for all
``expected'' arguments, then it is probably a good idea to force the
hypotheses of the lemma. Thus, every time a term involving the
function arises, the term will be given the expected type and its
arguments will be required to be of the expected type. In applying
this advice it might be wise to avoid forcing those hypotheses that
are in fact just type predicates on the arguments, since the routine
that applies ~il[type-prescription] lemmas has fairly thorough knowledge
of the types of all terms.
~c[Force] can have the additional benefit of causing the ACL2 typing
mechanism to interact with the ACL2 rewriter to establish the
hypotheses of ~il[type-prescription] rules. To understand this remark,
think of the ACL2 type reasoning system as a rather primitive
rule-based theorem prover for questions about Common Lisp types,
e.g., ``does this expression produce a ~ilc[consp]?'' ``does this
expression produce some kind of ACL2 number, e.g., an ~ilc[integerp], a
~ilc[rationalp], or a ~ilc[complex-rationalp]?'' etc. It is driven by
~il[type-prescription] rules. To relieve the hypotheses of such rules,
the type system recursively invokes itself. This can be done for
any hypothesis, whether it is ``type-like'' or not, since any
proposition, ~c[p], can be phrased as the type-like question ``does ~c[p]
produce an object of type ~c[nil]?'' However, as you might expect, the
type system is not very good at establishing hypotheses that are not
type-like, unless they happen to be assumed explicitly in the
context in which the question is posed, e.g., ``If ~c[p] produces a
~ilc[consp] then does ~c[p] produce ~c[nil]?'' If type reasoning alone is
insufficient to prove some instance of a hypothesis, then the
instance will not be proved by the type system and a
~il[type-prescription] rule with that hypothesis will be inapplicable in
that case. But by embedding such hypotheses in ~c[force] expressions
you can effectively cause the type system to ``punt'' them to the
rest of the theorem prover. Of course, as already noted, this
should only be done on hypotheses that are ``always true.'' In
particular, if rewriting is required to establish some hypothesis of
a ~il[type-prescription] rule, then the rule will be found inapplicable
because the hypothesis will not be established by type reasoning
alone.
The ACL2 rewriter uses the type reasoning system as a subsystem. It
is therefore possible that the type system will force a hypothesis
that the rewriter could establish. Before a forced hypothesis is
reported out of the rewriter, we try to establish it by rewriting.
This makes the following surprising behavior possible: A
~il[type-prescription] rule fails to apply because some true hypothesis
is not being relieved. The user changes the rule so as to ~st[force] the
hypothesis. The system then applies the rule but reports no
forcing. How can this happen? The type system ``punted'' the
forced hypothesis to the rewriter, which established it.
Finally, we should mention that the rewriter is never willing to force when
there is an ~ilc[if] term present in the goal being simplified. Since
~ilc[and] terms and ~ilc[or] terms are merely abbreviations for ~ilc[if]
terms, they also prevent forcing. Note that ~ilc[if] terms are ultimately
eliminated using the ordinary flow of the proof (but
~pl[set-case-split-limitations]), allowing ~c[force] ultimately to function
as intended. Moreover, forcing can be disabled, as described above; also
~pl[disable-forcing].~/"
; We define this function in :logic mode on the first pass so that it gets a
; nume. See the comment in check-built-in-constants.
(declare (xargs :mode :logic :guard t))
x)
; See the comment in check-built-in-constants.
;; RAG - As promised by the comment above, this number had to be
;; changed to get ACL2 to compile. The number "104" is magical. I
;; figured it out by compiling ACL2, getting the error message that
;; said *force-xnume* should be "104" but wasn't, and then changed the
;; definition here. The comment in check-built-in-constants explains
;; why we need to play this (apparently silly) game.
;; RAG - After adding the non-standard predicates, this number grew to 110.
(defconst *force-xnume*
(let ((x 129))
#+:non-standard-analysis
(+ x 12)
#-:non-standard-analysis
x))
(defun immediate-force-modep ()
":Doc-Section Miscellaneous
when executable counterpart is ~il[enable]d,
~il[force]d hypotheses are attacked immediately~/
Also ~pl[disable-immediate-force-modep] and
~pl[enable-immediate-force-modep].
This function symbol is defined simply to provide a ~il[rune] which can
be ~il[enable]d and ~il[disable]d. Enabling
~bv[]
(:executable-counterpart immediate-force-modep)
~ev[]
causes ACL2 to attack ~il[force]d hypotheses immediately instead of
delaying them to the next forcing round.
~bv[]
Example Hints
:in-theory (disable (:executable-counterpart immediate-force-modep))
; delay forced hyps to forcing round
:in-theory (enable (:executable-counterpart immediate-force-modep))
; split on forced hyps immediately~/
~ev[]
~l[force] for background information. When a ~ilc[force]d
hypothesis cannot be established a record is made of that fact and
the proof continues. When the proof succeeds a ``forcing round'' is
undertaken in which the system attempts to prove each of the ~il[force]d
hypotheses explicitly. However, if the ~il[rune]
~c[(:executable-counterpart immediate-force-modep)] is ~il[enable]d at the
time the hypothesis is ~il[force]d, then ACL2 does not delay the attempt
to prove that hypothesis but undertakes the attempt more or less
immediately."
; We make this function :common-lisp-compliant so that it gets a nume on pass 1
; of initialization. See the comment in check-built-in-constants.
(declare (xargs :mode :logic :guard t))
"See :DOC immediate-force-modep.")
; See the comment in check-built-in-constants.
;; RAG - The value of "107" was modified as suggested during the
;; compilation of ACL2. It's magic. See the comment in
;; check-built-in-constants to find out more.
;; RAG - After adding the non-standard predicates, this changed to 113.
(defconst *immediate-force-modep-xnume*
(+ *force-xnume* 3))
(defun case-split (x)
":Doc-Section Miscellaneous
like force but immediately splits the top-level goal on the hypothesis~/
~c[Case-split] is an variant of ~ilc[force], which has similar special
treatment in hypotheses of rules for the same ~il[rule-classes] as for
~c[force] (~pl[force]). This treatment takes place for rule classes
~c[:]~ilc[rewrite], ~c[:]~ilc[linear], ~c[:]~ilc[type-prescription],
~c[:]~ilc[definition], ~c[:]~ilc[meta] (actually in that case, the result of
evaluating the hypothesis metafunction call), and
~c[:]~ilc[forward-chaining].
When a hypothesis of a conditional rule (of one of the classes listed above)
has the form ~c[(case-split hyp)] it is logically equivalent to ~c[hyp].
However it affects the application of the rule generated as follows: if ACL2
attempts to apply the rule but cannot establish that the required instance of
~c[hyp] holds in the current context, it considers the hypothesis true
anyhow, but (assuming all hypotheses are seen to be true and the rule is
applied) creates a subgoal in which that instance of ~c[hyp] is assumed
false. (There are exceptions, noted below.)~/
For example, given the rule
~bv[]
(defthm p1->p2
(implies (case-split (p1 x))
(p2 x)))
~ev[]
then an attempt to prove
~bv[]
(implies (p3 x) (p2 (car x)))
~ev[]
can give rise to a single subgoal:
~bv[]
(IMPLIES (AND (NOT (P1 (CAR X))) (P3 X))
(P2 (CAR X))).
~ev[]
Unlike ~ilc[force], ~c[case-split] does not delay the ``false case'' to a
forcing round but tackles it more or less immediately.
The special ``split'' treatment of ~c[case-split] can be disabled by
disabling forcing: ~pl[force] for a discussion of disabling forcing, and also
~pl[disable-forcing]. Finally, we should mention that the rewriter is never
willing to split when there is an ~ilc[if] term present in the goal being
simplified. Since ~ilc[and] terms and ~ilc[or] terms are merely
abbreviations for ~ilc[if] terms, they also prevent splitting. Note that
~ilc[if] terms are ultimately eliminated using the ordinary flow of the proof
(but ~pl[set-case-split-limitations]), so ~c[case-split] will ultimately
function as intended.
When in the proof checker, ~c[case-split] behaves like ~c[force].~/"
; We define this function in :logic mode on the first pass so that it gets a
; nume. See the comment in check-built-in-constants.
(declare (xargs :mode :logic :guard t))
x)
(in-theory (disable (:executable-counterpart immediate-force-modep)))
(defmacro disable-forcing nil
":Doc-Section Miscellaneous
to disallow ~ilc[force]d ~ilc[case-split]s~/
~bv[]
General Form:
ACL2 !>:disable-forcing ; disallow forced case splits
~ev[]
~l[force] and ~pl[case-split] for a discussion of forced case splits,
which are inhibited by this command.~/
~c[Disable-forcing] is actually a macro that ~il[disable]s the executable
counterpart of the function symbol ~c[force]; ~pl[force]. When you want to
use ~il[hints] to turn off forced case splits, use a form such as one of the
following (these are equivalent).
~bv[]
:in-theory (disable (:executable-counterpart force))
:in-theory (disable (force))
~ev[]
"
'(in-theory (disable (:executable-counterpart force))))
(defmacro enable-forcing nil
":Doc-Section Miscellaneous
to allow ~ilc[force]d ~ilc[case split]s~/
~bv[]
General Form:
ACL2 !>:enable-forcing ; allowed forced case splits
~ev[]
~l[force] and ~pl[case-split] for a discussion of ~il[force]d case splits,
which are turned back on by this command. (~l[disable-forcing] for how to
turn them off.)~/
~c[Enable-forcing] is actually a macro that ~il[enable]s the executable
counterpart of the function symbol ~c[force]; ~pl[force]. When you want to
use ~il[hints] to turn on forced case splits, use a form such as one of the
following (these are equivalent).
~bv[]
:in-theory (enable (:executable-counterpart force))
:in-theory (enable (force))
~ev[]
"
'(in-theory (enable (:executable-counterpart force))))
(defmacro disable-immediate-force-modep ()
":Doc-Section Miscellaneous
~il[force]d hypotheses are not attacked immediately~/
~bv[]
General Form:
ACL2 !>:disable-immediate-force-modep
~ev[]
This event causes ACL2 to delay ~il[force]d hypotheses to the next forcing
round, rather than attacking them immediately. ~l[immediate-force-modep].
Or for more basic information, first ~pl[force] for a discussion of
~il[force]d case splits.~/
Disable-immediate-force-modep is a macro that ~il[disable]s the executable
counterpart of the function symbol ~ilc[immediate-force-modep]. When you
want to ~il[disable] this mode in ~il[hints], use a form such as one of the
following (these are equivalent).
~bv[]
:in-theory (disable (:executable-counterpart immediate-force-modep))
:in-theory (disable (immediate-force-modep))
~ev[]
"
'(in-theory (disable (:executable-counterpart immediate-force-modep))))
(defmacro enable-immediate-force-modep ()
":Doc-Section Miscellaneous
~il[force]d hypotheses are attacked immediately~/
~bv[]
General Form:
ACL2 !>:enable-immediate-force-modep
~ev[]
This event causes ACL2 to attack ~il[force]d hypotheses immediately
instead of delaying them to the next forcing round.
~l[immediate-force-modep]. Or for more basic information, first
~pl[force] for a discussion of ~il[force]d case splits.~/
Enable-immediate-force-modep is a macro that ~il[enable]s the executable
counterpart of the function symbol ~ilc[immediate-force-modep]. When you
want to ~il[enable] this mode in ~il[hints], use a form such as one of the
following (these are equivalent).
~bv[]
:in-theory (enable (:executable-counterpart immediate-force-modep))
:in-theory (enable (immediate-force-modep))
~ev[]
"
'(in-theory (enable (:executable-counterpart immediate-force-modep))))
(defun synp (vars form term)
; Top-level calls of this function in the hypothesis of a linear or
; rewrite rule are given special treatment when relieving the rule's
; hypotheses. (When the rule class gives such special treatment, it
; is an error to use synp in other than at the top-level.) The
; special treatment is as follows. Term is evaluated, binding state
; to the live state and mfc to the current metafunction context, as
; with meta rules. The result of this evaluation should be either t,
; nil, or an alist binding variables to terms, else we get a hard
; error. Moreover, if we get an alist then either (1) vars should be
; t, representing the set of all possible vars, and none of the keys
; in the alist should already be bound; or else (2) vars should be of
; the form (var1 ... vark), the keys of alist should all be among the
; vari, and none of vari should already be bound (actually this is
; checked when the rule is submitted) -- otherwise we get a hard
; error.
; As of Version_2.7 there are two macros that expand into calls to synp:
; (syntaxp form) ==>
; `(synp (quote nil) (quote (syntaxp ,form)) (quote (and ,form t)))
; (bind-free form &optional (vars 't)) ==>
; (if vars
; `(synp (quote ,vars) (quote (bind-free ,form ,vars)) (quote ,form))
; `(synp (quote t) (quote (bind-free ,form)) (quote ,form))))
; Warning: This function must be defined to always return t in order
; for our treatment of it (in particular, in translate) to be sound.
; The special treatment referred to above happens within relieve-hyp.
(declare (xargs :mode :logic :guard t)
(ignore vars form term))
t)
(defmacro syntaxp (form)
(declare (xargs :guard t))
":Doc-Section Miscellaneous
attach a heuristic filter on a rule~/
A calls of ~c[syntaxp] in the hypothesis of a ~c[:]~ilc[rewrite],
~c[:]~ilc[definition], or ~c[:]~ilc[linear] rule is treated specially, as
described below. Similar treatment is given to the evaluation of a
~c[:]~ilc[meta] rule's hypothesis function call.
For example, consider the ~c[:]~ilc[rewrite] rule created from the following
formula.
~bv[]
Example:
(IMPLIES (SYNTAXP (NOT (AND (CONSP X)
(EQ (CAR X) 'NORM))))
(EQUAL (LXD X)
(LXD (NORM X)))).
~ev[]
The ~c[syntaxp] hypothesis in this rule will allow the rule to be applied to
~c[(lxd (trn a b))] but will not allow it to be applied to
~c[(lxd (norm a))].~/
~bv[]
General Form:
(SYNTAXP test)
~ev[]
~c[Syntaxp] always returns ~c[t] and so may be added as a vacuous hypothesis.
However, when relieving the hypothesis, the test ``inside'' the ~c[syntaxp]
form is actually treated as a meta-level proposition about the proposed
instantiation of the rule's variables and that proposition must evaluate to
true (non-~c[nil]) to ``establish'' the ~c[syntaxp] hypothesis.
Note that the test of a ~c[syntaxp] hypothesis does not, in general, deal
with the meaning or semantics or values of the terms, but rather with their
syntactic forms. In the example above, the ~c[syntaxp] hypothesis allows the
rule to be applied to every target of the form ~c[(lxd u)], provided ~c[u] is
not of the form ~c[(norm v)]. Observe that without this syntactic
restriction the rule above could loop, producing a sequence of increasingly
complex targets ~c[(lxd a)], ~c[(lxd (norm a))], ~c[(lxd (norm (norm a)))],
etc. An intuitive reading of the rule might be ``~c[norm] the argument of
~c[lxd] unless it has already been ~c[norm]ed.''
Note also that a ~c[syntaxp] hypothesis deals with the syntactic form used
internally by ACL2, rather than that seen by the user. In some cases these
are the same, but there can be subtle differences with which the writer of a
~c[syntaxp] hypothesis must be aware. You can use ~c[:]~ilc[trans] to
display this internal representation.
There are two types of ~c[syntaxp] hypotheses. The simpler type may be a
hypothesis of a ~c[:]~ilc[rewrite], ~c[:]~ilc[definition], or
~c[:]~ilc[linear] rule provided ~c[test] contains at least one variable but
no free variables (~pl[free-variables]). In particular, ~c[test] may not use
~il[stobj]s; any stobj name will be treated as an ordinary variable. The
case of ~c[:]~ilc[meta] rules is similar to the above, except that it applies
to the result of applying the hypothesis metafunction. (Later below we will
describe the second type, an ~em[extended] ~c[syntaxp] hypothesis, which may
use ~ilc[state].)
We illustrate the use of simple ~c[syntaxp] hypotheses by slightly
elaborating the example given above. Consider a ~c[:]~ilc[rewrite] rule:
~bv[]
(IMPLIES (AND (RATIONALP X)
(SYNTAXP (NOT (AND (CONSP X)
(EQ (CAR X) 'NORM)))))
(EQUAL (LXD X)
(LXD (NORM X))))
~ev[]
How is this rule applied to ~c[(lxd (trn a b))]? First, we form a
substitution that instantiates the left-hand side of the conclusion of the
rule so that it is identical to the target term. In the present case, the
substitution replaces ~c[x] with ~c[(trn a b)].
~bv[]
(LXD X) ==> (LXD (trn a b)).
~ev[]
Then we backchain to establish the hypotheses, in order. Ordinarily this
means that we instantiate each hypothesis with our substitution and then
attempt to rewrite the resulting instance to true. Thus, in order to relieve
the first hypothesis above, we rewrite
~bv[]
(RATIONALP (trn a b)).
~ev[]
If this rewrites to true, we continue.
Of course, many users are aware of some exceptions to this general
description of the way we relieve hypotheses. For example, if a hypothesis
contains a ``free-variable'' ~-[] one not bound by the current substitution
~-[] we attempt to extend the substitution by searching for an instance of
the hypothesis among known truths. ~l[free-variables]. ~ilc[Force]d
hypotheses are another exception to the general rule of how hypotheses are
relieved.
Hypotheses marked with ~c[syntaxp], as in ~c[(syntaxp test)], are also
exceptions. We instantiate such a hypothesis; but instead of rewriting the
instantiated instance, we evaluate the instantiated ~c[test]. More
precisely, we evaluate ~c[test] in an environment in which its variable
symbols are bound to the quotations of the terms to which those variables are
bound in the instantiating substitution. So in the case in point, we (in
essence) evaluate
~bv[]
(NOT (AND (CONSP '(trn a b)) (EQ (CAR '(trn a b)) 'NORM))).
~ev[]
This clearly evaluates to ~c[t]. When a ~c[syntaxp] test evaluates to true,
we consider the ~c[syntaxp] hypothesis to have been established; this is
sound because logically ~c[(syntaxp test)] is ~c[t] regardless of ~c[test].
If the test evaluates to ~c[nil] (or fails to evaluate because of ~il[guard]
violations) we act as though we cannot establish the hypothesis and abandon
the attempt to apply the rule; it is always sound to give up.
The acute reader will have noticed something odd about the form
~bv[]
(NOT (AND (CONSP '(trn a b)) (EQ (CAR '(trn a b)) 'NORM))).
~ev[]
When relieving the first hypothesis, ~c[(RATIONALP X)], we substituted
~c[(trn a b)] for ~c[X]; but when relieving the second hypothesis,
~c[(SYNTAXP (NOT (AND (CONSP X) (EQ (CAR X) 'NORM))))], we substituted the
quotation of ~c[(trn a b)] for ~c[X]. Why the difference? Remember that in
the first hypothesis we are talking about the value of ~c[(trn a b)] ~-[] is
it rational ~-[] while in the second one we are talking about its syntactic
form. Remember also that Lisp, and hence ACL2, evaluates the arguments to a
function before applying the function to the resulting values. Thus, we are
asking ``Is the list ~c[(trn a b)] a ~ilc[consp] and if so, is its ~ilc[car]
the symbol ~c[NORM]?'' The ~c[quote]s on both ~c[(trn a b)] and ~c[NORM] are
therefore necessary. One can verify this by defining ~c[trn] to be, say
~ilc[cons], and then evaluating forms such as
~bv[]
(AND (CONSP '(trn a b)) (EQ (CAR '(trn a b)) 'NORM))
(AND (CONSP (trn a b)) (EQ (CAR (trn a b)) NORM))
(AND (CONSP (trn 'a 'b)) (EQ (CAR (trn 'a 'b)) NORM))
(AND (CONSP '(trn a b)) (EQ '(CAR (trn a b)) ''NORM))
~ev[]
at the top-level ACL2 prompt.
~l[syntaxp-examples] for more examples of the use of ~c[syntaxp].
An extended ~c[syntaxp] hypothesis is similar to the simple type described
above, but it uses two additional variables, ~c[mfc] and ~c[state], which
must not be bound by the left hand side or an earlier hypothesis of the rule.
They must be the last two variables mentioned by ~c[form]; first ~c[mfc],
then ~c[state]. These two variables give access to the functions
~c[mfc-]xxx; ~pl[extended-metafunctions]. As described there, ~c[mfc] is
bound to the so-called metafunction-context and ~c[state] to ACL2's
~ilc[state]. ~l[syntaxp-examples] for an example of the use of these
extended ~c[syntaxp] hypotheses.
We conclude with an example illustrating an error that may occur if you
forget that a ~c[syntaxp] hypothesis will be evaluated in an environment
where variables are bound to syntactic terms, not to values. Consider the
following ~il[stobj] introduction (~pl[defstobj]).
~bv[]
(defstobj st
(fld1 :type (signed-byte 3) :initially 0)
fld2)
~ev[]
The following ~c[syntaxp] hypothesis is ill-formed for evaluation. Indeed,
ACL2 causes an error because it anticipates that when trying to relieve the
~c[syntaxp] hypothesis of this rule, ACL2 would be evaluating ~c[(fld1 st)]
where ~c[st] is bound to a term, not to an actual ~c[stobj] as required by
the function ~c[fld1]. The error message is intended to explain this
problem.
~bv[]
ACL2 !>(defthm bad
(implies (syntaxp (quotep (fld1 st)))
(equal (stp st)
(and (true-listp st)
(equal (len st) 2)
(fld1p (car st))))))
ACL2 Error in ( DEFTHM BAD ...): The form (QUOTEP (FLD1 ST)), from
a SYNTAXP hypothesis, is not suitable for evaluation in an environment
where its variables are bound to terms. See :DOC SYNTAXP. Here is
further explanation:
The form ST is being used, as an argument to a call of FLD1, where
the single-threaded object of that name is required. But in the current
context, the only declared stobj name is STATE. Note: this error
occurred in the context (FLD1 ST).
Summary
Form: ( DEFTHM BAD ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
ACL2 Error in ( DEFTHM BAD ...): See :DOC failure.
******** FAILED ********
ACL2 !>
~ev[]
Presumably the intention was to rewrite the term ~c[(stp st)] when the
~c[fld1] component of ~c[st] is seen to be an explicit constant. As
explained elsewhere (~pl[free-variables]), we can obtain the result of
rewriting ~c[(fld1 st)] by binding a fresh variable to that term using
~c[EQUAL], as follows.
~bv[]
(defthm good
(implies (and (equal f (fld1 st))
(syntaxp (quotep f)))
(equal (stp st)
(and (true-listp st)
(equal (len st) 2)
(fld1p (car st))))))
~ev[]
The event above is admitted by ACL2. We can see it in action by disabling
the definition of ~c[stp] so that only the rule above, ~c[good], is available
for reasoning about ~c[stp].
~bv[]
(in-theory (disable stp))
~ev[]
Then the proof fails for the following, because the ~c[syntaxp] hypothesis of
the rule, ~c[good], fails: ~c[(quotep f)] evaluates to ~c[nil] when ~c[f] is
bound to the term ~c[(fld1 st)].
~bv[]
(thm (stp st))
~ev[]
However, the proof succeeds for the next form, as we explain below.
~bv[]
(thm (stp (list 3 rest)))
~ev[]
Consider what happens in that case when rule ~c[good] is applied to the term
~c[(stp (list 3 rest))]. (~l[free-variables] for relevant background.) The
first hypothesis of ~c[good] binds the variable ~c[f] to the result of
rewriting ~c[(fld1 st)], where ~c[st] is bound to the (internal form of) the
term ~c[(list 3 rest)] ~-[] and that result is clearly the term, ~c['3].
Then the ~c[syntaxp] hypothesis is successfully relieved, because the
evaluation of ~c[(quotep f)] returns ~c[t] in the environment that binds
~c[f] to ~c['3]."
`(synp (quote nil) (quote (syntaxp ,form)) (quote (and ,form t))))
(deflabel syntaxp-examples
:doc
":Doc-Section Syntaxp
examples pertaining to syntaxp hypotheses~/
~l[syntaxp] for a basic discussion of the use of ~c[syntaxp] to control
rewriting.~/
A common syntactic restriction is
~bv[]
(SYNTAXP (AND (CONSP X) (EQ (CAR X) 'QUOTE)))
~ev[]
or, equivalently,
~bv[]
(SYNTAXP (QUOTEP X)).
~ev[]
A rule with such a hypothesis can be applied only if ~c[x] is bound to
a specific constant. Thus, if ~c[x] is ~c[23] (which is actually
represented internally as ~c[(quote 23)]), the test evaluates to ~c[t]; but
if ~c[x] prints as ~c[(+ 11 12)] then the test evaluates to ~c[nil]
(because ~c[(car x)] is the symbol ~ilc[binary-+]). We see the use
of this restriction in the rule
~bv[]
(implies (and (syntaxp (quotep c))
(syntaxp (quotep d)))
(equal (+ c d x)
(+ (+ c d) x))).
~ev[]
If ~c[c] and ~c[d] are constants, then the
~ilc[executable-counterpart] of ~ilc[binary-+] will evaluate the sum
of ~c[c] and ~c[d]. For instance, under the influence of this rule
~bv[]
(+ 11 12 foo)
~ev[]
rewrites to
~bv[]
(+ (+ 11 12) foo)
~ev[]
which in turn rewrites to ~c[(+ 23 foo)]. Without the syntactic
restriction, this rule would loop with the built-in rules
~c[ASSOCIATIVITY-OF-+] or ~c[COMMUTATIVITY-OF-+].
We here recommend that the reader try the affects of entering expressions
such as the following at the top level ACL2 prompt.
~bv[]
(+ 11 23)
(+ '11 23)
(+ '11 '23)
(+ ''11 ''23)
:trans (+ 11 23)
:trans (+ '11 23)
:trans (+ ''11 23)
:trans (+ c d x)
:trans (+ (+ c d) x)
~ev[]
We also recommend that the reader verify our claim above about looping
by trying the affect of each of the following rules individually.
~bv[]
(defthm good
(implies (and (syntaxp (quotep c))
(syntaxp (quotep d)))
(equal (+ c d x)
(+ (+ c d) x))))
(defthm bad
(implies (and (acl2-numberp c)
(acl2-numberp d))
(equal (+ c d x)
(+ (+ c d) x))))
~ev[]
on (the false) theorems:
~bv[]
(thm
(equal (+ 11 12 x) y))
(thm
(implies (and (acl2-numberp c)
(acl2-numberp d)
(acl2-numberp x))
(equal (+ c d x) y))).
~ev[]
One can use ~c[:]~ilc[brr], perhaps in conjunction with
~ilc[cw-gstack], to investigate any looping.
Here is a simple example showing the value of rule ~c[good] above. Without
~c[good], the ~c[thm] form below fails.
~bv[]
(defstub foo (x) t)
(thm (equal (foo (+ 3 4 x)) (foo (+ 7 x))))
~ev[]
The next three examples further explore the use of ~c[quote] in
~ilc[syntaxp] hypotheses.
We continue the examples of ~ilc[syntaxp] hypotheses with a rule from
community book ~c[books/finite-set-theory/set-theory.lisp]. We will not
discuss here the meaning of this rule, but it is necessary to point out that
~c[(ur-elementp nil)] is true in this book.
~bv[]
(defthm scons-nil
(implies (and (syntaxp (not (equal a ''nil)))
(ur-elementp a))
(= (scons e a)
(scons e nil)))).
~ev[]
Here also, ~ilc[syntaxp] is used to prevent looping. Without the
restriction, ~c[(scons e nil)] would be rewritten to itself since
~c[(ur-elementp nil)] is true.~nl[]
Question: Why the use of two quotes in ~c[''nil]?~nl[]
Hints: ~c[Nil] is a constant just as 23 is. Try ~c[:trans (cons a nil)],
~c[:trans (cons 'a 'nil)], and ~c[:trans (cons ''a ''nil)].
Also, don't forget that the arguments to a function are evaluated before
the function is applied.
The next two rules move negative constants to the other side of an
inequality.
~bv[]
(defthm |(< (+ (- c) x) y)|
(implies (and (syntaxp (quotep c))
(syntaxp (< (cadr c) 0))
(acl2-numberp y))
(equal (< (+ c x) y)
(< (fix x) (+ (- c) y)))))
(defthm |(< y (+ (- c) x))|
(implies (and (syntaxp (quotep c))
(syntaxp (< (cadr c) 0))
(acl2-numberp y))
(equal (< y (+ c x))
(< (+ (- c) y) (fix x)))))
~ev[]
Questions: What would happen if ~c[(< (cadr c) '0)] were used?
What about ~c[(< (cadr c) ''0)]?
One can also use ~c[syntaxp] to restrict the application of a rule
to a particular set of variable bindings as in the following taken from
community book ~c[books/ihs/quotient-remainder-lemmas.lisp].
~bv[]
(encapsulate ()
(local
(defthm floor-+-crock
(implies
(and (real/rationalp x)
(real/rationalp y)
(real/rationalp z)
(syntaxp (and (eq x 'x) (eq y 'y) (eq z 'z))))
(equal (floor (+ x y) z)
(floor (+ (+ (mod x z) (mod y z))
(* (+ (floor x z) (floor y z)) z)) z)))))
(defthm floor-+
(implies
(and (force (real/rationalp x))
(force (real/rationalp y))
(force (real/rationalp z))
(force (not (equal z 0))))
(equal (floor (+ x y) z)
(+ (floor (+ (mod x z) (mod y z)) z)
(+ (floor x z) (floor y z))))))
)
~ev[]
We recommend the use of ~c[:]~c[brr] to investigate the use of
~c[floor-+-crock].
Another useful restriction is defined by
~bv[]
(defun rewriting-goal-literal (x mfc state)
;; Are we rewriting a top-level goal literal, rather than rewriting
;; to establish a hypothesis from a rewrite (or other) rule?
(declare (ignore x state))
(null (access metafunction-context mfc :ancestors))).
~ev[]
We use this restriction in the rule
~bv[]
(defthm |(< (* x y) 0)|
(implies (and (syntaxp (rewriting-goal-literal x mfc state))
(rationalp x)
(rationalp y))
(equal (< (* x y) 0)
(cond ((equal x 0)
nil)
((equal y 0)
nil)
((< x 0)
(< 0 y))
((< 0 x)
(< y 0))))))
~ev[]
which has been found to be useful, but which also leads to excessive
thrashing in the linear arithmetic package if used indiscriminately.
~l[extended-metafunctions] for information on the use of ~c[mfc]
and ~c[metafunction-context].
~/")
(defmacro bind-free (form &optional (vars))
(declare (xargs :guard (or (eq vars nil)
(eq vars t)
(and (symbol-listp vars)
(not (member-eq t vars))
(not (member-eq nil vars))))))
":Doc-Section Miscellaneous
to bind free variables of a rewrite, definition, or linear rule~/
~bv[]
Examples:
(IMPLIES (AND (RATIONALP LHS)
(RATIONALP RHS)
(BIND-FREE (FIND-MATCH-IN-PLUS-NESTS LHS RHS) (X)))
(EQUAL (EQUAL LHS RHS)
(EQUAL (+ (- X) LHS) (+ (- X) RHS))))
(IMPLIES (AND (BIND-FREE
(FIND-RATIONAL-MATCH-IN-TIMES-NESTS LHS RHS MFC STATE)
(X))
(RATIONALP X)
(CASE-SPLIT (NOT (EQUAL X 0))))
(EQUAL (< LHS RHS)
(IF (< 0 X)
(< (* (/ X) LHS) (* (/ X) RHS))
(< (* (/ X) RHS) (* (/ X) LHS)))))
~ev[]~/
General Forms:
~bv[]
(BIND-FREE term var-list)
(BIND-FREE term t)
(BIND-FREE term)
~ev[]
A rule which uses a ~c[bind-free] hypothesis has similarities to both a rule
which uses a ~ilc[syntaxp] hypothesis and to a ~c[:]~ilc[meta] rule.
~c[Bind-free] is like ~ilc[syntaxp], in that it logically always returns
~c[t] but may affect the application of a ~c[:]~ilc[rewrite],
~c[:]~ilc[definition], or ~c[:]~ilc[linear] rule when it is called at the
top-level of a hypothesis. It is like a ~c[:]~ilc[meta] rule, in that it
allows the user to perform transformations of terms under progammatic
control.
Note that a ~c[bind-free] hypothesis does not, in general, deal with the
meaning or semantics or values of the terms, but rather with their syntactic
forms. Before attempting to write a rule which uses ~c[bind-free], the user
should be familiar with ~ilc[syntaxp] and the internal form that ACL2 uses
for terms. This internal form is similar to what the user sees, but there
are subtle and important differences. ~ilc[Trans] can be used to view this
internal form.
Just as for a ~ilc[syntaxp] hypothesis, there are two basic types of
~c[bind-free] hypotheses. The simpler type of ~c[bind-free] hypothesis may
be used as the nth hypothesis in a ~c[:]~ilc[rewrite], ~c[:]~ilc[definition],
or ~c[:]~ilc[linear] rule whose ~c[:]~ilc[corollary] is
~c[(implies (and hyp1 ... hypn ... hypk) (equiv lhs rhs))] provided ~c[term]
is a term, ~c[term] contains at least one variable, and every variable
occuring freely in ~c[term] occurs freely in ~c[lhs] or in some ~c[hypi],
~c[i<n]. In addition, ~c[term] must not use any stobjs. Later below we will
describe the second type, an ~em[extended] ~c[bind-free] hypothesis, which
may use ~ilc[state]. Whether simple or extended, a ~c[bind-free] hypothesis
may return an alist that binds free variables, as explained below, or it may
return a list of such alists. We focus on the first of these cases: return
of a single binding alist. We conclude our discussion with a section that
covers the other case: return of a list of alists.
We begin our description of ~c[bind-free] by examining the first example
above in some detail.
We wish to write a rule which will cancel ``like'' addends from both sides of
an equality. Clearly, one could write a series of rules such as
~bv[]
(DEFTHM THE-HARD-WAY-2-1
(EQUAL (EQUAL (+ A X B)
(+ X C))
(EQUAL (+ A B)
(FIX C))))
~ev[]
with one rule for each combination of positions the matching addends might be
found in (if one knew before-hand the maximum number of addends that would
appear in a sum). But there is a better way. (In what follows, we assume
the presence of an appropriate set of rules for simplifying sums.)
Consider the following definitions and theorem:
~bv[]
(DEFUN INTERSECTION-EQUAL (X Y)
(COND ((ENDP X)
NIL)
((MEMBER-EQUAL (CAR X) Y)
(CONS (CAR X) (INTERSECTION-EQUAL (CDR X) Y)))
(T
(INTERSECTION-EQUAL (CDR X) Y))))
(DEFUN PLUS-LEAVES (TERM)
(IF (EQ (FN-SYMB TERM) 'BINARY-+)
(CONS (FARGN TERM 1)
(PLUS-LEAVES (FARGN TERM 2)))
(LIST TERM)))
(DEFUN FIND-MATCH-IN-PLUS-NESTS (LHS RHS)
(IF (AND (EQ (FN-SYMB LHS) 'BINARY-+)
(EQ (FN-SYMB RHS) 'BINARY-+))
(LET ((COMMON-ADDENDS (INTERSECTION-EQUAL (PLUS-LEAVES LHS)
(PLUS-LEAVES RHS))))
(IF COMMON-ADDENDS
(LIST (CONS 'X (CAR COMMON-ADDENDS)))
NIL))
NIL))
(DEFTHM CANCEL-MATCHING-ADDENDS-EQUAL
(IMPLIES (AND (RATIONALP LHS)
(RATIONALP RHS)
(BIND-FREE (FIND-MATCH-IN-PLUS-NESTS LHS RHS) (X)))
(EQUAL (EQUAL LHS RHS)
(EQUAL (+ (- X) LHS) (+ (- X) RHS)))))
~ev[]
How is this rule applied to the following term?
~bv[]
(equal (+ 3 (expt a n) (foo a c))
(+ (bar b) (expt a n)))
~ev[]
As mentioned above, the internal form of an ACL2 term is not always what one
sees printed out by ACL2. In this case, by using ~c[:]~ilc[trans] one can
see that the term is stored internally as
~bv[]
(equal (binary-+ '3
(binary-+ (expt a n) (foo a c)))
(binary-+ (bar b) (expt a n))).
~ev[]
When ACL2 attempts to apply ~c[cancel-matching-addends-equal] to the term
under discussion, it first forms a substitution that instantiates the
left-hand side of the conclusion so that it is identical to the target term.
This substitution is kept track of by the substitution alist:
~bv[]
((LHS . (binary-+ '3
(binary-+ (expt a n) (foo a c))))
(RHS . (binary-+ (bar b) (expt a n)))).
~ev[]
ACL2 then attempts to relieve the hypotheses in the order they were
given. Ordinarily this means that we instantiate each hypothesis with our
substitution and then attempt to rewrite the resulting instance to true.
Thus, in order to relieve the first hypothesis, we rewrite:
~bv[]
(RATIONALP (binary-+ '3
(binary-+ (expt a n) (foo a c)))).
~ev[]
Let us assume that the first two hypotheses rewrite to ~c[t]. How do we
relieve the ~c[bind-free] hypothesis? Just as for a ~ilc[syntaxp]
hypothesis, ACL2 evaluates ~c[(find-match-in-plus-nests lhs rhs)] in an
environment where ~c[lhs] and ~c[rhs] are instantiated as determined by the
substitution. In this case we evaluate
~bv[]
(FIND-MATCH-IN-PLUS-NESTS '(binary-+ '3
(binary-+ (expt a n) (foo a c)))
'(binary-+ (bar b) (expt a n))).
~ev[]
Observe that, just as in the case of a ~ilc[syntaxp] hypothesis, we
substitute the quotation of the variables bindings into the term to be
evaluated. ~l[syntaxp] for the reasons for this. The result of this
evaluation, ~c[((X . (EXPT A N)))], is then used to extend the substitution
alist:
~bv[]
((X . (EXPT A N))
(LHS . (binary-+ '3
(binary-+ (expt a n) (foo a c))))
(RHS . (binary-+ (bar b) (expt a n)))),
~ev[]
and this extended substitution determines ~c[cancel-matching-addends-equal]'s
result:
~bv[]
(EQUAL (+ (- X) LHS) (+ (- X) RHS))
==>
(EQUAL (+ (- (EXPT A N)) 3 (EXPT A N) (FOO A C))
(+ (- (EXPT A N)) (BAR B) (EXPT A N))).
~ev[]
Question: What is the internal form of this result?~nl[]
Hint: Use ~c[:]~ilc[trans].
When this rule fires, it adds the negation of a common term to both sides of
the equality by selecting a binding for the otherwise-free variable ~c[x],
under programmatic control. Note that other mechanisms such as the binding
of ~il[free-variables] may also extend the substitution alist.
Just as for a ~ilc[syntaxp] test, a ~c[bind-free] form signals failure by
returning ~c[nil]. However, while a ~ilc[syntaxp] test signals success by
returning true, a ~c[bind-free] form signals success by returning an alist
which is used to extend the current substitution alist. Because of this use
of the alist, there are several restrictions on it ~-[] in particular the
alist must only bind variables, these variables must not be already bound by
the substitution alist, and the variables must be bound to ACL2 terms. If
~c[term] returns an alist and the alist meets these restrictions, we append
the alist to the substitution alist and use the result as the new current
substitution alist. This new current substitution alist is then used when we
attempt to relieve the next hypothesis or, if there are no more, instantiate
the right hand side of the rule.
There is also a second, optional, ~c[var-list] argument to a ~c[bind-free]
hypothesis. If provided, it must be either ~c[t] or a list of variables. If
it is not provided, it defaults to ~c[t]. If it is a list of variables, this
second argument is used to place a further restriction on the possible values
of the alist to be returned by ~c[term]: any variables bound in the alist
must be present in the list of variables. We strongly recommend the use of
this list of variables, as it allows some consistency checks to be performed
at the time of the rule's admittance which are not possible otherwise.
An extended ~c[bind-free] hypothesis is similar to the simple type described
above, but it uses two additional variables, ~c[mfc] and ~c[state], which
must not be bound by the left hand side or an earlier hypothesis of the rule.
They must be the last two variables mentioned by ~c[term]: first ~c[mfc],
then ~c[state]. These two variables give access to the functions
~c[mfc-]xxx; ~pl[extended-metafunctions]. As described there, ~c[mfc] is
bound to the so-called metafunction-context and ~c[state] to ACL2's
~ilc[state]. ~l[bind-free-examples] for examples of the use of these
extended ~c[bind-free] hypotheses.
~st[SECTION]: Returning a list of alists.
As promised above, we conclude with a discussion of the case that evaluation
of the ~c[bind-free] term produces a list of alists, ~c[x], rather than a
single alist. In this case each member ~c[b] of ~c[x] is considered in turn,
starting with the first and proceeding through the list. Each such ~c[b] is
handled exactly as discussed above, as though it were the result of
evaluating the ~c[bind-free] term. Thus, each ~c[b] extends the current
variable binding alist, and all remaining hypotheses are then relieved, as
though ~c[b] had been the value obtained by evaluating the ~c[bind-free]
term. As soon as one such ~c[b] leads to successful relieving of all
remaining hypotheses, the process of relieving hypotheses concludes, so no
further members of ~c[x] are considered.
We illustrate with a simple pedagogical example. First introduce functions
~c[p1] and ~c[p2] such that a rewrite rule specifies that ~c[p2] implies
~c[p1], but with a free variable.
~bv[]
(defstub p1 (x) t)
(defstub p2 (x y) t)
(defaxiom p2-implies-p1
(implies (p2 x y)
(p1 x)))
~ev[]
If we add the following axiom, then ~c[(p1 x)] follows logically for all
~c[x].
~bv[]
(defaxiom p2-instance
(p2 v (cons v 4)))
~ev[]
Unfortunately, evaluation of ~c[(thm (p1 a))] fails, because ACL2 fails to
bind the free variable ~c[y] in order to apply the rule ~c[p2-instance].
Let's define a function that produces a list of alists, each binding the
variable ~c[y]. Of course, we know that only the middle one below is
necessary in this simple example. In more complex examples, one might use
heuristics to construct such a list of alists.
~bv[]
(defun my-alists (x)
(list (list (cons 'y (fcons-term* 'cons x ''3)))
(list (cons 'y (fcons-term* 'cons x ''4)))
(list (cons 'y (fcons-term* 'cons x ''5)))))
~ev[]
The following rewrite rule uses ~c[bind-free] to return a list of candidate
alists binding ~c[y].
~bv[]
(defthm p2-implies-p1-better
(implies (and (bind-free (my-alists x)
(y)) ; the second argument, (y), is optional
(p2 x y))
(p1 x)))
~ev[]
Now the proof succeeds for ~c[(thm (p1 a))]. Why? When ACL2 applies the
~c[rewrite] rule ~c[p2-implies-p1-better], it evaluates ~c[my-alists], as we
can see from the following ~il[trace], to bind ~c[y] in three different
alists.
~bv[]
ACL2 !>(thm (p1 a))
1> (ACL2_*1*_ACL2::MY-ALISTS A)
<1 (ACL2_*1*_ACL2::MY-ALISTS (((Y CONS A '3))
((Y CONS A '4))
((Y CONS A '5))))
Q.E.D.
~ev[]
The first alist, binding ~c[y] to ~c[(cons a '3)], fails to allow the
hypothesis ~c[(p2 x y)] to be proved. But the next binding of ~c[y], to
~c[(cons a '4)], succeeds: then the current binding alist is
~c[((x . a) (y . (cons a '4)))], for which the hypothesis ~c[(p2 x y)]
rewrites to true using the rewrite rule ~c[p2-instance].~/"
(if vars
`(synp (quote ,vars) (quote (bind-free ,form ,vars)) (quote ,form))
`(synp (quote t) (quote (bind-free ,form)) (quote ,form))))
(deflabel bind-free-examples
:doc
":Doc-Section Bind-free
examples pertaining to ~ilc[bind-free] hypotheses~/
~l[bind-free] for a basic discussion of the use of ~c[bind-free] to control
rewriting.
Note that the examples below all illustrate the common case in which a
~c[bind-free] hypothesis generates a binding alist. ~l[bind-free], in
particular the final section, for a discussion of the case that instead a
list of binding alists is generated.~/
We give examples of the use of ~ilc[bind-free] hypotheses from the
perspective of a user interested in reasoning about arithmetic, but
it should be clear that ~ilc[bind-free] can be used for many other
purposes also.
EXAMPLE 1: Cancel a common factor.
~bv[]
(defun bind-divisor (a b)
; If a and b are polynomials with a common factor c, we return a
; binding for x. We could imagine writing get-factor to compute the
; gcd, or simply to return a single non-invertible factor.
(let ((c (get-factor a b)))
(and c (list (cons 'x c)))))
(defthm cancel-factor
;; We use case-split here to ensure that, once we have selected
;; a binding for x, the rest of the hypotheses will be relieved.
(implies (and (acl2-numberp a)
(acl2-numberp b)
(bind-free (bind-divisor a b) (x))
(case-split (not (equal x 0)))
(case-split (acl2-numberp x)))
(iff (equal a b)
(equal (/ a x) (/ b x)))))
~ev[]
EXAMPLE 2: Pull integer summand out of floor. Note: This example
has an ~em[extended] ~ilc[bind-free] hypothesis, which uses the term
~c[(find-int-in-sum sum mfc state)].
~bv[]
(defun fl (x)
;; This function is defined, and used, in the IHS books.
(floor x 1))
(defun int-binding (term mfc state)
;; The call to mfc-ts returns the encoded type of term. ;
;; Thus, we are asking if term is known by type reasoning to ;
;; be an integer. ;
(declare (xargs :stobjs (state) :mode :program))
(if (ts-subsetp (mfc-ts term mfc state)
*ts-integer*)
(list (cons 'int term))
nil))
(defun find-int-in-sum (sum mfc state)
(declare (xargs :stobjs (state) :mode :program))
(if (and (nvariablep sum)
(not (fquotep sum))
(eq (ffn-symb sum) 'binary-+))
(or (int-binding (fargn sum 1) mfc state)
(find-int-in-sum (fargn sum 2) mfc state))
(int-binding sum mfc state)))
; Some additional work is required to prove the following. So for
; purposes of illustration, we wrap skip-proofs around the defthm.
(skip-proofs
(defthm cancel-fl-int
;; The use of case-split is probably not needed, since we should
;; know that int is an integer by the way we selected it. But this
;; is safer.
(implies (and (acl2-numberp sum)
(bind-free (find-int-in-sum sum mfc state) (int))
(case-split (integerp int)))
(equal (fl sum)
(+ int (fl (- sum int)))))
:rule-classes ((:rewrite :match-free :all)))
)
; Arithmetic libraries will have this sort of lemma.
(defthm hack (equal (+ (- x) x y) (fix y)))
(in-theory (disable fl))
(thm (implies (and (integerp x) (acl2-numberp y))
(equal (fl (+ x y)) (+ x (fl y)))))
~ev[]
EXAMPLE 3: Simplify terms such as (equal (+ a (* a b)) 0)
~bv[]
(defun factors (product)
;; We return a list of all the factors of product. We do not
;; require that product actually be a product.
(if (eq (fn-symb product) 'BINARY-*)
(cons (fargn product 1)
(factors (fargn product 2)))
(list product)))
(defun make-product (factors)
;; Factors is assumed to be a list of ACL2 terms. We return an
;; ACL2 term which is the product of all the ellements of the
;; list factors.
(cond ((atom factors)
''1)
((null (cdr factors))
(car factors))
((null (cddr factors))
(list 'BINARY-* (car factors) (cadr factors)))
(t
(list 'BINARY-* (car factors) (make-product (cdr factors))))))
(defun quotient (common-factors sum)
;; Common-factors is a list of ACL2 terms. Sum is an ACL2 term each
;; of whose addends have common-factors as factors. We return
;; (/ sum (make-product common-factors)).
(if (eq (fn-symb sum) 'BINARY-+)
(let ((first (make-product (set-difference-equal (factors (fargn sum 1))
common-factors))))
(list 'BINARY-+ first (quotient common-factors (fargn sum 2))))
(make-product (set-difference-equal (factors sum)
common-factors))))
(defun intersection-equal (x y)
(cond ((endp x)
nil)
((member-equal (car x) y)
(cons (car x) (intersection-equal (cdr x) y)))
(t
(intersection-equal (cdr x) y))))
(defun common-factors (factors sum)
;; Factors is a list of the factors common to all of the addends
;; examined so far. On entry, factors is a list of the factors in
;; the first addend of the original sum, and sum is the rest of the
;; addends. We sweep through sum, trying to find a set of factors
;; common to all the addends of sum.
(declare (xargs :measure (acl2-count sum)))
(cond ((null factors)
nil)
((eq (fn-symb sum) 'BINARY-+)
(common-factors (intersection-equal factors (factors (fargn sum 1)))
(fargn sum 2)))
(t
(intersection-equal factors (factors sum)))))
(defun simplify-terms-such-as-a+ab-rel-0-fn (sum)
;; If we can find a set of factors common to all the addends of sum,
;; we return an alist binding common to the product of these common
;; factors and binding quotient to (/ sum common).
(if (eq (fn-symb sum) 'BINARY-+)
(let ((common-factors (common-factors (factors (fargn sum 1))
(fargn sum 2))))
(if common-factors
(let ((common (make-product common-factors))
(quotient (quotient common-factors sum)))
(list (cons 'common common)
(cons 'quotient quotient)))
nil))
nil))
(defthm simplify-terms-such-as-a+ab-=-0
(implies (and (bind-free
(simplify-terms-such-as-a+ab-rel-0-fn sum)
(common quotient))
(case-split (acl2-numberp common))
(case-split (acl2-numberp quotient))
(case-split (equal sum
(* common quotient))))
(equal (equal sum 0)
(or (equal common 0)
(equal quotient 0)))))
(thm (equal (equal (+ u (* u v)) 0)
(or (equal u 0) (equal v -1))))
~ev[]")
(defun extra-info (x y)
(declare (ignore x y)
(xargs :guard t))
t)
(in-theory (disable extra-info (extra-info) (:type-prescription extra-info)))
(defconst *extra-info-fn*
; If this symbol changes, then change *acl2-exports* and the documentation for
; xargs and verify-guards accordingly.
'extra-info)
; We deflabel Rule-Classes here, so we can refer to it in the doc string for
; tau-system. We define tau-system (the noop fn whose rune controls the
; whether the tau database is used during proofs) in axioms.lisp because we
; build in the nume of its executable counterpart as a constant (e.g., as we do
; with FORCE) and do not want constants additions to the sources to require
; changing that nume (as would happen if tau-system were defined in
; rewrite.lisp where rule-classes was originally defined).
(deflabel rule-classes
:doc
":Doc-Section Rule-Classes
adding rules to the database~/
~bv[]
Example Form (from community book finite-set-theory/total-ordering.lisp):
(defthm <<-trichotomy
(implies (and (ordinaryp x)
(ordinaryp y))
(or (<< x y)
(equal x y)
(<< y x)))
:rule-classes
((:rewrite :corollary
(implies (and (ordinaryp x)
(ordinaryp y)
(not (<< x y))
(not (equal x y)))
(<< y x)))))
General Form:
a true list of rule class objects as defined below
Special Cases:
a symbol abbreviating a single rule class object
~ev[]
When ~ilc[defthm] is used to prove a named theorem, rules may be derived from
the proved formula and stored in the database. The user specifies which
kinds of rules are to be built, by providing a list of rule class ~i[names]
or, more generally, rule class ~i[objects], which name the kind of rule to
build and optionally specify varioius attributes of the desired rule.
The rule class names are ~c[:]~ilc[REWRITE], ~c[:]~ilc[BUILT-IN-CLAUSE],
~c[:]~ilc[CLAUSE-PROCESSOR], ~c[:]~ilc[COMPOUND-RECOGNIZER],
~c[:]~ilc[CONGRUENCE], ~c[:]~ilc[DEFINITION], ~c[:]~ilc[ELIM],
~c[:]~ilc[EQUIVALENCE], ~c[:]~ilc[FORWARD-CHAINING], ~c[:]~ilc[GENERALIZE],
~c[:]~ilc[INDUCTION], ~c[:]~ilc[LINEAR], ~c[:]~ilc[META],
~c[:]~ilc[REFINEMENT], ~c[:]~ilc[TAU-SYSTEM], ~c[:]~ilc[TYPE-PRESCRIPTION],
~c[:]~ilc[TYPE-SET-INVERTER], and ~c[:]~ilc[WELL-FOUNDED-RELATION]. Some
classes ~i[require] the user-specification of certain class-specific
attributes. Each class of rule affects the theorem prover's behavior in a
different way, as discussed in the corresponding documentation topic. In
this topic we discuss the various attributes that may be attached to rule
classes.
A rule class object is either one of the ~c[:class] keywords or else is a
list of the form shown below. Those fields marked with ``(!)'' are required
when the ~c[:class] is as indicated.
~bv[]
(:class
:COROLLARY term
:TRIGGER-FNS (fn1 ... fnk) ; provided :class = :META (!)
:TRIGGER-TERMS (t1 ... tk) ; provided :class = :FORWARD-CHAINING
; or :class = :LINEAR
:TYPE-SET n ; provided :class = :TYPE-SET-INVERTER
:TYPED-TERM term ; provided :class = :TYPE-PRESCRIPTION
:CLIQUE (fn1 ... fnk) ; provided :class = :DEFINITION
:CONTROLLER-ALIST alist ; provided :class = :DEFINITION
:INSTALL-BODY directive ; provided :class = :DEFINITION
:LOOP-STOPPER alist ; provided :class = :REWRITE
:PATTERN term ; provided :class = :INDUCTION (!)
:CONDITION term ; provided :class = :INDUCTION
:SCHEME term ; provided :class = :INDUCTION (!)
:MATCH-FREE all-or-once ; provided :class = :REWRITE
or :class = :LINEAR
or :class = :FORWARD-CHAINING
:BACKCHAIN-LIMIT-LST limit ; provided :class = :REWRITE
or :class = :META
or :class = :LINEAR
or :class = :TYPE-PRESCRIPTION
:HINTS hints ; provided instrs = nil
:INSTRUCTIONS instrs ; provided hints = nil
:OTF-FLG flg)
~ev[]
When rule class objects are provided by the user, most of the fields are
optional and their values are computed in a context sensitive way. When a
~c[:class] keyword is used as a rule class object, all relevant fields are
determined contextually. Each rule class object in ~c[:rule-classes] causes
one or more rules to be added to the database. The ~c[:class] keywords are
documented individually under the following names. Note that when one of
these names is used as a ~c[:class], it is expected to be in the keyword
package (i.e., the names below should be preceded by a colon but the ACL2
~il[documentation] facilities do not permit us to use keywords below).
~/
See also ~ilc[force], ~il[case-split], ~ilc[syntaxp], and ~ilc[bind-free] for
``pragmas'' one can wrap around individual hypotheses of certain classes of
rules to affect how the hypothesis is relieved.
Before we get into the discussion of rule classes, let us return to an
important point. In spite of the large variety of rule classes available, at
present we recommend that new ACL2 users rely almost exclusively on
(conditional) rewrite rules. A reasonable but slightly bolder approach is to
use ~c[:]~ilc[type-prescription] and ~c[:]~ilc[forward-chaining] rules for
``type-theoretic'' rules, especially ones whose top-level function symbol is
a common one like ~ilc[true-listp] or ~ilc[consp]; ~pl[type-prescription] and
~pl[forward-chaining]. However, the rest of the rule classes are really not
intended for widespread use, but rather are mainly for experts.
We expect that we will write more about the question of which kind of rule to
use. For now: when in doubt, use a ~c[:]~ilc[rewrite] rule.
~c[:Rule-classes] is an optional keyword argument of the ~ilc[defthm] (and
~ilc[defaxiom]) event. In the following, let ~c[name] be the name of the
event and let ~c[thm] be the formula to be proved or added as an axiom.
If ~c[:rule-classes] is not specified in a ~ilc[defthm] (or ~ilc[defaxiom])
event, it is as though what was specified was to make one or more
~c[:]~ilc[rewrite] rules, i.e., as though ~c[:rule-classes] ~c[((:rewrite))]
had been used. Use ~c[:rule-classes] ~c[nil] to specify that no rules are to
be generated.
If ~c[:rule-classes] class is specified, where class is a non-~c[nil] symbol,
it is as though ~c[:rule-classes] ~c[((class))] had been used. Thus,
~c[:rule-classes] ~c[:]~ilc[forward-chaining] is equivalent to
~c[:rule-classes] ~c[((:forward-chaining))].
We therefore now consider ~c[:rule-classes] as a true list. If any element
of that list is a keyword, replace it by the singleton list containing that
keyword. Thus, ~c[:rule-classes] ~c[(:rewrite :elim)] is the same as
~c[:rule-classes] ~c[((:rewrite) (:elim))].
Each element of the expanded value of ~c[:rule-classes] must be a true list
whose ~ilc[car] is one of the rule class keyword tokens listed above, e.g.,
~c[:]~ilc[rewrite], ~c[:]~ilc[elim], etc., and whose ~ilc[cdr] is a ``keyword
alist'' alternately listing keywords and values. The keywords in this alist
must be taken from those shown below. They may be listed in any order and
most may be omitted, as specified below.~bq[]
~c[:]~ilc[Corollary] ~-[] its value, ~c[term], must be a term. If omitted,
this field defaults to ~c[thm]. The ~c[:]~ilc[corollary] of a rule class
object is the formula actually used to justify the rule created and thus
determines the form of the rule. Nqthm provided no similar capability: each
rule was determined by ~c[thm], the theorem or axiom added. ACL2 permits
~c[thm] to be stated ``elegantly'' and then allows the ~c[:]~ilc[corollary]
of a rule class object to specify how that elegant statement is to be
interpreted as a rule. For the rule class object to be well-formed, its
(defaulted) ~c[:]~ilc[corollary], ~c[term], must follow from ~c[thm]. Unless
~c[term] follows trivially from ~c[thm] using little more than propositional
logic, the formula ~c[(implies thm term)] is submitted to the theorem prover
and the proof attempt must be successful. During that proof attempt the
values of ~c[:]~ilc[hints], ~c[:]~ilc[instructions], and ~c[:]~ilc[otf-flg],
as provided in the rule class object, are provided as arguments to the
prover. Such auxiliary proofs give the sort of output that one expects from
the prover. However, as noted above, corollaries that follow trivially are
not submitted to the prover; thus, such corollaries cause no prover output.
Note that before ~c[term] is stored, all calls of macros in it are expanded
away. ~l[trans].
~c[:]~ilc[Hints], ~c[:]~ilc[instructions], ~c[:]~ilc[otf-flg] ~-[] the values
of these fields must satisfy the same restrictions placed on the fields of
the same names in ~ilc[defthm]. These values are passed to the recursive
call of the prover used to establish that the ~c[:]~ilc[corollary] of the
rule class object follows from the theorem or axiom ~c[thm].
~c[:]~ilc[Type-set] ~-[] this field may be supplied only if the ~c[:class] is
~c[:]~ilc[type-set-inverter]. When provided, the value must be a type-set,
an integer in a certain range. If not provided, an attempt is made to
compute it from the corollary. ~l[type-set-inverter].
~c[:Typed-term] ~-[] this field may be supplied only if the ~c[:class] is
~c[:]~ilc[type-prescription]. When provided, the value is the term for which
the ~c[:]~ilc[corollary] is a type-prescription lemma. If no ~c[:typed-term]
is provided in a ~c[:]~ilc[type-prescription] rule class object, we try to
compute heuristically an acceptable term. ~l[type-prescription].
~c[:Trigger-terms] ~-[] this field may be supplied only if the ~c[:class] is
~c[:]~ilc[forward-chaining] or ~c[:]~ilc[linear]. When provided, the value
is a list of terms, each of which is to trigger the attempted application of
the rule. If no ~c[:trigger-terms] is provided, we attempt to compute
heuristically an appropriate set of triggers. ~l[forward-chaining] or
~pl[linear].
~c[:Trigger-fns] ~-[] this field must (and may only) be supplied if the
~c[:class] is ~c[:]~ilc[meta]. Its value must be a list of function symbols
(except that a macro alias can stand in for a function symbol;
~pl[add-macro-alias]). Terms with these symbols trigger the application of
the rule. ~l[meta].
~c[:Clique] and ~c[:controller-alist] ~-[] these two fields may only be
supplied if the ~c[:class] is ~c[:]~ilc[definition]. If they are omitted,
then ACL2 will attempt to guess them. Suppose the ~c[:]~ilc[corollary] of
the rule is ~c[(implies hyp (equiv (fn a1 ... an) body))]. The value of the
~c[:clique] field should be a true list of function symbols, and if
non-~c[nil] must include ~c[fn]. These symbols are all the members of the
mutually recursive clique containing this definition of ~c[fn]. That is, a
call of any function in ~c[:clique] is considered a ``recursive call'' for
purposes of the expansion heuristics. The value of the ~c[:controller-alist]
field should be an alist that maps each function symbol in the ~c[:clique] to
a list of ~c[t]'s and ~c[nil]'s of length equal to the arity of the function.
For example, if ~c[:clique] consists of just two symbols, ~c[fn1] and
~c[fn2], of arities ~c[2] and ~c[3] respectively, then
~c[((fn1 t nil) (fn2 nil t t))] is a legal value of ~c[:controller-alist].
The value associated with a function symbol in this alist is a ``mask''
specifying which argument slots of the function ``control'' the recursion for
heuristic purposes. Sloppy choice of ~c[:clique] or ~c[:controller-alist]
can result in infinite expansion and stack overflow.
~c[:Install-body] ~-[] this field may only be supplied if the ~c[:class] is
~c[:]~ilc[definition]. Its value must be ~c[t], ~c[nil], or the default,
~c[:normalize]. A value of ~c[t] or ~c[:normalize] will cause ACL2 to
install this rule as the new body of the function being ``defined'' (~c[fn]
in the paragraph just above); hence this definition will be installed for
future ~c[:expand] ~il[hints]. Furthermore, if this field is omitted or the
value is ~c[:normalize], then this definition will be simplified using the
so-called ``normalization'' procedure that is used when processing
definitions made with ~ilc[defun]. You must explicitly specify
~c[:install-body nil] in the following cases: ~c[fn] (as above) is a member
of the value of constant ~c[*definition-minimal-theory*], the arguments are
not a list of distinct variables, ~c[equiv] (as above) is not ~ilc[equal], or
there are free variables in the hypotheses or right-hand side
(~pl[free-variables]). However, supplying ~c[:install-body nil] will not
affect the rewriter's application of the ~c[:definition] rule, other than to
avoid using the rule to apply ~c[:expand] hints. If a definition rule
equates ~c[(f a1 ... ak)] with ~c[body] but there are hypotheses, ~c[hyps],
then ~c[:expand] ~il[hints] will replace terms ~c[(f term1 ... termk)] by
corresponding terms ~c[(if hyps body (hide (f term1 ... termk)))].
~c[:]~ilc[Loop-stopper] ~-[] this field may only be supplied if the class is
~c[:]~ilc[rewrite]. Its value must be a list of entries each consisting of
two variables followed by a (possibly empty) list of functions, for example
~c[((x y binary-+) (u v foo bar))]. It will be used to restrict application
of rewrite rules by requiring that the list of instances of the second
variables must be ``smaller'' than the list of instances of the first
variables in a sense related to the corresponding functions listed;
~pl[loop-stopper]. The list as a whole is allowed to be ~c[nil], indicating
that no such restriction shall be made. Note that any such entry that
contains a variable not being instantiated, i.e., not occurring on the left
side of the rewrite rule, will be ignored. However, for simplicity we merely
require that every variable mentioned should appear somewhere in the
corresponding ~c[:]~ilc[corollary] formula.
~c[:Pattern], ~c[:Condition], ~c[:Scheme] ~-[] the first and last of these
fields must (and may only) be supplied if the class is ~c[:]~ilc[induction].
~c[:Condition] is optional but may only be supplied if the class is
~c[:]~ilc[induction]. The values must all be terms and indicate,
respectively, the pattern to which a new induction scheme is to be attached,
the condition under which the suggestion is to be made, and a term which
suggests the new scheme. ~l[induction].
~c[:Match-free] ~-[] this field must be ~c[:all] or ~c[:once] and may be
supplied only if the ~c[:class] is either ~c[:]~ilc[rewrite],
~c[:]~ilc[linear], or ~c[:]~ilc[forward-chaining]. (This field is not
implemented for other rule classes, including the
~c[:]~ilc[type-prescription] rule class.) ~l[free-variables] for a
description of this field. Note: Although this field is intended to be used
for controlling retries of matching free variables in hypotheses, it is legal
to supply it even if there are no such free variables. This can simplify the
automated generation of rules, but note that when ~c[:match-free] is
supplied, the warning otherwise provided for the presence of free variables
in hypotheses will be suppressed.
~c[:Backchain-limit-lst] ~-[] this field may be supplied only if the
~c[:class] is either ~c[:]~ilc[rewrite], ~c[:]~ilc[meta], ~c[:]~ilc[linear],
or ~c[:]~ilc[type-prescription]. It is further required either only one rule
is generated from the formula or, at least, every such rule has the same list
of hypotheses. The value for ~c[:backchain-limit-lst] must be ~c[nil]; a
non-negative integer; or, except in the case of ~c[:]~ilc[meta] rules, a true
list each element of which is either ~c[nil] or a non-negative integer. If
it is a list, its length must be equal to the number of hypotheses of the
rule and each item in the list is the ``backchain limit'' associated with the
corresponding hypothesis. If ~c[backchain-limit-lst] is a non-negative
integer, it is defaulted to a list of the appropriate number of repetitions
of that integer. The backchain limit of a hypothesis is used to limit the
effort that ACL2 will expend when relieving the hypothesis. If it is
~c[NIL], no new limits are imposed; if it is an integer, the hypothesis will
be limited to backchaining at most that many times. Note that backchaining
may be further limited by a global ~c[backchain-limit]; ~pl[backchain-limit]
for details. For different ways to reign in the rewriter,
~pl[rewrite-stack-limit] and ~pl[set-prover-step-limit]. Jared Davis has
pointed out that you can set the ~c[:backchain-limit-lst] to 0 to avoid any
attempt to relieve ~ilc[force]d hypotheses, which can lead to a significant
speed-up in some cases.
~eq[]Once ~c[thm] has been proved (in the case of ~ilc[defthm]) and each rule
class object has been checked for well-formedness (which might require
additional proofs), we consider each rule class object in turn to generate
and add rules. Let ~c[:class] be the class keyword token of the ~c[i]th
class object (counting from left to right). Generate the ~il[rune]
~c[(:class name . x)], where ~c[x] is ~c[nil] if there is only one class and
otherwise ~c[x] is ~c[i]. Then, from the ~c[:]~ilc[corollary] of that
object, generate one or more rules, each of which has the name
~c[(:class name . x)]. See the ~c[:]~ilc[doc] entry for each rule class to
see how formulas determine rules. Note that it is in principle possible for
several rules to share the same name; it happens whenever a
~c[:]~ilc[corollary] determines more than one rule. This in fact only occurs
for ~c[:]~ilc[rewrite], ~c[:]~ilc[linear], and ~c[:]~ilc[forward-chaining]
class rules and only then if the ~c[:]~ilc[corollary] is essentially a
conjunction. (See the documentation for ~il[rewrite], ~il[linear], or
~il[forward-chaining] for details.)~/")
(defun tau-system (x)
":Doc-Section Rule-Classes
make a rule for the ACL2 ``type checker''~/
This documentation topic describes the syntactic form of ``tau-system''
rules; these rules extend ACL2's ``type checker.'' For an introduction to
the tau system, ~pl[introduction-to-the-tau-system].
There happens to be a ~i[function] named ~c[tau-system], defined as the
identity function. Its only role is to provide the rune
~c[(:EXECUTABLE-COUNTERPART TAU-SYSTEM)], which is used to enable and disable
the tau system. Otherwise the function ~c[tau-system] has no purpose and we
recommend that you avoid using it so you are free to enable and disable the
tau system.
When in the default (``greedy'') mode (see ~ilc[set-tau-auto-mode]), every
~ilc[defun] and every ~c[:corollary] (see ~c[:]~ilc[rule-classes]) of every
~ilc[defthm] stored as a rule ~i[of any] ~c[:rule-class] is inspected to
determine if it is of one of the forms below. Rules of these forms are added
to the tau database, even if they are not labeled as ~c[:tau-system] rules,
e.g., a ~c[:]~ilc[rewrite] rule might contribute to the tau database! To
add a rule to the tau database without adding any other kind of rule, tag it
with ~c[:]~ilc[rule-classes] ~c[:tau-system]. If a theorem has
~c[:]~ilc[rule-classes] ~c[nil], it is not considered for the tau database.
~bv[]
General Forms:
~i[Boolean]:
(booleanp (p v))
~i[Eval]:
(p 'const) or
(p *const*)
~i[Simple]:
(implies (p v) (q v))
~i[Conjunctive]:
(implies (and (p1 v) ... (pk v)) (q v)), ; Here k must exceed 1.
~i[Signature Form 1]:
(implies (and (p1 x1) (p2 x2) ...)
(q (fn x1 x2 ...)))
~i[Signature Form 2]:
(implies (and (p1 x1) (p2 x2) ...)
(q (mv-nth 'n (fn x1 x2 ...))))
~i[Bounder Form 1 (or Form 2)]:
(implies (and (tau-intervalp i1)
...
(or (equal (tau-interval-dom i1) 'dom1-1)
...)
...
(in-tau-intervalp x1 i1)
...)
(and (tau-intervalp (bounder-fn i1 ...))
(in-tau-intervalp ~i[target]
(bounder-fn i1 ...))))
where ~i[target] is
(fn x1 ... y1 ...) in ~i[Form 1], and
(mv-nth 'n (fn x1 ... y1 ...)) in ~i[Form 2]
~i[Big Switch]:
(equal (fn . formals) body)
~i[MV-NTH Synonym]:
(equal (nth-alt x y) (mv-nth x y)) or
(equal (mv-nth x y) (nth-alt x y))
~ev[]
The symbols ~c[p], ~c[q], ~c[p1], etc., denote monadic (one-argument)
Boolean-valued function symbols, or equalities in which one argument is
constant, arithmetic comparisons in which one argument is a rational or
integer constant, or the logical negations of such terms. By ``equalities''
we allow ~ilc[EQUAL], ~ilc[EQ], ~ilc[EQL], and ~ilc[=]. By ``arithmetic
comparison'' we mean ~ilc[<], ~ilc[<=], ~ilc[>=], or ~ilc[>]. Any of
these tau predicates may appear negated.
The notation ~c[(p v)] above might stand for any one of:
~bv[]
(INTEGERP X)
(EQUAL V 'MONDAY)
(<= I 16)
(NOT (EQUAL X 'SUNDAY))
~ev[]
The different rule forms above affect different aspects of the tau system.
We discuss each form in more detail below.~/
The documentation below is written as though the tau system is in auto mode!
To insure that the only rules added to the tau system are those explicitly
assigned to ~c[:rule-class] ~c[:tau-system], you should use
~ilc[set-tau-auto-mode] to select manual mode.
~bv[]
General Form: ~i[Boolean]:
(booleanp (p v))
~ev[]
Here ~c[p] must be a function symbol and ~c[v] must be a variable. Such a
~c[:tau-system] rule adds ~c[p] to the list of tau predicates. If ~c[p] was
recognized as Boolean when it was defined, there is no need to state this
rule. This form is needed if you define a monadic Boolean function in such a
way that the system does not recognize that it is Boolean.
~bv[]
General Form: ~i[Eval]:
(p 'const) or
(p *const*)
~ev[]
Here ~c[p] must be a function symbol. In addition, recall that these general
tau predicate forms may appear negated. So the form above includes such
theorems as ~c[(NOT (GOOD-STATEP *INITIAL-STATE*))]. A theorem of this form thus
records whether a named predicate is true or false on the given constant.
Generally, when the tau system must determine whether an enabled tau
predicate is true or false on a constant, it simply evaluates the predicate
on the constant. This can be impossible or very inefficient if ~c[p] is not
defined but constrained, or if ~c[p] is defined in a hard-to-compute
way (e.g., ~c[(defun p (x) (evenp (ack x x)))] where ~c[ack] is the Ackermann
function), or perhaps if the constant is very large. By proving a
~c[:tau-system] rule of Eval form, you cause the tau system to note the value
of the predicate on the constant and henceforth to look it up instead of
evaluating the definition.
A difficulty, however, is determining that a slow down is due to the
evaluation of tau predicates and not some other reason. The first step is
determining that tau is slowing the proof down. See ~ilc[time-tracker-tau]
for an explanation of ~c[TIME-TRACKER-NOTE]s output during some proofs
involving tau reasoning. These notes can alert you to the fact that
significant amounts of time are being spent in the tau system.
~ilc[Time-tracker-tau] gives some ways of determining whether tau predicate
evaluation is involved. (If worse comes to worst, consider the following
hack: In the ACL2 source file ~c[tau.lisp], immediately after the definition
of the system function ~c[ev-fncall-w-tau-recog], there is a comment which
contains some raw Lisp code that can be used to investigate whether tau's use
of evaluation on constants is causing a problem.) However, once a recognizer
and the constants on which it is being evaluated are identified, the tau
system can be sped up by proving Eval rules to pre-compute and store the
values of the recognizer on those constants. Alternatively, at the possible
loss of some completeness in the tau system, the executable counterpart of
the recognizer can be disabled.
~bv[]
General Form: ~i[Simple]:
(implies (p v) (q v))
~ev[]
Here ~c[v] must be a variable symbol. This rule builds-in the information
that anything satisfying ~c[p] must also satisfy ~c[q], i.e., the ``type''
~c[q] includes the ``type'' ~c[p]. Recall that the forms may be negated.
Most of the time, ~c[p] and ~c[q] will be predicate symbols but it is
possible they will be equalities- or inequalities-with-constants. Examples
of Simple rules include the following, which are in fact built-in:
~bv[]
(implies (natp x) (integerp x))
(implies (integerp x) (rationalp x))
(implies (integerp x) (not (true-listp x)))
(implies (natp x) (not (< x 0)))
(implies (symbol-alistp x) (alistp x))
~ev[]
Because the tau system records the transitive closure of the Simple rules,
any time a term is known to satisfy ~c[natp] it is also known to satisfy
~c[integerp] and ~c[rationalp], and known not to satisfy ~c[true-listp],
and known to be non-negative.
~bv[]
General Form: ~i[Conjunctive]:
(implies (and (p1 v) ... (pk v)) (q v)), ; Here k must exceed 1.
~ev[]
The ~c[pi] and ~c[q] may be any tau predicates or their negations, ~c[v] must
be a variable symbol, and ~c[i] must exceed 1 or else this is a Simple rule.
An obvious operational interpretation of this rule is that if an object is
known to satisfy all of the ~c[pi], then it is known to satisfy ~c[q].
However, the actual interpretation is more general. For example, if an
object is known to satisfy all but one of the ~c[pi] and is known not to
satisfy ~c[q], then the object is known not to satisfy the ``missing''
~c[pi].
For example, the following Conjunctive rule allows tau to conclude that if
weekday ~c[D] is not ~c[MON], ~c[TUE], ~c[THU] or ~c[FRI], then it is ~c[WED]:
~bv[]
(implies (and (weekdayp d)
(not (eq d 'MON))
(not (eq d 'TUE))
(not (eq d 'WED))
(not (eq d 'THU)))
(eq d 'FRI))
~ev[]
The tau database is not closed under conjunctive rules; they are applied dynamically.
~bv[]
General Form: ~i[Signature Form 1]:
(implies (and (p1 x1) (p2 x2) ... (pn xn) dep-hyp)
(q (fn x1 x2 ... xn)))
~ev[]
The ~c[pi] and ~c[q] may be any tau predicates or their negations, ~c[fn]
must be a function symbol of arity ~c[n], the ~c[xi] must be distinct
variable symbols and ~c[dep-hyp] may be any term, provided it is not of the
~c[(pi xi)] shape and the only the variables in it are the ~c[xi].
The Signature form actually allows multiple tau predicates to be applied to
each variable, e.g., x1 might be required to be both an ~c[INTEGERP] and
~c[EVENP]. The Signature form allows there to be multiple hypotheses
classified as ~c[dep-hyp]s, i.e., not fitting any of the previous shapes, and
they are implicitly just conjoined. The name ``dep-hyp'' is an abbreviation
of ``dependent hypothesis'' and stems from the fact they often express
relations between several of the function's inputs rather than type-like
constraints on individual inputs.
A Signature rule informs tau that the function ~c[fn] returns an object
satisfying ~c[q] provided that the arguments satisfy the respective ~c[pi]
and provided that ~c[dep-hyp] occurs in the current context. Note: to be
precise, dependent hypotheses are relieved only by applying ACL2's most
primitive form of reasoning, ~il[type-set]. In particular, tau reasoning is
not used to establish dependent hypotheses. The presence of a ~c[dep-hyp] in
a signature rule may severely restrict its applicability. We discuss this
after showing a few mundane examples.
An example Signature rule is
~bv[]
(implies (and (integer-listp x)
(integer-listp y))
(integer-listp (append x y)))
~ev[]
Of course, a function may have multiple signatures:
~bv[]
(implies (and (symbol-listp x)
(symbol-listp y))
(symbol-listp (append x y)))
~ev[]
Here is a Signature rule for the function ~c[pairlis$]:
~bv[]
(implies (and (symbol-listp x)
(integer-listp y))
(symbol-alistp (pairlis$ x y)))
~ev[]
The tau system can consequently check this theorem by composing the last two
rules shown and exploiting Simple rule stating that symbol-alists are also
alists:
~bv[]
(thm (implies (and (symbol-listp a)
(symbol-listp b)
(integer-listp y))
(alistp (pairlis$ (append a b) y))))
~ev[]
Since ~c[a] and ~c[b] are known to be lists of symbols and a signature for
~c[append] is that it preserves that predicate, the first argument to the
~c[pairlis$] expression is known to be a list of symbols. This means the
Signature rule for ~c[pairlis$] tells us the result is a ~c[symbol-alistp], but
the previously mentioned Simple rule, ~c[(implies (symbol-alistp x) (alistp x))],
tells us the result is also an ~c[alistp].
When a Signature rule has an ~c[dep-hyp], that hypothesis is not an expression
in the tau system. Tau is not used to check that hypothesis. Instead, tau uses the
more primitive ~il[type-set] mechanism of ACL2. Here is an example of a Signature
rule with a ~c[dep-hyp]:
~bv[]
(implies (and (natp n)
(integer-listp a)
(< n (len a)))
(integerp (nth n a)))
~ev[]
Note that the last hypothesis is a dependent hypothesis: it is not a tau
predicate but a relationship between ~c[n] and ~c[a]. It is relieved by
~il[type-set]. If one is trying to compute the signature of an ~c[(nth n a)]
expression in a context in which ~c[(< n (len a))] is explicitly assumed,
then this mechanism would establish the dependent hypothesis. But one can
easily imagine an almost identical context where, say ~c[(< n (len (rev a)))]
is explicitly assumed. In that context, the Signature rule would not be
fired because ~ilc[type-set] cannot establish ~c[(< n (len a))] from
~c[(< n (len (rev a)))], even though it would be easily proved by rewriting
using the theorem ~c[(equal (len (rev a)) (len a))].
Note also that if this signature could be phrased in a way that eliminates
the dependency between ~c[n] and ~c[a] it would be more effective. For example,
here is a related Signature rule without a dependent hypothesis:
~bv[]
(implies (and (natp n)
(register-filep a)
(< n 16))
(integerp (nth n a)))
~ev[]
In this theorem we require only that ~c[n] be less than 16, which is a tau
predicate and hence just an additional tau constraint on ~c[n].
~bv[]
General Form: ~i[Signature Form 2]:
(implies (and (p1 x1) (p2 x2) ... (pn xn) dep-hyp)
(q (mv-nth 'n (fn x1 x2 ... xn))))
~ev[]
This form of signature rule is just like form 1 except that it is useful for functions
that return multiple-values and allows us to ``type-check'' their individual outputs.
~bv[]
General Form: ~i[Bounder Forms 1 and 2]:
(implies (and (tau-intervalp i1)
...
(or (equal (tau-interval-dom i1) 'dom1-1)
...)
...
(in-tau-intervalp x1 i1)
...)
(and (tau-intervalp (bounder-fn i1 ...))
(in-tau-intervalp ~i[target]
(bounder-fn i1 ...))))
~ev[]
where ~i[target] is either ~c[(fn x1 ... y1 ...)] in ~i[Form 1] or
~c[(mv-nth 'n (fn x1 ... y1 ...))] in ~i[Form 2].
This form is for advanced users only and the schema given above is
just a reminder of the general shape. A ``bounder'' for a given function
symbol, ~c[fn], is a function symbol ~c[bounder-fn] that computes an interval
containing ~c[(fn x1 ... y1 ...)] (or its ~c[n]th component in the case of
Form 2 rules) from the intervals containing certain of the arguments of
~c[fn]. The correctness theorem for a bounder function informs the tau
system that bounds for ~c[fn] are computed by ~c[bounder-fn] and sets up the
correspondence between the relevant arguments, ~c[xi], of ~c[fn] and the
intervals containing those arguments, ~c[ii] to which ~c[bounder-fn] is
applied. When the tau system computes the tau for a call of ~c[fn], it
computes the tau of the relevant arguments and applies the bounder to the
intervals of those tau. This provides a domain and upper and/or lower bounds
for the value of the term. The tau system then further augments that with
signature rules. ~l[bounders] for details on intervals, bounders, and
bounder correctness theorems.
~bv[]
General Form: ~i[Big Switch]:
(equal (fn . formals) body)
~ev[]
In the Big Switch form, ~c[fn] must be a function symbol, ~c[formals] must be
a list of distinct variable symbols, and ~c[body] must be a ``big switch''
term, i.e., one that case splits on tau predicates about a single variable
and produces a term not involving that variable. An example of a Big Switch
rule is
~bv[]
(equal (conditional-type x y)
(if (consp x)
(consp y)
(integerp y)))
~ev[]
The idea is that the tau system can treat calls of ~c[conditional-type] as
a tau-predicate after determining the tau of an argument.
Since equality-to-constants are tau predicates, a more common example of a
Big Switch rule is
~bv[]
(equal (dtypep x expr)
(case x
(STMT (stmt-typep expr))
(EXPR (expr-typep expr))
(MODULE (module-typep expr))
(otherwise nil)))
~ev[]
This is because ~c[(case x (STMT ...) ...)] macroexpands in ACL2 to
~c[(if (eql x 'STMT) ... ...)] and ~c[(eql x 'STMT)] is a tau predicate
about ~c[x].
Big Switch rules are recognized when a function is defined (if tau is in
automatic mode). They generally do not have to be proved explicitly, though
they might be when mutual recursion is involved. Only the first detected Big
Switch rule about a function ~c[fn] is recognized.
~bv[]
General Form: ~i[MV-NTH Synonym]:
(equal (nth-alt x y) (mv-nth x y)) or
(equal (mv-nth x y) (nth-alt x y))
~ev[]
Rules of this form just tell the tau system that the user-defined function
~c[nth-alt] is synonymous with the ACL2 primitive function ~c[mv-nth].
Because ACL2's rewriter gives special handling to ~c[mv-nth], users sometimes
define their own versions of that function so they can disable them and control
rewriting better. By revealing to the tau system that such a synonym has been
introduced you allow Signature rules of Form 2 to be used.~/"
(declare (xargs :mode :logic :guard t))
x)
; Essay on the Status of the Tau System During and After Bootstrapping
; Think of there being two ``status bits'' associated with the tau system: (a)
; whether it is enabled or disabled and (b) whether it is automatically making
; :tau-system rules from non-:tau-system rules. These two bits are independent.
; Bit (a) may be inspected by (enabled-numep *tau-system-xnume* (ens state))
; Bit (b) may be inspected by (table acl2-defaults-table :tau-auto-modep)
; To boot, we must think about two things: how we want these bits set DURING
; bootstrap and how we want them set (for the user) AFTER bootstrap. Our
; current choices are:
; During Bootstrapping:
; (1.a) tau is disabled -- unavailable for use in boot-strap proofs, and
; (1.b) tau is in manual mode -- make no :tau-system rules except those so tagged
; We don't actually have any reason for (1.a). The bootstrap process works
; fine either way, as of this writing (Aug, 2011) when the tau system was first
; integrated into ACL2. But we feel (1.b) is important: it is convenient if <------ ???? tau to do
; the tau database contains the rules laid down during the bootstrap process,
; e.g., the tau signatures of the primitives so that if the user immediately
; selects automatic mode for the session, the tau database is up to date as of
; that selection.
; After Bootstrapping:
; (2.a) tau is disabled -- not available for use in proofs, BUT
; (2.b) tau is in automatic mode -- makes :tau-system rules out of <---- ??? actually in manual mode
; non-:tau-system rules
; We feel that after booting, (2.a) is important because of backwards
; compatibility during book certification: we don't want goals eliminated by
; tau, causing subgoals to be renumbered. We feel that (2.b) is important in the
; long run: we'd like tau to be fully automatic and robust in big proof
; efforts, so we are trying to stress it by collecting tau rules even during
; book certification. In addition, we want the user who turns on the tau
; system to find that it knows as much as possible.
; Our post-bootstrap selections for these two bits affects the regression
; suite. If the tau system is enabled by default, then some adjustments must
; be made in the regression suite books! We have successfully recertified the
; regression suite with tau enabled, but only after making certain changes
; described in Essay on Tau-Clause -- Using Tau to Prove or Mangle Clauses.
; If tau is enabled by default, the regression slows down by about
; real slowdown: 5.3%
; user slowdown: 5.8%
; sys slowdown: 12.3%
; as measured with time make -j 3 regression-fresh on a Macbook Pro 2.66 GHz
; Intel Core i7 with 8 GB 1067 MHz DDR3 running Clozure Common Lisp Version
; 1.6-dev-r14316M-trunk (DarwinX8632).
; How do we achieve these settings? The following constant defines all four
; settings. To rebuild the system with different settings, just redefine this
; constant. It is not (always) possible to adjust these settings during boot
; by set-tau-auto-mode events, for example, because the acl2-defaults-table may
; not exist.
(defconst *tau-status-boot-strap-settings*
'((t . t) . (t . t))) ; See Warning below!
; '((t . t) . (nil . t))) ; ((1.a . 1.b) . (2.a . 2.b))
; Thus,
; (1.a) = (caar *tau-status-boot-strap-settings*) ; tau system on/off during boot
; (1.b) = (cdar *tau-status-boot-strap-settings*) ; tau auto mode during boot
; (2.a) = (cadr *tau-status-boot-strap-settings*) ; tau system on/off after boot
; (2.b) = (cddr *tau-status-boot-strap-settings*) ; tau auto mode after boot
; Warning: If you change these defaults, be sure to change the documentation
; topics tau-system and introduction-to-the-tau-system and set-tau-auto-mode
; and probably tau-status, where we are likely to say that the default setting
; the user sees is tau-system on, auto mode on.
(in-theory (if (caar *tau-status-boot-strap-settings*)
(enable (:executable-counterpart tau-system))
(disable (:executable-counterpart tau-system))))
(defconst *tau-system-xnume*
(+ *force-xnume* 12))
; These constants record the tau indices of the arithmetic predicates.
(defconst *tau-acl2-numberp-pair* '(0 . ACL2-NUMBERP))
(defconst *tau-integerp-pair*
#+non-standard-analysis
'(5 . INTEGERP)
#-non-standard-analysis
'(4 . INTEGERP))
(defconst *tau-rationalp-pair*
#+non-standard-analysis
'(6 . RATIONALP)
#-non-standard-analysis
'(5 . RATIONALP))
(defconst *tau-natp-pair*
#+non-standard-analysis
'(20 . NATP)
#-non-standard-analysis
'(17 . NATP))
(defconst *tau-posp-pair*
#+non-standard-analysis
'(21 . POSP)
#-non-standard-analysis
'(18 . POSP))
(defconst *tau-minusp-pair*
#+non-standard-analysis
'(29 . MINUSP)
#-non-standard-analysis
'(26 . MINUSP))
(defconst *tau-booleanp-pair*
#+(and (not non-standard-analysis) acl2-par)
'(103 . BOOLEANP)
#+(and (not non-standard-analysis) (not acl2-par))
'(102 . BOOLEANP)
#+(and non-standard-analysis (not acl2-par))
'(105 . BOOLEANP)
#+(and non-standard-analysis acl2-par)
'(106 . BOOLEANP)
)
; Note: The constants declared above are checked for accuracy after bootstrap
; by check-built-in-constants in interface-raw.lisp.
; The following axiom can be proved. John Cowles has proved some of these and
; we have proved others in our efforts to verify the guards in our code.
; Eventually we will replace some of these axioms by theorems. But not now
; because things are too fluid.
;; RAG - This axiom was strengthened to include the reals. Amusingly,
;; it was also weakened, since it leaves open the possibility that for
;; rational x, x*x is irrational. Luckily, the type-system knows this
;; isn't the case, so hopefully we have not weakened ACL2.
(defaxiom nonnegative-product
; Note that in (* x x), x might be complex. So, we do not want to force the
; hypothesis below.
(implies (real/rationalp x)
(and (real/rationalp (* x x))
(<= 0 (* x x))))
; We need the :type-prescription rule class below. Without it, ACL2 cannot
; prove (implies (rationalp x) (<= 0 (* x x))); primitive type-set reasoning
; will not notice that both arguments of * are identical.
:rule-classes ((:type-prescription
:typed-term (* x x))))
; (add-schema Induction Schema
; (and (implies (not (integerp x)) (p x))
; (p 0)
; (implies (and (integerp x)
; (< 0 x)
; (p (- x 1)))
; (p x))
; (implies (and (integerp x)
; (< x 0)
; (p (+ x 1)))
; (p x)))
; (p x))
;
(defaxiom Integer-0
(integerp 0)
:rule-classes nil)
(defaxiom Integer-1
(integerp 1)
:rule-classes nil)
(defaxiom Integer-step
(implies (integerp x)
(and (integerp (+ x 1))
(integerp (+ x -1))))
:rule-classes nil)
(defaxiom Lowest-Terms
(implies (and (integerp n)
(rationalp x)
(integerp r)
(integerp q)
(< 0 n)
(equal (numerator x) (* n r))
(equal (denominator x) (* n q)))
(equal n 1))
:rule-classes nil)
; The following predicates are disjoint and these facts are all built into type-set:
; (((acl2-numberp x)
; (complex-rationalp x)
; ((rationalp x)
; ((integerp x) (< 0 x) (equal x 0) (< x 0))
; ((not (integerp x)) (< 0 x) (< x 0))))
; ((consp x) (proper-consp x) (improper-consp x))
; ((symbolp x) (equal x nil) (equal x T) (not (or (equal x T)
; (equal x NIL))))
; (stringp x)
; (characterp x)
; (other-kinds-of-objects))
; Here we prove some rules that the tau system uses to manage primitive type-sets.
; The rules for natp, posp, and minusp are messy because those concepts are not
; simply predicates on the signs but also (sometimes) on INTEGERP.
(defthm basic-tau-rules
(and (implies (natp v) (not (minusp v)))
(implies (natp v) (integerp v))
(implies (posp v) (natp v))
(implies (minusp v) (acl2-numberp v))
(implies (integerp v) (rationalp v))
(implies (rationalp v) (not (complex-rationalp v)))
(implies (rationalp v) (not (characterp v)))
(implies (rationalp v) (not (stringp v)))
(implies (rationalp v) (not (consp v)))
(implies (rationalp v) (not (symbolp v)))
(implies (complex-rationalp v) (not (characterp v)))
(implies (complex-rationalp v) (not (stringp v)))
(implies (complex-rationalp v) (not (consp v)))
(implies (complex-rationalp v) (not (symbolp v)))
(implies (characterp v) (not (stringp v)))
(implies (characterp v) (not (consp v)))
(implies (characterp v) (not (symbolp v)))
(implies (stringp v) (not (consp v)))
(implies (stringp v) (not (symbolp v)))
(implies (consp v) (not (symbolp v)))
; We catch Boolean type-prescriptions and convert them to tau signature rules.
; The first lemma below links booleanp to symbolp and thus to the other recogs.
; The next two deal with special cases: boolean functionse that do not have
; type-prescriptions because we have special functions for computing their
; type-sets.
(implies (booleanp v) (symbolp v))
(booleanp (equal x y))
(booleanp (< x y))
)
:rule-classes :tau-system)
; ; For each of the primitives we have the axiom that when their guards
; ; are unhappy, the result is given by apply. This is what permits us
; ; to replace unguarded terms by apply's. E.g.,
;
; (defaxiom +-guard
; (implies (or (not (rationalp x))
; (not (rationalp y)))
; (equal (+ x y)
; (apply '+ (list x y)))))
(defaxiom car-cdr-elim
(implies (consp x)
(equal (cons (car x) (cdr x)) x))
:rule-classes :elim)
(defaxiom car-cons (equal (car (cons x y)) x))
(defaxiom cdr-cons (equal (cdr (cons x y)) y))
(defaxiom cons-equal
(equal (equal (cons x1 y1) (cons x2 y2))
(and (equal x1 x2)
(equal y1 y2))))
; Induction Schema: (and (implies (not (consp x)) (p x))
; (implies (and (consp x) (p (car x)) (p (cdr x)))
; (p x)))
; ----------------------------------------------
; (p x)
;
;
(defaxiom booleanp-characterp
(booleanp (characterp x))
:rule-classes nil)
(defaxiom characterp-page
(characterp #\Page)
:rule-classes nil)
(defaxiom characterp-tab
(characterp #\Tab)
:rule-classes nil)
(defaxiom characterp-rubout
(characterp #\Rubout)
:rule-classes nil)
; No-duplicatesp
(defun no-duplicatesp-eq-exec (l)
(declare (xargs :guard (symbol-listp l)))
(cond ((endp l) t)
((member-eq (car l) (cdr l)) nil)
(t (no-duplicatesp-eq-exec (cdr l)))))
(defun no-duplicatesp-eql-exec (l)
(declare (xargs :guard (eqlable-listp l)))
(cond ((endp l) t)
((member (car l) (cdr l)) nil)
(t (no-duplicatesp-eql-exec (cdr l)))))
(defun no-duplicatesp-equal (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l) t)
((member-equal (car l) (cdr l)) nil)
(t (no-duplicatesp-equal (cdr l)))))
(defmacro no-duplicatesp-eq (x)
`(no-duplicatesp ,x :test 'eq))
(defthm no-duplicatesp-eq-exec-is-no-duplicatesp-equal
(equal (no-duplicatesp-eq-exec x)
(no-duplicatesp-equal x)))
(defthm no-duplicatesp-eql-exec-is-no-duplicatesp-equal
(equal (no-duplicatesp-eql-exec x)
(no-duplicatesp-equal x)))
(defmacro no-duplicatesp (x &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
check for duplicates in a list~/
~bv[]
General Forms:
(no-duplicatesp x)
(no-duplicatesp x :test 'eql) ; same as above (eql as equality test)
(no-duplicatesp x :test 'eq) ; same, but eq is equality test
(no-duplicatesp x :test 'equal) ; same, but equal is equality test
~ev[]
~c[(no-duplicatesp lst)] is true if and only if no member of ~c[lst] occurs
twice in ~c[lst]. The optional keyword, ~c[:TEST], has no effect logically,
but provides the test (default ~ilc[eql]) used for comparing elements of
~c[lst].~/
The ~il[guard] for a call of ~c[no-duplicatesp] depends on the test. In all
cases, the argument must satisfy ~ilc[true-listp]. If the test is ~ilc[eql],
then the argument must satisfy ~ilc[eqlable-listp]. If the test is ~ilc[eq],
then the argument must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between
~c[no-duplicatesp] and its variants:
~bq[]
~c[(no-duplicatesp-eq x lst)] is equivalent to
~c[(no-duplicatesp x lst :test 'eq)];
~c[(no-duplicatesp-equal x lst)] is equivalent to
~c[(no-duplicatesp x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[no-duplicatesp-equal].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x))
:logic (no-duplicatesp-equal x)
:exec (no-duplicatesp-eq-exec x)))
((equal test ''eql)
`(let-mbe ((x ,x))
:logic (no-duplicatesp-equal x)
:exec (no-duplicatesp-eql-exec x)))
(t ; (equal test 'equal)
`(no-duplicatesp-equal ,x))))
; The following is used in stobj-let.
(defun chk-no-duplicatesp (lst)
(declare (xargs :guard (and (eqlable-listp lst)
(no-duplicatesp lst)))
(ignore lst))
nil)
; Rassoc
(defun r-eqlable-alistp (x)
; For guard to rassoc-eql-exec.
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of pairs whose ~ilc[cdr]s are suitable for ~ilc[eql]~/
The predicate ~c[r-eqlable-alistp] tests whether its argument is a
~ilc[true-listp] of ~ilc[consp] objects whose ~ilc[cdr]s all satisfy
~ilc[eqlablep].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (consp (car x))
(eqlablep (cdr (car x)))
(r-eqlable-alistp (cdr x))))))
(defun r-symbol-alistp (x)
; For guard to rassoc-eq-exec.
":Doc-Section ACL2::ACL2-built-ins
recognizer for association lists with symbols as values~/
~c[(R-symbol-alistp x)] is true if and only if ~c[x] is a list of pairs of
the form ~c[(cons key val)] where ~c[val] is a ~ilc[symbolp].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (consp (car x))
(symbolp (cdr (car x)))
(r-symbol-alistp (cdr x))))))
(defun rassoc-eq-exec (x alist)
(declare (xargs :guard (if (symbolp x)
(alistp alist)
(r-symbol-alistp alist))))
(cond ((endp alist) nil)
((eq x (cdr (car alist))) (car alist))
(t (rassoc-eq-exec x (cdr alist)))))
(defun rassoc-eql-exec (x alist)
(declare (xargs :guard (if (eqlablep x)
(alistp alist)
(r-eqlable-alistp alist))))
(cond ((endp alist) nil)
((eql x (cdr (car alist))) (car alist))
(t (rassoc-eql-exec x (cdr alist)))))
(defun rassoc-equal (x alist)
(declare (xargs :guard (alistp alist)))
#-acl2-loop-only ; Jared Davis found efficiencies in using native assoc
(rassoc x alist :test #'equal)
#+acl2-loop-only
(cond ((endp alist) nil)
((equal x (cdr (car alist))) (car alist))
(t (rassoc-equal x (cdr alist)))))
(defmacro rassoc-eq (x alist)
`(rassoc ,x ,alist :test 'eq))
(defthm rassoc-eq-exec-is-rassoc-equal
(equal (rassoc-eq-exec x alist)
(rassoc-equal x alist)))
(defthm rassoc-eql-exec-is-rassoc-equal
(equal (rassoc-eql-exec x alist)
(rassoc-equal x alist)))
#+acl2-loop-only
(defmacro rassoc (x alist &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
look up value in association list~/
~bv[]
General Forms:
(rassoc x alist)
(rassoc x alist :test 'eql) ; same as above (eql as equality test)
(rassoc x alist :test 'eq) ; same, but eq is equality test
(rassoc x alist :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Rassoc x alist)] is the first member of ~c[alist] whose ~ilc[cdr] is
~c[x], or ~c[nil] if no such member exists. ~c[(rassoc x alist)] is thus
similar to ~c[(assoc x alist)], the difference being that it looks for the
first pair in the given alist whose ~ilc[cdr], rather than ~ilc[car], is
~ilc[eql] to ~c[x]. ~l[assoc]. The optional keyword, ~c[:TEST], has no
effect logically, but provides the test (default ~ilc[eql]) used for
comparing ~c[x] with the ~ilc[cdr]s of successive elements of ~c[lst].~/
The ~il[guard] for a call of ~c[rassoc] depends on the test. In all cases,
the second argument must satisfy ~ilc[alistp]. If the test is ~ilc[eql],
then either the first argument must be suitable for ~ilc[eql] (~pl[eqlablep])
or the second argument must satisfy ~ilc[r-eqlable-alistp]. If the test is
~ilc[eq], then either the first argument must be a symbol or the second
argument must satisfy ~ilc[r-symbol-alistp].
~l[equality-variants] for a discussion of the relation between ~c[rassoc] and
its variants:
~bq[]
~c[(rassoc-eq x lst)] is equivalent to ~c[(rassoc x lst :test 'eq)];
~c[(rassoc-equal x lst)] is equivalent to ~c[(rassoc x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[rassoc-equal].
~c[Rassoc] is defined by Common Lisp. See any Common Lisp documentation for
more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (alist ,alist))
:logic (rassoc-equal x alist)
:exec (rassoc-eq-exec x alist)))
((equal test ''eql)
`(let-mbe ((x ,x) (alist ,alist))
:logic (rassoc-equal x alist)
:exec (rassoc-eql-exec x alist)))
(t ; (equal test 'equal)
`(rassoc-equal ,x ,alist))))
(defconst *standard-chars*
'(#\Newline #\Space
#\! #\" #\# #\$ #\% #\& #\' #\( #\) #\* #\+ #\, #\- #\. #\/ #\0 #\1
#\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 #\: #\; #\< #\= #\> #\? #\@ #\A #\B
#\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M #\N #\O #\P #\Q #\R #\S
#\T #\U #\V #\W #\X #\Y #\Z #\[ #\\ #\] #\^ #\_ #\` #\a #\b #\c #\d
#\e #\f #\g #\h #\i #\j #\k #\l #\m #\n #\o #\p #\q #\r #\s #\t #\u
#\v #\w #\x #\y #\z #\{ #\| #\} #\~))
#+acl2-loop-only
(defun standard-char-p (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for standard characters~/
~c[(Standard-char-p x)] is true if and only if ~c[x] is a ``standard''
character, i.e., a member of the list ~c[*standard-chars*]. This list
includes ~c[#\\Newline] and ~c[#\\Space] ~il[characters], as well as the
usual punctuation and alphanumeric ~il[characters].~/
~c[Standard-char-p] has a ~il[guard] requiring its argument to be a
character.
~c[Standard-char-p] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
; The following guard is required by p. 234 of CLtL.
(declare (xargs :guard (characterp x)))
(if (member x *standard-chars*)
t
nil))
(defun standard-char-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of standard characters~/
~c[(standard-char-listp x)] is true if and only if ~c[x] is a
null-terminated list all of whose members are standard ~il[characters].
~l[standard-char-p].~/
~c[Standard-char-listp] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(cond ((consp l)
(and (characterp (car l))
(standard-char-p (car l))
(standard-char-listp (cdr l))))
(t (equal l nil))))
(defun character-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of characters~/
The predicate ~c[character-listp] tests whether its argument is a
true list of ~il[characters].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom l) (equal l nil))
(t (and (characterp (car l))
(character-listp (cdr l))))))
(defthm character-listp-forward-to-eqlable-listp
(implies (character-listp x)
(eqlable-listp x))
:rule-classes :forward-chaining)
(defthm standard-char-listp-forward-to-character-listp
(implies (standard-char-listp x)
(character-listp x))
:rule-classes :forward-chaining)
(defaxiom coerce-inverse-1
(implies (character-listp x)
(equal (coerce (coerce x 'string) 'list) x)))
; A "historical document" regarding standard characters:
;
; To: Kaufmann
; Subject: over strong axiom
; FCC: ~moore/old-mail
; --text follows this line--
; Axioms.lisp currently contains
;
; (defaxiom coerce-inverse-2
; (implies (stringp x)
; (equal (coerce (coerce x 'list) 'string) x)))
;
; But the guard for coerce (when the second argument is 'string) requires the first
; argument to be a standard-char-listp. Thus, unless we know that (coerce x 'list)
; returns a standard-char-listp when (stringp x), the guard on the outer coerce is
; violated.
;
; If we are really serious that ACL2 strings may contain nonstandard chars, then
; this axiom is too strong. I will leave this note in axioms.lisp and just go
; on. But when the guard question is settled I would like to return to this and
; make explicit our occasional implicit assumption that strings are composed of
; standard chars.
;
; J
(defaxiom coerce-inverse-2
(implies (stringp x)
(equal (coerce (coerce x 'list) 'string) x)))
; Once upon a time, Moore (working alone) added the following axiom.
; (defaxiom standard-char-listp-coerce
; (implies (stringp str)
; (standard-char-listp (coerce str 'list))))
(defaxiom character-listp-coerce
(character-listp (coerce str 'list))
:rule-classes
(:rewrite
(:forward-chaining :trigger-terms
((coerce str 'list)))))
; In AKCL the nonstandard character #\Page prints as ^L and may be included in
; strings, as in "^L". Now if you try to type that string in ACL2, you get an
; error. And ACL2 does not let you use coerce to produce the string, e.g.,
; with (coerce (list #\Page) 'string), because the guard for coerce is
; violated. So here we have a situation in which no ACL2 function in LP will
; ever see a nonstandard char in a string, but CLTL permits it. However, we
; consider the axiom to be appropriate, because ACL2 strings contain only
; standard characters.
(in-theory (disable standard-char-listp standard-char-p))
; (defthm standard-char-listp-coerce-forward-chaining
;
; ; If (stringp str) is in the context, we want to make a "note" that
; ; (coerce str 'list) is a standard-char-listp in case this fact is
; ; needed during later backchaining. We see no need to forward chain
; ; from (standard-char-listp (coerce str 'list)), however; the rewrite
; ; rule generated here should suffice for relieving any such hypothesis.
;
; (implies (stringp str)
; (standard-char-listp (coerce str 'list)))
; :rule-classes ((:forward-chaining :trigger-terms
; ((coerce str 'list)))))
#+acl2-loop-only
(defun string (x)
":Doc-Section ACL2::ACL2-built-ins
~il[coerce] to a string~/
~c[(String x)] ~il[coerce]s ~c[x] to a string. If ~c[x] is already a
string, then it is returned unchanged; if ~c[x] is a symbol, then its
~ilc[symbol-name] is returned; and if ~c[x] is a character, the
corresponding one-character string is returned.~/
The ~il[guard] for ~c[string] requires its argument to be a string, a
symbol, or a character.
~c[String] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard
; NOTE: When we finally get hold of a definitive Common Lisp
; reference, let's clarify the statement near the bottom of p. 466 of
; CLtL2, which says: "Presumably converting a character to a string
; always works according to this vote." But we'll plunge ahead as
; follows, in part because we want to remain compliant with CLtL1,
; which isn't as complete as one might wish regarding which characters
; can go into strings.
(or (stringp x)
(symbolp x)
(characterp x))))
(cond
((stringp x) x)
((symbolp x) (symbol-name x))
(t (coerce (list x) 'string))))
#+acl2-loop-only
(defun alpha-char-p (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for alphabetic characters~/
~c[(Alpha-char-p x)] is true if and only if ~c[x] is a alphabetic character,
i.e., one of the ~il[characters] ~c[#\\a], ~c[#\\b], ..., ~c[#\\z], ~c[#\\A],
~c[#\\B], ..., ~c[#\\Z].~/
The ~il[guard] for ~c[alpha-char-p] requires its argument to be a character.
~c[Alpha-char-p] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
; The following guard is required by p. 235 of CLtL.
(declare (xargs :guard (characterp x)))
(and (member x
'(#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m
#\n #\o #\p #\q #\r #\s #\t #\u #\v #\w #\x #\y #\z
#\A #\B #\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M
#\N #\O #\P #\Q #\R #\S #\T #\U #\V #\W #\X #\Y #\Z))
t))
#+acl2-loop-only
(defun upper-case-p (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for upper case characters~/
~c[(Upper-case-p x)] is true if and only if ~c[x] is an upper case character,
i.e., a member of the list ~c[#\\A], ~c[#\\B], ..., ~c[#\\Z].~/
The ~il[guard] for ~c[upper-case-p] requires its argument to be a standard
character (~pl[standard-char-p]).
~c[Upper-case-p] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
; The guard characterp is required by p. 235 of CLtL. However, In Allegro 6.0
; we see characters other than standard characters that are treated as upper
; case, such as (code-char (+ 128 65)). So we strengthen that guard.
(declare (xargs :guard (and (characterp x)
(standard-char-p x))))
(and (member x
'(#\A #\B #\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M
#\N #\O #\P #\Q #\R #\S #\T #\U #\V #\W #\X #\Y #\Z))
t))
#+acl2-loop-only
(defun lower-case-p (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for lower case characters~/
~c[(Lower-case-p x)] is true if and only if ~c[x] is a lower case character,
i.e., a member of the list ~c[#\\A], ~c[#\\B], ..., ~c[#\\Z].~/
The ~il[guard] for ~c[lower-case-p] requires its argument to be a standard
character (~pl[standard-char-p]).
~c[Lower-case-p] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
; The guard characterp is required by p. 235 of CLtL. However, In Allegro 6.0
; we see characters other than standard characters that are treated as upper
; case, such as (code-char (+ 128 65)). So we strengthen that guard.
(declare (xargs :guard (and (characterp x)
(standard-char-p x))))
(and (member x
'(#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m
#\n #\o #\p #\q #\r #\s #\t #\u #\v #\w #\x #\y #\z))
t))
#+acl2-loop-only
(defun char-upcase (x)
":Doc-Section ACL2::ACL2-built-ins
turn lower-case ~il[characters] into upper-case ~il[characters]~/
~c[(Char-upcase x)] is equal to ~c[#\\A] when ~c[x] is ~c[#\\a], ~c[#\\B]
when ~c[x] is ~c[#\\b], ..., and ~c[#\\Z] when ~c[x] is ~c[#\\z], and is
~c[x] for any other character.~/
The ~il[guard] for ~c[char-upcase] requires its argument to be a standard
character (~pl[standard-char-p]).
~c[Char-upcase] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
; The guard characterp is required by p. 231 of CLtL. However, In Allegro 6.0
; we see characters other than standard characters that are treated as upper
; case, such as (code-char (+ 128 65)). So we strengthen that guard.
(declare (xargs :guard (and (characterp x)
(standard-char-p x))))
(let ((pair (assoc x
'((#\a . #\A)
(#\b . #\B)
(#\c . #\C)
(#\d . #\D)
(#\e . #\E)
(#\f . #\F)
(#\g . #\G)
(#\h . #\H)
(#\i . #\I)
(#\j . #\J)
(#\k . #\K)
(#\l . #\L)
(#\m . #\M)
(#\n . #\N)
(#\o . #\O)
(#\p . #\P)
(#\q . #\Q)
(#\r . #\R)
(#\s . #\S)
(#\t . #\T)
(#\u . #\U)
(#\v . #\V)
(#\w . #\W)
(#\x . #\X)
(#\y . #\Y)
(#\z . #\Z)))))
(cond (pair (cdr pair))
((characterp x) x)
(t (code-char 0)))))
#+acl2-loop-only
(defun char-downcase (x)
":Doc-Section ACL2::ACL2-built-ins
turn upper-case ~il[characters] into lower-case ~il[characters]~/
~c[(Char-downcase x)] is equal to ~c[#\\a] when ~c[x] is ~c[#\\A], ~c[#\\b]
when ~c[x] is ~c[#\\B], ..., and ~c[#\\z] when ~c[x] is ~c[#\\Z], and is
~c[x] for any other character.~/
The ~il[guard] for ~c[char-downcase] requires its argument to be a standard
character (~pl[standard-char-p]).
~c[Char-downcase] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
; The guard characterp is required by p. 231 of CLtL. However, In Allegro 6.0
; we see characters other than standard characters that are treated as upper
; case, such as (code-char (+ 128 65)). So we strengthen that guard.
(declare (xargs :guard (and (characterp x)
(standard-char-p x))))
(let ((pair (assoc x
'((#\A . #\a)
(#\B . #\b)
(#\C . #\c)
(#\D . #\d)
(#\E . #\e)
(#\F . #\f)
(#\G . #\g)
(#\H . #\h)
(#\I . #\i)
(#\J . #\j)
(#\K . #\k)
(#\L . #\l)
(#\M . #\m)
(#\N . #\n)
(#\O . #\o)
(#\P . #\p)
(#\Q . #\q)
(#\R . #\r)
(#\S . #\s)
(#\T . #\t)
(#\U . #\u)
(#\V . #\v)
(#\W . #\w)
(#\X . #\x)
(#\Y . #\y)
(#\Z . #\z)))))
(cond (pair (cdr pair))
((characterp x) x)
(t (code-char 0)))))
(defthm lower-case-p-char-downcase
(implies (and (upper-case-p x)
(characterp x))
(lower-case-p (char-downcase x))))
(defthm upper-case-p-char-upcase
(implies (and (lower-case-p x)
(characterp x))
(upper-case-p (char-upcase x))))
(defthm lower-case-p-forward-to-alpha-char-p
(implies (and (lower-case-p x)
(characterp x))
(alpha-char-p x))
:rule-classes :forward-chaining)
(defthm upper-case-p-forward-to-alpha-char-p
(implies (and (upper-case-p x)
(characterp x))
(alpha-char-p x))
:rule-classes :forward-chaining)
(defthm alpha-char-p-forward-to-characterp
(implies (alpha-char-p x)
(characterp x))
:rule-classes :forward-chaining)
(defthm characterp-char-downcase
(characterp (char-downcase x))
:rule-classes :type-prescription)
(defthm characterp-char-upcase
(characterp (char-upcase x))
:rule-classes :type-prescription)
; We disable the following functions in order to protect people from getting
; burned by their explosive definitions.
(in-theory (disable alpha-char-p upper-case-p lower-case-p
char-upcase char-downcase))
(defun string-downcase1 (l)
(declare (xargs :guard (standard-char-listp l)
:guard-hints
(("Goal" :in-theory (enable standard-char-listp)))))
(if (atom l)
nil
(cons (char-downcase (car l))
(string-downcase1 (cdr l)))))
(defthm character-listp-string-downcase-1
(character-listp (string-downcase1 x)))
#+acl2-loop-only
(defun string-downcase (x)
":Doc-Section ACL2::ACL2-built-ins
in a given string, turn upper-case ~il[characters] into lower-case~/
For a string ~c[x], ~c[(string-downcase x)] is the result of applying
~ilc[char-downcase] to each character in ~c[x].~/
The ~il[guard] for ~c[string-downcase] requires its argument to be a string
containing only standard characters.
~c[String-downcase] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp x)
(standard-char-listp (coerce x 'list)))))
; As with other functions, e.g., reverse, the guards on this function
; can't currently be proved because the outer coerce below requires
; its argument to be made of standard characters. We don't know that
; the string x is made of standard characters.
(coerce (string-downcase1 (coerce x 'list)) 'string))
(defun string-upcase1 (l)
(declare (xargs :guard (standard-char-listp l)
:guard-hints
(("Goal" :in-theory (enable standard-char-listp)))))
(if (atom l)
nil
(cons (char-upcase (car l))
(string-upcase1 (cdr l)))))
(defthm character-listp-string-upcase1-1
(character-listp (string-upcase1 x)))
#+acl2-loop-only
(defun string-upcase (x)
":Doc-Section ACL2::ACL2-built-ins
in a given string, turn lower-case ~il[characters] into upper-case~/
For a string ~c[x], ~c[(string-upcase x)] is the result of applying
~ilc[char-upcase] to each character in ~c[x].~/
The ~il[guard] for ~c[string-upcase] requires its argument to be a string
containing only standard characters.
~c[String-upcase] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp x)
(standard-char-listp (coerce x 'list)))))
(coerce (string-upcase1 (coerce x 'list)) 'string))
(defun our-digit-char-p (ch radix)
(declare (xargs :guard (and (characterp ch)
(integerp radix)
(<= 2 radix)
(<= radix 36))))
(let ((l (assoc ch
'((#\0 . 0)
(#\1 . 1)
(#\2 . 2)
(#\3 . 3)
(#\4 . 4)
(#\5 . 5)
(#\6 . 6)
(#\7 . 7)
(#\8 . 8)
(#\9 . 9)
(#\a . 10)
(#\b . 11)
(#\c . 12)
(#\d . 13)
(#\e . 14)
(#\f . 15)
(#\g . 16)
(#\h . 17)
(#\i . 18)
(#\j . 19)
(#\k . 20)
(#\l . 21)
(#\m . 22)
(#\n . 23)
(#\o . 24)
(#\p . 25)
(#\q . 26)
(#\r . 27)
(#\s . 28)
(#\t . 29)
(#\u . 30)
(#\v . 31)
(#\w . 32)
(#\x . 33)
(#\y . 34)
(#\z . 35)
(#\A . 10)
(#\B . 11)
(#\C . 12)
(#\D . 13)
(#\E . 14)
(#\F . 15)
(#\G . 16)
(#\H . 17)
(#\I . 18)
(#\J . 19)
(#\K . 20)
(#\L . 21)
(#\M . 22)
(#\N . 23)
(#\O . 24)
(#\P . 25)
(#\Q . 26)
(#\R . 27)
(#\S . 28)
(#\T . 29)
(#\U . 30)
(#\V . 31)
(#\W . 32)
(#\X . 33)
(#\Y . 34)
(#\Z . 35)))))
(cond ((and l (< (cdr l) radix))
(cdr l))
(t nil))))
#+acl2-loop-only
(defmacro digit-char-p (ch &optional (radix '10))
":Doc-Section ACL2::ACL2-built-ins
the number, if any, corresponding to a given character~/
~c[(digit-char-p ch)] is the integer corresponding to the character
~c[ch] in base ~c[10]. For example, ~c[(digit-char-p #\\3)] is equal to
the integer ~c[3]. More generally, an optional second argument
specifies the radix (default ~c[10], as indicated above).~/
The ~il[guard] for ~c[digit-char-p] (more precisely, for the function
~c[our-digit-char-p] that calls of this macro expand to) requires its
second argument to be an integer between 2 and 36, inclusive, and
its first argument to be a character.
~c[Digit-char-p] is a Common Lisp function, though it is implemented
in the ACL2 logic as an ACL2 macro. See any Common Lisp
documentation for more information.~/"
`(our-digit-char-p ,ch ,radix))
#+acl2-loop-only
(defun char-equal (x y)
":Doc-Section ACL2::ACL2-built-ins
character equality without regard to case~/
For ~il[characters] ~c[x] and ~c[y], ~c[(char-equal x y)] is true if and only if ~c[x]
and ~c[y] are the same except perhaps for their case.~/
The ~il[guard] on ~c[char-equal] requires that its arguments are both
standard ~il[characters] (~pl[standard-char-p]).
~c[Char-equal] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (characterp x)
(standard-char-p x)
(characterp y)
(standard-char-p y))))
(eql (char-downcase x)
(char-downcase y)))
(defun atom-listp (lst)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of ~il[atom]s~/
The predicate ~c[atom-listp] tests whether its argument is a
~ilc[true-listp] of ~il[atom]s, i.e., of non-conses.~/
Also ~pl[good-atom-listp].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(cond ((atom lst) (eq lst nil))
(t (and (atom (car lst))
(atom-listp (cdr lst))))))
(defthm atom-listp-forward-to-true-listp
(implies (atom-listp x)
(true-listp x))
:rule-classes :forward-chaining)
(defthm eqlable-listp-forward-to-atom-listp
(implies (eqlable-listp x)
(atom-listp x))
:rule-classes :forward-chaining)
(defun good-atom-listp (lst)
; Keep this in sync with bad-atom.
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of ``good'' ~il[atom]s~/
The predicate ~c[good-atom-listp] tests whether its argument is a
~ilc[true-listp] of ``good'' ~il[atom]s, i.e., where each element is a
number, a symbol, a character, or a string.~/
Also ~pl[atom-listp].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(cond ((atom lst) (eq lst nil))
(t (and (or (acl2-numberp (car lst))
(symbolp (car lst))
(characterp (car lst))
(stringp (car lst)))
(good-atom-listp (cdr lst))))))
(defthm good-atom-listp-forward-to-atom-listp
(implies (good-atom-listp x)
(atom-listp x))
:rule-classes :forward-chaining)
(defthm characterp-nth
(implies (and (character-listp x)
(<= 0 i)
(< i (len x)))
(characterp (nth i x))))
(defun ifix (x)
":Doc-Section ACL2::ACL2-built-ins
coerce to an integer~/
~c[Ifix] simply returns any integer argument unchanged, returning ~c[0]
on a non-integer argument. Also ~pl[nfix], ~pl[rfix],
~pl[realfix] and ~pl[fix] for analogous functions that coerce to
a natural number, a rational number, a real, and a number,
respectively.~/
~c[Ifix] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(if (integerp x) x 0))
(defun rfix (x)
":Doc-Section ACL2::ACL2-built-ins
coerce to a rational number~/
~c[Rfix] simply returns any rational number argument unchanged,
returning ~c[0] on a non-rational argument. Also ~pl[nfix],
~pl[ifix], ~pl[realfix], and ~pl[fix] for analogous
functions that coerce to a natural number, an integer, a real, and a
number, respectively.~/
~c[Rfix] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(if (rationalp x) x 0))
;; RAG - I added "realfix" to coerce numbers into reals. I would have
;; liked to use "rfix" for it, but "rfix" was taken for the
;; rationals. "ifix" as in "irrational-fix" would be a misnomer,
;; since it's the identity functions for rationals as well as
;; irrationals. In desperation, we called it realfix, even though
;; that makes it more awkward to use than the other "fix" functions.
; Since the next function, realfix, is referred to by other :doc topics, do not
; make it conditional upon #+:non-standard-analysis.
(defun realfix (x)
":Doc-Section ACL2::ACL2-built-ins
coerce to a real number~/
~c[Realfix] simply returns any real number argument unchanged,
returning ~c[0] on a non-real argument. Also ~pl[nfix],
~pl[ifix], ~pl[rfix], and ~pl[fix] for analogous functions
that coerce to a natural number, an integer, a rational, and a
number, respectively.~/
~c[Realfix] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(if (real/rationalp x) x 0))
(defun nfix (x)
":Doc-Section ACL2::ACL2-built-ins
coerce to a natural number~/
~c[Nfix] simply returns any natural number argument unchanged,
returning ~c[0] on an argument that is not a natural number. Also
~pl[ifix], ~pl[rfix], ~pl[realfix], and ~pl[fix] for
analogous functions that coerce to an integer, a rational number, a
real, and a number, respectively.~/
~c[Nfix] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(if (and (integerp x) (>= x 0))
x
0))
(defun string-equal1 (str1 str2 i maximum)
(declare (xargs :guard (and (stringp str1)
(standard-char-listp (coerce str1 'list))
(stringp str2)
(standard-char-listp (coerce str2 'list))
(integerp i)
(integerp maximum)
(<= maximum (length str1))
(<= maximum (length str2))
(<= 0 i)
(<= i maximum))
; We make this function :program until we know enough about o-p
; to prove its termination.
:mode :program))
(let ((i (nfix i)))
(cond
((>= i (ifix maximum))
t)
(t (and (char-equal (char str1 i)
(char str2 i))
(string-equal1 str1 str2 (+ 1 i) maximum))))))
#+acl2-loop-only
(defun string-equal (str1 str2)
":Doc-Section ACL2::ACL2-built-ins
string equality without regard to case~/
For strings ~c[str1] and ~c[str2], ~c[(string-equal str1 str2)] is true if
and only ~c[str1] and ~c[str2] are the same except perhaps for the cases of
their ~il[characters].~/
The ~il[guard] on ~c[string-equal] requires that its arguments are strings
consisting of standard characters (~pl[standard-char-listp]).
~c[String-equal] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp str1)
(standard-char-listp (coerce str1 'list))
(stringp str2)
(standard-char-listp (coerce str2 'list)))
:mode :program))
(let ((len1 (length str1)))
(and (= len1 (length str2))
(string-equal1 str1 str2 0 len1))))
(defun standard-string-alistp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for association lists with standard strings as keys~/
~c[(Standard-string-alistp x)] is true if and only if ~c[x] is a list of
pairs of the form ~c[(cons key val)] where ~c[key] is a string all of whose
characters are standard (~pl[standard-char-p]).~/
~c[Standard-string-alistp] has a ~il[guard] of ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(cond ((atom x) (eq x nil))
(t (and (consp (car x))
(stringp (car (car x)))
(standard-char-listp (coerce (car (car x)) 'list))
(standard-string-alistp (cdr x))))))
(defthm standard-string-alistp-forward-to-alistp
(implies (standard-string-alistp x)
(alistp x))
:rule-classes :forward-chaining)
(defun assoc-string-equal (str alist)
":Doc-Section ACL2::ACL2-built-ins
look up key, a string, in association list~/
~c[(Assoc-string-equal x alist)] is similar to ~ilc[assoc-equal].
However, for string ~c[x] and alist ~c[alist], the comparison of ~c[x]
with successive keys in ~c[alist] is done using ~ilc[string-equal]
rather than ~ilc[equal].~/
The ~il[guard] for ~c[assoc-string-equal] requires that ~c[x] is a string
and ~c[alist] is an alist.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp str)
(standard-char-listp (coerce str 'list))
(standard-string-alistp alist))
:mode :program))
(cond
((endp alist)
nil)
((string-equal str (car (car alist)))
(car alist))
(t (assoc-string-equal str (cdr alist)))))
; Ordinal stuff. It seems more or less impossible to get o<g and o< admitted
; during boot-strapping unless we cheat by declaring them explicitly :mode
; :logic so that they will be admitted in the first pass of the build. But
; then we also need to declare functions on which they depend to be :mode
; :logic as well (since :logic mode functions cannot have :program mode
; functions in their bodies).
;first: we mention the old ordinals:
(defdoc e0-ordinalp
":Doc-Section ACL2::ACL2-built-ins
the old recognizer for ACL2 ordinals~/
~l[o-p] for the current recognizer for ACL2 ordinals.~/
The functions ~c[e0-ordinalp] and ~ilc[e0-ord-<] were replaced in ACL2
Version_2.8 by ~ilc[o-p] and ~ilc[o<], respectively. However, books created
before that version used the earlier functions for termination proofs; the
old functions might be of use in these cases. To use the old functions in
termination proofs, include the community book ~c[books/ordinals/e0-ordinal]
and execute the event ~c[(set-well-founded-relation e0-ord-<)]
(~pl[set-well-founded-relation]). For a more thorough discussion of
these functions, see the documentation at the end of community book
~c[books/ordinals/e0-ordinal.lisp].")
(defdoc e0-ord-<
":Doc-Section ACL2::ACL2-built-ins
the old ordering function for ACL2 ordinals~/
~l[o<] for the current new ordering function for ACL2 ordinals.~/
The functions ~c[e0-ordinalp] and ~ilc[e0-ord-<] were replaced in ACL2
Version_2.8 by ~ilc[o-p] and ~ilc[o<], respectively. However, books created
before that version used the earlier functions for termination proofs; the
old functions might be of use in these cases. To use the old functions in
termination proofs, include the community book ~c[books/ordinals/e0-ordinal]
and execute the event ~c[(set-well-founded-relation e0-ord-<)]
(~pl[set-well-founded-relation]). For a more thorough discussion of
these functions, see the documentation at the end of community book
~c[books/ordinals/e0-ordinal.lisp].")
(defun natp (x)
":Doc-Section ACL2::ACL2-built-ins
a recognizer for the natural numbers~/~/
The natural numbers is the set of all non-negative integers,
~c[{0,1,2,3,...}]. ~c[Natp] returns ~c[t] if and only its argument is a
natural number, and ~c[nil] otherwise. We recommend the community book
~c[books/arithmetic/natp-posp.lisp] as a book for reasoning about ~c[posp]
and ~c[natp]. This book is included by community books
~c[books/arithmetic/top] and ~c[books/arithmetic/top-with-meta].
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard t :mode :logic))
(and (integerp x)
(<= 0 x)))
(defthm natp-compound-recognizer
(equal (natp x)
(and (integerp x)
(<= 0 x)))
:rule-classes :compound-recognizer)
(defun posp (x)
":Doc-Section ACL2::ACL2-built-ins
a recognizer for the positive integers~/~/
~c[(posp x)] is logically equivalent to ~c[(not (zp x))] (~pl[zp]) and also
to ~c[(and (natp x) (not (equal x 0)))]. We recommend the community book
~c[books/ordinals/natp-posp] for reasoning about ~c[posp] and ~c[natp]. This
book is included by community books ~c[books/arithmetic/top] and
~c[books/arithmetic/top-with-meta].
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard t :mode :logic))
(and (integerp x)
(< 0 x)))
(defthm posp-compound-recognizer
(equal (posp x)
(and (integerp x)
(< 0 x)))
:rule-classes :compound-recognizer)
(defun o-finp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizes if an ordinal is finite~/~/
We introduce the function ~c[o-finp] which returns ~c[t] for any ordinal that
is finite, else ~c[nil]. This function is equivalent to the function
~ilc[atom], and is introduced so that we can ~ilc[disable] its definition
when dealing with ordinals (also ~pl[make-ord]).
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard t :mode :logic))
(atom x))
(defmacro o-infp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizes if an ordinal is infinite~/~/
~c[O-infp] is a macro. ~c[(O-infp x)] opens up to ~c[(not (o-finp x))]
(~pl[o-finp])."
`(not (o-finp ,x)))
(defun o-first-expt (x)
":Doc-Section ACL2::ACL2-built-ins
the first exponent of an ordinal~/~/
An ACL2 ordinal is either a natural number or, for an infinite ordinal, a
list whose elements are exponent-coefficient pairs (~pl[o-p]). In the latter
case, this function returns the ~ilc[car] of the first pair in the list. In
the case of a natural number, the value returned is 0 (since a natural
number, ~c[n], can be thought of as (w^0)n).
For the corresponding coefficient, ~pl[o-first-coeff].
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard (or (o-finp x) (consp (car x))) :mode :logic))
(if (o-finp x)
0
(caar x)))
(defun o-first-coeff (x)
":Doc-Section ACL2::ACL2-built-ins
returns the first coefficient of an ordinal~/~/
An ACL2 ordinal is either a natural number or, for an infinite ordinal, a
list whose elements are exponent-coefficient pairs (~pl[o-p]). In the latter
case, this function returns the ~ilc[cdr] of the first pair in the list. In
the case of a natural number, this function returns the ordinal itself
(since a natural number, n, can be thought of as (w^0)n).
For the corresponding exponent, ~pl[o-first-expt].
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard (or (o-finp x) (consp (car x))) :mode :logic))
(if (o-finp x)
x
(cdar x)))
(defun o-rst (x)
":Doc-Section ACL2::ACL2-built-ins
returns the rest of an infinite ordinal~/~/
An ACL2 infinite ordinal is a list whose elements are exponent-coefficient
pairs (~pl[o-p] and ~pl[o-infp]). The first exponent and first coefficient
of an ordinal can be obtained by using ~ilc[o-first-expt] and
~ilc[o-first-coeff] respectively. To obtain the rest of the ordinal (for
recursive analysis), use the ~c[o-rst] function. It returns the rest of the
ordinal after the first exponent and coefficient are removed.
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard (consp x) :mode :logic))
(cdr x))
(defun o<g (x)
; This function is used only for guard proofs.
(declare (xargs :guard t :mode :logic))
(if (atom x)
(rationalp x)
(and (consp (car x))
(rationalp (o-first-coeff x))
(o<g (o-first-expt x))
(o<g (o-rst x)))))
(defun o< (x y)
":Doc-Section ACL2::ACL2-built-ins
the well-founded less-than relation on ordinals up to ~c[epsilon-0]~/
If ~c[x] and ~c[y] are both ~c[o-p]s (~pl[o-p]) then
~c[(o< x y)] is true iff ~c[x] is strictly less than ~c[y]. ~c[o<] is
well-founded on the ~ilc[o-p]s. When ~c[x] and ~c[y] are both nonnegative
integers, ~c[o<] is just the familiar ``less than'' relation (~ilc[<]).~/
~c[o<] plays a key role in the formal underpinnings of the ACL2
logic. In order for a recursive definition to be admissible it must
be proved to ``terminate.'' By terminate we mean that the arguments to
the function ``get smaller'' as the function recurses and this sense
of size comparison must be such that there is no ``infinitely
descending'' sequence of ever smaller arguments. That is, the
relation used to compare successive arguments must be well-founded
on the domain being measured.
The most basic way ACL2 provides to prove termination requires the
user to supply (perhaps implicitly) a mapping of the argument tuples
into the ordinals with some ``measure'' expression in such a way
that the measures of the successive argument tuples produced by
recursion decrease according to the relation ~c[o<]. The validity
of this method rests on the well-foundedness of ~c[o<] on the
~ilc[o-p]s.
Without loss of generality, suppose the definition in question
introduces the function ~c[f], with one formal parameter ~c[x] (which might
be a list of objects). Then we require that there exist a measure
expression, ~c[(m x)], that always produces an ~ilc[o-p].
Furthermore, consider any recursive call, ~c[(f (d x))], in the body of
the definition. Let ~c[hyps] be the conjunction of terms, each of which is
either the test of an ~ilc[if] in the body or else the negation of such a
test, describing the path through the body to the recursive call in
question. Then it must be a theorem that
~bv[]
(IMPLIES hyps (O< (m (d x)) (m x))).
~ev[]
When we say ~c[o<] is ``well-founded'' on the ~ilc[o-p]s we
mean that there is no infinite sequence of ~ilc[o-p]s such that
each is smaller than its predecessor in the sequence. Thus, the
theorems that must be proved about ~c[f] when it is introduced establish
that it cannot recur forever because each time a recursive call is
taken ~c[(m x)] gets smaller. From this, and the syntactic restrictions
on definitions, it can be shown (as on page 44 in ``A Computational
Logic'', Boyer and Moore, Academic Press, 1979) that there exists a
function satisfying the definition; intuitively, the value assigned
to any given ~c[x] by the alleged function is that computed by a
sufficiently large machine. Hence, the logic is consistent if the
axiom defining ~c[f] is added.
~l[o-p] for a discussion of the ordinals and how to
compare two ordinals.
The definitional principle permits the use of relations other than
~c[o<] but they must first be proved to be well-founded on some
domain. ~l[well-founded-relation]. Roughly put, alternative
relations are shown well-founded by providing an order-preserving
mapping from their domain into the ordinals. ~l[defun] for
details on how to specify which well-founded relation is to be
used.
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard (and (o<g x) (o<g y)) :mode :logic))
(cond ((o-finp x)
(or (o-infp y) (< x y)))
((o-finp y) nil)
((not (equal (o-first-expt x) (o-first-expt y)))
(o< (o-first-expt x) (o-first-expt y)))
((not (= (o-first-coeff x) (o-first-coeff y)))
(< (o-first-coeff x) (o-first-coeff y)))
(t (o< (o-rst x) (o-rst y)))))
(defmacro o> (x y)
":Doc-Section ACL2::ACL2-built-ins
the greater-than relation for the ordinals~/~/
~c[O>] is a macro and ~c[(o> x y)] expands to ~c[(o< y x)]. ~l[o<]."
`(o< ,y ,x))
(defmacro o<= (x y)
":Doc-Section ACL2::ACL2-built-ins
the less-than-or-equal relation for the ordinals~/~/
~c[o<=] is a macro and ~c[(o<= x y)] expands to ~c[(not (o< y x))]. ~l[o<]."
`(not (o< ,y ,x)))
(defmacro o>= (x y)
":Doc-Section ACL2::ACL2-built-ins
the greater-than-or-equal relation for the ordinals~/~/
~c[O>=] is a macro and ~c[(o>= x y)] expands to ~c[(not (o< x y))]. ~l[o<]."
`(not (o< ,x ,y)))
(defun o-p (x)
":Doc-Section ACL2::ACL2-built-ins
a recognizer for the ordinals up to epsilon-0~/
Using the nonnegative integers and lists we can represent the ordinals up to
~c[epsilon-0]. The ordinal representation used in ACL2 has changed as
of Version_2.8 from that of Nqthm-1992, courtesy of Pete Manolios and Daron
Vroon; additional discussion may be found in ``Ordinal Arithmetic in ACL2'',
proceedings of ACL2 Workshop 2003,
~url[http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/]. Previously,
ACL2's notion of ordinal was very similar to the development given in ``New
Version of the Consistency Proof for Elementary Number Theory'' in The
Collected Papers of Gerhard Gentzen, ed. M.E. Szabo, North-Holland
Publishing Company, Amsterdam, 1969, pp 132-213.~/
The following essay is intended to provide intuition about ordinals.
The truth, of course, lies simply in the ACL2 definitions of
~c[o-p] and ~ilc[o<].
Very intuitively, think of each non-zero natural number as by being
denoted by a series of the appropriate number of strokes, i.e.,
~bv[]
0 0
1 |
2 ||
3 |||
4 ||||
... ...
~ev[]
Then ``~c[omega],'' here written as ~c[w], is the ordinal that might be
written as
~bv[]
w |||||...,
~ev[]
i.e., an infinite number of strokes. Addition here is just
concatenation. Observe that adding one to the front of ~c[w] in the
picture above produces ~c[w] again, which gives rise to a standard
definition of ~c[w]: ~c[w] is the least ordinal such that adding another
stroke at the beginning does not change the ordinal.
We denote by ~c[w+w] or ~c[w*2] the ``~c[doubly infinite]'' sequence that we
might write as follows.
~bv[]
w*2 |||||... |||||...
~ev[]
One way to think of ~c[w*2] is that it is obtained by replacing each
stroke in ~c[2] ~c[(||)] by ~c[w]. Thus, one can imagine ~c[w*3], ~c[w*4], etc., which
leads ultimately to the idea of ``~c[w*w],'' the ordinal obtained by
replacing each stroke in ~c[w] by ~c[w]. This is also written as ``~c[omega]
squared'' or ~c[w^2], or:
~bv[]
2
w |||||... |||||... |||||... |||||... |||||... ...
~ev[]
We can analogously construct ~c[w^3] by replacing each stroke in ~c[w] by
~c[w^2] (which, it turns out, is the same as replacing each stroke in
~c[w^2] by ~c[w]). That is, we can construct ~c[w^3] as ~c[w] copies of ~c[w^2],
~bv[]
3 2 2 2 2
w w ... w ... w ... w ... ...
~ev[]
Then we can construct ~c[w^4] as ~c[w] copies of ~c[w^3], ~c[w^5] as ~c[w] copies of
~c[w^4], etc., ultimately suggesting ~c[w^w]. We can then stack ~c[omega]s,
i.e., ~c[(w^w)^w] etc. Consider the ``limit'' of all of those stacks,
which we might display as follows.
~bv[]
.
.
.
w
w
w
w
w
~ev[]
That is epsilon-0.
Below we begin listing some ordinals up to ~c[epsilon-0]; the reader can
fill in the gaps at his or her leisure. We show in the left column
the conventional notation, using ~c[w] as ``~c[omega],'' and in the right
column the ACL2 object representing the corresponding ordinal.
~bv[]
ordinal ACL2 representation
0 0
1 1
2 2
3 3
... ...
w '((1 . 1) . 0)
w+1 '((1 . 1) . 1)
w+2 '((1 . 1) . 2)
... ...
w*2 '((1 . 2) . 0)
(w*2)+1 '((1 . 2) . 1)
... ...
w*3 '((1 . 3) . 0)
(w*3)+1 '((1 . 3) . 1)
... ...
2
w '((2 . 1) . 0)
... ...
2
w +w*4+3 '((2 . 1) (1 . 4) . 3)
... ...
3
w '((3 . 1) . 0)
... ...
w
w '((((1 . 1) . 0) . 1) . 0)
... ...
w 99
w +w +w4+3 '((((1 . 1) . 0) . 1) (99 . 1) (1 . 4) . 3)
... ...
2
w
w '((((2 . 1) . 0) . 1) . 0)
... ...
w
w
w '((((((1 . 1) . 0) . 1) . 0) . 1) . 0)
... ...
~ev[]
Observe that the sequence of ~c[o-p]s starts with the natural
numbers (which are recognized by ~ilc[natp]). This is convenient
because it means that if a term, such as a measure expression for
justifying a recursive function (~pl[o<]) must produce an ~c[o-p],
it suffices for it to produce a natural number.
The ordinals listed above are listed in ascending order. This is
the ordering tested by ~ilc[o<].
The ``~c[epsilon-0] ordinals'' of ACL2 are recognized by the recursively
defined function ~c[o-p]. The base case of the recursion tells us that
natural numbers are ~c[epsilon-0] ordinals. Otherwise, an ~c[epsilon-0]
ordinal is a list of ~ilc[cons] pairs whose final ~ilc[cdr] is a natural
number, ~c[((a1 . x1) (a2 . x2) ... (an . xn) . p)]. This corresponds to
the ordinal ~c[(w^a1)x1 + (w^a2)x2 + ... + (w^an)xn + p]. Each ~c[ai] is an
ordinal in the ACL2 representation that is not equal to 0. The sequence of
the ~c[ai]'s is strictly decreasing (as defined by ~ilc[o<]). Each ~c[xi]
is a positive integer (as recognized by ~ilc[posp]).
Note that infinite ordinals should generally be created using the ordinal
constructor, ~ilc[make-ord], rather than ~ilc[cons]. The functions
~ilc[o-first-expt], ~ilc[o-first-coeff], and ~ilc[o-rst] are ordinals
destructors. Finally, the function ~ilc[o-finp] and the macro ~ilc[o-infp]
tell whether an ordinal is finite or infinite, respectively.
The function ~ilc[o<] compares two ~c[epsilon-0] ordinals, ~c[x] and ~c[y].
If both are integers, ~c[(o< x y)] is just ~c[x<y]. If one is an integer
and the other is a ~ilc[cons], the integer is the smaller. Otherwise,
~ilc[o<] recursively compares the ~ilc[o-first-expt]s of the ordinals to
determine which is smaller. If they are the same, the ~ilc[o-first-coeff]s
of the ordinals are compared. If they are equal, the ~ilc[o-rst]s of the
ordinals are recursively compared.
Fundamental to ACL2 is the fact that ~ilc[o<] is well-founded on
~c[epsilon-0] ordinals. That is, there is no ``infinitely descending
chain'' of such ordinals. ~l[proof-of-well-foundedness].
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard t
:verify-guards nil))
(if (o-finp x)
(natp x)
(and (consp (car x))
(o-p (o-first-expt x))
(not (eql 0 (o-first-expt x)))
(posp (o-first-coeff x))
(o-p (o-rst x))
(o< (o-first-expt (o-rst x))
(o-first-expt x)))))
(defthm o-p-implies-o<g
(implies (o-p a)
(o<g a)))
(verify-guards o-p)
(defun make-ord (fe fco rst)
":Doc-Section ACL2::ACL2-built-ins
a constructor for ordinals.~/
~c[Make-ord] is the ordinal constructor. Its use is recommended instead of
using ~ilc[cons] to make ordinals. For a discussion of ordinals,
~pl[ordinals].~/
For any ordinal, ~c[alpha < epsilon-0], there exist natural numbers ~c[p] and
~c[n], positive integers ~c[x1, x2, ..., xn] and ordinals
~c[a1 > a2 > ... > an > 0] such that ~c[alpha > a1] and
~c[alpha = w^(a1)x1 + w^(a2)x2 + ... + w^(an)xn + p]. We call ~c[a1] the ``first
exponent'', ~c[x1] the ``first coefficient'', and the remainder
~c[(w^(a2)x2 + ... + w^(an)xn + p)] the ``rest'' of alpha.
~c[(Make-ord fe fco rst)] corresponds to the ordinal
~c[(w^fe)fco + rst]. Thus the first infinite ordinal, ~c[w] (~c[omega]), is
constructed by
~bv[]
(make-ord 1 1 0)
~ev[]
and, for example, the ordinal ~c[(w^2)5 + w2 + 7] is constructed by:
~bv[]
(make-ord 2 5 (make-ord 1 2 7)) .
~ev[]
The reason ~c[make-ord] is used rather than ~ilc[cons] is that it
allows us to reason more abstractly about the ordinals, without
having to worry about the underlying representation.
To see the ACL2 definition of this function, ~pl[pf]."
(declare (xargs :guard (and (posp fco)
(o-p fe)
(o-p rst))))
(cons (cons fe fco) rst))
(defun list*-macro (lst)
(declare (xargs :guard (and (true-listp lst)
(consp lst))))
(if (endp (cdr lst))
(car lst)
(cons 'cons
(cons (car lst)
(cons (list*-macro (cdr lst)) nil)))))
#+acl2-loop-only
(defmacro list* (&rest args)
":Doc-Section ACL2::ACL2-built-ins
build a list~/
~c[List*] is the Common Lisp macro for building a list of objects from
given elements and a tail. For example, ~c[(list* 5 6 '(7 8 9))] equals
the list ~c['(5 6 7 8 9)]. Also ~pl[list].~/
~c[List*] is a Common Lisp function. See any Common Lisp
documentation for more information.~/"
(declare (xargs :guard (consp args)))
(list*-macro args))
#-acl2-loop-only
(progn
(defmacro throw-without-attach (ignored-attachment fn formals)
`(throw-raw-ev-fncall
(list* 'ev-fncall-null-body-er
,ignored-attachment
',fn
(print-list-without-stobj-arrays (list ,@formals)))))
(defvar *aokp*
; We set *aokp* to t simply so that we can use attachments in raw Lisp. It
; will be bound suitably inside the ACL2 loop by calls of raw-ev-fncall.
t)
(defmacro aokp ()
'*aokp*)
#+hons
(defvar *attached-fn-called* nil)
#+hons
(defmacro update-attached-fn-called (fn)
`(when (null *attached-fn-called*)
(setq *attached-fn-called* ,fn)))
(defmacro throw-or-attach (fn formals &optional *1*-p)
; Warning: this macro assumes that (attachment-symbol fn) is special and, more
; important, bound. So it is probably best to lay down calls of of this macro
; using throw-or-attach-call.
(let ((at-fn (attachment-symbol fn))
(at-fn-var (gensym)))
; It is tempting to insert the form (eval `(defvar ,at-fn nil)) here. But that
; would only be evaluated at compile time. When loading a compiled file on
; behalf of including a book, this eval call would no longer be around; it
; would instead have been executed during compilation. The Warning above is
; intended to guarantee that at-fn has already been both declared special and
; bound.
`(let ((,at-fn-var ,at-fn)) ; to look up special var value only once
(cond ((and ,at-fn-var (aokp))
#+hons
(update-attached-fn-called ',fn)
(funcall ,(if *1*-p
`(*1*-symbol ,at-fn-var)
at-fn-var)
,@formals))
(t (throw-without-attach ,at-fn ,fn ,formals))))))
)
(defun throw-or-attach-call (fn formals)
; A call of throw-or-attach assumes that the attachment-symbol is special and,
; more importantly, bound. So we ensure that property here.
; It's a bit subtle why this approach works. Indeed, consider the following
; example. Suppose the book foo.lisp has the just following two forms.
; (in-package "ACL2")
; (encapsulate ((foo (x) t)) (local (defun foo (x) x)))
; Now certify the book, with (certify-book "foo"), and then in a new session:
; :q
; (load "foo")
; (boundp (attachment-symbol 'foo))
; Then boundp call returns nil. If instead we do this in a new session
; (include-book "foo")
; :q
; (boundp (attachment-symbol 'foo))
; then the boundp call returns t. This is not surprising, since we can see by
; tracing throw-or-attach-call that it is being called, thus defining the
; attachment-symbol.
; There might thus seem to be the following possibility of errors due to
; unbound attachment-symbols. Suppose that foo were called before its
; attachment-symbol is defined by evaluation of the above encapsulate form in
; the loop, say, during the early load of the compiled file for foo.lisp on
; behalf of include-book. Then an error would occur, because the
; attachment-symbol for foo would not yet be defined. However, the only way we
; can imagine this case occurring for a certified book is if foo gets an
; attachment before it is called (else the book wouldn't have been
; certifiable). Yet in raw Lisp, defattach calls defparameter for the
; attachment-symbol for every function receiving an attachment, thus avoiding
; the possibility of this proposed problem of unbound attachment-symbols.
(declare (xargs :guard t))
#-acl2-loop-only
(eval `(defvar ,(attachment-symbol fn) nil))
(list 'throw-or-attach fn formals))
(defun null-body-er (fn formals maybe-attach)
(declare (xargs :guard t))
(if maybe-attach
(throw-or-attach-call fn formals)
(list 'throw-without-attach nil fn formals)))
; CLTL2 and the ANSI standard have made the main Lisp package name be
; COMMON-LISP rather than the older LISP. Before Version_2.6 we
; handled this discrepancy in a way that could be said to be unsound.
; For example, one could prove (equal (symbol-package-name 'car)
; "LISP") in an ACL2 built on top of GCL, then prove (equal
; (symbol-package-name 'car) "COMMON-LISP")) in an ACL2 built on top
; of Allegro CL. Thus, one could certify a book with the former
; theorem in a GCL-based ACL2, then include that book in an
; Allegro-based ACL2 and prove NIL. Our solution is to make the
; "LISP" package look like "COMMON-LISP" from the perspective of ACL2,
; for example: (symbol-package-name 'car) = "COMMON-LISP".
; Warning: If you change the following, change the corresponding line in the
; defparameter for *ever-known-package-alist* above, consider changing
; symbol-package-name, and perhaps adjust the check for "LISP" in defpkg-fn.
(defconst *main-lisp-package-name*
; Keep this in sync with *main-lisp-package-name-raw*.
"COMMON-LISP")
; Warning: If you add primitive packages to this list, be sure to add
; the defaxioms that would be done by defpkg. For example, below you
; will find a defaxiom for ACL2-INPUT-CHANNEL-PACKAGE and any new
; package should have an analogous axiom added. Each of the primitive
; packages below has such an axiom explicitly added in axioms.lisp
; (except for the main lisp package name, whose import list is
; essentially unknown).
; Warning: Keep the initial value of the following constant identical to
; that of the raw lisp defparameter *ever-known-package-alist* above.
(defconst *initial-known-package-alist*
(list (make-package-entry :name "ACL2-INPUT-CHANNEL"
:imports nil)
(make-package-entry :name "ACL2-OUTPUT-CHANNEL"
:imports nil)
(make-package-entry :name "ACL2"
:imports *common-lisp-symbols-from-main-lisp-package*)
(make-package-entry :name *main-lisp-package-name*
; From a logical perspective, ACL2 pretends that no symbols are imported into
; the main Lisp package, "COMMON-LISP". This perspective is implemented by
; bad-lisp-objectp, as described in a comment there about maintaining the
; Invariant on Symbols in the Common Lisp Package. In short, every good ACL2
; symbol not in a package known to ACL2 must be imported into the main Lisp
; package and must have "COMMON-LISP" as its *initial-lisp-symbol-mark*
; property.
:imports nil)
(make-package-entry :name "KEYWORD"
:imports nil)))
(defaxiom stringp-symbol-package-name
(stringp (symbol-package-name x))
:rule-classes :type-prescription)
(defaxiom symbolp-intern-in-package-of-symbol
(symbolp (intern-in-package-of-symbol x y))
:rule-classes :type-prescription)
(defaxiom symbolp-pkg-witness
(symbolp (pkg-witness x))
:rule-classes :type-prescription)
#-acl2-loop-only
(defparameter *ld-level*
; This parameter will always be equal to the number of recursive calls of LD
; and/or WORMHOLE we are in. Since each pushes a new frame on
; *acl2-unwind-protect-stack* the value of *ld-level* should always be the
; length of the stack. But *ld-level* is maintained as a special, i.e., it is
; always bound when we enter LD while the stack is a global. An abort may
; possibly rip us out of a call of LD, causing *ld-level* to decrease but not
; affecting the stack. It is this violation of the "invariant" between the two
; that indicates that the stack must be unwound some (to cleanup after an
; aborted inferior).
; Parallelism blemish: This variable is let-bound in ld-fn (and hence by
; wormhole). Perhaps this could present a problem. For example, we wonder
; about the case where waterfall-parallelism is enabled and a parent thread
; gets confused about the value of *ld-level* (or (@ ld-level)) when changed by
; the child thread. For a second example, we can imagine (and we may have
; seen) a case in which there are two threads doing rewriting, and one does a
; throw (say, because time has expired), which puts the two threads temporarily
; out of sync in their values of *ld-level*. Wormholes involve calls of ld and
; hence also give us concern. As of this writing we know of no cases where any
; such problems exist, and there is at least one case, the definition of
; mt-future, where we explicitly provide bindings to arrange that a child
; thread receives its *ld-level* and (@ ld-level) from its parent (not from
; some spurious global values). Mt-future also has an assertion to check that
; we keep *ld-level* and (@ ld-level) in sync with each other.
0)
; For an explanation of the next defvar, see the comment in
; hard-error, below.
#-acl2-loop-only
(defvar *hard-error-returns-nilp* nil)
#-acl2-loop-only
(defun-one-output throw-raw-ev-fncall (val)
; This function just throws to raw-ev-fncall (or causes an
; interface-er if there is no raw-ev-fncall). The coding below
; actually assumes that we are in a raw-ev-fncall if *ld-level* > 0.
; This assumption may not be entirely true. If we have a bug in our
; LD code, e.g., in printing the prompt, we could throw to a
; nonexistent tag. We might get the GCL
; Error: The tag RAW-EV-FNCALL is undefined.
(cond ((or (= *ld-level* 0)
(raw-mode-p *the-live-state*))
(interface-er "~@0"
(ev-fncall-msg val
(w *the-live-state*)
(user-stobj-alist *the-live-state*))))
(t
(throw 'raw-ev-fncall val))))
(defun hard-error (ctx str alist)
; Logically, this function just returns nil. The implementation
; usually signals a hard error, which is sound since it is akin to
; running out of stack or some other resource problem.
; But if this function is called as part of a proof, e.g.,
; (thm (equal (car (cons (hard-error 'ctx "Test" nil) y)) nil))
; we do not want to cause an error! (Note: the simpler example
; (thm (equal (hard-error 'ctx "Test" nil) nil)) can be proved
; without any special handling of the executable counterpart of
; hard-error, because we know its type-set is *ts-nil*. So to cause
; an error, you have to have the hard-error term used in a place
; where type-reasoning alone won't do the job.)
; Sometimes hard-error is used in the guard of a function, e.g.,
; illegal. Generally evaluating that guard is to signal an error.
; But if guard-checking-on is nil, then we want to cause no error and
; just let the guard return nil. We evaluate the guard even when
; guard-checking-on is nil (though not for user-defined functions when
; it is :none) so we know whether to call the raw Lisp version or the
; ACL2_*1*_ACL2 version of a function.
; Logically speaking the two behaviors of hard-error, nil or error,
; are indistinguishable. So we can choose which behavior we want
; without soundness concerns. Therefore, we have a raw Lisp special
; variable, named *hard-error-returns-nilp*, and if it is true, we
; return nil. It is up to the environment to somehow set that special
; variable.
; In ev-fncall we provide the argument hard-error-returns-nilp which
; is used as the binding of *hard-error-returns-nil* when we invoke
; the raw code. This also infects ev and the other functions in the
; ev-fncall clique, namely ev-lst and ev-acl2-unwind-protect. It is
; up to the user of ev-fncall to specify which behavior is desired.
; Generally speaking, that argument of ev-fncall is set to t in those
; calls of ev-fncall that are from within the theorem prover and on
; terms from the conjecture being proved. Secondly, (up to
; Version_2.5) in oneify-cltl-code and oneify-cltl-code, when we
; generated the ACL2_*1*_ACL2 code for a function, we laid down a
; binding for *hard-error-returns-nil*. That binding is in effect
; just when we evaluate the guard of the function. The binding is t
; if either it was already (meaning somebody above us has asked for
; hard-error to be treated this way) or if guard checking is turned
; off.
; See the comment after ILLEGAL (below) for a discussion of an
; earlier, inadequate handling of these issues.
":Doc-Section ACL2::ACL2-built-ins
print an error message and stop execution~/
~c[(Hard-error ctx str alist)] causes evaluation to halt with a short
message using the ``context'' ~c[ctx]. An error message is first printed
using the string ~c[str] and alist ~c[alist] that are of the same kind
as expected by ~ilc[fmt]. ~l[fmt]. Also ~pl[er] for a macro that provides a
unified way of signaling errors.~/
~c[Hard-error] has a guard of ~c[t]. Also ~pl[illegal] for a
similar capability which however has a guard of ~c[nil] that supports
static checking using ~ilc[guard] verification, rather than using dynamic
(run-time) checking. This distinction is illustrated elsewhere:
~pl[prog2$] for examples.
Semantically, ~c[hard-error] ignores its arguments and always returns
~c[nil]. But if a call ~c[(hard-error ctx str alist)] is encountered
during evaluation, then the string ~c[str] is printed using the
association list ~c[alist] (as in ~ilc[fmt]), after which evaluation halts
immediately. Here is a trivial, contrived example.
~bv[]
ACL2 !>(cons 3 (hard-error 'my-context
\"Printing 4: ~~n0\"
(list (cons #\\0 4))))
HARD ACL2 ERROR in MY-CONTEXT: Printing 4: four
ACL2 Error in TOP-LEVEL: Evaluation aborted.
ACL2 !>
~ev[]~/"
(declare (xargs :guard t))
#-acl2-loop-only
(cond
((not *hard-error-returns-nilp*)
; We are going to ``cause an error.'' We print an error message with error-fms
; even though we do not have state. To do that, we must bind *wormholep* to
; nil so we don't try to push undo information (or, in the case of error-fms,
; cause an error for illegal state changes). If error-fms could evaluate arbitrary
; forms, e.g., to make legal state changes while in wormholes, then this would be
; a BAD IDEA. But error-fms only prints stuff that was created earlier (and passed
; in via alist).
(cond ((fboundp 'acl2::error-fms) ;;; Print a msg
(let ((*standard-output* *error-output*) ;;; one way ...
(*wormholep* nil)
(fn 'acl2::error-fms))
(funcall fn t ctx str alist *the-live-state*)))
(t (print (list ctx str alist) *error-output*))) ;;; or another.
; Once upon a time hard-error took a throw-flg argument and did the
; following throw-raw-ev-fncall only if the throw-flg was t. Otherwise,
; it signalled an interface-er. Note that in either case it behaved like
; an error -- interface-er's are rougher because they do not leave you in
; the ACL2 command loop. I think this aspect of the old code was a vestige
; of the pre-*ld-level* days when we didn't know if we could throw or not.
(throw-raw-ev-fncall 'illegal)))
#+acl2-loop-only
(declare (ignore ctx str alist))
nil)
(defun illegal (ctx str alist)
":Doc-Section ACL2::ACL2-built-ins
print an error message and stop execution~/
~c[(Illegal ctx str alist)] causes evaluation to halt with a short
message using the ``context'' ~c[ctx]. An error message is first printed
using the string ~c[str] and alist ~c[alist] that are of the same kind
as expected by ~ilc[fmt]. ~l[fmt], and ~pl[prog2$] for an
example of how to use a related function, ~ilc[hard-error]
(~pl[hard-error]). Also ~pl[er] for a macro that provides a unified
way of signaling errors.~/
The difference between ~c[illegal] and ~ilc[hard-error] is that the former
has a guard of ~c[nil] while the latter has a ~ilc[guard] of ~c[t]. Thus,
you may want to use ~c[illegal] rather than ~c[hard-error] when you intend
to do ~ilc[guard] verification at some point, and you expect the guard
to guarantee that the ~c[illegal] call is never executed.
~l[prog2$] for an example.~/"
; We would like to use this function in :common-lisp-compliant function
; definitions, but prove that it's never called. Thus we have to make this
; function :common-lisp-compliant, and its guard is then nil.
(declare (xargs :guard (hard-error ctx str alist)))
(hard-error ctx str alist))
; Note on Inadequate Handling of Illegal.
; Once upon a time (pre-Version 2.4) we had hard-error take an additional
; argument and the programmer used that argument to indicate whether the
; function was to cause an error or return nil. When hard-error was used
; in the :guard of ILLEGAL it was called so as not to cause an error (if
; guard checking was off) and when it was called in the body of ILLEGAL it
; was programmed to cause an error. However, the Rockwell folks, using
; LETs in support of stobjs, discovered that we caused hard errors on
; some guard verifications. Here is a simple example distilled from theirs:
; (defun foo (i)
; (declare (xargs :guard (integerp i)))
; (+ 1
; (car
; (let ((j i))
; (declare (type integer j))
; (cons j nil)))))
; This function caused a hard error during guard verification. The
; troublesome guard conjecture is:
; (IMPLIES
; (INTEGERP I)
; (ACL2-NUMBERP
; (CAR (LET ((J I))
; (PROG2$ (IF (INTEGERP J)
; T
; (ILLEGAL 'VERIFY-GUARDS
; "Some TYPE declaration is violated."
; NIL))
; (LIST J))))))
; The problem was that we eval'd the ILLEGAL during the course of trying
; to prove this. A similar challenge is the above mentioned
; (thm (equal (car (cons (hard-error 'ctx "Test" nil) y)) nil))
; We leave this note simply in case the current handling of
; hard errors is found still to be inadequate.
#+acl2-loop-only
(defmacro intern (x y)
(declare (xargs :guard (member-equal y
(cons *main-lisp-package-name*
'("ACL2"
*main-lisp-package-name*
"ACL2-INPUT-CHANNEL"
"ACL2-OUTPUT-CHANNEL"
"KEYWORD")))))
":Doc-Section ACL2::ACL2-built-ins
create a new symbol in a given package~/
~c[(intern symbol-name symbol-package-name)] returns a symbol with
the given ~ilc[symbol-name] and the given ~ilc[symbol-package-name]. We
restrict Common Lisp's ~c[intern] so that the second argument is
either the symbol *main-lisp-package-name*, the value of that
constant, or is one of \"ACL2\", \"ACL2-INPUT-CHANNEL\",
\"ACL2-OUTPUT-CHANNEL\", or \"KEYWORD\". To avoid that restriction,
~pl[intern$].~/
In ACL2 ~c[intern] is actually implemented as a macro that expands to
a call of a similar function whose second argument is a symbol.
Invoke ~c[:pe intern] to see the definition, or
~pl[intern-in-package-of-symbol].
To see why is ~c[intern] so restricted consider
~c[(intern \"X\" \"P\")]. In particular, is it a symbol and if so,
what is its ~ilc[symbol-package-name]? One is tempted to say ``yes, it
is a symbol in the package ~c[\"P\"].'' But if package ~c[\"P\"] has
not yet been defined, that would be premature because the imports to
the package are unknown. For example, if ~c[\"P\"] were introduced
with
~bv[]
(defpkg \"P\" '(LISP::X))
~ev[]
then in Common Lisp ~c[(symbol-package-name (intern \"X\" \"P\"))] returns
~C[\"LISP\"].
The obvious restriction on ~c[intern] is that its second argument be
the name of a package known to ACL2. We cannot express such a
restriction (except, for example, by limiting it to those packages
known at some fixed time, as we do). Instead, we provide
~ilc[intern-in-package-of-symbol] which requires a ``witness symbol''
for the package instead of the package. The witness symbol is any
symbol (expressible in ACL2) and uniquely specifies a package
necessarily known to ACL2."
(list 'intern-in-package-of-symbol
x
(cond
((equal y "ACL2")
''rewrite)
((equal y "ACL2-INPUT-CHANNEL")
''acl2-input-channel::a-random-symbol-for-intern)
((equal y "ACL2-OUTPUT-CHANNEL")
''acl2-output-channel::a-random-symbol-for-intern)
((equal y "KEYWORD")
':a-random-symbol-for-intern)
((or (equal y *main-lisp-package-name*)
(eq y '*main-lisp-package-name*))
''car)
(t (illegal 'intern
"The guard for INTERN is out of sync with its ~
definition.~%Consider adding a case for a second ~
argument of ~x0."
(list (cons #\0 y)))))))
(defmacro intern$ (x y)
":Doc-Section ACL2::ACL2-built-ins
create a new symbol in a given package~/
~c[Intern$] is a macro that behaves the same as the macro ~ilc[intern],
except for weakening the restriction to a fixed set of package names so that
any package name other than ~c[\"\"] is legal. ~l[intern]. Note that if you
evaluate a call ~c[(intern$ x y)] for which there is no package with name
~c[y] that is known to ACL2, you will get an error.~/
~c[(Intern$ x y)] expands to:
~bv[]
(intern-in-package-of-symbol x (pkg-witness y))
~ev[]
~l[intern-in-package-of-symbol] and ~pl[pkg-witness].~/"
`(intern-in-package-of-symbol ,x (pkg-witness ,y)))
#+acl2-loop-only
(defun keywordp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for keywords~/
~c[(Keywordp x)] is true if and only if ~c[x] is a keyword, i.e., a symbol in
the \"KEYWORD\" package. Such symbols are typically printed using a colon
(:) followed by the ~ilc[symbol-name] of the symbol.~/
~c[Keywordp] has a ~il[guard] of ~c[t].
~c[Keywordp] is a Common Lisp function. See any Common Lisp documentation
for more information. The following log may be illuminating.
~bv[]
ACL2 !>(intern \"ABC\" \"KEYWORD\")
:ABC
ACL2 !>(symbol-name ':ABC)
\"ABC\"
ACL2 !>(symbol-package-name ':ABC)
\"KEYWORD\"
ACL2 !>
~ev[]
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(and (symbolp x) (equal (symbol-package-name x) "KEYWORD")))
(defthm keywordp-forward-to-symbolp
(implies (keywordp x)
(symbolp x))
:rule-classes :forward-chaining)
(defaxiom intern-in-package-of-symbol-symbol-name
; This axiom assumes that "" is not the name of any package, but is instead
; used as a default value when symbol-package-name is applied to a non-symbol.
; So, the hypotheses below imply (symbolp y). See also the lemma
; symbol-package-name-of-symbol-is-not-empty-string, below. See also
; chk-acceptable-defpkg for a related comment, in which a proof of nil is shown
; using this axiom when "" is not disallowed as a package name.
(implies (and (symbolp x)
(equal (symbol-package-name x) (symbol-package-name y)))
(equal (intern-in-package-of-symbol (symbol-name x) y) x)))
(defthm symbol-package-name-of-symbol-is-not-empty-string
; This rule became necessary for the proof of lemma nice->simple-inverse in
; community book books/workshops/2003/sumners/support/n2n.lisp, after axiom
; symbol-package-name-pkg-witness-name (below) was modified after Version_3.0.1
; by adding the condition (not (equal pkg-name "")). We make it a
; :forward-chaining rule in order to avoid hanging a rewrite rule on 'equal.
(implies (symbolp x)
(not (equal (symbol-package-name x) "")))
:hints (("Goal"
:use ((:instance intern-in-package-of-symbol-symbol-name
(x x) (y 3)))
:in-theory (disable intern-in-package-of-symbol-symbol-name)))
:rule-classes ((:forward-chaining :trigger-terms ((symbol-package-name x)))))
(defconst *pkg-witness-name* "ACL2-PKG-WITNESS")
(defaxiom symbol-name-pkg-witness
(equal (symbol-name (pkg-witness pkg-name))
*pkg-witness-name*))
(defaxiom symbol-package-name-pkg-witness-name
(equal (symbol-package-name (pkg-witness pkg-name))
(if (and (stringp pkg-name)
(not (equal pkg-name "")))
pkg-name
; See the comment in intern-in-package-of-symbol-symbol-name for why we do not
; use "" below. We avoid questions about names of built-in Lisp and keyword
; packages by using our own package name.
"ACL2")))
; Member-symbol-name is used in defpkg axioms. We keep it disabled in order to
; avoid stack overflows, for example in the proof of theorem
; symbol-listp-raw-acl2-exports in file community book
; books/misc/check-acl2-exports.lisp.
(defun member-symbol-name (str l)
(declare (xargs :guard (symbol-listp l)))
(cond ((endp l) nil)
((equal str (symbol-name (car l))) l)
(t (member-symbol-name str (cdr l)))))
; Defund is not yet available here:
(in-theory (disable member-symbol-name))
(defthm symbol-equality
; This formula is provable using intern-in-package-of-symbol-symbol-name.
(implies (and (symbolp s1)
(symbolp s2)
(equal (symbol-name s1) (symbol-name s2))
(equal (symbol-package-name s1) (symbol-package-name s2)))
(equal s1 s2))
:rule-classes nil
:hints (("Goal"
:in-theory (disable intern-in-package-of-symbol-symbol-name)
:use
((:instance
intern-in-package-of-symbol-symbol-name
(x s1) (y s2))
(:instance
intern-in-package-of-symbol-symbol-name
(x s2) (y s2))))))
(defaxiom symbol-name-intern-in-package-of-symbol
(implies (and (stringp s)
(symbolp any-symbol))
(equal (symbol-name (intern-in-package-of-symbol s any-symbol)) s)))
(defaxiom symbol-package-name-intern-in-package-of-symbol
(implies (and (stringp x)
(symbolp y)
(not (member-symbol-name
x
(pkg-imports (symbol-package-name y)))))
(equal (symbol-package-name (intern-in-package-of-symbol x y))
(symbol-package-name y))))
(defaxiom intern-in-package-of-symbol-is-identity
(implies (and (stringp x)
(symbolp y)
(member-symbol-name
x
(pkg-imports (symbol-package-name y))))
(equal (intern-in-package-of-symbol x y)
(car (member-symbol-name
x
(pkg-imports (symbol-package-name y)))))))
(defaxiom symbol-listp-pkg-imports
(symbol-listp (pkg-imports pkg))
:rule-classes ((:forward-chaining :trigger-terms ((pkg-imports pkg)))))
(defaxiom no-duplicatesp-eq-pkg-imports
(no-duplicatesp-eq (pkg-imports pkg))
:rule-classes :rewrite)
(defaxiom completion-of-pkg-imports
(equal (pkg-imports x)
(if (stringp x)
(pkg-imports x)
nil))
:rule-classes nil)
; These axioms are just the ones that would be added by defpkg had the packages
; in question been introduced that way.
; Warning: If the forms of these axioms are changed, you should
; probably visit the same change to the rules added by defpkg.
(defaxiom acl2-input-channel-package
(equal (pkg-imports "ACL2-INPUT-CHANNEL")
nil))
(defaxiom acl2-output-channel-package
(equal (pkg-imports "ACL2-OUTPUT-CHANNEL")
nil))
(defaxiom acl2-package
(equal (pkg-imports "ACL2")
*common-lisp-symbols-from-main-lisp-package*))
(defaxiom keyword-package
(equal (pkg-imports "KEYWORD")
nil))
; The following two axioms are probably silly. But at least they may provide
; steps towards building up the ACL2 objects constructively from a few
; primitives.
(defaxiom string-is-not-circular
(equal 'string
(intern-in-package-of-symbol
(coerce (cons #\S (cons #\T (cons #\R (cons #\I (cons #\N (cons #\G 0))))))
(cons #\S (cons #\T (cons #\R (cons #\I (cons #\N (cons #\G 0)))))))
(intern-in-package-of-symbol 0 0)))
:rule-classes nil)
(defaxiom nil-is-not-circular
(equal nil
(intern-in-package-of-symbol
(coerce (cons #\N (cons #\I (cons #\L 0))) 'string)
'string))
:rule-classes nil)
; Essay on Symbols and Packages
; A symbol may be viewed as a pair consisting of two strings: its symbol-name
; and its symbol-package-name, where the symbol-package-name is not "". (A
; comment in intern-in-package-of-symbol-symbol-name discusses why we disallow
; "".) However, some such pairs are not symbols because of the import
; structure (represented in world global 'known-package-alist). For example,
; the "ACL2" package imports a symbol with symbol-name "CAR" from the
; "COMMON-LISP" package, so the symbol-package-name of ACL2::CAR is
; "COMMON-LISP". Thus there is no symbol with a symbol-name of "CAR" and a
; symbol-package-name of "ACL2".
; The package system has one additional requirement: No package is allowed to
; import any symbol named *pkg-witness-name* from any other package. The
; function pkg-witness returns a symbol with that name; moreover, the
; symbol-package-name of (pkg-witness p) is p if p is a string other than "",
; else is "ACL2".
; Logically, we imagine that a package exists for every string (serving as the
; symbol-package-name of its symbols) except "". Of course, at any given time
; only finite many packages have been specified (either being built-in, or
; specified with defpkg); and, ACL2 will prohibit explicit specification of
; packages for certain strings, such as "ACL2_INVISIBLE".
; Finally, we specify that the symbol-name and symbol-package-name of any
; non-symbol are "".
#-acl2-loop-only
(defun-one-output intern-in-package-of-symbol (str sym)
; In general we require that intern be given an explicit string constant
; that names a package known at translate time. This avoids the run-time
; check that the package is known -- which would require passing state down
; to intern everywhere. However, we would like a more general intern
; mechanism and hence define the following, which is admitted by special
; decree in translate. The beauty of this use of intern is that the user
; supplies a symbol which establishes the existence of the desired package.
(declare (type string str)
(type symbol sym))
(let* ((mark (get sym *initial-lisp-symbol-mark*))
(pkg (if mark *main-lisp-package* (symbol-package sym))))
(multiple-value-bind
(ans status)
(intern str pkg)
(declare (ignore status))
; We next guarantee that if sym is an ACL2 object then so is ans. We assume
; that every import of a symbol into a package known to ACL2 is via defpkg,
; except perhaps for imports into the "COMMON-LISP" package. So unless sym
; resides in the "COMMON-LISP" package (whether natively or not), the
; symbol-package of sym is one of those known to ACL2. Thus, the only case of
; concern is the case that sym resides in the "COMMON-LISP" package. Since sym
; is an ACL2 object, then by the Invariant on Symbols in the Common Lisp
; Package (see bad-lisp-objectp), its symbol-package is *main-lisp-package* or
; else its *initial-lisp-symbol-mark* property is "COMMON-LISP". So we set the
; *initial-lisp-symbol-mark* for ans in each of these sub-cases, which
; preserves the above invariant.
(when (and (eq pkg *main-lisp-package*)
(not (get ans *initial-lisp-symbol-mark*)))
(setf (get ans *initial-lisp-symbol-mark*)
*main-lisp-package-name-raw*))
ans)))
(defdoc pkg-imports
":Doc-Section ACL2::ACL2-built-ins
list of symbols imported into a given package~/
Completion Axiom (~c[completion-of-pkg-imports]):
~bv[]
(equal (pkg-imports x)
(if (stringp x)
(pkg-imports x)
nil))
~ev[]~/
~il[Guard] for ~c[(pkg-imports x)]:
~bv[]
(stringp x)
~ev[]
~c[(Pkg-imports pkg)] returns a duplicate-free list of all symbols imported
into ~c[pkg], which should be the name of a package known to ACL2. For
example, suppose ~c[\"MY-PKG\"] was created by
~bv[]
(defpkg \"MY-PKG\" '(ACL2::ABC LISP::CAR)).
~ev[]
Then ~c[(pkg-imports \"MY-PKG\")] equals the list ~c[(ACL2::ABC LISP::CAR)].
If ~c[pkg] is not a string, then ~c[(pkg-imports pkg)] is ~c[nil]. If
~c[pkg] is a string but not the name of a package known to ACL2, then the
value of the form ~c[(pkg-imports pkg)] is unspecified, and it evaluation
will fail to yield a value. By ``the symbols imported into ~c[pkg]'' we mean
the symbols imported into ~c[pkg] by the ~ilc[defpkg] event that introduced
~c[pkg]. There are no imports for built-in packages except for the
~c[\"ACL2\"] package, which imports the symbols in the list value of the
constant ~c[*common-lisp-symbols-from-main-lisp-package*]. In particular,
this is the case for the ~c[\"COMMON-LISP\"] package. Users familiar with
Common Lisp may find this surprising, since in actual Common Lisp
implementations it is often the case that many symbols in that package are
imported from other packages. However, ACL2 treats all symbols in the
constant ~c[*common-lisp-symbols-from-main-lisp-package*] as having a
~ilc[symbol-package-name] of ~c[\"COMMON-LISP\"], as though they were not
imported. ACL2 admits a symbol imported into in the ~c[\"COMMON-LISP\"]
package only if it belongs to that list: any attempt to read any other symbol
imported into the ~c[\"COMMON-LISP\"] package, or to produce such a symbol
with ~ilc[intern$] or ~ilc[intern-in-package-of-symbol], will cause an
error.
The following axioms formalize properties of ~c[pkg-imports] discussed above
(use ~c[:]~ilc[pe] to view them).
~bv[]
symbol-package-name-intern-in-package-of-symbol
intern-in-package-of-symbol-is-identity
symbol-listp-pkg-imports
no-duplicatesp-pkg-imports
completion-of-pkg-imports
~ev[]")
#-acl2-loop-only
(defun-one-output pkg-imports (pkg)
(declare (type string pkg))
(let ((entry (find-non-hidden-package-entry pkg
(known-package-alist
*the-live-state*))))
(cond (entry (package-entry-imports entry))
(t (throw-raw-ev-fncall (list 'pkg-imports-er pkg))))))
(defdoc pkg-witness
":Doc-Section ACL2::ACL2-built-ins
return a specific symbol in the indicated package~/
For any string ~c[pkg] that names a package currently known to ACL2,
~c[(pkg-witness pkg)] is a symbol in that package whose ~ilc[symbol-name] is
the value of constant ~c[*pkg-witness-name*]. Logically, this is the case
even if the package is not currently known to ACL2. However, if
~c[pkg-witness] is called on a string that is not the name of a package known
to ACL2, a hard Lisp error will result.~/
~c[(Pkg-witness pkg)] has a guard of
~c[(and (stringp pkg) (not (equal pkg \"\")))]. If ~c[pkg] is not a string,
then ~c[(pkg-witness pkg)] is equal to ~c[(pkg-witness \"ACL2\")]~/")
#-acl2-loop-only
(defun-one-output pkg-witness (pkg)
(declare (type string pkg))
(cond ((find-non-hidden-package-entry pkg
(known-package-alist *the-live-state*))
(let ((ans (intern *pkg-witness-name* pkg)))
; See comment in intern-in-package-of-symbol for an explanation of this trick.
ans))
(t
; We use error rather than illegal, because we want to throw an error even when
; *hard-error-returns-nilp* is true.
(error "The argument supplied to PKG-WITNESS, ~s, is not the name of ~
a package currently known to ACL2."
pkg))))
; UTILITIES - definitions of the rest of applicative Common Lisp.
(defun binary-append (x y)
":Doc-Section ACL2::ACL2-built-ins
~il[concatenate] two lists~/
This binary function implements ~ilc[append], which is a macro in ACL2.
~l[append]~/
The ~il[guard] for ~c[binary-append] requires the first argument to be a
~ilc[true-listp].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (true-listp x)))
(cond ((endp x) y)
(t (cons (car x) (binary-append (cdr x) y)))))
#+acl2-loop-only
(defmacro append (&rest rst)
":Doc-Section ACL2::ACL2-built-ins
~il[concatenate] zero or more lists~/
~c[Append], which takes zero or more arguments, expects all the arguments
except perhaps the last to be true (null-terminated) lists. It returns the
result of concatenating all the elements of all the given lists into a single
list. Actually, in ACL2 ~c[append] is a macro that expands into calls of the
binary function ~ilc[binary-append] if there are at least two arguments; if
there is just one argument then the expansion is that argument; and finally,
~c[(append)] expands to ~c[nil].~/
~c[Append] is a Common Lisp function. See any Common Lisp documentation for
more information.~/"
(cond ((null rst) nil)
((null (cdr rst)) (car rst))
(t (xxxjoin 'binary-append rst))))
(defthm true-listp-append
; This rule has the effect of making the system automatically realize that (rev
; x) is a true-list, for example, where:
; (defun rev (x)
; (if (endp x)
; nil
; (append (rev (cdr x))
; (list (car x)))))
; That in turn means that when it generalizes (rev x) to z it adds (true-listp
; z).
; That in turn means it can prove
; (defthm rev-append
; (equal (rev (append a b))
; (append (rev b) (rev a))))
;
; automatically, doing several generalizations and inductions.
(implies (true-listp b)
(true-listp (append a b)))
:rule-classes :type-prescription)
; The following lemma originally appeared to be useful for accepting the
; definition of make-input-channel. Then it became useful for accepting the
; definition of string-append, though that's changed a bit.
(defthm standard-char-listp-append
(implies (true-listp x)
(equal (standard-char-listp (append x y))
(and (standard-char-listp x)
(standard-char-listp y))))
:hints (("Goal" :in-theory (enable standard-char-listp))))
(defthm character-listp-append
(implies (true-listp x)
(equal (character-listp (append x y))
(and (character-listp x)
(character-listp y)))))
(defthm append-to-nil
(implies (true-listp x)
(equal (append x nil)
x)))
#+acl2-loop-only
(defmacro concatenate (result-type &rest sequences)
":Doc-Section ACL2::ACL2-built-ins
concatenate lists or strings together~/
~bv[]
Examples:
(concatenate 'string \"ab\" \"cd\" \"ef\") ; equals \"abcdef\"
(concatenate 'string \"ab\") ; equals \"ab\"
(concatenate 'list '(a b) '(c d) '(e f)) ; equals '(a b c d e f)
(concatenate 'list) ; equals nil~/
General Form:
(concatenate result-type x1 x2 ... xn)
~ev[]
where ~c[n >= 0] and either: ~c[result-type] is ~c[']~ilc[string] and each ~c[xi] is a
string; or ~c[result-type] is ~c[']~ilc[list] and each ~c[xi] is a true list.
~c[Concatenate] simply concatenates its arguments to form the result
string or list. Also ~pl[append] and ~pl[string-append]. (The latter
immediately generates a call to ~c[concatenate] when applied to strings.)
Note: We do *not* try to comply with the Lisp language's insistence
that ~c[concatenate] copies its arguments. Not only are we in an
applicative setting, where this issue shouldn't matter for the
logic, but also we do not actually modify the underlying lisp
implementation of ~c[concatenate]; we merely provide a definition for
it.
~c[Concatenate] is a Common Lisp function. See any Common Lisp
documentation for more information.~/"
(declare (xargs :guard (member-equal result-type
'('string 'list))))
(cond
((equal result-type ''string)
(cond ((and sequences (cdr sequences) (null (cddr sequences)))
; Here we optimize for a common case, but more importantly, we avoid expanding
; to a call of string-append-lst for the call of concatenate in the definition
; of string-append.
(list 'string-append (car sequences) (cadr sequences)))
(t
(list 'string-append-lst (cons 'list sequences)))))
((endp sequences) nil)
(t
; Consider the call (concatenate 'list .... '(a . b)). At one time we tested
; for (endp (cdr sequences)) here, returning (car sequences) in that case. And
; otherwise, we returned (cons 'append sequences). However, these are both
; errors, because the last member of sequences might be a non-true-listp, in
; which case append signals no guard violation but Common Lisp breaks.
(cons 'append (append sequences (list nil))))))
(defun string-append (str1 str2)
":Doc-Section ACL2::ACL2-built-ins
~il[concatenate] two strings~/
~c[String-append] takes two arguments, which are both strings (if the
~il[guard] is to be met), and returns a string obtained by concatenating
together the ~il[characters] in the first string followed by those in the
second. Also ~pl[concatenate], noting that the macro call
~bv[]
(concatenate 'string str1 str2).
~ev[]
expands to the call
~bv[]
(string-append str1 str2).
~ev[]
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard (and (stringp str1)
(stringp str2))))
(mbe :logic
(coerce (append (coerce str1 'list)
(coerce str2 'list))
'string)
:exec
; This code may seem circular, since string-append calls the concatenate macro,
; which expands here into a call of string-append. However, the :exec case is
; only called if we are executing the raw Lisp code for string-append, in which
; case we will be executing the raw Lisp code for concatenate, which of course
; does not call the ACL2 function string-append.
(concatenate 'string str1 str2)))
(defun string-listp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of strings~/
The predicate ~c[string-listp] tests whether its argument is a
~ilc[true-listp] of strings.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond
((atom x)
(eq x nil))
(t
(and (stringp (car x))
(string-listp (cdr x))))))
(defun string-append-lst (x)
(declare (xargs :guard (string-listp x)))
(cond
((endp x)
"")
(t
(string-append (car x)
(string-append-lst (cdr x))))))
; We make 1+ and 1- macros in order to head off the potentially common error of
; using these as nonrecursive functions on left-hand sides of rewrite rules.
#+acl2-loop-only
(defmacro 1+ (x)
":Doc-Section ACL2::ACL2-built-ins
increment by 1~/
~c[(1+ x)] is the same as ~c[(+ 1 x)]. ~l[+].~/
~c[1+] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(list '+ 1 x))
#+acl2-loop-only
(defmacro 1- (x)
":Doc-Section ACL2::ACL2-built-ins
decrement by 1~/
~c[(1- x)] is the same as ~c[(- x 1)]. ~l[-].~/
~c[1-] is a Common Lisp function. See any Common Lisp documentation
for more information.~/"
(list '- x 1))
; Remove
(defun remove-eq-exec (x l)
(declare (xargs :guard (if (symbolp x)
(true-listp l)
(symbol-listp l))))
(cond ((endp l) nil)
((eq x (car l))
(remove-eq-exec x (cdr l)))
(t (cons (car l) (remove-eq-exec x (cdr l))))))
(defun remove-eql-exec (x l)
(declare (xargs :guard (if (eqlablep x)
(true-listp l)
(eqlable-listp l))))
(cond ((endp l) nil)
((eql x (car l))
(remove-eql-exec x (cdr l)))
(t (cons (car l) (remove-eql-exec x (cdr l))))))
(defun remove-equal (x l)
(declare (xargs :guard (true-listp l)))
#-acl2-loop-only ; for assoc-eq, Jared Davis found native assoc efficient
(remove x l :test #'equal)
#+acl2-loop-only
(cond ((endp l) nil)
((equal x (car l))
(remove-equal x (cdr l)))
(t (cons (car l) (remove-equal x (cdr l))))))
(defmacro remove-eq (x lst)
`(remove ,x ,lst :test 'eq))
(defthm remove-eq-exec-is-remove-equal
(equal (remove-eq-exec x l)
(remove-equal x l)))
(defthm remove-eql-exec-is-remove-equal
(equal (remove-eql-exec x l)
(remove-equal x l)))
#+acl2-loop-only
(defmacro remove (x l &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
remove all occurrences~/
~bv[]
General Forms:
(remove x lst)
(remove x lst :test 'eql) ; same as above (eql as equality test)
(remove x lst :test 'eq) ; same, but eq is equality test
(remove x lst :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Remove x lst)] is equal to ~c[lst] if ~c[x] is not a member of ~c[lst],
else is the result of removing all occurrences of ~c[x] from ~c[lst]. The
optional keyword, ~c[:TEST], has no effect logically, but provides the
test (default ~ilc[eql]) used for comparing ~c[x] with successive elements of
~c[lst].
Also ~pl[remove1].~/
The ~il[guard] for a call of ~c[remove] depends on the test. In all cases,
the second argument must satisfy ~ilc[true-listp]. If the test is ~ilc[eql],
then either the first argument must be suitable for ~ilc[eql] (~pl[eqlablep])
or the second argument must satisfy ~ilc[eqlable-listp]. If the test is
~ilc[eq], then either the first argument must be a symbol or the second
argument must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between ~c[remove] and
its variants:
~bq[]
~c[(remove-eq x lst)] is equivalent to ~c[(remove x lst :test 'eq)];
~c[(remove-equal x lst)] is equivalent to ~c[(remove x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[remove-equal].
~c[Remove] is defined by Common Lisp. See any Common Lisp documentation for
more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (l ,l))
:logic (remove-equal x l)
:exec (remove-eq-exec x l)))
((equal test ''eql)
`(let-mbe ((x ,x) (l ,l))
:logic (remove-equal x l)
:exec (remove-eql-exec x l)))
(t ; (equal test 'equal)
`(remove-equal ,x ,l))))
; Remove1
(defun remove1-eq-exec (x l)
(declare (xargs :guard (if (symbolp x)
(true-listp l)
(symbol-listp l))))
(cond ((endp l) nil)
((eq x (car l))
(cdr l))
(t (cons (car l) (remove1-eq-exec x (cdr l))))))
(defun remove1-eql-exec (x l)
(declare (xargs :guard (if (eqlablep x)
(true-listp l)
(eqlable-listp l))))
(cond ((endp l) nil)
((eql x (car l))
(cdr l))
(t (cons (car l) (remove1-eql-exec x (cdr l))))))
(defun remove1-equal (x l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l) nil)
((equal x (car l))
(cdr l))
(t (cons (car l) (remove1-equal x (cdr l))))))
(defmacro remove1-eq (x lst)
`(remove1 ,x ,lst :test 'eq))
(defthm remove1-eq-exec-is-remove1-equal
(equal (remove1-eq-exec x l)
(remove1-equal x l)))
(defthm remove1-eql-exec-is-remove1-equal
(equal (remove1-eql-exec x l)
(remove1-equal x l)))
(defmacro remove1 (x l &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
remove first occurrences, testing using ~ilc[eql]~/
~bv[]
General Forms:
(remove1 x lst)
(remove1 x lst :test 'eql) ; same as above (eql as equality test)
(remove1 x lst :test 'eq) ; same, but eq is equality test
(remove1 x lst :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Remove1 x lst)] is equal to ~c[lst] if ~c[x] is not a member of ~c[lst],
else is the result of removing the first occurrences of ~c[x] from ~c[lst].
The optional keyword, ~c[:TEST], has no effect logically, but provides the
test (default ~ilc[eql]) used for comparing ~c[x] with successive elements of
~c[lst].
Also ~pl[remove].~/
The ~il[guard] for a call of ~c[remove1] depends on the test. In all cases,
the second argument must satisfy ~ilc[true-listp]. If the test is ~ilc[eql],
then either the first argument must be suitable for ~ilc[eql] (~pl[eqlablep])
or the second argument must satisfy ~ilc[eqlable-listp]. If the test is
~ilc[eq], then either the first argument must be a symbol or the second
argument must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between ~c[remove1] and
its variants:
~bq[]
~c[(remove1-eq x lst)] is equivalent to ~c[(remove1 x lst :test 'eq)];
~c[(remove1-equal x lst)] is equivalent to ~c[(remove1 x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[remove1-equal].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (l ,l))
:logic (remove1-equal x l)
:exec (remove1-eq-exec x l)))
((equal test ''eql)
`(let-mbe ((x ,x) (l ,l))
:logic (remove1-equal x l)
:exec (remove1-eql-exec x l)))
(t ; (equal test 'equal)
`(remove1-equal ,x ,l))))
(deflabel pairlis
:doc
":Doc-Section ACL2::ACL2-built-ins
~l[pairlis$]~/
The Common Lisp language allows its ~c[pairlis] function to construct
an alist in any order! So we have to define our own version:
~l[pairlis$].~/~/")
(defun pairlis$ (x y)
; CLTL allows its pairlis to construct an alist in any order! So we
; have to give this function a different name.
":Doc-Section ACL2::ACL2-built-ins
zipper together two lists~/
The Common Lisp language allows its ~ilc[pairlis] function to construct
an alist in any order! So we have to define our own version,
~c[pairlis$]. It returns the list of pairs obtained by ~ilc[cons]ing
together successive respective members of the given lists until the
first list runs out. (Hence in particular, if the second argument
is ~c[nil] then each element of the first argument is paired with ~c[nil].)~/
The ~il[guard] for ~c[pairlis$] requires that its arguments are true lists.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (true-listp x)
(true-listp y))))
(cond ((endp x) nil)
(t (cons (cons (car x) (car y))
(pairlis$ (cdr x) (cdr y))))))
; Remove-duplicates
(defun remove-duplicates-eq-exec (l)
(declare (xargs :guard (symbol-listp l)))
(cond
((endp l) nil)
((member-eq (car l) (cdr l)) (remove-duplicates-eq-exec (cdr l)))
(t (cons (car l) (remove-duplicates-eq-exec (cdr l))))))
(defun remove-duplicates-eql-exec (l)
(declare (xargs :guard (eqlable-listp l)))
(cond
((endp l) nil)
((member (car l) (cdr l)) (remove-duplicates-eql-exec (cdr l)))
(t (cons (car l) (remove-duplicates-eql-exec (cdr l))))))
(defun remove-duplicates-equal (l)
(declare (xargs :guard (true-listp l)))
(cond
((endp l) nil)
((member-equal (car l) (cdr l)) (remove-duplicates-equal (cdr l)))
(t (cons (car l) (remove-duplicates-equal (cdr l))))))
(defmacro remove-duplicates-eq (x)
`(remove-duplicates ,x :test 'eq))
(defthm remove-duplicates-eq-exec-is-remove-duplicates-equal
(equal (remove-duplicates-eq-exec x)
(remove-duplicates-equal x)))
(defthm remove-duplicates-eql-exec-is-remove-duplicates-equal
(equal (remove-duplicates-eql-exec x)
(remove-duplicates-equal x)))
(defmacro remove-duplicates-logic (x)
`(let ((x ,x))
(if (stringp x)
(coerce (remove-duplicates-equal (coerce x 'list))
'string)
(remove-duplicates-equal x))))
#+acl2-loop-only
(defmacro remove-duplicates (x &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
remove duplicates from a string or a list~/
~bv[]
General Forms:
(remove-duplicates x)
(remove-duplicates x :test 'eql) ; same as above (eql as equality test)
(remove-duplicates x :test 'eq) ; same, but eq is equality test
(remove-duplicates x :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Remove-duplicates x)] returns the result of deleting duplicate elements
from the beginning of the list or string ~c[x]. For example,
~c[(remove-duplicates '(1 2 3 2 4))] is equal to ~c['(1 3 2 4)]. The
optional keyword, ~c[:TEST], has no effect logically, but provides the
test (default ~ilc[eql]) used for comparing ~c[x] with successive elements of
~c[lst].~/
The ~il[guard] for a call of ~c[remove-duplicates] depends on the test. In
all cases, the argument must satisfy ~ilc[stringp] or ~ilc[true-listp]. If
the test is ~ilc[eql], then the argument must satisfy either ~ilc[stringp] or
~ilc[eqlable-listp]. If the test is ~ilc[eq], then the argument must satisfy
~ilc[symbol-listp].
The relation between ~c[remove-duplicates] and its variants is related to the
usual pattern for equality variants; ~pl[equality-variants]. However, the
possibility of a string argument changes the usual pattern a bit. As one
might expect:
~bq[]
~c[(remove-duplicates-eq lst)] is equivalent to
~c[(remove-duplicates lst :test 'eq)].
~eq[]
However, ~c[remove-duplicates-equal] is defined without consideration of
strings, for backward compatibility with versions of ACL2 through
Version_4.2. The macro ~c[remove-duplicates-logic] has been introduced to
model the behavior of ~c[remove-duplicates] even on strings; use
~c[:]~ilc[pe] if you wish to see its definition. So we can say the
following.
~bq[]
~c[(remove-duplicates-logic lst)] is equivalent to
~c[(remove-duplicates lst :test 'equal)]; and
~c[(remove-duplicates-logic lst)] is equal to
~c[(remove-duplicates-equal lst)] when ~c[lst] is not a string.
~eq[]
In particular, when the argument is not a string, reasoning about any of
these primitives reduces to reasoning about the function
~c[remove-duplicates-equal].
~c[Remove-duplicates] is defined by Common Lisp. See any Common Lisp
documentation for more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x))
:logic (remove-duplicates-logic x)
:exec (remove-duplicates-eq-exec x)))
((equal test ''eql)
`(let-mbe ((x ,x))
:logic (remove-duplicates-logic x)
:exec (if (stringp x)
(coerce (remove-duplicates-eql-exec (coerce x 'list))
'string)
(remove-duplicates-eql-exec x))))
(t ; (equal test 'equal)
`(remove-duplicates-logic ,x))))
(defthm character-listp-remove-duplicates
(implies (character-listp x)
(character-listp (remove-duplicates x))))
; We now define the first five documentation sections: Events,
; Documentation, History, Other, and Miscellaneous. These
; are defined here simply so we can use them freely throughout. The
; first four are advertised in :help.
(deflabel events
:doc
":Doc-Section Events
functions that extend the logic~/~/
Any extension of the syntax of ACL2 (i.e., the definition of a new
constant or macro), the axioms (i.e., the definition of a function),
or the rule database (i.e., the proof of a theorem), constitutes a
logical ``event.'' Events change the ACL2 logical world
(~pl[world]). Indeed, the only way to change the ACL2
~il[world] is via the successful evaluation of an event function.
Every time the ~il[world] is changed by an event, a landmark is left
on the ~il[world] and it is thus possible to identify the ~il[world]
``as of'' the evaluation of a given event. An event may introduce
new logical names. Some events introduce no new names (e.g.,
~ilc[verify-guards]), some introduce exactly one (e.g., ~ilc[defmacro] and
~ilc[defthm]), and some may introduce many (e.g., ~ilc[encapsulate] ).
ACL2 typically completes processing of an event by printing a summary.
Unless proofs are skipped (~pl[ld-skip-proofsp]) or summary output is
inhibited (~pl[set-inhibit-output-lst]), information about the proof attempt
(if any) is printed that includes a list of rules used, a summary of
warnings, and the number of ``prover steps'' (if any;
~pl[with-prover-step-limit]). A breakdown of the time used is also printed,
which by default is runtime (cpu time), but can be changed to realtime
(wall clock time); ~pl[get-internal-time].
~l[embedded-event-form] for a discussion of events permitted in
~il[books].~/")
(deflabel documentation
:doc
":Doc-Section Documentation
functions that display documentation~/
This section explains the ACL2 online documentation system. Thus,
most of it assumes that you are typing at the terminal, inside an ACL2
session. If you are reading this description in another setting
(for example, in a web browser, in Emacs info, or on paper), simply
ignore the parts of this description that involve typing at the
terminal.
ACL2 users are welcome to contribute additional documentation. See
the web page ~url[http://www.cs.utexas.edu/users/moore/acl2/contrib/].
For an introduction to the ACL2 online documentation system, type
~c[:]~ilc[more] below. Whenever the documentation system concludes with
``(type :more for more, :more! for the rest)'' you may type ~c[:]~ilc[more]
to see the next block of documentation.
Topics related to documentation are documented individually:~/
To view the documentation in a web browser, open a browser to file
~c[doc/HTML/acl2-doc.html] under your ACL2 source directory, or just go to
the ACL2 home page at ~url[http://www.cs.utexas.edu/users/moore/acl2/].
Alternatively, follow a link on the ACL2 home page to a manual, known as the
xdoc manual, which incorporates (but rearranges) the ACL2 documentation as
well as documentation from many ACL2 community books. You can build a local
copy of that manual; see for example the section ``BUILDING THE XDOC MANUAL''
in the community books ~c[Makefile] for instructions.
To use Emacs Info (inside Emacs), first load distributed file
~c[emacs/emacs-acl2.el] (perhaps inside your ~c[.emacs] file) and then
execute ~c[meta-x acl2-info]. In order to see true links to external web
pages, you may find the following addition to your ~c[.emacs] file to be
helpful.
~bv[]
; For emacs-version 22 or (presumably) later, you can probably set
; arrange that in Emacs Info, URLs become links, in the sense that
; if you hit ~c[<RETURN>] while standing on a URL, then you will be
; taken to that location in a web browser. If this does not happen
; automatically, then evaluating the `setq' form below might work
; if you have firefox. If that does not work, then you can probably
; figure out what to do as follows. First type
; control-h v browse-url-browser-function
; and then from the resulting help page,
; hit <return> on the link ``customize'' in:
; ``You can customize this variable''
; and then follow instructions.
(setq browse-url-browser-function (quote browse-url-firefox))
~ev[]
There is a print version of the documentation, though we recommend using one
of the other methods (web, Emacs Info, or online) to browse it. If you
really want the print version, you can find it here:
~url[http://www.cs.utexas.edu/users/moore/publications/acl2-book.ps.gz].
Below we focus on how to access the online documentation, but some of the
discussion is relevant to other formats.
The ACL2 online documentation feature allows you to see extensive
documentation on many ACL2 functions and ideas. You may use the
documentation facilities to document your own ACL2 functions and
theorems.
If there is some name you wish to know more about, then type
~bv[]
ACL2 !>:doc name
~ev[]
in the top-level loop. If the name is documented, a brief blurb
will be printed. If the name is not documented, but is ``similar''
to some documented names, they will be listed. Otherwise, ~c[nil] is
returned.
Every name that is documented contains a one-line description, a few
notes, and some details. ~c[:]~ilc[Doc] will print the one-liner and the
notes. When ~c[:]~ilc[doc] has finished it stops with the message
``(type :more for more, :more! for the rest)'' to remind you that details are
available. If you then type
~bv[]
ACL2 !>:more
~ev[]
a block of the continued text will be printed, again concluding
with ``(type :more for more, :more! for the rest)'' if the text continues
further, or concluding with ``~c[*-]'' if the text has been exhausted. By
continuing to type ~c[:]~ilc[more] until exhausting the text you can read
successive blocks. Alternatively, you can type ~c[:]~ilc[more!] to get all
the remaining blocks.
If you want to get the details and don't want to see the elementary
stuff typed by ~c[:]~ilc[doc] name, type:
~bv[]
ACL2 !>:MORE-DOC name
~ev[]
We have documented not just function names but names of certain
important ideas too. For example, ~pl[rewrite] and
~pl[meta] to learn about ~c[:]~ilc[rewrite] rules and ~c[:]~ilc[meta] rules,
respectively. ~l[hints] to learn about the structure of the
~c[:]~ilc[hints] argument to the prover. The ~ilc[deflabel] event
(~pl[deflabel]) is a way to introduce a logical name for no
reason other than to attach documentation to it; also
~pl[defdoc].
How do you know what names are documented? There is a documentation
database which is querried with the ~c[:]~ilc[docs] command.
The documentation database is divided into sections. The sections
are listed by
~bv[]
ACL2 !>:docs *
~ev[]
Each section has a name, ~c[sect], and by typing
~bv[]
ACL2 !>:docs sect
~ev[]
or equivalently
~bv[]
ACL2 !>:doc sect
~ev[]
you will get an enumeration of the topics within that section.
Those topics can be further explored by using ~c[:]~ilc[doc] (and ~c[:]~ilc[more]) on
them. In fact the section name itself is just a documented name.
~c[:]~ilc[more] generally gives an informal overview of the general subject of
the section.
~bv[]
ACL2 !>:docs **
~ev[]
will list all documented topics, by section. This fills several
pages but might be a good place to start.
If you want documentation on some topic, but none of our names or
brief descriptions seem to deal with that topic, you can invoke a
command to search the text in the database for a given string.
This is like the GNU Emacs ``~ilc[apropos]'' command.
~bv[]
ACL2 !>:docs \"functional inst\"
~ev[]
will list every documented topic whose ~c[:]~ilc[doc] or ~c[:]~ilc[more-doc] text
includes the substring ~c[\"functional inst\"], where case and the exact
number of spaces are irrelevant.
If you want documentation on an ACL2 function or macro and the
documentation database does not contain any entries for it, there
are still several alternatives.
~bv[]
ACL2 !>:args fn
~ev[]
will print the arguments and some other relevant information about
the named function or macro. This information is all gleaned from
the definition (not from the documentation database) and hence this
is a definitive way to determine if ~c[fn] is defined as a function or
macro.
You might also want to type:
~bv[]
ACL2 !>:pc fn
~ev[]
which will print the ~il[command] which introduced ~c[fn]. You should
~pl[command-descriptor] for details on the kinds of input you
can give the ~c[:]~ilc[pc] command.
The entire ACL2 documentation database is user extensible. That
is, if you document your function definitions or theorems, then that
documentation is made available via the database and its query
commands.
The implementation of our online documentation system makes use of
Common Lisp's ``documentation strings.'' While Common Lisp permits a
documentation string to be attached to any defined concept, Common
Lisp assigns no interpretation to these strings. ACL2 attaches
special significance to documentation strings that begin with the
characters ``~c[:Doc-Section]''. When such a documentation string is
seen, it is stored in the database and may be displayed via ~c[:]~ilc[doc],
~c[:]~ilc[more], ~c[:]~ilc[docs], etc. Such documentation strings must follow rigid
syntactic rules to permit their processing by our commands. These
are spelled out elsewhere; ~pl[doc-string].
A description of the structure of the documentation database may
also be found; ~pl[doc-string].
Finally: To build the HTML documentation, proceed with the following sequence
of steps.
~bq[]
1. In the ~c[doc/] subdirectory of the ACL2 distribution, start ACL2 and then
evaluate ~c[(certify-book \"write-acl2-html\")].
2. Exit ACL2 and start it up again (or, evaluate ~c[:]~ilc[u]).
3. Include the documented ~il[books] within your ACL2 loop using
~ilc[include-book].
4. Evaluate ~c[(include-book \"../doc/write-acl2-html\" :dir :system)].
5. Call macro ~c[write-html-file], following the instructions at the end of
distributed file ~c[doc/write-acl2-html.lisp].
~eq[]~/")
(deflabel history
:doc
":Doc-Section History
functions that display or change history~/~/
ACL2 keeps track of the ~il[command]s that you have executed that have
extended the logic or the rule database, as by the definition of
macros, functions, etc. Using the facilities in this section you
can review the sequence of ~il[command]s executed so far. For example,
you can ask to see the most recently executed ~il[command], or the
~il[command] ~c[10] before that, or the ~il[command] that introduced a given
function symbol. You can also undo back through some previous
~il[command], restoring the logical ~il[world] to what it was before the given
~il[command].
The annotations printed in the margin in response to some of these
commands (such as `P', `L', and `V') are explained in the
documentation for ~c[:]~ilc[pc].
Several technical terms are used in the documentation of the history
~il[command]s. You must understand these terms to use the ~il[command]s.
These terms are documented via ~c[:]~ilc[doc] entries of their own.
~l[command], ~pl[events], ~pl[command-descriptor], and
~pl[logical-name].~/")
#+acl2-loop-only
(defmacro first (x)
":Doc-Section ACL2::ACL2-built-ins
first member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'car x))
#+acl2-loop-only
(defmacro second (x)
":Doc-Section ACL2::ACL2-built-ins
second member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'cadr x))
#+acl2-loop-only
(defmacro third (x)
":Doc-Section ACL2::ACL2-built-ins
third member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'caddr x))
#+acl2-loop-only
(defmacro fourth (x)
":Doc-Section ACL2::ACL2-built-ins
fourth member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'cadddr x))
#+acl2-loop-only
(defmacro fifth (x)
":Doc-Section ACL2::ACL2-built-ins
fifth member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cddddr x)))
#+acl2-loop-only
(defmacro sixth (x)
":Doc-Section ACL2::ACL2-built-ins
sixth member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'cadr (list 'cddddr x)))
#+acl2-loop-only
(defmacro seventh (x)
":Doc-Section ACL2::ACL2-built-ins
seventh member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'caddr (list 'cddddr x)))
#+acl2-loop-only
(defmacro eighth (x)
":Doc-Section ACL2::ACL2-built-ins
eighth member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'cadddr (list 'cddddr x)))
#+acl2-loop-only
(defmacro ninth (x)
":Doc-Section ACL2::ACL2-built-ins
ninth member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'car (list 'cddddr (list 'cddddr x))))
#+acl2-loop-only
(defmacro tenth (x)
":Doc-Section ACL2::ACL2-built-ins
tenth member of the list~/
See any Common Lisp documentation for details.~/~/"
(list 'cadr (list 'cddddr (list 'cddddr x))))
#+acl2-loop-only
(defmacro rest (x)
":Doc-Section ACL2::ACL2-built-ins
rest (~ilc[cdr]) of the list~/
In the logic, ~c[rest] is just a macro for ~ilc[cdr].~/
~c[Rest] is a Common Lisp function. See any Common Lisp
documentation for more information.~/"
(list 'cdr x))
#+acl2-loop-only
(defun identity (x) (declare (xargs :guard t))
":Doc-Section ACL2::ACL2-built-ins
the identity function~/
~c[(Identity x)] equals ~c[x]; what else can we say?~/
~c[Identity] is a Common Lisp function. See any Common Lisp
documentation for more information.~/"
x)
#+acl2-loop-only
(defun revappend (x y)
":Doc-Section ACL2::ACL2-built-ins
concatentate the ~il[reverse] of one list to another~/
~c[(Revappend x y)] ~il[concatenate]s the ~il[reverse] of the list ~c[x] to ~c[y],
which is also typically a list.~/
The following theorem characterizes this English description.
~bv[]
(equal (revappend x y)
(append (reverse x) y))
~ev[]
Hint: This lemma follows immediately from the definition of ~ilc[reverse]
and the following lemma.
~bv[]
(defthm revappend-append
(equal (append (revappend x y) z)
(revappend x (append y z))))
~ev[]
The ~il[guard] for ~c[(revappend x y)] requires that ~c[x] is a true list.
~c[Revappend] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (true-listp x)))
(if (endp x)
y
(revappend (cdr x) (cons (car x) y))))
(defthm character-listp-revappend
(implies (true-listp x)
(equal (character-listp (revappend x y))
(and (character-listp x)
(character-listp y))))
; In some versions of ACL2, the following :induct hint hasn't been necessary.
:hints (("Goal" :induct (revappend x y))))
#+acl2-loop-only
(defun reverse (x)
":Doc-Section ACL2::ACL2-built-ins
reverse a list or string~/
~c[(Reverse x)] is the result of reversing the order of the
elements of the list or string ~c[x].~/
The ~il[guard] for ~c[reverse] requires that its argument is a true list
or a string.
~c[Reverse] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (or (true-listp x)
(stringp x))))
(cond ((stringp x)
(coerce (revappend (coerce x 'list) nil) 'string))
(t (revappend x nil))))
(defdoc switches-parameters-and-modes
":Doc-Section switches-parameters-and-modes
a variety of ways to modify the ACL2 environment~/
The beginning user might pay special attention to documentation for
~ilc[logic] and ~ilc[program]. Other topics in this section can be read as
one gains familiarity with ACL2.~/~/")
(defconst *valid-output-names*
'(error warning warning! observation prove proof-checker event expansion
summary proof-tree))
; Set-difference$
(defun set-difference-eq-exec (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2)
(or (symbol-listp l1)
(symbol-listp l2)))))
(cond ((endp l1) nil)
((member-eq (car l1) l2)
(set-difference-eq-exec (cdr l1) l2))
(t (cons (car l1) (set-difference-eq-exec (cdr l1) l2)))))
(defun set-difference-eql-exec (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2)
(or (eqlable-listp l1)
(eqlable-listp l2)))))
(cond ((endp l1) nil)
((member (car l1) l2)
(set-difference-eql-exec (cdr l1) l2))
(t (cons (car l1) (set-difference-eql-exec (cdr l1) l2)))))
(defun set-difference-equal (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2))))
(cond ((endp l1) nil)
((member-equal (car l1) l2)
(set-difference-equal (cdr l1) l2))
(t (cons (car l1) (set-difference-equal (cdr l1) l2)))))
(defmacro set-difference-eq (l1 l2)
`(set-difference$ ,l1 ,l2 :test 'eq))
(defthm set-difference-eq-exec-is-set-difference-equal
(equal (set-difference-eq-exec l1 l2)
(set-difference-equal l1 l2)))
(defthm set-difference-eql-exec-is-set-difference-equal
(equal (set-difference-eql-exec l1 l2)
(set-difference-equal l1 l2)))
(defmacro set-difference$ (l1 l2 &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
elements of one list that are not elements of another~/
~bv[]
General Forms:
(set-difference$ l1 l2)
(set-difference$ l1 l2 :test 'eql) ; same as above (eql as equality test)
(set-difference$ l1 l2 :test 'eq) ; same, but eq is equality test
(set-difference$ l1 l2 :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Set-difference$ l1 l2)] equals a list that contains the ~ilc[member]s of
~c[l1] that are not ~ilc[member]s of ~c[l2]. More precisely, the resulting
list is the same as one gets by deleting the members of ~c[l2] from ~c[l1],
leaving the remaining elements in the same order as in ~c[l1]. The optional
keyword, ~c[:TEST], has no effect logically, but provides the test (default
~ilc[eql]) used for comparing members of the two lists.~/
The ~il[guard] for a call of ~c[set-difference$] depends on the test. In all
cases, both arguments must satisfy ~ilc[true-listp]. If the test is
~ilc[eql], then one of the arguments must satisfy ~ilc[eqlable-listp]. If
the test is ~ilc[eq], then one of the arguments must satisfy
~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between
~c[set-difference$] and its variants:
~bq[]
~c[(set-difference-eq l1 l2)] is equivalent to
~c[(set-difference$ l1 l2 :test 'eq)];
~c[(set-difference-equal l1 l2)] is equivalent to
~c[(set-difference$ l1 l2 :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[set-difference-equal].
~c[Set-difference$] is similar to the Common Lisp primitive
~c[set-difference]. However, Common Lisp does not specify the order of
elements in the result of a call of ~c[set-difference].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((l1 ,l1) (l2 ,l2))
:logic (set-difference-equal l1 l2)
:exec (set-difference-eq-exec l1 l2)))
((equal test ''eql)
`(let-mbe ((l1 ,l1) (l2 ,l2))
:logic (set-difference-equal l1 l2)
:exec (set-difference-eql-exec l1 l2)))
(t ; (equal test 'equal)
`(set-difference-equal ,l1 ,l2))))
#+acl2-loop-only
(defun listp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for (not necessarily proper) lists~/
~c[(listp x)] is true when ~c[x] is either a ~ilc[cons] pair or is
~c[nil].~/
~c[Listp] has no ~il[guard], i.e., its ~il[guard] is ~c[t].
~c[Listp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic :guard t))
(or (consp x)
(equal x nil)))
(defconst *summary-types*
'(header form rules hint-events warnings time steps value splitter-rules))
(defun with-output-fn (ctx args off on gag-mode off-on-p gag-p stack
summary summary-p)
(declare (xargs :mode :program
:guard (true-listp args)))
(cond
((endp args) nil)
((keywordp (car args))
(let ((illegal-value-string
"~x0 is not a legal value for a call of with-output, but has been ~
supplied for keyword ~x1. See :DOC with-output."))
(cond
((consp (cdr args))
(cond
((eq (car args) :gag-mode)
(cond
((member-eq
(cadr args)
'(t :goals nil)) ; keep this list in sync with set-gag-mode
(with-output-fn ctx (cddr args) off on (cadr args) off-on-p t
stack summary summary-p))
(t (illegal ctx
illegal-value-string
(list (cons #\0 (cadr args))
(cons #\1 :gag-mode))))))
((eq (car args) :stack)
(cond
(stack
(illegal ctx
"The keyword :STACK may only be supplied once in a call ~
of ~x0."
(list (cons #\0 'with-output))))
((member-eq (cadr args) '(:push :pop))
(with-output-fn ctx (cddr args) off on gag-mode off-on-p gag-p
(cadr args) summary summary-p))
(t (illegal ctx
illegal-value-string
(list (cons #\0 (cadr args))
(cons #\1 :stack))))))
((eq (car args) :summary)
(cond (summary-p
(illegal ctx
"The keyword :SUMMARY may only be supplied once in ~
a call of ~x0."
(list (cons #\0 'with-output))))
((not (or (eq (cadr args) :all)
(and (symbol-listp (cadr args))
(subsetp-eq (cadr args) *summary-types*))))
(illegal ctx
"In a call of ~x0, the value of keyword :SUMMARY ~
must either be :ALL or a true-list contained in ~
the list ~x1."
(list (cons #\0 'with-output)
(cons #\1 *summary-types*))))
(t
(with-output-fn ctx (cddr args) off on gag-mode off-on-p gag-p
stack (cadr args) t))))
((not (member-eq (car args) '(:on :off)))
(illegal ctx
"~x0 is not a legal keyword for a call of with-output. ~
See :DOC with-output."
(list (cons #\0 (car args)))))
(t (let ((syms (cond ((eq (cadr args) :all)
:all)
((symbol-listp (cadr args))
(cadr args))
((symbolp (cadr args))
(list (cadr args))))))
(cond (syms
(cond ((eq (car args) :on)
(and (null on)
(with-output-fn ctx (cddr args) off
(if (eq syms :all)
:all
syms)
gag-mode t gag-p stack summary
summary-p)))
(t ; (eq (car args) :off)
(and (null off)
(with-output-fn ctx (cddr args)
(if (eq syms :all)
:all
syms)
on gag-mode t gag-p stack
summary summary-p)))))
(t (illegal ctx
illegal-value-string
(list (cons #\0 (cadr args))
(cons #\1 (car args))))))))))
(t (illegal ctx
"A with-output form has terminated with a keyword, ~x0. ~
This is illegal. See :DOC with-output."
(list (cons #\0 (car args))))))))
((cdr args)
(illegal ctx
"Illegal with-output form. See :DOC with-output."
nil))
((not (or (eq off :all)
(subsetp-eq off *valid-output-names*)))
(illegal ctx
"The :off argument to with-output-fn must either be :all or a ~
subset of the list ~X01, but ~x2 contains ~&3."
(list (cons #\0 *valid-output-names*)
(cons #\1 nil)
(cons #\2 off)
(cons #\3 (set-difference-eq off *valid-output-names*)))))
((not (or (eq on :all)
(subsetp-eq on *valid-output-names*)))
(illegal ctx
"The :on argument to with-output-fn must either be :all or a ~
subset of the list ~X01, but ~x2 contains ~&3."
(list (cons #\0 *valid-output-names*)
(cons #\1 nil)
(cons #\2 on)
(cons #\3 (set-difference-eq on *valid-output-names*)))))
(t
`(state-global-let*
(,@
(and gag-p
`((gag-mode (f-get-global 'gag-mode state)
set-gag-mode-fn)))
,@
(and (or off-on-p
(eq stack :pop))
'((inhibit-output-lst (f-get-global 'inhibit-output-lst state))))
,@
(and stack
'((inhibit-output-lst-stack
(f-get-global 'inhibit-output-lst-stack state))))
,@
(and summary-p
`((inhibited-summary-types
,(if (eq summary :all)
nil
(list 'quote
(set-difference-eq *summary-types* summary)))))))
(er-progn
,@(and gag-p
`((pprogn (set-gag-mode ,gag-mode)
(value nil))))
,@(and stack
`((pprogn ,(if (eq stack :pop)
'(pop-inhibit-output-lst-stack state)
'(push-inhibit-output-lst-stack state))
(value nil))))
,@(and off-on-p
`((set-inhibit-output-lst
,(cond ((eq on :all)
(if (eq off :all)
'*valid-output-names*
`(quote ,off)))
((eq off :all)
`(set-difference-eq *valid-output-names* ',on))
(t
`(union-eq ',off
(set-difference-eq
(f-get-global 'inhibit-output-lst
state)
',on)))))))
,(car args))))))
#+acl2-loop-only
(defun last (l)
":Doc-Section ACL2::ACL2-built-ins
the last ~ilc[cons] (not element) of a list~/
~c[(Last l)] is the last ~ilc[cons] of a list. Here are examples.
~bv[]
ACL2 !>(last '(a b . c))
(B . C)
ACL2 !>(last '(a b c))
(C)
~ev[]
~/
~c[(Last l)] has a ~il[guard] of ~c[(listp l)]; thus, ~c[l] need not be a
~ilc[true-listp].
~c[Last] is a Common Lisp function. See any Common Lisp
documentation for more information. Unlike Common Lisp, we do not
allow an optional second argument for ~c[last].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (listp l)))
(if (atom (cdr l))
l
(last (cdr l))))
(defun first-n-ac (i l ac)
(declare (type (integer 0 *) i)
(xargs :guard (and (true-listp l)
(true-listp ac))))
(cond ((zp i)
(reverse ac))
(t (first-n-ac (1- i) (cdr l) (cons (car l) ac)))))
(defun take (n l)
":Doc-Section ACL2::ACL2-built-ins
initial segment of a list~/
For any natural number ~c[n] not exceeding the length of ~c[l],
~c[(take n l)] collects the first ~c[n] elements of the list ~c[l].~/
The following is a theorem (though it takes some effort, including
lemmas, to get ACL2 to prove it):
~bv[]
(equal (length (take n l)) (nfix n))
~ev[]
If ~c[n] is an integer greater than the length of ~c[l], then
~c[take] pads the list with the appropriate number of ~c[nil]
elements. Thus, the following is also a theorem.
~bv[]
(implies (and (integerp n)
(true-listp l)
(<= (length l) n))
(equal (take n l)
(append l (make-list (- n (length l))))))
~ev[]
For related functions, ~pl[nthcdr] and ~pl[butlast].
The ~il[guard] for ~c[(take n l)] is that ~c[n] is a nonnegative integer
and ~c[l] is a true list.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard
(and (integerp n)
(not (< n 0))
(true-listp l))))
#-acl2-loop-only
(when (<= n most-positive-fixnum)
(return-from take
(loop for i fixnum from 1 to n
; Warning: Do not use "as x in l collect x" on the next line. Sol Swords
; disovered that at least in CCL, the looping stops in that case when l is
; empty.
collect (pop l))))
(first-n-ac n l nil))
#+acl2-loop-only
(defun butlast (lst n)
":Doc-Section ACL2::ACL2-built-ins
all but a final segment of a list~/
~c[(Butlast l n)] is the list obtained by removing the last ~c[n]
elements from the true list ~c[l]. The following is a theorem
(though it takes some effort, including lemmas, to get ACL2 to prove
it).
~bv[]
(implies (and (integerp n)
(<= 0 n)
(true-listp l))
(equal (length (butlast l n))
(if (< n (length l))
(- (length l) n)
0)))
~ev[]
For related functions, ~pl[take] and ~pl[nthcdr].~/
The ~il[guard] for ~c[(butlast l n)] requires that ~c[n] is a nonnegative
integer and ~c[lst] is a true list.
~c[Butlast] is a Common Lisp function. See any Common Lisp
documentation for more information. Note: In Common Lisp the
second argument of ~c[butlast] is optional, but in ACL2 it is
required.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (true-listp lst)
(integerp n)
(<= 0 n))))
(let ((lng (len lst))
(n (nfix n)))
(if (<= lng n)
nil
(take (- lng n) lst))))
#-acl2-loop-only
(defmacro with-output (&rest args)
(car (last args)))
#+acl2-loop-only
(defmacro with-output (&rest args)
":Doc-Section switches-parameters-and-modes
suppressing or turning on specified output for an event~/
~bv[]
Examples:
; Turn off all output during evaluation of the indicated thm form.
(with-output
:off :all
:gag-mode nil
(thm (equal (app (app x y) z) (app x (app y z)))))
; Prove the indicated theorem with the event summary turned off and
; using the :goals setting for gag-mode.
(with-output
:off summary
:gag-mode :goals
(defthm app-assoc (equal (app (app x y) z) (app x (app y z)))))
; Same effect as just above:
(with-output
:on summary
:summary nil
:gag-mode :goals
(defthm app-assoc (equal (app (app x y) z) (app x (app y z)))))
; Turn on only the indicated parts of the summary.
(with-output
:on summary
:summary (time rules)
:gag-mode :goals ; use gag-mode, with goal names printed
(defthm app-assoc (equal (app (app x y) z) (app x (app y z)))))
; Same as specifying :off :all, but showing all output types:
(with-output
:off (error warning warning! observation prove proof-checker event expansion
summary proof-tree)
:gag-mode nil
(thm (equal (app (app x y) z) (app x (app y z)))))
; Same as above, but :stack :push says to save the current
; inhibit-output-lst, which can be restored in a subsidiary with-output call
; that specifies :stack :pop.
(with-output
:stack :push
:off :all
:gag-mode nil
(thm (equal (app (app x y) z) (app x (app y z)))))~/
General Form:
(with-output :key1 val1 ... :keyk valk form)
~ev[]
where each ~c[:keyi] is either ~c[:off], ~c[:on], ~c[:stack],
~c[:summary], or ~c[:gag-mode]; ~c[form] evaluates to an error triple
(~pl[error-triples]); and ~c[vali] is as follows. If ~c[:keyi] is ~c[:off]
or ~c[:on], then ~c[vali] can be ~c[:all], and otherwise is a symbol or
non-empty list of symbols representing output types that can be inhibited;
~pl[set-inhibit-output-lst]. If ~c[:keyi] is ~c[:gag-mode], then ~c[vali] is
one of the legal values for ~c[:]~ilc[set-gag-mode]. If ~c[:keyi] is
~c[:summary], then ~c[vali] is either ~c[:all] or a true-list of symbols each
of which belongs to the list ~c[*summary-types*]. Otherwise ~c[:keyi] is
~c[:stack], in which case ~c[:vali] is ~c[:push] or ~c[:pop]; for now assume
that ~c[:stack] is not specified (we'll return to it below). The result of
evaluating the General Form above is to evaluate ~c[form], but in an
environment where output occurs as follows. If ~c[:on :all] is specified,
then every output type is turned on except as inhibited by ~c[:off]; else if
~c[:off :all] is specified, then every output type is inhibited except as
specified by ~c[:on]; and otherwise, the currently-inhibited output types are
reduced as specified by ~c[:on] and then extended as specified by ~c[:off].
But if ~c[:gag-mode] is specified, then before modifying how output is
inhibited, ~ilc[gag-mode] is set for the evaluation of ~c[form] as specified
by the value of ~c[:gag-mode]; ~pl[set-gag-mode]. If ~c[summary] is among
the output types that are turned on (not inhibited), then if ~c[:summary] is
specified, the only parts of the summary to be printed will be those
specified by the value of ~c[:summary]. The correspondence should be clear,
except perhaps that ~c[header] refers to the line containing only the word
~c[Summary], and ~c[value] refers to the value of the form printed during
evaluation of sequences of events as for ~ilc[progn] and ~ilc[encapsulate].
Note that the handling of the ~c[:stack] argument pays no attention to the
~c[:summary] argument.
Note: When the scope of ~c[with-output] is exited, then all modifications are
undone, reverting ~c[gag-mode] and the state of output inhibition to those
which were present before the ~c[with-output] call was entered.
The ~c[:stack] keyword's effect is illustrated by the following example,
where ``~c[(encapsulate nil)]'' may replaced by ``~c[(progn]'' without any
change to the output that is printed.
~bv[]
(with-output
:stack :push :off :all
(encapsulate ()
(defun f1 (x) x)
(with-output :stack :pop (defun f2 (x) x))
(defun f3 (x) x)
(with-output :stack :pop :off warning (in-theory nil))
(defun f4 (x) x)))
~ev[]
The outer ~c[with-output] call saves the current output settings (as may
have been modified by earlier calls of ~ilc[set-inhibit-output-lst]), by
pushing them onto a stack, and then turns off all output. Each inner
~c[with-output] call temporarily pops that stack, restoring the starting
output settings, until it completes and undoes the effects of that pop.
Unless ~c[event] output was inhibited at the top level
(~pl[set-inhibit-output-lst]), the following output is shown:
~bv[]
Since F2 is non-recursive, its admission is trivial. We observe that
the type of F2 is described by the theorem (EQUAL (F2 X) X).
~ev[]
And then, if ~c[summary] output was not inhibited at the top level, we get
the rest of this output:
~bv[]
Summary
Form: ( DEFUN F2 ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
Summary
Form: ( IN-THEORY NIL)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
~ev[]
Note that the use of ~c[:off warning] supresses a ~c[\"Theory\"] warning for
the ~c[(in-theory nil)] event, and that in no case will output be printed for
definitions of ~c[f1], ~c[f3], or ~c[f4], or for the ~ilc[encapsulate] event
itself.
The following more detailed explanation of ~c[:stack] is intended only for
advanced users. After ~c[:gag-mode] is handled (if present) but before
~c[:on] or ~c[:off] is handled, the value of ~c[:stack] is handled as
follows. If the value is ~c[:push], then ~il[state] global
~c[inhibit-output-lst-stack] is modified by pushing the value of ~il[state]
global ~c[inhibit-output-lst] onto the value of ~il[state] global
~c[inhibit-output-lst-stack], which is ~c[nil] at the top level. If the
value is ~c[:pop], then ~il[state] global ~c[inhibit-output-lst-stack] is
modified only if non-~c[nil], in which case its top element is popped and
becomes the value of of ~il[state] global ~c[inhibit-output-lst].
Warning: ~c[With-output] has no effect in raw Lisp, and hence is disallowed
in function bodies. However, you can probably get the effect you want as
illustrated below, where ~c[<form>] must return an error triple
~c[(mv erp val state)]; ~pl[ld] and ~pl[error-triples].
~bv[]
Examples avoiding with-output, for use in function definitions:
; Inhibit all output:
(state-global-let*
((inhibit-output-lst *valid-output-names*))
<form>)
; Inhibit all warning output:
(state-global-let*
((inhibit-output-lst
(union-eq (f-get-global 'inhibit-output-lst state)
'(warning warning!))))
<form>)
~ev[]
Note that ~c[with-output] is allowed in books. ~l[embedded-event-form]."
(let ((val
(with-output-fn 'with-output args nil nil nil nil nil nil nil nil)))
(or val
(illegal 'with-output
"Macroexpansion of ~q0 failed."
(list (cons #\0 (cons 'with-output args)))))))
; Mutual Recursion
; We are about to need mutual recursion for the first time in axioms.lisp.
; We now define the mutual-recursion macro for the logic.
(defun mutual-recursion-guardp (rst)
(declare (xargs :guard t))
(cond ((atom rst) (equal rst nil))
(t (and (consp (car rst))
(true-listp (car rst))
(true-listp (caddr (car rst))) ; formals
(member-eq (car (car rst)) '(defun defund defun-nx defund-nx))
(mutual-recursion-guardp (cdr rst))))))
(defun collect-cadrs-when-car-eq (x alist)
(declare (xargs :guard (assoc-eq-equal-alistp alist)))
(cond ((endp alist) nil)
((eq x (car (car alist)))
(cons (cadr (car alist))
(collect-cadrs-when-car-eq x (cdr alist))))
(t (collect-cadrs-when-car-eq x (cdr alist)))))
(defmacro value (x)
; Keep in sync with value@par.
`(mv nil ,x state))
(defun value-triple-fn (form on-skip-proofs check)
(declare (xargs :guard t))
`(cond ((and ,(not on-skip-proofs)
(f-get-global 'ld-skip-proofsp state))
(value :skipped))
(t ,(let ((form
`(let ((check ,check))
(cond (check
(cond
((check-vars-not-free
(check)
,form)
:passed)
((tilde-@p check)
(er hard 'value-triple
"Assertion failed:~%~@0~|"
check))
(t
(er hard 'value-triple
"Assertion failed on form:~%~x0~|"
',form))))
(t ,form)))))
`(state-global-let*
((safe-mode (not (global-val 'boot-strap-flg (w state)))))
(value ,form))))))
#+acl2-loop-only
(defmacro value-triple (form &key on-skip-proofs check)
":Doc-Section Events
compute a value, optionally checking that it is not ~c[nil]~/
~bv[]
Examples:
(value-triple (+ 3 4))
(value-triple (cw \"hi\") :on-skip-proofs t)
(value-triple (@ ld-pre-eval-print))
(value-triple (@ ld-pre-eval-print) :check t)~/
General Form:
(value-triple form
:on-skip-proofs sp ; optional; nil by default
:check chk ; optional; nil by default
)
~ev[]
~c[Value-triple] provides a convenient way to evaluate a form in an event
context, including ~ilc[progn] and ~ilc[encapsulate] and in ~il[books];
~pl[events]. The form should evaluate to a single, non-~il[stobj] value.
Calls of ~c[value-triple] are generally skipped when proofs are being
skipped, in particular when ACL2 is performing the second pass through the
~il[events] of an ~ilc[encapsulate] form or during an ~ilc[include-book], or
indeed any time ~ilc[ld-skip-proofsp] is non-~c[nil]. If you want the call
evaluated during those times as well, use a non-~c[nil] value for
~c[:on-skip-proofs]. Note that the argument to ~c[:on-skip-proofs] is not
evaluated.
If you expect the form to evaluate to a non-~c[nil] value and you want an
error to occur when that is not the case, you can use ~c[:check t]. More
generally, the argument of ~c[:check] can be a form that evaluates to a
single, non-~il[stobj] value. If this value is not ~c[nil], then the
aforementioned test is made (that the given form is not ~c[nil]). If an
error occurs and the value of ~c[:check] is a string or indeed any
``message'' suitable for printing by ~ilc[fmt] when supplied as a value for
tilde-directive ~c[~~@], then that string or message is printed."
(value-triple-fn form on-skip-proofs check))
(defmacro assert-event (form &key on-skip-proofs msg)
":Doc-Section Events
assert that a given form returns a non-~c[nil] value~/
~bv[]
Examples:
(assert-event (equal (+ 3 4) 7))
(assert-event (equal (+ 3 4) 7) :msg (msg \"Error: ~~x0\" 'equal-check))
(assert-event (equal (+ 3 4) 7) :on-skip-proofs t)~/
General Forms:
(assert-event form)
(assert-event form :on-skip-proofs t)
~ev[]
~c[Assert-event] takes a ground form, i.e., one with no free variables;
~ilc[stobj]s are allowed but only a single non-~ilc[stobj] value can be
returned. The form is then evaluated and if the result is ~c[nil], then a
so-called hard error (~pl[er]) results. This evaluation is however not done
if proofs are being skipped, as during ~ilc[include-book] (also
~pl[skip-proofs] and ~pl[ld-skip-proofsp]), unless ~c[:on-skip-proofs t] is
supplied.
Normally, if an ~c[assert-event] call fails then a generic failure message is
printed, showing the offending form. However, if keyword argument ~c[:msg]
is supplied, then the failure message is printed as with ~ilc[fmt] argument
~c[~~@0]; ~pl[fmt]. In particular, ~c[:msg] is typically a string or a call
~c[(msg str arg-0 arg-1 ... arg-k)], where ~c[str] is a string and each
~c[arg-i] is the value to be associated with ~c[#\\i] upon formatted printing
(as with ~ilc[fmt]) of the string ~c[str].
This form may be put into a book to be certified (~pl[books]), because
~c[assert-event] is a macro whose calls expand to calls of ~c[value-triple]
(~pl[embedded-event-form]). When certifying a book, guard-checking is off,
as though ~c[(set-guard-checking nil)] has been evaluated;
~pl[set-guard-checking]. That, together with a ``safe mode,'' guarantees
that ~c[assert-event] forms are evaluated in the logic without guard
violations while certifying a book.~/"
(declare (xargs :guard (booleanp on-skip-proofs)))
`(value-triple ,form
:on-skip-proofs ,on-skip-proofs
:check ,(or msg t)))
(defun xd-name (event-type name)
(declare (xargs :guard (member-eq event-type '(defund defthmd))))
(cond
((eq event-type 'defund)
(list :defund name))
((eq event-type 'defthmd)
(list :defthmd name))
(t (illegal 'xd-name
"Unexpected event-type for xd-name, ~x0"
(list (cons #\0 event-type))))))
(defun defund-name-list (defuns acc)
(declare (xargs :guard (and (mutual-recursion-guardp defuns)
(true-listp acc))))
(cond ((endp defuns) (reverse acc))
(t (defund-name-list
(cdr defuns)
(cons (if (eq (caar defuns) 'defund)
(xd-name 'defund (cadar defuns))
(cadar defuns))
acc)))))
; Begin support for defun-nx.
(defun throw-nonexec-error (fn actuals)
(declare (xargs :guard
; An appropriate guard would seem to be the following.
; (if (keywordp fn)
; (eq fn :non-exec)
; (and (symbolp fn)
; (true-listp actuals)))
; However, we want to be sure that the raw Lisp code is evaluated even if
; guard-checking has been set to :none. A simple fix is to replace the actuals
; if they are ill-formed, and that is what we do.
t
:verify-guards nil)
#+acl2-loop-only
(ignore fn actuals))
#-acl2-loop-only
(progn
(throw-raw-ev-fncall
(list* 'ev-fncall-null-body-er
; The following nil means that we never blame non-executability on aokp. Note
; that defproxy is not relevant here, since that macro generates a call of
; install-event-defuns, which calls intro-udf-lst2, which calls null-body-er
; to lay down a call of throw-or-attach. So in the defproxy case,
; throw-nonexec-error doesn't get called!
nil
fn
(if (eq fn :non-exec)
actuals
(print-list-without-stobj-arrays
(if (true-listp actuals)
actuals
(error "Unexpected case: Ill-formed actuals for ~
throw-nonexec-error!"))))))
; Just in case throw-raw-ev-fncall doesn't throw -- though it always should.
(error "This error is caused by what should be dead code!"))
nil)
(defun defun-nx-fn (form disabledp)
(declare (xargs :guard (and (true-listp form)
(true-listp (caddr form)))
:verify-guards nil))
(let ((name (cadr form))
(formals (caddr form))
(rest (cdddr form))
(defunx (if disabledp 'defund 'defun)))
`(,defunx ,name ,formals
(declare (xargs :non-executable t :mode :logic))
,@(butlast rest 1)
(prog2$ (throw-nonexec-error ',name (list ,@formals))
,@(last rest)))))
(defmacro defun-nx (&whole form &rest rest)
":Doc-Section acl2::Events
define a non-executable function symbol~/
~bv[]
Example:
(set-state-ok t)
(defun-nx foo (x state)
(mv-let (a b c)
(cons x state)
(list a b c b a)))
; Note ``ill-formed'' call of foo just below.
(defun bar (state y)
(foo state y))
~ev[]
The macro ~c[defun-nx] introduces definitions using the ~ilc[defun] macro,
always in ~c[:]~ilc[logic] mode, such that the calls of the resulting
function cannot be evaluated. Such a definition is admitted without
enforcing syntactic restrictions for executability, in particular for
single-threadedness (~pl[stobj]) and multiple-values passing (~pl[mv] and
~pl[mv-let]). After such a definition is admitted, the usual syntactic rules
for ~ilc[state] and user-defined ~il[stobj]s are relaxed for calls of the
function it defines. Also ~pl[non-exec] for a way to designate subterms of
function bodies, or subterms of code to be executed at the top level, as
non-executable.
The syntax of ~c[defun-nx] is identical to that of ~ilc[defun]. A form
~bv[]
(defun-nx name (x1 ... xk) ... body)
~ev[]
expands to the following form.
~bv[]
(defun name (x1 ... xk)
(declare (xargs :non-executable t :mode :logic))
...
(prog2$ (throw-nonexec-error 'name (list x1 ... xk))
body))
~ev[]
Note that because of the insertion of the above call of
~c[throw-nonexec-error], no formal is ignored when using ~c[defun-nx].~/
During proofs, the error is silent; it is ``caught'' by the proof mechanism
and generally results in the introduction of a call of ~ilc[hide] during a
proof. If an error message is produced by evaluating a call of the function
on a list of arguments that includes ~c[state] or user-defined ~ilc[stobj]s,
these arguments will be shown as symbols such as ~c[|<state>|] in the error
message. In the case of a user-defined stobj bound by ~ilc[with-local-stobj]
or ~ilc[stobj-let], the symbol printed will include the suffix
~c[{instance}], for example, ~c[|<st>{instance}|].
It is harmless to include ~c[:non-executable t] in your own ~ilc[xargs]
~ilc[declare] form; ~c[defun-nx] will still lay down its own such
declaration, but ACL2 can tolerate the duplication.
Note that ~c[defund-nx] is also available. It has an effect identical to
that of ~c[defun-nx] except that as with ~ilc[defund], it leaves the function
disabled.
If you use guards (~pl[guard]), please be aware that even though syntactic
restrictions are relaxed for ~c[defun-nx], guard verification proceeds
exactly as for ~ilc[defun]. If you want ACL2 to skip a form for purposes of
generating guard proof obligations, use the macro ~ilc[non-exec], which
generates a call of ~c[throw-nonexec-error] that differs somewhat from the
one displayed above. ~l[non-exec].
~l[defun] for documentation of ~c[defun]."
(declare (xargs :guard (and (true-listp form)
(true-listp (caddr form))))
(ignore rest))
(defun-nx-fn form nil))
(defmacro defund-nx (&whole form &rest rest)
(declare (xargs :guard (and (true-listp form)
(true-listp (caddr form))))
(ignore rest))
(defun-nx-fn form t))
(defun update-mutual-recursion-for-defun-nx-1 (defs)
(declare (xargs :guard (mutual-recursion-guardp defs)
:verify-guards nil))
(cond ((endp defs)
nil)
((eq (caar defs) 'defun-nx)
(cons (defun-nx-fn (car defs) nil)
(update-mutual-recursion-for-defun-nx-1 (cdr defs))))
((eq (caar defs) 'defund-nx)
(cons (defun-nx-fn (car defs) t)
(update-mutual-recursion-for-defun-nx-1 (cdr defs))))
(t
(cons (car defs)
(update-mutual-recursion-for-defun-nx-1 (cdr defs))))))
(defun update-mutual-recursion-for-defun-nx (defs)
(declare (xargs :guard (mutual-recursion-guardp defs)
:verify-guards nil))
(cond ((or (assoc-eq 'defun-nx defs)
(assoc-eq 'defund-nx defs))
(update-mutual-recursion-for-defun-nx-1 defs))
(t defs)))
#+acl2-loop-only
(defmacro mutual-recursion (&whole event-form &rest rst)
":Doc-Section Events
define some mutually recursive functions~/
~bv[]
Example:
(mutual-recursion
(defun evenlp (x)
(if (consp x) (oddlp (cdr x)) t))
(defun oddlp (x)
(if (consp x) (evenlp (cdr x)) nil)))~/
General Form:
(mutual-recursion def1 ... defn)
where each ~c[defi] is a call of ~ilc[defun], ~ilc[defund], ~ilc[defun-nx],
or ~c[defund-nx].
~ev[]
When mutually recursive functions are introduced it is necessary
to do the termination analysis on the entire clique of definitions.
Each ~ilc[defun] form specifies its own measure, either with the ~c[:measure]
keyword ~c[xarg] (~pl[xargs]) or by default to ~ilc[acl2-count]. When a
function in the clique calls a function in the clique, the measure
of the callee's actuals must be smaller than the measure of the
caller's formals ~-[] just as in the case of a simply recursive
function. But with mutual recursion, the callee's actuals are
measured as specified by the callee's ~ilc[defun] while the caller's
formals are measured as specified by the caller's ~ilc[defun]. These two
measures may be different but must be comparable in the sense that
~ilc[o<] decreases through calls.
If you want to specify ~c[:]~ilc[hints] or ~c[:guard-hints] (~pl[xargs]), you
can put them in the ~ilc[xargs] declaration of any of the ~ilc[defun] forms,
as the ~c[:]~ilc[hints] from each form will be appended together, as will the
~ilc[guard-hints] from each form.
You may find it helpful to use a lexicographic order, the idea being to have
a measure that returns a list of two arguments, where the first takes
priority over the second. Here is an example.
~bv[]
(include-book \"ordinals/lexicographic-ordering\" :dir :system)
(encapsulate
()
(set-well-founded-relation l<) ; will be treated as LOCAL
(mutual-recursion
(defun foo (x)
(declare (xargs :measure (list (acl2-count x) 1)))
(bar x))
(defun bar (y)
(declare (xargs :measure (list (acl2-count y) 0)))
(if (zp y) y (foo (1- y))))))
~ev[]
The ~ilc[guard] analysis must also be done for all of the functions at the
same time. If any one of the ~ilc[defun]s specifies the
~c[:]~ilc[verify-guards] ~c[xarg] to be ~c[nil], then ~il[guard] verification
is omitted for all of the functions. Similarly, if any one of the
~ilc[defun]s specifies the ~c[:non-executable] ~c[xarg] to be ~c[t], or if
any of the definitions uses ~ilc[defun-nx] or ~c[defund-nx], then every one
of the definitions will be treated as though it specifies a
~c[:non-executable] ~c[xarg] of ~c[t].
Technical Note: Each ~c[defi] above must be a call of ~ilc[defun],
~ilc[defund], ~ilc[defun-nx], or ~c[defund-nx]. In particular, it is not
permitted for a ~c[defi] to be an arbitrary form that macroexpands into a
~ilc[defun] form. This is because ~c[mutual-recursion] is itself a macro,
and since macroexpansion occurs from the outside in, at the time
~c[(mutual-recursion def1 ... defk)] is expanded the ~c[defi] have not yet
been macroexpanded.
Suppose you have defined your own ~ilc[defun]-like macro and wish to use
it in a ~c[mutual-recursion] expression. Well, you can't. (!) But you
can define your own version of ~c[mutual-recursion] that allows your
~ilc[defun]-like form. Here is an example. Suppose you define
~bv[]
(defmacro my-defun (&rest args) (my-defun-fn args))
~ev[]
where ~c[my-defun-fn] takes the arguments of the ~c[my-defun] form and
produces from them a ~ilc[defun] form. As noted above, you are not
allowed to write ~c[(mutual-recursion (my-defun ...) ...)]. But you can
define the macro ~c[my-mutual-recursion] so that
~bv[]
(my-mutual-recursion (my-defun ...) ... (my-defun ...))
~ev[]
expands into ~c[(mutual-recursion (defun ...) ... (defun ...))] by
applying ~c[my-defun-fn] to each of the arguments of
~c[my-mutual-recursion].
~bv[]
(defun my-mutual-recursion-fn (lst)
(declare (xargs :guard (alistp lst)))
; Each element of lst must be a consp (whose car, we assume, is always
; MY-DEFUN). We apply my-defun-fn to the arguments of each element and
; collect the resulting list of DEFUNs.
(cond ((atom lst) nil)
(t (cons (my-defun-fn (cdr (car lst)))
(my-mutual-recursion-fn (cdr lst))))))
(defmacro my-mutual-recursion (&rest lst)
; Each element of lst must be a consp (whose car, we assume, is always
; MY-DEFUN). We obtain the DEFUN corresponding to each and list them
; all inside a MUTUAL-RECURSION form.
(declare (xargs :guard (alistp lst)))
(cons 'mutual-recursion (my-mutual-recursion-fn lst))).
~ev[]~/
:cited-by Programming"
(declare (xargs :guard (mutual-recursion-guardp rst)))
(let ((rst (update-mutual-recursion-for-defun-nx rst)))
(let ((form (list 'defuns-fn
(list 'quote (strip-cdrs rst))
'state
(list 'quote event-form)
#+:non-standard-analysis ; std-p
nil)))
(cond
((assoc-eq 'defund rst)
(list 'er-progn
form
(list
'with-output
:off 'summary
(list 'in-theory
(cons 'disable
(collect-cadrs-when-car-eq 'defund rst))))
(list 'value-triple (list 'quote (defund-name-list rst nil)))))
(t
form)))))
; Now we define the weak notion of term that guards metafunctions.
(mutual-recursion
(defun pseudo-termp (x)
":Doc-Section ACL2::ACL2-built-ins
a predicate for recognizing term-like s-expressions~/
~bv[]
Example Forms:
(pseudo-termp '(car (cons x 'nil))) ; has value t
(pseudo-termp '(car x y z)) ; also has value t!
(pseudo-termp '(delta (h x))) ; has value t
(pseudo-termp '(delta (h x) . 7)) ; has value nil (not a true-listp)
(pseudo-termp '((lambda (x) (car x)) b)) ; has value t
(pseudo-termp '(if x y 123)) ; has value nil (123 is not quoted)
(pseudo-termp '(if x y '123)) ; has value t
~ev[]
If ~c[x] is the quotation of a term, then ~c[(pseudo-termp x)] is ~c[t].
However, if ~c[x] is not the quotation of a term it is not necessarily
the case that ~c[(pseudo-termp x)] is ~c[nil].~/
~l[term] for a discussion of the various meanings of the word
``term'' in ACL2. In its most strict sense, a term is either a
legal variable symbol, a quoted constant, or the application of an
~c[n]-ary function symbol or closed ~c[lambda]-expression to ~c[n] terms. By
``legal variable symbol'' we exclude constant symbols, such as ~c[t],
~c[nil], and ~c[*ts-rational*]. By ``quoted constants'' we include ~c['t] (aka
~c[(quote t)]), ~c['nil], ~c['31], etc., and exclude constant names such as ~c[t],
~c[nil] and ~c[*ts-rational*], unquoted constants such as ~c[31] or ~c[1/2], and
ill-formed ~c[quote] expressions such as ~c[(quote 3 4)]. By ``closed
lambda expression'' we exclude expressions, such as
~c[(lambda (x) (cons x y))], containing free variables in their bodies.
Terms typed by the user are translated into strict terms for
internal use in ACL2.
The predicate ~c[termp] checks this strict sense of ``term'' with
respect to a given ACL2 logical world; ~l[world]. Many ACL2
functions, such as the rewriter, require certain of their arguments
to satisfy ~c[termp]. However, as of this writing, ~c[termp] is in ~c[:]~ilc[program]
mode and thus cannot be used effectively in conjectures to be
proved. Furthermore, if regarded simply from the perspective of an
effective ~il[guard] for a term-processing function, ~c[termp] checks many
irrelevant things. (Does it really matter that the variable symbols
encountered never start and end with an asterisk?) For these
reasons, we have introduced the notion of a ``pseudo-term'' and
embodied it in the predicate ~c[pseudo-termp], which is easier to
check, does not require the logical ~il[world] as input, has ~c[:]~ilc[logic]
mode, and is often perfectly suitable as a ~il[guard] on term-processing
functions.
A ~c[pseudo-termp] is either a symbol, a true list of length 2
beginning with the word ~c[quote], the application of an ~c[n]-ary
pseudo-~c[lambda] expression to a true list of ~c[n] pseudo-terms, or
the application of a symbol to a true list of ~c[n] ~c[pseudo-termp]s.
By an ``~c[n]-ary pseudo-~c[lambda] expression'' we mean an expression
of the form ~c[(lambda (v1 ... vn) pterm)], where the ~c[vi] are
symbols (but not necessarily distinct legal variable symbols) and
~c[pterm] is a ~c[pseudo-termp].
Metafunctions may use ~c[pseudo-termp] as a ~il[guard]."
(declare (xargs :guard t :mode :logic))
(cond ((atom x) (symbolp x))
((eq (car x) 'quote)
(and (consp (cdr x))
(null (cdr (cdr x)))))
((not (true-listp x)) nil)
((not (pseudo-term-listp (cdr x))) nil)
(t (or (symbolp (car x))
; For most function applications we do not check that the number of
; arguments matches the number of formals. However, for lambda
; applications we do make that check. The reason is that the
; constraint on an evaluator dealing with lambda applications must use
; pairlis$ to pair the formals with the actuals and pairlis$ insists on
; the checks below.
(and (true-listp (car x))
(equal (length (car x)) 3)
(eq (car (car x)) 'lambda)
(symbol-listp (cadr (car x)))
(pseudo-termp (caddr (car x)))
(equal (length (cadr (car x)))
(length (cdr x))))))))
(defun pseudo-term-listp (lst)
(declare (xargs :guard t))
(cond ((atom lst) (equal lst nil))
(t (and (pseudo-termp (car lst))
(pseudo-term-listp (cdr lst))))))
)
(defthm pseudo-term-listp-forward-to-true-listp
(implies (pseudo-term-listp x)
(true-listp x))
:rule-classes :forward-chaining)
; For the encapsulate of too-many-ifs-post-rewrite
(encapsulate
()
(table acl2-defaults-table :defun-mode :logic)
(verify-guards pseudo-termp))
(defun pseudo-term-list-listp (l)
(declare (xargs :guard t))
(if (atom l)
(equal l nil)
(and (pseudo-term-listp (car l))
(pseudo-term-list-listp (cdr l)))))
(verify-guards pseudo-term-list-listp)
; Add-to-set
(defun add-to-set-eq-exec (x lst)
(declare (xargs :guard (if (symbolp x)
(true-listp lst)
(symbol-listp lst))))
(cond ((member-eq x lst) lst)
(t (cons x lst))))
(defun add-to-set-eql-exec (x lst)
(declare (xargs :guard (if (eqlablep x)
(true-listp lst)
(eqlable-listp lst))))
(cond ((member x lst) lst)
(t (cons x lst))))
(defun add-to-set-equal (x l)
(declare (xargs :guard (true-listp l)))
; Warning: This function is used by include-book-fn to add a
; certification tuple to the include-book-alist. We exploit the fact
; that if the tuple, x, isn't already in the list, l, then this
; function adds it at the front! So don't change this function
; without recoding include-book-fn.
(cond ((member-equal x l)
l)
(t (cons x l))))
(defmacro add-to-set-eq (x lst)
`(add-to-set ,x ,lst :test 'eq))
; Added for backward compatibility (add-to-set-eql was present through
; Version_4.2):
(defmacro add-to-set-eql (x lst)
`(add-to-set ,x ,lst :test 'eql))
(defthm add-to-set-eq-exec-is-add-to-set-equal
(equal (add-to-set-eq-exec x lst)
(add-to-set-equal x lst)))
(defthm add-to-set-eql-exec-is-add-to-set-equal
(equal (add-to-set-eql-exec x lst)
(add-to-set-equal x lst)))
; Disable non-recursive functions to assist in discharging mbe guard proof
; obligations.
(in-theory (disable add-to-set-eq-exec add-to-set-eql-exec))
(defmacro add-to-set (x lst &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
add a symbol to a list~/
~bv[]
General Forms:
(add-to-set x lst)
(add-to-set x lst :test 'eql) ; same as above (eql as equality test)
(add-to-set x lst :test 'eq) ; same, but eq is equality test
(add-to-set x lst :test 'equal) ; same, but equal is equality test
~ev[]
For a symbol ~c[x] and an object ~c[lst], ~c[(add-to-set-eq x lst)] is the
result of ~ilc[cons]ing ~c[x] on to the front of ~c[lst], unless ~c[x] is
already a ~ilc[member] of ~c[lst], in which case the result is ~c[lst]. The
optional keyword, ~c[:TEST], has no effect logically, but provides the
test (default ~ilc[eql]) used for comparing ~c[x] with successive elements of
~c[lst].~/
The ~il[guard] for a call of ~c[add-to-set] depends on the test. In all
cases, the second argument must satisfy ~ilc[true-listp]. If the test is
~ilc[eql], then either the first argument must be suitable for ~ilc[eql]
(~pl[eqlablep]) or the second argument must satisfy ~ilc[eqlable-listp]. If
the test is ~ilc[eq], then either the first argument must be a symbol or the
second argument must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between ~c[add-to-set] and
its variants:
~bq[]
~c[(add-to-set-eq x lst)] is equivalent to ~c[(add-to-set x lst :test 'eq)];
~c[(add-to-set-equal x lst)] is equivalent to ~c[(add-to-set x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[add-to-set-equal].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (lst ,lst))
:logic (add-to-set-equal x lst)
:exec (add-to-set-eq-exec x lst)))
((equal test ''eql)
`(let-mbe ((x ,x) (lst ,lst))
:logic (add-to-set-equal x lst)
:exec (add-to-set-eql-exec x lst)))
(t ; (equal test 'equal)
`(add-to-set-equal ,x ,lst))))
(defmacro variablep (x) (list 'atom x))
(defmacro nvariablep (x) (list 'consp x))
(defmacro fquotep (x) (list 'eq ''quote (list 'car x)))
(defun quotep (x)
(declare (xargs :guard t))
(and (consp x)
(eq (car x) 'quote)))
(defconst *t* (quote (quote t)))
(defconst *nil* (quote (quote nil)))
(defconst *0* (quote (quote 0)))
(defconst *1* (quote (quote 1)))
(defconst *-1* (quote (quote -1)))
(defun kwote (x)
":Doc-Section ACL2::ACL2-built-ins
quote an arbitrary object~/
For any object ~c[x], ~c[(kwote x)] returns the two-element list whose
elements are the symbol ~c[quote] and the given ~c[x], respectively.
The guard of ~c[(kwote x)] is ~c[t].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(mbe :logic
; Theorem ev-lambda-clause-correct in community book
; books/centaur/misc/evaluator-metatheorems.lisp goes out to lunch if we use
; the :exec term below as the definition. So we keep the :logic definition
; simple.
(list 'quote x)
:exec ; save conses
(cond ((eq x nil) *nil*)
((eq x t) *t*)
((eql x 0) *0*)
((eql x 1) *1*)
((eql x -1) *-1*)
(t (list 'quote x)))))
(defun kwote-lst (lst)
":Doc-Section ACL2::ACL2-built-ins
quote an arbitrary true list of objects~/
The function ~c[kwote-lst] applies the function ~c[kwote] to each element of
a given list. The guard of ~c[(kwote-lst lst)] is ~c[(true-listp lst)].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
(t (cons (kwote (car lst)) (kwote-lst (cdr lst))))))
(defmacro unquote (x) (list 'cadr x))
(defmacro ffn-symb (x) (list 'car x))
(defun fn-symb (x)
(declare (xargs :guard t))
(if (and (nvariablep x)
(not (fquotep x)))
(car x)
nil))
(defmacro fargs (x) (list 'cdr x))
(mutual-recursion
(defun all-vars1 (term ans)
(declare (xargs :guard (and (pseudo-termp term)
(symbol-listp ans))
:mode :program))
(cond ((variablep term)
(add-to-set-eq term ans))
((fquotep term) ans)
(t (all-vars1-lst (fargs term) ans))))
(defun all-vars1-lst (lst ans)
(declare (xargs :guard (and (pseudo-term-listp lst)
(symbol-listp ans))
:mode :program))
(cond ((endp lst) ans)
(t (all-vars1-lst (cdr lst)
(all-vars1 (car lst) ans)))))
)
(verify-termination-boot-strap
(all-vars1 (declare (xargs :mode :logic :verify-guards nil)))
(all-vars1-lst (declare (xargs :mode :logic))))
(defun all-vars (term)
; This function collects the variables in term in reverse print order of
; first occurrence. E.g., all-vars of '(f (g a b) c) is '(c b a).
; This ordering is exploited by, at least, loop-stopper and bad-synp-hyp.
(declare (xargs :guard (pseudo-termp term)
:verify-guards nil))
(all-vars1 term nil))
; Progn.
; The definition of er-progn-fn below exposes a deficiency in ACL2 not
; present in full Common Lisp, namely ACL2's inability to generate a
; really ``new'' variable the way one can in a Common Lisp macro via
; gensym. One would like to be sure that in binding the two variables
; er-progn-not-to-be-used-elsewhere-erp
; er-progn-not-to-be-used-elsewhere-val that they were not used
; anywhere in the subsequent macro expansion of lst. If one had the
; macro expansion of lst at hand, one could manufacture a variable
; that was not free in the expansion with genvars, and that would do.
; As a less than elegant rememdy to the situation, we introduce below
; the macro check-vars-not-free, which takes two arguments, the first
; a not-to-be-evaluated list of variable names and the second an
; expression. We arrange to return the translation of the expression
; provided none of the variables occur freely in it. Otherwise, an error
; is caused. The situation is subtle because we cannot even obtain
; the free vars in an expression until it has been translated. For
; example, (value x) has the free var STATE in it, thanks to the macro
; expansion of value. But a macro can't call translate because macros
; can't get their hands on state.
; In an earlier version of this we built check-vars-not-free into
; translate itself. We defined it with a defmacro that expanded to
; its second arg, but translate did not actually look at the macro
; (raw lisp did) and instead implemented the semantics described
; above. Of course, if no error was caused the semantics agreed with
; the treatment and if an error was caused, all bets are off anyway.
; The trouble with that approach was that it worked fine as long as
; check-vars-not-free was the only such example we had of needing to
; look at the translated form of something in a macro. Unfortunately,
; others came along. So we invented the more general
; translate-and-test and now use it to define check-vars-not-free.
(defmacro translate-and-test (test-fn form)
; Test-fn should be a LAMBDA expression (or function or macro symbol)
; of one non-STATE argument, and form is an arbitrary form. Logically
; we ignore test-fn and return form. However, an error is caused by
; TRANSLATE if the translation of form is not "approved" by test-fn.
; By "approved" we mean that when (test-fn 'term) is evaluated, where
; term is the translation of form, (a) the evaluation completes
; without an error and (b) the result is T. Otherwise, the result is
; treated as an error msg and displayed. (Actually, test-fn's answer
; is treated as an error msg if it is a stringp or a consp. Any other
; result, e.g., T or NIL (!), is treated as "approved.") If test-fn
; approves then the result of translation is the translation of form.
; For example,
; (translate-and-test
; (lambda (term)
; (or (subsetp (all-vars term) '(x y z))
; (msg "~x0 uses variables other than x, y, and z."
; term)))
; <form>)
; is just the translation of <form> provided that translation
; only involves the free vars x, y, and z; otherwise an error is
; caused. By generating calls of this macro other macros can
; ensure that the <form>s they generate satisfy certain tests
; after those <forms>s are translated.
; This macro is actually implemented in translate. It can't be
; implemented here because translate isn't defined yet. However the
; semantics is consistent with the definition below, namely, it just
; expands to its second argument (which is, of course, translated).
; It is just that sometimes errors are caused.
; There are two tempting generalizations of this function. The first
; is that test-fn should be passed STATE so that it can make more
; "semantic" checks on the translation of form and perhaps so that it
; can signal the error itself. There is, as far as I know,
; nothing wrong with this generalization except that it is hard to
; implement. In order for TRANSLATE to determine whether test-fn
; approves of the term it must ev an expression. If that expression
; involved STATE then translated must pass in its STATE in that
; position. This requires coercing the state to an object, an act
; which is done with some trepidation in trans-eval and which could,
; presumably, be allowed earlier in translate.
; The second tempting generalization is that test-fn should have the
; power to massage the translation and return a new form which should,
; in turn, be translated. For example, then one could imagine, say, a
; macro that would permit a form to be turned into the quoted constant
; listing the variables that occur freely in the translated form. If
; the first generalization above has been carried out, then this would
; permit the translation of a form to be state dependent, which is
; illegal. But this second generalization is problematic anyway. In
; particular, what is the raw lisp counterpart of the generalized
; macro? Note that in its current incarnation, the raw lisp
; counterpart of translate-and-test is the same as its logical
; meaning: it just expands to its second arg. But if the desired
; expansion is computed from the translation of its second arg, then
; raw lisp would have to translate that argument. But we can't do
; that for a variety of reasons: (a) CLTL macros shouldn't be state
; dependent, (b) we can't call translate during compilation because in
; general the ACL2 world isn't present, etc.
(declare (ignore test-fn))
form)
; Intersectp
(defun intersectp-eq-exec (x y)
(declare (xargs :guard (and (true-listp x)
(true-listp y)
(or (symbol-listp x)
(symbol-listp y)))))
(cond ((endp x) nil)
((member-eq (car x) y) t)
(t (intersectp-eq-exec (cdr x) y))))
(defun intersectp-eql-exec (x y)
(declare (xargs :guard (and (true-listp x)
(true-listp y)
(or (eqlable-listp x)
(eqlable-listp y)))))
(cond ((endp x) nil)
((member (car x) y) t)
(t (intersectp-eql-exec (cdr x) y))))
(defun intersectp-equal (x y)
(declare (xargs :guard (and (true-listp x)
(true-listp y))))
(cond ((endp x) nil)
((member-equal (car x) y) t)
(t (intersectp-equal (cdr x) y))))
(defmacro intersectp-eq (x y)
`(intersectp ,x ,y :test 'eq))
(defthm intersectp-eq-exec-is-intersectp-equal
(equal (intersectp-eq-exec x y)
(intersectp-equal x y)))
(defthm intersectp-eql-exec-is-intersectp-equal
(equal (intersectp-eql-exec x y)
(intersectp-equal x y)))
(defmacro intersectp (x y &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
test whether two lists intersect~/
~bv[]
General Forms:
(set-difference$ l1 l2)
(set-difference$ l1 l2 :test 'eql) ; same as above (eql as equality test)
(set-difference$ l1 l2 :test 'eq) ; same, but eq is equality test
(set-difference$ l1 l2 :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Intersectp l1 l2)] returns ~c[t] if ~c[l1] and ~c[l2] have a ~ilc[member]
in common, else it returns ~c[nil]. The optional keyword, ~c[:TEST], has no
effect logically, but provides the test (default ~ilc[eql]) used for
comparing members of the two lists.~/
The ~il[guard] for a call of ~c[intersectp] depends on the test. In all
cases, both arguments must satisfy ~ilc[true-listp]. If the test is
~ilc[eql], then one of the arguments must satisfy ~ilc[eqlable-listp]. If
the test is ~ilc[eq], then one of the arguments must satisfy
~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between
~c[intersectp] and its variants:
~bq[]
~c[(intersectp-eq x lst)] is equivalent to ~c[(intersectp x lst :test 'eq)];
~c[(intersectp-equal x lst)] is equivalent to
~c[(intersectp x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[intersectp-equal].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (y ,y))
:logic (intersectp-equal x y)
:exec (intersectp-eq-exec x y)))
((equal test ''eql)
`(let-mbe ((x ,x) (y ,y))
:logic (intersectp-equal x y)
:exec (intersectp-eql-exec x y)))
(t ; (equal test 'equal)
`(intersectp-equal ,x ,y))))
(defun make-fmt-bindings (chars forms)
(declare (xargs :guard (and (true-listp chars)
(true-listp forms)
(<= (length forms) (length chars)))))
(cond ((endp forms) nil)
(t (list 'cons
(list 'cons (car chars) (car forms))
(make-fmt-bindings (cdr chars) (cdr forms))))))
(defmacro msg (str &rest args)
; Fmt is defined much later. But we need msg now because several of our macros
; generate calls of msg and thus msg must be a function when terms using those
; macros are translated.
":Doc-Section ACL2::ACL2-built-ins
construct a ``message'' suitable for the ~c[~~@] directive of ~ilc[fmt]~/
~l[fmt] for background on formatted printing with ACL2.
We document ~c[msg] precisely below, but first, we give an informal
introduction and illustrate with an example. Suppose you are writing a
program that is to do some printing. Typically, you will either pass the
ACL2 state around (~pl[programming-with-state]) and use formatted printing
functions that take the state as an argument (~pl[fmt])), or else you might
avoid using state by calling the utility, ~ilc[cw], to do you printing.
Alternatively, you might print error messages upon encountering illegal
situations; ~pl[er]. But there are times where instead of printing
immediately, you may prefer to pass messages around, for example to
accumulate them before printing a final message. In such cases, it may be
desirable to construct ``message'' objects to pass around.
For example, consider the following pair of little programs. The first
either performs a computation or prints an error, and the second calls the
first on two inputs.
~bv[]
(defun invert1 (x)
(if (consp x)
(cons (cdr x) (car x))
(prog2$ (cw \"ERROR: ~~x0 expected a cons, but was given ~~x1.~~|\"
'invert1 x)
nil)))
(defun invert2 (x1 x2)
(list (invert1 x1) (invert1 x2)))
~ev[]
For example:
~bv[]
ACL2 !>(invert1 '(3 . 4))
(4 . 3)
ACL2 !>(invert1 'a)
ERROR: INVERT1 expected a cons, but was given A.
NIL
ACL2 !>(invert2 '(3 . 4) '(5 . 6))
((4 . 3) (6 . 5))
ACL2 !>(invert2 'a 'b)
ERROR: INVERT1 expected a cons, but was given A.
ERROR: INVERT1 expected a cons, but was given B.
(NIL NIL)
ACL2 !>
~ev[]
Notice that when there are errors, there is no attempt to explain that these
are due to a call of ~c[invert2]. That could be fixed, of course, by
arranging for ~c[invert2] to print its own error; but for complicated
programs it can be awkward to coordinate printing from many sources. So
let's try a different approach. This time, the first function returns two
results. The first result is an ``error indicator'' ~-[] either a message
object or ~c[nil] ~-[] while the second is the computed value (only of
interest when the first result is ~c[nil]). Then the higher-level function
can print a single error message that includes the error message(s) from the
lower-level function, as shown below.
~bv[]
(defun invert1a (x)
(if (consp x)
(mv nil
(cons (cdr x) (car x)))
(mv (msg \"ERROR: ~~x0 expected a cons, but was given ~~x1.~~|\"
'invert1a x)
nil)))
(defun invert2a (x1 x2)
(mv-let (erp1 y1)
(invert1a x1)
(mv-let (erp2 y2)
(invert1a x2)
(if erp1
(if erp2
(cw \"~~x0 failed with two errors:~~| ~~@1 ~~@2\"
'invert2a erp1 erp2)
(cw \"~~x0 failed with one error:~~| ~~@1\"
'invert2a erp1))
(if erp2
(cw \"~~x0 failed with one error:~~| ~~@1\"
'invert2a erp2)
(list y1 y2))))))
~ev[]
For example:
~bv[]
ACL2 !>(invert2a '(3 . 4) '(5 . 6))
((4 . 3) (6 . 5))
ACL2 !>(invert2a '(3 . 4) 'b)
INVERT2A failed with one error:
ERROR: INVERT1A expected a cons, but was given B.
NIL
ACL2 !>(invert2a 'a 'b)
INVERT2A failed with two errors:
ERROR: INVERT1A expected a cons, but was given A.
ERROR: INVERT1A expected a cons, but was given B.
NIL
ACL2 !>
~ev[]
If you study the example above, you might well understand ~c[msg]. But we
conclude with precise documentation.~/
~bv[]
General Form:
(msg str arg1 ... argk)
~ev[]
where ~c[str] is a string and ~c[k] is at most 9.
This macro returns a pair suitable for giving to the ~c[fmt] directive
~c[~~@]. Thus, suppose that ~c[#\\c] is bound to the value of
~c[(msg str arg1 ... argk)], where ~c[c] is a character and ~c[k] is at most
9. Then the ~c[fmt] directive ~c[~~@c] will print out the string, ~c[str],
in the context of the alist in which the successive ~c[fmt] variables
~c[#\\0], ~c[#\\1], ..., ~c[#\\k] are bound to the successive elements of
~c[(arg1 ... argk)].~/"
(declare (xargs :guard (<= (length args) 10)))
`(cons ,str ,(make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9) args)))
(defun check-vars-not-free-test (vars term)
(declare (xargs :guard (and (symbol-listp vars)
(pseudo-termp term))
:verify-guards nil))
(or (not (intersectp-eq vars (all-vars term)))
(msg "It is forbidden to use ~v0 in ~x1."
vars term)))
(defmacro check-vars-not-free (vars form)
; A typical use of this macro is (check-vars-not-free (my-erp my-val) ...)
; which just expands to the translation of ... provided my-erp and my-val do
; not occur freely in it.
; We wrap the body of the lambda into a simple function call, because
; translate11 calls ev-w on it and we want to avoid having lots of ev-rec
; calls, especially since intersectp-eq expands to an mbe call.
(declare (xargs :guard (symbol-listp vars)))
`(translate-and-test
(lambda (term)
(check-vars-not-free-test ',vars term))
,form))
(defun er-progn-fn (lst)
; Keep in sync with er-progn-fn@par.
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
((endp (cdr lst)) (car lst))
(t (list 'mv-let
'(er-progn-not-to-be-used-elsewhere-erp
er-progn-not-to-be-used-elsewhere-val
state)
(car lst)
; Avoid possible warning after optimized compilation:
'(declare (ignorable er-progn-not-to-be-used-elsewhere-val))
(list 'if
'er-progn-not-to-be-used-elsewhere-erp
'(mv er-progn-not-to-be-used-elsewhere-erp
er-progn-not-to-be-used-elsewhere-val
state)
(list 'check-vars-not-free
'(er-progn-not-to-be-used-elsewhere-erp
er-progn-not-to-be-used-elsewhere-val)
(er-progn-fn (cdr lst))))))))
(defmacro er-progn (&rest lst)
; Keep in sync with er-progn@par.
":Doc-Section ACL2::ACL2-built-ins
perform a sequence of state-changing ``error triples''~/
~bv[]
Example:
(er-progn (check-good-foo-p (f-get-global 'my-foo state) state)
(value (* (f-get-global 'my-foo state)
(f-get-global 'bar state))))
~ev[]
This sequencing primitive is only useful when programming with
~il[state], something that very few users will probably want to do.
~l[state].~/
~c[Er-progn] is used much the way that ~ilc[progn] is used in Common Lisp,
except that it expects each form within it to evaluate to an ``error triple''
of the form ~c[(mv erp val state)]; ~pl[error-triples]. The first such form,
if any, that evaluates to such a triple where ~c[erp] is not ~c[nil] yields
the error triple returned by the ~c[er-progn]. If there is no such form,
then the last form returns the value of the ~c[er-progn] form.
~bv[]
General Form:
(er-progn <expr1> ... <exprk>)
~ev[]
where each ~c[<expri>] is an expression that evaluates to an error triple
(~pl[programming-with-state]). The above form is essentially equivalent to
the following (``essentially'' because in fact, care is taken to avoid
variable capture).
~bv[]
(mv-let (erp val state)
<expr1>
(cond (erp (mv erp val state))
(t (mv-let (erp val state)
<expr2>
(cond (erp (mv erp val state))
(t ...
(mv-let (erp val state)
<expr{k-1}>
(cond (erp (mv erp val state))
(t <exprk>)))))))))
~ev[]~/"
(declare (xargs :guard (and (true-listp lst)
lst)))
(er-progn-fn lst))
#+acl2-par
(defun er-progn-fn@par (lst)
; Keep in sync with er-progn-fn.
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
((endp (cdr lst)) (car lst))
(t (list 'mv-let
'(er-progn-not-to-be-used-elsewhere-erp
er-progn-not-to-be-used-elsewhere-val)
(car lst)
; Avoid possible warning after optimized compilation:
'(declare (ignorable er-progn-not-to-be-used-elsewhere-val))
(list 'if
'er-progn-not-to-be-used-elsewhere-erp
'(mv er-progn-not-to-be-used-elsewhere-erp
er-progn-not-to-be-used-elsewhere-val)
(list 'check-vars-not-free
'(er-progn-not-to-be-used-elsewhere-erp
er-progn-not-to-be-used-elsewhere-val)
(er-progn-fn@par (cdr lst))))))))
#+acl2-par
(defmacro er-progn@par (&rest lst)
; Keep in sync with er-progn.
":Doc-Section ACL2::ACL2-built-ins
State-free version of ~ilc[er-progn].~/
~/~/"
(declare (xargs :guard (and (true-listp lst)
lst)))
(er-progn-fn@par lst))
(defun legal-case-clausesp (tl)
(declare (xargs :guard t))
(cond ((atom tl)
(eq tl nil))
((and (consp (car tl))
(or (eqlablep (car (car tl)))
(eqlable-listp (car (car tl))))
(consp (cdr (car tl)))
(null (cdr (cdr (car tl))))
(if (or (eq t (car (car tl)))
(eq 'otherwise (car (car tl))))
(null (cdr tl))
t))
(legal-case-clausesp (cdr tl)))
(t nil)))
(defun case-test (x pat)
(declare (xargs :guard t))
(cond ((atom pat) (list 'eql x (list 'quote pat)))
(t (list 'member x (list 'quote pat)))))
(defun case-list (x l)
(declare (xargs :guard (legal-case-clausesp l)))
(cond ((endp l) nil)
((or (eq t (car (car l)))
(eq 'otherwise (car (car l))))
(list (list 't (car (cdr (car l))))))
((null (car (car l)))
(case-list x (cdr l)))
(t (cons (list (case-test x (car (car l)))
(car (cdr (car l))))
(case-list x (cdr l))))))
(defun case-list-check (l)
(declare (xargs :guard (legal-case-clausesp l)))
(cond ((endp l) nil)
((or (eq t (car (car l)))
(eq 'otherwise (car (car l))))
(list (list 't (list 'check-vars-not-free
'(case-do-not-use-elsewhere)
(car (cdr (car l)))))))
((null (car (car l)))
(case-list-check (cdr l)))
(t (cons (list (case-test 'case-do-not-use-elsewhere (car (car l)))
(list 'check-vars-not-free
'(case-do-not-use-elsewhere)
(car (cdr (car l)))))
(case-list-check (cdr l))))))
#+acl2-loop-only
(defmacro case (&rest l)
":Doc-Section ACL2::ACL2-built-ins
conditional based on if-then-else using ~ilc[eql]~/
~bv[]
Example Form:
(case typ
((:character foo)
(open file-name :direction :output))
(bar (open-for-bar file-name))
(otherwise
(my-error \"Illegal.\")))
~ev[]
is the same as
~bv[]
(cond ((member typ '(:character foo))
(open file-name :direction :output))
((eql typ 'bar)
(open-for-bar file-name))
(t (my-error \"Illegal.\")))
~ev[]
which in turn is the same as
~bv[]
(if (member typ '(:character foo))
(open file-name :direction :output)
(if (eql typ 'bar)
(open-for-bar file-name)
(my-error \"Illegal.\")))~/
~ev[]
Notice the quotations that appear in the example above:
~c['(:character foo)] and ~c['bar].
~bv[]
General Forms:
(case expr
(x1 val-1)
...
(xk val-k)
(otherwise val-k+1))
(case expr
(x1 val-1)
...
(xk val-k)
(t val-k+1))
(case expr
(x1 val-1)
...
(xk val-k))
~ev[]
where each ~c[xi] is either ~ilc[eqlablep] or a true list of ~ilc[eqlablep]
objects. The final ~c[otherwise] or ~c[t] case is optional.
~c[Case] is defined in Common Lisp. See any Common Lisp
documentation for more information.~/"
(declare (xargs :guard (and (consp l)
(legal-case-clausesp (cdr l)))))
(cond ((atom (car l))
(cons 'cond (case-list (car l) (cdr l))))
(t `(let ((case-do-not-use-elsewhere ,(car l)))
(cond ,@(case-list-check (cdr l)))))))
; Position-ac
(defun position-ac-eq-exec (item lst acc)
(declare (xargs :guard (and (true-listp lst)
(or (symbolp item)
(symbol-listp lst))
(acl2-numberp acc))))
(cond
((endp lst) nil)
((eq item (car lst))
acc)
(t (position-ac-eq-exec item (cdr lst) (1+ acc)))))
(defun position-ac-eql-exec (item lst acc)
(declare (xargs :guard (and (true-listp lst)
(or (eqlablep item)
(eqlable-listp lst))
(acl2-numberp acc))))
(cond
((endp lst) nil)
((eql item (car lst))
acc)
(t (position-ac-eql-exec item (cdr lst) (1+ acc)))))
(defun position-equal-ac (item lst acc)
; This function should perhaps be called position-ac-equal, but we name it
; position-equal-ac since that has been its name historically before the new
; handling of member etc. after Version_4.2.
(declare (xargs :guard (and (true-listp lst)
(acl2-numberp acc))))
(cond
((endp lst) nil)
((equal item (car lst))
acc)
(t (position-equal-ac item (cdr lst) (1+ acc)))))
(defmacro position-ac-equal (item lst acc)
; See comment about naming in position-equal-ac.
`(position-equal-ac ,item ,lst ,acc))
(defmacro position-eq-ac (item lst acc)
; This macro may be oddly named; see the comment about naming in
; position-equal-ac. We also define position-ac-eq, which may be a more
; appropriate name.
`(position-ac ,item ,lst ,acc :test 'eq))
(defmacro position-ac-eq (item lst acc)
`(position-ac ,item ,lst ,acc :test 'eq))
(defthm position-ac-eq-exec-is-position-equal-ac
(equal (position-ac-eq-exec item lst acc)
(position-equal-ac item lst acc)))
(defthm position-ac-eql-exec-is-position-equal-ac
(equal (position-ac-eql-exec item lst acc)
(position-equal-ac item lst acc)))
(defmacro position-ac (item lst acc &key (test ''eql))
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((item ,item) (lst ,lst) (acc ,acc))
:logic (position-equal-ac item lst)
:exec (position-ac-eq-exec item lst)))
((equal test ''eql)
`(let-mbe ((item ,item) (lst ,lst) (acc ,acc))
:logic (position-equal-ac item lst acc)
:exec (position-ac-eql-exec item lst acc)))
(t ; (equal test 'equal)
`(position-equal-ac ,item ,lst))))
; Position
(defun position-eq-exec (item lst)
(declare (xargs :guard (and (true-listp lst)
(or (symbolp item)
(symbol-listp lst)))))
(position-ac-eq-exec item lst 0))
(defun position-eql-exec (item lst)
(declare (xargs :guard (or (stringp lst)
(and (true-listp lst)
(or (eqlablep item)
(eqlable-listp lst))))))
(if (stringp lst)
(position-ac item (coerce lst 'list) 0)
(position-ac item lst 0)))
(defun position-equal (item lst)
(declare (xargs :guard (or (stringp lst) (true-listp lst))))
#-acl2-loop-only ; for assoc-eq, Jared Davis found native assoc efficient
(position item lst :test #'equal)
#+acl2-loop-only
(if (stringp lst)
(position-ac item (coerce lst 'list) 0)
(position-equal-ac item lst 0)))
(defmacro position-eq (item lst)
`(position ,item ,lst :test 'eq))
(defthm position-eq-exec-is-position-equal
(implies (not (stringp lst))
(equal (position-eq-exec item lst)
(position-equal item lst))))
(defthm position-eql-exec-is-position-equal
(equal (position-eql-exec item lst)
(position-equal item lst)))
#+acl2-loop-only
(defmacro position (x seq &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
position of an item in a string or a list~/
~bv[]
General Forms:
(position x seq)
(position x seq :test 'eql) ; same as above (eql as equality test)
(position x seq :test 'eq) ; same, but eq is equality test
(position x seq :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Position x seq)] is the least index (zero-based) of the element ~c[x] in
the string or list ~c[seq], if ~c[x] is an element of ~c[seq]. Otherwise
~c[(position x seq)] is ~c[nil]. The optional keyword, ~c[:TEST], has no
effect logically, but provides the test (default ~ilc[eql]) used for
comparing ~c[x] with items of ~c[seq].~/
The ~il[guard] for a call of ~c[position] depends on the test. In all cases,
the second argument must satisfy ~ilc[stringp] or ~ilc[true-listp]. If the
test is ~ilc[eql], then either the first argument must be suitable for
~ilc[eql] (~pl[eqlablep]) or the second argument must satisfy
~ilc[eqlable-listp]. If the test is ~ilc[eq], then either the first argument
must be a symbol or the second argument must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between ~c[position] and
its variants:
~bq[]
~c[(position-eq x seq)] is equivalent to ~c[(position x seq :test 'eq)];
~c[(position-equal x seq)] is equivalent to ~c[(position x seq :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[position-equal].
~c[Position] is defined by Common Lisp. See any Common Lisp documentation for
more information.~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((x ,x) (seq ,seq))
:logic (position-equal x seq)
:exec (position-eq-exec x seq)))
((equal test ''eql)
`(let-mbe ((x ,x) (seq ,seq))
:logic (position-equal x seq)
:exec (position-eql-exec x seq)))
(t ; (equal test 'equal)
`(position-equal ,x ,seq))))
(defun nonnegative-integer-quotient (i j)
":Doc-Section ACL2::ACL2-built-ins
natural number division function~/
~bv[]
Example Forms:
(nonnegative-integer-quotient 14 3) ; equals 4
(nonnegative-integer-quotient 15 3) ; equals 5
~ev[]
~c[(nonnegative-integer-quotient i j)] returns the integer quotient
of the integers ~c[i] and (non-zero) ~c[j], i.e., the largest ~c[k]
such that ~c[(* j k)] is less than or equal to ~c[i]. Also
~pl[floor], ~pl[ceiling] and ~pl[truncate], which are
derived from this function and apply to rational numbers.~/
The ~il[guard] of ~c[(nonnegative-integer-quotient i j)] requires that
~c[i] is a nonnegative integer and ~c[j] is a positive integer.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(not (< i 0))
(integerp j)
(< 0 j))))
#-acl2-loop-only
; See community book books/misc/misc2/misc.lisp for justification.
(values (floor i j))
#+acl2-loop-only
(if (or (= (nfix j) 0)
(< (ifix i) j))
0
(+ 1 (nonnegative-integer-quotient (- i j) j))))
; Next we develop let* in the logic.
(defun true-list-listp (x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for true (proper) lists of true lists~/
~c[True-list-listp] is the function that checks whether its argument
is a list that ends in, or equals, ~c[nil], and furthermore, all of
its elements have that property. Also ~pl[true-listp].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom x) (eq x nil))
(t (and (true-listp (car x))
(true-list-listp (cdr x))))))
(defthm true-list-listp-forward-to-true-listp
(implies (true-list-listp x)
(true-listp x))
:rule-classes :forward-chaining)
(defun legal-let*-p (bindings ignore-vars ignored-seen top-form)
; We check that no variable declared ignored or ignorable is bound twice. We
; also check that all ignored-vars are bound. We could leave it to translate
; to check the resulting LET form instead, but we prefer to do the check here,
; both in order to clarify the problem for the user (the blame will be put on
; the LET* form) and because we are not sure of the Common Lisp treatment of
; such a LET* and could thus be in unknown territory were we ever to relax the
; corresponding restriction on LET.
; Ignored-seen should be nil at the top level.
(declare (xargs :guard (and top-form ; to avoid irrelevance
(symbol-alistp bindings)
(symbol-listp ignore-vars)
(symbol-listp ignored-seen))))
(cond ((endp bindings)
(or (eq ignore-vars nil)
(hard-error 'let*
"All variables declared IGNOREd or IGNORABLE in a ~
LET* form must be bound, but ~&0 ~#0~[is~/are~] not ~
bound in the form ~x1."
(list (cons #\0 ignore-vars)
(cons #\1 top-form)))))
((member-eq (caar bindings) ignored-seen)
(hard-error 'let*
"A variable bound more than once in a LET* form may not ~
be declared IGNOREd or IGNORABLE, but the variable ~x0 ~
is bound more than once in form ~x1 and yet is so ~
declared."
(list (cons #\0 (caar bindings))
(cons #\1 top-form))))
((member-eq (caar bindings) ignore-vars)
(legal-let*-p (cdr bindings)
(remove (caar bindings) ignore-vars)
(cons (caar bindings) ignored-seen)
top-form))
(t (legal-let*-p (cdr bindings) ignore-vars ignored-seen top-form))))
(defun well-formed-type-decls-p (decls vars)
; Decls is a true list of declarations (type tp var1 ... vark). We check that
; each vari is bound in vars.
(declare (xargs :guard (and (true-list-listp decls)
(symbol-listp vars))))
(cond ((endp decls) t)
((subsetp-eq (cddr (car decls)) vars)
(well-formed-type-decls-p (cdr decls) vars))
(t nil)))
(defun symbol-list-listp (x)
(declare (xargs :guard t))
(cond ((atom x) (eq x nil))
(t (and (symbol-listp (car x))
(symbol-list-listp (cdr x))))))
(defun get-type-decls (var type-decls)
(declare (xargs :guard (and (symbolp var)
(true-list-listp type-decls)
(alistp type-decls)
(symbol-list-listp (strip-cdrs type-decls)))))
(cond ((endp type-decls) nil)
((member-eq var (cdr (car type-decls)))
(cons (list 'type (car (car type-decls)) var)
(get-type-decls var (cdr type-decls))))
(t (get-type-decls var (cdr type-decls)))))
(defun let*-macro (bindings ignore-vars ignorable-vars type-decls body)
(declare (xargs :guard (and (symbol-alistp bindings)
(symbol-listp ignore-vars)
(symbol-listp ignorable-vars)
(true-list-listp type-decls)
(alistp type-decls)
(symbol-list-listp (strip-cdrs type-decls)))))
(cond ((endp bindings)
(prog2$ (or (null ignore-vars)
(hard-error 'let*-macro
"Implementation error: Ignored variables ~x0 ~
must be bound in superior LET* form!"
ignore-vars))
(prog2$ (or (null ignorable-vars)
(hard-error 'let*-macro
"Implementation error: Ignorable ~
variables ~x0 must be bound in ~
superior LET* form!"
ignorable-vars))
body)))
(t ; (consp bindings)
(cons 'let
(cons (list (car bindings))
(let ((rest (let*-macro (cdr bindings)
(remove (caar bindings)
ignore-vars)
(remove (caar bindings)
ignorable-vars)
type-decls
body)))
(append
(and (member-eq (caar bindings) ignore-vars)
(list (list 'declare
(list 'ignore (caar bindings)))))
(and (member-eq (caar bindings) ignorable-vars)
(list (list 'declare
(list 'ignorable (caar bindings)))))
(let ((var-type-decls
(get-type-decls (caar bindings) type-decls)))
(and var-type-decls
(list (cons 'declare var-type-decls))))
(list rest))))))))
(defun collect-cdrs-when-car-eq (x alist)
(declare (xargs :guard (and (symbolp x)
(true-list-listp alist))))
(cond ((endp alist) nil)
((eq x (car (car alist)))
(append (cdr (car alist))
(collect-cdrs-when-car-eq x (cdr alist))))
(t (collect-cdrs-when-car-eq x (cdr alist)))))
(defun append-lst (lst)
(declare (xargs :guard (true-list-listp lst)))
(cond ((endp lst) nil)
(t (append (car lst) (append-lst (cdr lst))))))
(defun restrict-alist (keys alist)
; Returns the subsequence of alist whose cars are among keys (without any
; reordering).
(declare (xargs :guard (and (symbol-listp keys)
(alistp alist))))
(cond
((endp alist)
nil)
((member-eq (caar alist) keys)
(cons (car alist)
(restrict-alist keys (cdr alist))))
(t (restrict-alist keys (cdr alist)))))
#+acl2-loop-only
(defmacro let* (&whole form bindings &rest decl-body)
":Doc-Section ACL2::ACL2-built-ins
binding of lexically scoped (local) variables~/
~bv[]
Example LET* Forms:
(let* ((x (* x x))
(y (* 2 x)))
(list x y))
(let* ((x (* x x))
(y (* 2 x))
(x (* x y))
(a (* x x)))
(declare (ignore a))
(list x y))
~ev[]
If the forms above are executed in an environment in which ~c[x] has the
value ~c[-2], then the respective results are ~c['(4 8)] and ~c['(32 8)].
~l[let] for a discussion of both ~ilc[let] and ~c[let*], or read
on for a briefer discussion.~/
The difference between ~ilc[let] and ~c[let*] is that the former binds its
local variables in parallel while the latter binds them
sequentially. Thus, in ~c[let*], the term evaluated to produce the
local value of one of the locally bound variables is permitted to
reference any locally bound variable occurring earlier in the
binding list and the value so obtained is the newly computed local
value of that variable. ~l[let].
In ACL2 the only ~ilc[declare] forms allowed for a ~c[let*] form are
~c[ignore], ~c[ignorable], and ~c[type]. ~l[declare]. Moreover, no variable
declared ~c[ignore]d or ~c[ignorable] may be bound more than once. A
variable with a type declaration may be bound more than once, in which case
the type declaration is treated by ACL2 as applying to each binding
occurrence of that variable. It seems unclear from the Common Lisp spec
whether the underlying Lisp implementation is expected to apply such a
declaration to more than one binding occurrence, however, so performance in
such cases may depend on the underlying Lisp.
~c[Let*] is a Common Lisp macro. See any Common Lisp
documentation for more information.~/"
(declare (xargs
:guard
; We do not check that the variables declared ignored are not free in the body,
; nor do we check that variables bound in bindings that are used in the body
; are not declared ignored. Those properties will be checked for the expanded
; LET form, as appropriate.
(and (symbol-alistp bindings)
(true-listp decl-body)
decl-body
(let ((declare-forms (butlast decl-body 1)))
(and
(alistp declare-forms)
(subsetp-eq (strip-cars declare-forms)
'(declare))
(let ((decls (append-lst (strip-cdrs declare-forms))))
(let ((ign-decls (restrict-alist '(ignore ignorable)
decls))
(type-decls (restrict-alist '(type) decls)))
(and (symbol-alistp decls)
(symbol-list-listp ign-decls)
(subsetp-eq (strip-cars decls)
'(ignore ignorable type))
(well-formed-type-decls-p type-decls
(strip-cars bindings))
(legal-let*-p
bindings
(append-lst (strip-cdrs ign-decls))
nil
form)))))))))
(declare (ignore form))
(let ((decls (append-lst (strip-cdrs (butlast decl-body 1))))
(body (car (last decl-body))))
(let ((ignore-vars (collect-cdrs-when-car-eq 'ignore decls))
(ignorable-vars (collect-cdrs-when-car-eq 'ignorable decls))
(type-decls (strip-cdrs (restrict-alist '(type) decls))))
(let*-macro bindings ignore-vars ignorable-vars type-decls body))))
#+acl2-loop-only
(defmacro progn (&rest r)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section ACL2::Events
evaluate some ~il[events]~/
~bv[]
Example Form:
(progn (defun foo (x) x)
(defmacro my-defun (&rest args)
(cons 'defun args))
(my-defun bar (x) (foo x)))
General form:
(progn event1 event2 ... eventk)
~ev[]
where ~c[k] >= 0 and each ~c[eventi] is a legal embedded event form
(~pl[embedded-event-form]). These events are evaluated in sequence. A
utility is provided to assist in debugging failures of such execution;
~pl[redo-flat].
NOTE: If the ~c[eventi] above are not all legal embedded event forms
(~pl[embedded-event-form]), consider using ~ilc[er-progn] or (with great
care!) ~ilc[progn!] instead.
For a related event form that does allow introduction of ~il[constraint]s
and ~ilc[local] ~il[events], ~pl[encapsulate].
ACL2 does not allow the use of ~c[progn] in definitions. Instead, the
macro ~ilc[er-progn] can be used for sequencing ~il[state]-oriented
operations; ~pl[er-progn] and ~pl[state]. If you are using single-threaded
objects (~pl[stobj]) you may wish to define a version of ~ilc[er-progn] that
cascades the object through successive changes. ACL2's ~ilc[pprogn] is the
~c[state] analogue of such a macro.
If your goal is simply to execute a sequence of top-level forms, for example
a sequence of definitions, consider using ~c[ld] instead; ~pl[ld].~/~/"
; Like defun, defmacro, and in-package, progn does not have quite the same
; semantics as the Common Lisp function. This is useful only for sequences at
; the top level. It permits us to handle things like type sets and records.
(list 'progn-fn
(list 'quote r)
'state))
#+(and :non-standard-analysis (not acl2-loop-only))
(defun floor1 (x)
; See "RAG" comment in the definition of floor for an explanation of why we
; need this function.
(floor x 1))
#+acl2-loop-only
(progn
(defdoc real
":Doc-Section ACL2::Real
ACL2(r) support for real numbers~/
ACL2 supports rational numbers but not real numbers. However, starting with
Version 2.5, a variant of ACL2 called ``ACL2(r)'' supports the real numbers
by way of non-standard analysis. ACL2(r) was conceived and first implemented
by Ruben Gamboa in his Ph.D. dissertation work, supervised by Bob Boyer with
active participation by Matt Kaufmann.
ACL2(r) has the same source files as ACL2. After you download ACL2, you can
build ACL2(r) by executing the following command on the command line in your
acl2-sources directory, replacing ~c[<your_lisp>] with a path to your Lisp
executable:
~bv[]
make large-acl2r LISP=<your_lisp>
~ev[]
This will create an executable in your acl2-sources directory named
~c[saved_acl2r].
Note that if you download community books as tarfiles, then you should be
sure to download the `nonstd' books, from
~url[http://acl2-books.googlecode.com/files/nonstd-6.3.tar.gz]. Then certify
them from your acl2-sources directory, shown here as
~c[<DIR>]:
~bv[]
make regression-nonstd ACL2=<DIR>/saved_acl2r
~ev[]
To check that you are running ACL2(r), see if the prompt includes the string
``~c[(r)]'',
e.g.:
~bv[]
ACL2(r) !>
~ev[]
Or, look at ~c[(@ acl2-version)] and see if ``~c[(r)]'' is a substring.
In ACL2 (as opposed to ACL2(r)), when we say ``real'' we mean
``rational.''~/
Caution: ACL2(r) should be considered experimental: although we (Kaufmann and
Moore) have carefully completed Gamboa's integration of the reals into the
ACL2 source code, our primary concern has been to ensure unchanged behavior
when ACL2 is compiled in the default manner, i.e., without the non-standard
extensions. As for every release of ACL2, at the time of a release we are
unaware of soundness bugs in ACL2 or ACL2(r).
There is only limited documentation on the non-standard features of ACL2(r).
We hope to provide more documentation for such features in future releases.
Please feel free to query the authors if you are interested in learning more
about ACL2(r). Gamboa's dissertation may also be helpful.~/")
(defun floor (i j)
;; RAG - This function had to be modified in a major way. It was
;; originally defined only for rationals, and it used the fact that
;; the floor of "p/q" could be found by repeatedly subtracting "q"
;; from "p" (roughly speaking). This same trick, sadly, does not work
;; for the reals. Instead, we need something similar to the
;; archimedean axiom. Our version thereof is the _undefined_ function
;; "floor1", which takes a single argument and returns an integer
;; equal to it or smaller to it by no more than 1. Using this
;; function, we can define the more general floor function offered
;; below.
":Doc-Section ACL2::ACL2-built-ins
division returning an integer by truncating toward negative infinity~/
~bv[]
Example Forms:
ACL2 !>(floor 14 3)
4
ACL2 !>(floor -14 3)
-5
ACL2 !>(floor 14 -3)
-5
ACL2 !>(floor -14 -3)
4
ACL2 !>(floor -15 -3)
5
~ev[]
~c[(Floor i j)] returns the result of taking the quotient of ~c[i] and
~c[j] and returning the greatest integer not exceeding that quotient.
For example, the quotient of ~c[-14] by ~c[3] is ~c[-4 2/3], and the largest
integer not exceeding that rational number is ~c[-5].~/
The ~il[guard] for ~c[(floor i j)] requires that ~c[i] and ~c[j] are
rational (~il[real], in ACL2(r)) numbers and ~c[j] is non-zero.
~c[Floor] is a Common Lisp function. See any Common Lisp
documentation for more information. However, note that unlike Common Lisp,
the ACL2 ~c[floor] function returns only a single value,
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp i)
(real/rationalp j)
(not (eql j 0)))))
#+:non-standard-analysis
(let ((q (* i (/ j))))
(cond ((integerp q) q)
((rationalp q)
(if (>= q 0)
(nonnegative-integer-quotient (numerator q) (denominator q))
(+ (- (nonnegative-integer-quotient (- (numerator q))
(denominator q)))
-1)))
(t (floor1 q))))
#-:non-standard-analysis
(let* ((q (* i (/ j)))
(n (numerator q))
(d (denominator q)))
(cond ((= d 1) n)
((>= n 0)
(nonnegative-integer-quotient n d))
(t (+ (- (nonnegative-integer-quotient (- n) d)) -1))))
)
;; RAG - This function was also modified to fit in the reals. It's
;; also defined in terms of the _undefined_ function floor1 (which
;; corresponds to the usual unary floor function).
(defun ceiling (i j)
":Doc-Section ACL2::ACL2-built-ins
division returning an integer by truncating toward positive infinity~/
~bv[]
Example Forms:
ACL2 !>(ceiling 14 3)
5
ACL2 !>(ceiling -14 3)
-4
ACL2 !>(ceiling 14 -3)
-4
ACL2 !>(ceiling -14 -3)
5
ACL2 !>(ceiling -15 -3)
5
~ev[]
~c[(Ceiling i j)] is the result of taking the quotient of ~c[i] and
~c[j] and returning the smallest integer that is at least as great as
that quotient. For example, the quotient of ~c[-14] by ~c[3] is ~c[-4 2/3], and
the smallest integer at least that great is ~c[-4].~/
The ~il[guard] for ~c[(ceiling i j)] requires that ~c[i] and ~c[j] are
rational (~il[real], in ACL2(r)) numbers and ~c[j] is non-zero.
~c[Ceiling] is a Common Lisp function. See any Common Lisp documentation for
more information. However, note that unlike Common Lisp, the ACL2
~c[ceiling] function returns only a single value,
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp i)
(real/rationalp j)
(not (eql j 0)))))
#+:non-standard-analysis
(let ((q (* i (/ j))))
(cond ((integerp q) q)
((rationalp q)
(if (>= q 0)
(+ (nonnegative-integer-quotient (numerator q)
(denominator q))
1)
(- (nonnegative-integer-quotient (- (numerator q))
(denominator q)))))
((realp q) (1+ (floor1 q)))
(t 0)))
#-:non-standard-analysis
(let* ((q (* i (/ j)))
(n (numerator q))
(d (denominator q)))
(cond ((= d 1) n)
((>= n 0)
(+ (nonnegative-integer-quotient n d) 1))
(t (- (nonnegative-integer-quotient (- n) d)))))
)
;; RAG - Another function modified to fit in the reals, using floor1.
(defun truncate (i j)
":Doc-Section ACL2::ACL2-built-ins
division returning an integer by truncating toward 0~/
~bv[]
Example Forms:
ACL2 !>(truncate 14 3)
4
ACL2 !>(truncate -14 3)
-4
ACL2 !>(truncate 14 -3)
-4
ACL2 !>(truncate -14 -3)
4
ACL2 !>(truncate -15 -3)
5
ACL2 !>(truncate 10/4 3/4)
3
~ev[]
~c[(Truncate i j)] is the result of taking the quotient of ~c[i] and
~c[j] and dropping the fraction. For example, the quotient of ~c[-14] by
~c[3] is ~c[-4 2/3], so dropping the fraction ~c[2/3], we obtain a result for
~c[(truncate -14 3)] of ~c[-4].~/
The ~il[guard] for ~c[(truncate i j)] requires that ~c[i] and ~c[j] are
rational (~il[real], in ACL2(r)) numbers and ~c[j] is non-zero.
~c[Truncate] is a Common Lisp function. However, note that unlike Common
Lisp, the ACL2 ~c[truncate] function returns only a single value, Also
~pl[nonnegative-integer-quotient], which is appropriate for integers and may
simplify reasoning, unless a suitable arithmetic library is loaded, but be
less efficient for evaluation on concrete objects.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp i)
(real/rationalp j)
(not (eql j 0)))))
#+:non-standard-analysis
(let ((q (* i (/ j))))
(cond ((integerp q) q)
((rationalp q)
(if (>= q 0)
(nonnegative-integer-quotient (numerator q)
(denominator q))
(- (nonnegative-integer-quotient (- (numerator q))
(denominator q)))))
(t (if (>= q 0)
(floor1 q)
(- (floor1 (- q)))))))
#-:non-standard-analysis
(let* ((q (* i (/ j)))
(n (numerator q))
(d (denominator q)))
(cond ((= d 1) n)
((>= n 0)
(nonnegative-integer-quotient n d))
(t (- (nonnegative-integer-quotient (- n) d)))))
)
;; RAG - Another function modified to fit in the reals, using floor1.
(defun round (i j)
":Doc-Section ACL2::ACL2-built-ins
division returning an integer by rounding off~/
~bv[]
Example Forms:
ACL2 !>(round 14 3)
5
ACL2 !>(round -14 3)
-5
ACL2 !>(round 14 -3)
-5
ACL2 !>(round -14 -3)
5
ACL2 !>(round 13 3)
4
ACL2 !>(round -13 3)
-4
ACL2 !>(round 13 -3)
-4
ACL2 !>(round -13 -3)
4
ACL2 !>(round -15 -3)
5
ACL2 !>(round 15 -2)
-8
~ev[]
~c[(Round i j)] is the result of taking the quotient of ~c[i] and ~c[j]
and rounding off to the nearest integer. When the quotient is
exactly halfway between consecutive integers, it rounds to the even
one.~/
The ~il[guard] for ~c[(round i j)] requires that ~c[i] and ~c[j] are
rational (~il[real], in ACL2(r)) numbers and ~c[j] is non-zero.
~c[Round] is a Common Lisp function. See any Common Lisp documentation for
more information. However, note that unlike Common Lisp, the ACL2 ~c[round]
function returns only a single value,
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp i)
(real/rationalp j)
(not (eql j 0)))))
(let ((q (* i (/ j))))
(cond ((integerp q) q)
((>= q 0)
(let* ((fl (floor q 1))
(remainder (- q fl)))
(cond ((> remainder 1/2)
(+ fl 1))
((< remainder 1/2)
fl)
(t (cond ((integerp (* fl (/ 2)))
fl)
(t (+ fl 1)))))))
(t
(let* ((cl (ceiling q 1))
(remainder (- q cl)))
(cond ((< (- 1/2) remainder)
cl)
((> (- 1/2) remainder)
(+ cl -1))
(t (cond ((integerp (* cl (/ 2)))
cl)
(t (+ cl -1)))))))))
)
;; RAG - I only had to modify the guards here to allow the reals,
;; since this function is defined in terms of the previous ones.
(defun mod (x y)
":Doc-Section ACL2::ACL2-built-ins
remainder using ~ilc[floor]~/
~bv[]
ACL2 !>(mod 14 3)
2
ACL2 !>(mod -14 3)
1
ACL2 !>(mod 14 -3)
-1
ACL2 !>(mod -14 -3)
-2
ACL2 !>(mod -15 -3)
0
ACL2 !>
~ev[]
~c[(Mod i j)] is that number ~c[k] that ~c[(* j (floor i j))] added to
~c[k] equals ~c[i].~/
The ~il[guard] for ~c[(mod i j)] requires that ~c[i] and ~c[j] are rational
(~il[real], in ACL2(r)) numbers and ~c[j] is non-zero.
~c[Mod] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp x)
(real/rationalp y)
(not (eql y 0)))))
(- x (* (floor x y) y)))
(defun rem (x y)
":Doc-Section ACL2::ACL2-built-ins
remainder using ~ilc[truncate]~/
~bv[]
ACL2 !>(rem 14 3)
2
ACL2 !>(rem -14 3)
-2
ACL2 !>(rem 14 -3)
2
ACL2 !>(rem -14 -3)
-2
ACL2 !>(rem -15 -3)
0
ACL2 !>
~ev[]
~c[(Rem i j)] is that number ~c[k] for which ~c[(* j (truncate i j))] added
to ~c[k] equals ~c[i].~/
The ~il[guard] for ~c[(rem i j)] requires that ~c[i] and ~c[j] are rational
(~il[real], in ACL2(r)) numbers and ~c[j] is non-zero.
~c[Rem] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp x)
(real/rationalp y)
(not (eql y 0)))))
(- x (* (truncate x y) y)))
(defun evenp (x)
":Doc-Section ACL2::ACL2-built-ins
test whether an integer is even~/
~c[(evenp x)] is true if and only if the integer ~c[x] is even.
Actually, in the ACL2 logic ~c[(evenp x)] is defined to be true when
~c[x/2] is an integer.~/
The ~il[guard] for ~c[evenp] requires its argument to be an integer.
~c[Evenp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (integerp x)))
(integerp (* x (/ 2))))
(defun oddp (x)
":Doc-Section ACL2::ACL2-built-ins
test whether an integer is odd~/
~c[(oddp x)] is true if and only if ~c[x] is odd, i.e., not even in
the sense of ~ilc[evenp].~/
The ~il[guard] for ~c[oddp] requires its argument to be an integer.
~c[Oddp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (integerp x)))
(not (evenp x)))
(defun zerop (x)
(declare (xargs :mode :logic
:guard (acl2-numberp x)))
":Doc-Section ACL2::ACL2-built-ins
test an acl2-number against 0~/
~c[(zerop x)] is ~c[t] if ~c[x] is ~c[0] and is ~c[nil] otherwise. Thus,
it is logically equivalent to ~c[(equal x 0)].~/
~c[(Zerop x)] has a ~il[guard] requiring ~c[x] to be numeric and can be
expected to execute more efficiently than ~c[(equal x 0)] in properly
~il[guard]ed compiled code.
In recursions down the natural numbers, ~c[(zp x)] is preferred over
~c[(zerop x)] because the former coerces ~c[x] to a natural and allows
the termination proof. In recursions through the integers,
~c[(zip x)] is preferred. ~l[zero-test-idioms].
~c[Zerop] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(eql x 0))
;; RAG - Only the guard changed here.
(defun plusp (x)
":Doc-Section ACL2::ACL2-built-ins
test whether a number is positive~/
~c[(Plusp x)] is true if and only if ~c[x > 0].~/
The ~il[guard] of ~c[plusp] requires its argument to be a rational (~il[real], in
ACL2(r)) number.
~c[Plusp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic
:guard (real/rationalp x)))
(> x 0))
;; RAG - Only the guard changed here.
(defun minusp (x)
":Doc-Section ACL2::ACL2-built-ins
test whether a number is negative~/
~c[(Minusp x)] is true if and only if ~c[x < 0].~/
The ~il[guard] of ~c[minusp] requires its argument to be a rational (~il[real], in
ACL2(r)) number.
~c[Minusp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :mode :logic
:guard (real/rationalp x)))
(< x 0))
;; RAG - Only the guard changed here.
(defun min (x y)
":Doc-Section ACL2::ACL2-built-ins
the smaller of two numbers~/
~c[(Min x y)] is the smaller of the numbers ~c[x] and ~c[y].~/
The ~il[guard] for ~c[min] requires its arguments to be rational (~il[real],
in ACL2(r)) numbers.
~c[Min] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp x)
(real/rationalp y))))
(if (< x y)
x
y))
;; RAG - Only the guard changed here.
(defun max (x y)
":Doc-Section ACL2::ACL2-built-ins
the larger of two numbers~/
~c[(Max x y)] is the larger of the numbers ~c[x] and ~c[y].~/
The ~il[guard] for ~c[max] requires its arguments to be rational (~il[real],
in ACL2(r)) numbers.
~c[Max] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (real/rationalp x)
(real/rationalp y))))
(if (> x y)
x
y))
;; RAG - Only the guard changed here. The docstring below says that
;; abs must not be used on complex arguments, since that could result
;; in a non-ACL2 object.
(defun abs (x)
":Doc-Section ACL2::ACL2-built-ins
the absolute value of a real number~/
~c[(Abs x)] is ~c[-x] if ~c[x] is negative and is ~c[x] otherwise.~/
The ~il[guard] for ~c[abs] requires its argument to be a rational (~il[real],
in ACL2(r)) number.
~c[Abs] is a Common Lisp function. See any Common Lisp documentation
for more information.
From ``Common Lisp the Language'' page 205, we must not allow
complex ~c[x] as an argument to ~c[abs] in ACL2, because if we did we
would have to return a number that might be a floating point number
and hence not an ACL2 object.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (real/rationalp x)))
(if (minusp x) (- x) x))
(defun signum (x)
":Doc-Section ACL2::ACL2-built-ins
indicator for positive, negative, or zero~/
~c[(Signum x)] is ~c[0] if ~c[x] is ~c[0], ~c[-1] if ~c[x] is negative,
and is ~c[1] otherwise.~/
The ~il[guard] for ~c[signum] requires its argument to be rational (~il[real], in
ACL2(r)) number.
~c[Signum] is a Common Lisp function. See any Common Lisp
documentation for more information.
From ``Common Lisp the Language'' page 206, we see a definition of
~c[signum] in terms of ~ilc[abs]. As explained elsewhere
(~pl[abs]), the ~il[guard] for ~ilc[abs] requires its argument to be a
rational (~il[real], in ACL2(r)) number; hence, we make the same
restriction for ~c[signum].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (real/rationalp x)))
; On CLTL p. 206 one sees the definition
; (if (zerop x) x (* x (/ (abs x)))).
; However, that suffers because it looks to type-set like it returns
; an arbitrary rational when in fact it returns -1, 0, or 1. So we
; give a more explicit definition. See the doc string in abs for a
; justification for disallowing complex arguments.
(if (zerop x) 0
(if (minusp x) -1 +1)))
(defun lognot (i)
":Doc-Section ACL2::ACL2-built-ins
bitwise not of a two's complement number~/
~c[(lognot i)] is the two's complement bitwise ~c[`not'] of the integer ~c[i].~/
~c[Lognot] is actually defined by coercing its argument to an integer
(~pl[ifix]), negating the result, and then subtracting ~c[1].
The ~il[guard] for ~c[lognot] requires its argument to be an integer.
~c[Lognot] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (integerp i)))
(+ (- (ifix i)) -1))
; This function is introduced now because we need it in the admission of
; logand. The admission of o-p could be moved up to right
; after the introduction of the "and" macro.
)
(defthm standard-char-p-nth
(implies (and (standard-char-listp chars)
(<= 0 i)
(< i (len chars)))
(standard-char-p (nth i chars)))
:hints (("Goal" :in-theory (enable standard-char-listp))))
(verify-termination-boot-strap (string-equal1
(declare (xargs :measure (nfix (- maximum (nfix i)))))))
(verify-termination-boot-strap string-equal)
(verify-termination-boot-strap assoc-string-equal)
(verify-termination-boot-strap xxxjoin)
(deflabel proof-of-well-foundedness
:doc
":Doc-Section Miscellaneous
a proof that ~ilc[o<] is well-founded on ~ilc[o-p]s~/
The soundness of ACL2 rests in part on the well-foundedness of ~ilc[o<] on
~ilc[o-p]s. This can be taken as obvious if one is willing to grant that
those concepts are simply encodings of the standard mathematical notions of
the ordinals below ~c[epsilon-0] and its natural ordering relation. But it
is possible to prove that ~ilc[o<] is well-founded on ~ilc[o-p]s without
having to assert any connection to the ordinals and that is what we do here.
The community book ~c[books/ordinals/proof-of-well-foundedness] carries out
the proof outlined below in ACL2, using only that the natural numbers are
well-founded.~/
Before outlining the above mentioned proof, we note that in the analogous
documentation page of ACL2 Version_2.7, there is a proof of the
well-foundedness of ~c[e0-ord-<] on ~c[e0-ordinalp]s, the less-than relation
and recognizer for the old ordinals (that is, for the ordinals appearing in
ACL2 up through that version). Manolios and Vroon have given a proof in ACL2
Version_2.7 that the current ordinals (based on ~ilc[o<] and ~ilc[o-p]) are
order-isomorphic to the old ordinals (based on ~c[e0-ord-<] and
~c[e0-ordinalp]). Their proof establishes that switching from the old
ordinals to the current ordinals preserves the soundness of ACL2. For
details see their paper:
~bf[]
Manolios, Panagiotis & Vroon, Daron.
Ordinal arithmetic in ACL2.
Kaufmann, Matt, & Moore, J Strother (eds).
Fourth International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2-2003),
July, 2003.
See ~url[http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/].
~ef[]
We now give an outline of the above mentioned proof of well-foundedness. We
first observe three facts about ~ilc[o<] on ordinals that have been proved by
ACL2 using only structural induction on lists. These theorems can be proved
by hand.
~bv[]
(defthm transitivity-of-o<
(implies (and (o< x y)
(o< y z))
(o< x z))
:rule-classes nil)
(defthm non-circularity-of-o<
(implies (o< x y)
(not (o< y x)))
:rule-classes nil)
(defthm trichotomy-of-o<
(implies (and (o-p x)
(o-p y))
(or (equal x y)
(o< x y)
(o< y x)))
:rule-classes nil)
~ev[]
These three properties establish that ~ilc[o<] orders the
~ilc[o-p]s. To put such a statement in the most standard
mathematical nomenclature, we can define the macro:
~bv[]
(defmacro o<= (x y)
`(not (o< ,y ,x)))
~ev[]
and then establish that ~c[o<=] is a relation that is a simple,
complete (i.e., total) order on ordinals by the following three
lemmas, which have been proved:
~bv[]
(defthm antisymmetry-of-o<=
(implies (and (o-p x)
(o-p y)
(o<= x y)
(o<= y x))
(equal x y))
:rule-classes nil
:hints ((\"Goal\" :use non-circularity-of-o<)))
(defthm transitivity-of-o<=
(implies (and (o-p x)
(o-p y)
(o<= x y)
(o<= y z))
(o<= x z))
:rule-classes nil
:hints ((\"Goal\" :use transitivity-of-o<)))
(defthm trichotomy-of-o<=
(implies (and (o-p x)
(o-p y))
(or (o<= x y)
(o<= y x)))
:rule-classes nil
:hints ((\"Goal\" :use trichotomy-of-o<)))
~ev[]
Crucially important to the proof of the well-foundedness of
~ilc[o<] on ~ilc[o-p]s is the concept of ordinal-depth,
abbreviated ~c[od]:
~bv[]
(defun od (l)
(if (o-finp l)
0
(1+ (od (o-first-expt l)))))
~ev[]
If the ~c[od] of an ~ilc[o-p] ~c[x] is smaller than that of an
~ilc[o-p] ~c[y], then ~c[x] is ~ilc[o<] ~c[y]:
~bv[]
(defun od-1 (x y)
(if (o-finp x)
(list x y)
(od-1 (o-first-expt x) (o-first-expt y))))
(defthm od-implies-ordlessp
(implies (and (o-p x)
(< (od x) (od y)))
(o< x y))
:hints ((\"Goal\"
:induct (od-1 x y))))
~ev[]
Remark. A consequence of this lemma is the fact that if ~c[s = s(1)],
~c[s(2)], ... is an infinite, ~ilc[o<] descending sequence of ~ilc[o-p]s, then
~c[od(s(1))], ~c[od(s(2))], ... is a ``weakly'' descending sequence of
non-negative integers: ~c[od(s(i))] is greater than or equal to
~c[od(s(i+1))].
~em[Lemma Main.] For each non-negative integer ~c[n], ~ilc[o<] well-orders
the set of ~ilc[o-p]s with ~c[od] less than or equal to ~c[n] .
~bv[]
Base Case. n = 0. The o-ps with 0 od are the non-negative
integers. On the non-negative integers, o< is the same as <.
Induction Step. n > 0. We assume that o< well-orders the
o-ps with od less than n.
If o< does not well-order the o-ps with od less than or equal to n,
consider, D, the set of infinite, o< descending sequences of o-ps of od
less than or equal to n. The first element of a sequence in D has od n.
Therefore, the o-first-expt of the first element of a sequence in D has od
n-1. Since o<, by IH, well-orders the o-ps with od less than n, the set
of o-first-expts of first elements of the sequences in D has a minimal
element, which we denote by B and which has od of n-1.
Let k be the minimum integer such that for some infinite, o< descending
sequence s of o-ps with od less than or equal to n, the first element of s
has an o-first-expt of B and an o-first-coeff of k. Notice that k is
positive.
Having fixed B and k, let s = s(1), s(2), ... be an infinite, o<
descending sequence of o-ps with od less than or equal to n such that s(1)
has a o-first-expt of B and an o-first-coeff of k.
We show that each s(i) has a o-first-expt of B and an o-first-coeff of
k. For suppose that s(j) is the first member of s either with o-first-expt
B and o-first-coeff m (m neq k) or with o-first-expt B' and o-first-coeff
B' (B' neq B). If (o-first-expt s(j)) = B', then B' has od n-1 (otherwise,
by IH, s would not be infinite) and B' is o< B, contradicting the
minimality of B. If 0 < m < k, then the fact that the sequence beginning
at s(j) is infinitely descending contradicts the minimality of k. If m >
k, then s(j) is greater than its predecessor; but this contradicts the
fact that s is descending.
Thus, by the definition of o<, for s to be a decreasing sequence of o-ps,
(o-rst s(1)), (o-rst s(2)), ... must be a decreasing sequence. We end by
showing this cannot be the case. Let t = t(1), t(2), ... be an infinite
sequence of o-ps such that t(i) = (o-rst s(i)). Then t is infinitely
descending. Furthermore, t(1) begins with an o-p B' that is o< B. Since t
is in D, t(1) has od n, therefore, B' has od n-1. But this contradicts the
minimality of B. Q.E.D.
~ev[]
Theorem. ~ilc[o<] well-orders the ~ilc[o-p]s. Proof. Every
infinite,~c[ o<] descending sequence of ~ilc[o-p]s has the
property that each member has ~c[od] less than or equal to the
~c[od], ~c[n], of the first member of the sequence. This
contradicts Lemma Main.
Q.E.D.")
#+acl2-loop-only
(progn
(defun expt (r i)
":Doc-Section ACL2::ACL2-built-ins
exponential function~/
~c[(Expt r i)] is the result of raising the number ~c[r] to the
integer power ~c[i].~/
The ~il[guard] for ~c[(expt r i)] is that ~c[r] is a number and ~c[i]
is an integer, and furthermore, if ~c[r] is ~c[0] then ~c[i] is
nonnegative. When the type requirements of the ~il[guard] aren't
met, ~c[(expt r i)] first coerces ~c[r] to a number and ~c[i] to an
integer.
~c[Expt] is a Common Lisp function. See any Common Lisp
documentation for more information. Note that ~c[r] can be a complex
number; this is consistent with Common lisp.
To see the ACL2 definition of this function, ~pl[pf].~/"
; CLtL2 (page 300) allows us to include complex rational arguments.
(declare (xargs :guard (and (acl2-numberp r)
(integerp i)
(not (and (eql r 0) (< i 0))))
:measure (abs (ifix i))))
(cond ((zip i) 1)
((= (fix r) 0) 0)
((> i 0) (* r (expt r (+ i -1))))
(t (* (/ r) (expt r (+ i +1))))))
(defun logcount (x)
":Doc-Section ACL2::ACL2-built-ins
number of ``on'' bits in a two's complement number~/
~c[(Logcount x)] is the number of ``on'' bits in the two's complement
representation of ~c[x].~/
~c[(Logcount x)] has a ~il[guard] of ~c[(integerp x)].
~c[Logcount] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (integerp x)))
(cond
((zip x)
0)
((< x 0)
(logcount (lognot x)))
((evenp x)
(logcount (nonnegative-integer-quotient x 2)))
(t
(1+ (logcount (nonnegative-integer-quotient x 2))))))
(defun nthcdr (n l)
":Doc-Section ACL2::ACL2-built-ins
final segment of a list~/
~c[(Nthcdr n l)] removes the first ~c[n] elements from the list ~c[l].~/
The following is a theorem.
~bv[]
(implies (and (integerp n)
(<= 0 n)
(true-listp l))
(equal (length (nthcdr n l))
(if (<= n (length l))
(- (length l) n)
0)))
~ev[]
For related functions, ~pl[take] and ~pl[butlast].
The ~il[guard] of ~c[(nthcdr n l)] requires that ~c[n] is a nonnegative
integer and ~c[l] is a true list.
~c[Nthcdr] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp n)
(<= 0 n)
(true-listp l))))
(if (zp n)
l
(nthcdr (+ n -1) (cdr l))))
(defun logbitp (i j)
":Doc-Section ACL2::ACL2-built-ins
the ~c[i]th bit of an integer~/
For a nonnegative integer ~c[i] and an integer ~c[j], ~c[(logbitp i j)] is a
Boolean, which is ~c[t] if and only if the value of the ~c[i]th bit is ~c[1]
in the two's complement representation of ~c[j].~/
~c[(Logbitp i j)] has a ~il[guard] that ~c[i] is a nonnegative integer and
~c[j] is an integer.
~c[Logbitp] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp j)
(integerp i)
(>= i 0))
:mode :program))
(oddp (floor (ifix j) (expt 2 (nfix i)))))
(defun ash (i c)
":Doc-Section ACL2::ACL2-built-ins
arithmetic shift operation~/
~c[(ash i c)] is the result of taking the two's complement
representation of the integer ~c[i] and shifting it by ~c[c] bits: shifting
left and padding with ~c[c] ~c[0] bits if ~c[c] is positive, shifting right and
dropping ~c[(abs c)] bits if ~c[c] is negative, and simply returning ~c[i] if ~c[c]
is ~c[0].~/
The ~il[guard] for ~c[ash] requires that its arguments are integers.
~c[Ash] is a Common Lisp function. See any Common Lisp documentation
for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp c))
:mode :program))
(floor (* (ifix i) (expt 2 c)) 1))
)
; John Cowles first suggested a version of the following lemma for rationals.
(defthm expt-type-prescription-non-zero-base
(implies (and (acl2-numberp r)
(not (equal r 0)))
(not (equal (expt r i) 0)))
:rule-classes :type-prescription)
;; RAG - I added the following lemma, similar to the rational case.
#+:non-standard-analysis
(defthm realp-expt-type-prescription
(implies (realp r)
(realp (expt r i)))
:rule-classes :type-prescription)
(defthm rationalp-expt-type-prescription
(implies (rationalp r)
(rationalp (expt r i)))
:rule-classes :type-prescription)
(verify-termination-boot-strap logbitp)
(verify-termination-boot-strap ash)
(deflabel characters
:doc
":Doc-Section ACL2::ACL2-built-ins
characters in ACL2~/
ACL2 accepts 256 distinct characters, which are the characters
obtained by applying the function ~ilc[code-char] to each integer from ~c[0]
to ~c[255]. Among these, Common Lisp designates certain ones as
~em[standard characters], namely those of the form ~c[(code-char n)]
where ~c[n] is from ~c[33] to ~c[126], together with ~c[#\\Newline] and ~c[#\\Space]. The
actual standard characters may be viewed by evaluating the
~ilc[defconst] ~c[*standard-chars*].~/
To be more precise, Common Lisp does not specify the precise
relationship between ~ilc[code-char] and the standard characters.
However, we check that the underlying Common Lisp implementation
uses a particular relationship that extends the usual ASCII coding
of characters. We also check that Space, Tab, Newline, Page, and
Rubout correspond to characters with respective ~ilc[char-code]s ~t[32], ~t[9],
~t[10], ~t[12], and ~t[127].
~ilc[Code-char] has an inverse, ~ilc[char-code]. Thus, when ~ilc[char-code] is
applied to an ACL2 character, ~c[c], it returns a number ~c[n] between ~c[0] and
~c[255] inclusive such that ~c[(code-char n)] = ~c[c].
The preceding paragraph implies that there is only one ACL2
character with a given character code. CLTL allows for
``attributes'' for characters, which could allow distinct characters
with the same code, but ACL2 does not allow this.
~em[The Character Reader]
ACL2 supports the `~c[#\\]' notation for characters provided by Common
Lisp, with some restrictions. First of all, for every character ~c[c],
the notation
~bv[]
#\\c
~ev[]
may be used to denote the character object ~c[c]. That is, the user may
type in this notation and ACL2 will read it as denoting the
character object ~c[c]. In this case, the character immediately
following ~c[c] must be one of the following ``terminating characters'':
a Tab, a Newline, a Page character, a space, or one of the
characters:
~bv[]
\" ' ( ) ; ` ,
~ev[]
Other than the notation above, ACL2 accepts alternate notation for
five characters.
~bv[]
#\\Space
#\\Tab
#\\Newline
#\\Page
#\\Rubout
~ev[]
Again, in each of these cases the next character must be from among
the set of ``terminating characters'' described in the
single-character case. Our implementation is consistent with
IS0-8859, even though we don't provide ~c[#\\] syntax for entering
characters other than that described above.
Finally, we note that it is our intention that any object printed by
ACL2's top-level-loop may be read back into ACL2. Please notify the
implementors if you find a counterexample to this claim.~/")
(defaxiom char-code-linear
; The other properties that we might be tempted to state here,
; (integerp (char-code x)) and (<= 0 (char-code x)), are taken care of by
; type-set-char-code.
(< (char-code x) 256)
:rule-classes :linear)
(defaxiom code-char-type
(characterp (code-char n))
:rule-classes :type-prescription)
(defaxiom code-char-char-code-is-identity
(implies (force (characterp c))
(equal (code-char (char-code c)) c)))
(defaxiom char-code-code-char-is-identity
(implies (and (force (integerp n))
(force (<= 0 n))
(force (< n 256)))
(equal (char-code (code-char n)) n)))
#+acl2-loop-only
(defun char< (x y)
":Doc-Section ACL2::ACL2-built-ins
less-than test for ~il[characters]~/
~c[(char< x y)] is true if and only if the character code of ~c[x] is
less than that of ~c[y]. ~l[char-code].~/
The ~il[guard] for ~c[char<] specifies that its arguments are ~il[characters].
~c[Char<] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (characterp x) (characterp y))))
(< (char-code x) (char-code y)))
#+acl2-loop-only
(defun char> (x y)
":Doc-Section ACL2::ACL2-built-ins
greater-than test for ~il[characters]~/
~c[(char> x y)] is true if and only if the character code of ~c[x] is
greater than that of ~c[y]. ~l[char-code].~/
The ~il[guard] for ~c[char>] specifies that its arguments are ~il[characters].
~c[Char>] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (characterp x) (characterp y))))
(> (char-code x) (char-code y)))
#+acl2-loop-only
(defun char<= (x y)
":Doc-Section ACL2::ACL2-built-ins
less-than-or-equal test for ~il[characters]~/
~c[(char<= x y)] is true if and only if the character code of ~c[x] is
less than or equal to that of ~c[y]. ~l[char-code].~/
The ~il[guard] for ~c[char<=] specifies that its arguments are ~il[characters].
~c[Char<=] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (characterp x) (characterp y))))
(<= (char-code x) (char-code y)))
#+acl2-loop-only
(defun char>= (x y)
":Doc-Section ACL2::ACL2-built-ins
greater-than-or-equal test for ~il[characters]~/
~c[(char>= x y)] is true if and only if the character code of ~c[x] is
greater than or equal to that of ~c[y]. ~l[char-code].~/
The ~il[guard] for ~c[char>=] specifies that its arguments are ~il[characters].
~c[Char>=] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (characterp x) (characterp y))))
(>= (char-code x) (char-code y)))
(defun string<-l (l1 l2 i)
(declare (xargs :guard (and (character-listp l1)
(character-listp l2)
(integerp i))))
(cond ((endp l1)
(cond ((endp l2) nil)
(t i)))
((endp l2) nil)
((eql (car l1) (car l2))
(string<-l (cdr l1) (cdr l2) (+ i 1)))
((char< (car l1) (car l2)) i)
(t nil)))
#+acl2-loop-only
(defun string< (str1 str2)
":Doc-Section ACL2::ACL2-built-ins
less-than test for strings~/
~c[(String< str1 str2)] is non-~c[nil] if and only if the string
~c[str1] precedes the string ~c[str2] lexicographically, where
character inequalities are tested using ~ilc[char<]. When non-~c[nil],
~c[(string< str1 str2)] is the first position (zero-based) at which
the strings differ. Here are some examples.
~bv[]
ACL2 !>(string< \"abcd\" \"abu\")
2
ACL2 !>(string< \"abcd\" \"Abu\")
NIL
ACL2 !>(string< \"abc\" \"abcde\")
3
ACL2 !>(string< \"abcde\" \"abc\")
NIL
~ev[]
~/
The ~il[guard] for ~c[string<] specifies that its arguments are strings.
~c[String<] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp str1)
(stringp str2))))
(string<-l (coerce str1 'list)
(coerce str2 'list)
0))
#+acl2-loop-only
(defun string> (str1 str2)
":Doc-Section ACL2::ACL2-built-ins
greater-than test for strings~/
~c[(String> str1 str2)] is non-~c[nil] if and only if ~c[str2] precedes
~c[str1] lexicographically. When non-~c[nil], ~c[(string> str1 str2)]
is the first position (zero-based) at which the strings differ.
~l[string<].~/
~c[String>] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp str1)
(stringp str2))))
(string< str2 str1))
#+acl2-loop-only
(defun string<= (str1 str2)
":Doc-Section ACL2::ACL2-built-ins
less-than-or-equal test for strings~/
~c[(String<= str1 str2)] is non-~c[nil] if and only if the string
~c[str1] precedes the string ~c[str2] lexicographically or the strings
are equal. When non-~c[nil], ~c[(string<= str1 str2)] is the first
position (zero-based) at which the strings differ, if they differ,
and otherwise is their common length. ~l[string<].~/
The ~il[guard] for ~c[string<=] specifies that its arguments are strings.
~c[String<=] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp str1)
(stringp str2))))
(if (equal str1 str2)
(length str1)
(string< str1 str2)))
#+acl2-loop-only
(defun string>= (str1 str2)
":Doc-Section ACL2::ACL2-built-ins
less-than-or-equal test for strings~/
~c[(String>= str1 str2)] is non-~c[nil] if and only if the string
~c[str2] precedes the string ~c[str1] lexicographically or the strings
are equal. When non-~c[nil], ~c[(string>= str1 str2)] is the first
position (zero-based) at which the strings differ, if they differ,
and otherwise is their common length. ~l[string>].~/
The ~il[guard] for ~c[string>=] specifies that its arguments are strings.
~c[String>=] is a Common Lisp function. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (stringp str1)
(stringp str2))))
(if (equal str1 str2)
(length str1)
(string> str1 str2)))
(defun symbol-< (x y)
":Doc-Section ACL2::ACL2-built-ins
less-than test for symbols~/
~c[(symbol-< x y)] is non-~c[nil] if and only if either the
~ilc[symbol-name] of the symbol ~c[x] lexicographially precedes the
~ilc[symbol-name] of the symbol ~c[y] (in the sense of ~ilc[string<]) or
else the ~ilc[symbol-name]s are equal and the ~ilc[symbol-package-name] of
~c[x] lexicographically precedes that of ~c[y] (in the same sense).
So for example, ~c[(symbol-< 'abcd 'abce)] and
~c[(symbol-< 'acl2::abcd 'foo::abce)] are true.~/
The ~il[guard] for ~c[symbol] specifies that its arguments are symbols.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (symbolp x) (symbolp y))))
(let ((x1 (symbol-name x))
(y1 (symbol-name y)))
(or (string< x1 y1)
(and (equal x1 y1)
(string< (symbol-package-name x)
(symbol-package-name y))))))
(defthm string<-l-irreflexive
(not (string<-l x x i)))
(defthm string<-irreflexive
(not (string< s s)))
(defun substitute-ac (new old seq acc)
(declare (xargs :guard (and (true-listp acc)
(true-listp seq)
(or (eqlablep old)
(eqlable-listp seq)))))
(cond
((endp seq)
(reverse acc))
((eql old (car seq))
(substitute-ac new old (cdr seq) (cons new acc)))
(t
(substitute-ac new old (cdr seq) (cons (car seq) acc)))))
#+acl2-loop-only
(defun substitute (new old seq)
":Doc-Section ACL2::ACL2-built-ins
substitute into a string or a list, using ~ilc[eql] as test~/
~c[(Substitute new old seq)] is the result of replacing each occurrence
of ~c[old] in ~c[seq], which is a list or a string, with ~c[new].~/
The guard for ~c[substitute] requires that either ~c[seq] is a string and
~c[new] is a character, or else: ~c[seq] is a ~ilc[true-listp] such that either
all of its members are ~ilc[eqlablep] or ~c[old] is ~c[eqlablep].
~c[Substitute] is a Common Lisp function. See any Common Lisp
documentation for more information. Since ACL2 functions cannot
take keyword arguments (though macros can), the test used in
~c[substitute] is ~c[eql].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (or (and (stringp seq)
(characterp new))
(and (true-listp seq)
(or (eqlablep old)
(eqlable-listp seq))))
; Wait for state-global-let* to be defined, so that we can provide a
; local lemma.
:verify-guards nil))
(if (stringp seq)
(coerce (substitute-ac new old (coerce seq 'list) nil)
'string)
(substitute-ac new old seq nil)))
#+acl2-loop-only
(defun sublis (alist tree)
":Doc-Section ACL2::ACL2-built-ins
substitute an alist into a tree~/
~c[(Sublis alist tree)] is obtained by replacing every leaf of
~c[tree] with the result of looking that leaf up in the association
list ~c[alist]. However, a leaf is left unchanged if it is not found
as a key in ~c[alist].~/
Leaves are looked up using the function ~ilc[assoc]. The ~il[guard] for
~c[(sublis alist tree)] requires ~c[(eqlable-alistp alist)]. This
~il[guard] ensures that the ~il[guard] for ~ilc[assoc] will be met for each
lookup generated by ~c[sublis].
~c[Sublis] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (eqlable-alistp alist)))
(cond ((atom tree)
(let ((pair (assoc tree alist)))
(cond (pair (cdr pair))
(t tree))))
(t (cons (sublis alist (car tree))
(sublis alist (cdr tree))))))
#+acl2-loop-only
(defun subst (new old tree)
":Doc-Section ACL2::ACL2-built-ins
a single substitution into a tree~/
~c[(Subst new old tree)] is obtained by substituting ~c[new] for every
occurence of ~c[old] in the given tree.~/
Equality to ~c[old] is determined using the function ~ilc[eql]. The
~il[guard] for ~c[(subst new old tree)] requires ~c[(eqlablep old)], which
ensures that the ~il[guard] for ~ilc[eql] will be met for each comparison
generated by ~c[subst].
~c[Subst] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (eqlablep old)))
(cond ((eql old tree) new)
((atom tree) tree)
(t (cons (subst new old (car tree))
(subst new old (cdr tree))))))
(defmacro pprogn (&rest lst)
; Keep in sync with pprogn@par.
":Doc-Section ACL2::ACL2-built-ins
evaluate a sequence of forms that return ~il[state]~/
~bv[]
Example Form:
(pprogn
(cond ((or (equal (car l) #\\) (equal (car l) slash-char))
(princ$ #\\ channel state))
(t state))
(princ$ (car l) channel state)
(mv (cdr l) state))
~ev[]
The convention for ~c[pprogn] usage is to give it a non-empty
sequence of forms, each of which (except possibly for the last)
returns state (~pl[state]) as its only value. The ~il[state] returned by
each but the last is passed on to the next. The value or values of
the last form are returned as the value of the ~c[pprogn].
If you are using single-threaded objects you may wish to define an
analogue of this function for your own ~il[stobj].~/
General Form:
~bv[]
(PPROGN form1
form2
...
formk
result-form)
~ev[]
This general form is equivalent, via macro expansion, to:
~bv[]
(LET ((STATE form1))
(LET ((STATE form2))
...
(LET ((STATE formk))
result-form)))
~ev[]
~/"
(declare (xargs :guard (and lst
(true-listp lst))))
(cond ((endp (cdr lst)) (car lst))
#-acl2-loop-only
; The next case avoids compiler warnings from (pprogn .... (progn! ...)). Note
; that progn! in raw Lisp binds state to *the-live-state*, and hence shadows
; superior bindings of state. We are tempted to check that the last form
; starts with progn!, but of course it could be a macro call that expands to a
; call of progn!, so we make no such check.
((endp (cddr lst))
(list 'let
(list (list 'STATE (car lst)))
'(DECLARE (IGNORABLE STATE))
(cadr lst)))
(t (list 'let
(list (list 'STATE (car lst)))
(cons 'pprogn (cdr lst))))))
(defmacro progn$ (&rest rst)
":Doc-Section ACL2::ACL2-built-ins
execute a sequence of forms and return the value of the last one~/
This macro expands to a corresponding nest of calls of ~c[prog2$];
~pl[prog2$]. The examples below show how this works: the first case below is
typical, but we conclude with two special cases.
~bv[]
ACL2 !>:trans1 (progn$ (f1 x) (f2 x) (f3 x))
(PROG2$ (F1 X) (PROG2$ (F2 X) (F3 X)))
ACL2 !>:trans1 (progn$ (f1 x) (f2 x))
(PROG2$ (F1 X) (F2 X))
ACL2 !>:trans1 (progn$ (f1 x))
(F1 X)
ACL2 !>:trans1 (progn$)
NIL
ACL2 !>
~ev[]~/~/"
(cond ((null rst) nil)
((null (cdr rst)) (car rst))
(t (xxxjoin 'prog2$ rst))))
#+acl2-par
(defmacro pprogn@par (&rest rst)
; Keep in sync with pprogn.
`(progn$ ,@rst))
; The Unwind-Protect Essay
; We wish to define an ACL2 macro form:
; (acl2-unwind-protect "expl" body cleanup1 cleanup2)
; with the following logical semantics
; (mv-let (erp val state)
; ,body
; (cond (erp (pprogn ,cleanup1 (mv erp val state)))
; (t (pprogn ,cleanup2 (mv erp val state)))))
; The idea is that it returns the 3 results of evaluating body except before
; propagating those results upwards it runs one of the two cleanup forms,
; depending on whether the body signalled an error. The cleanup forms return
; state. In typical use the cleanup forms restore the values of state global
; variables that were "temporarily" set by body. [Note that the "expl"
; is a string and it is always ignored. Its only use is to tag the elements
; of the stacks in the frames of *acl2-unwind-protect-stack* so that debugging
; is easier. None of our code actually looks at it.]
; In addition, we want acl2-unwind-protect to handle aborts caused by the user
; during the processing of body and we want ev to handle acl2-unwind-protect
; "properly" in a sense discussed later.
; We deal first with the notion of the "proper" way to handle aborts. Because
; of the way acl2-unwind-protect is used, namely to "restore" a "temporarily"
; smashed state, aborts during body should not prevent the execution of the
; cleanup code. Intuitively, the compiled form of an acl2-unwind-protect
; ought to involve a Common Lisp unwind-protect. In fact, it does not, for
; reasons developed below. But it is easier to think about the correctness of
; our implementation if we start by thinking in terms of using a raw lisp
; unwind-protect in the macroexpansion of each acl2-unwind-protect.
; The (imagined) unwind-protect is almost always irrelevant because "errors"
; signalled by body are in fact not Lisp errors. But should the user cause an
; abort during body, the unwind-protect will ensure that cleanup1 is executed.
; This is a logically arbitrary choice; we might have said cleanup2 is
; executed. By "ensure" we mean not only will the Lisp unwind-protect fire
; the cleanup code even though body was aborted; we mean that the cleanup code
; will be executed without possibility of abort. Now there is no way to
; disable interrupts in CLTL. But if we make sufficient assumptions about the
; cleanup forms then we can effectively disable interrupts by executing each
; cleanup form repeatedly until it is executed once without being aborted. We
; might define "idempotency" to be just the necessary property: the repeated
; (possibly partial) execution of the form, followed by a complete execution
; of the form, produces the same state as a single complete execution. For
; example, (f-put-global 'foo 'old-val state) is idempotent but (f-put-global
; 'foo (1- (get-global 'foo state)) state) is not. Cleanup1 should be idempotent
; to ensure that our implementation of unwind protect in the face of aborts is
; correct with respect to the (non-logical) semantics we have described.
; Furthermore, it bears pointing out that cleanup1 might be called upon to undo
; the work of a "partial" execution of cleanup2! This happens if the body
; completes normally and without signalling an error, cleanup2 is undertaken,
; and then the user aborts. So the rule is that if an abort occurs during an
; acl2-unwind-protect, cleanup1 is executed without interrupts.
; What, pray, gives us the freedom to give arbitrary semantics to
; acl2-unwind-protect in the face of an abort? We regard an abort as akin to
; unplugging the machine and plugging it back in. One should be thankful for
; any reasonable behavior and not quibble over whether it is the "logical" one
; or whether one ought to enforce informal rules like idempotency. Thus, we
; are not terribly sympathetic to arguments that this operational model is
; inconsistent with ACL2 semantics when the user types "Abort!" or doesn't
; understand unenforced assumptions about his cleanup code. All logical bets
; are off the moment the user types "Abort!". This model has the saving grace
; that we can implement it and that it can be used within the ACL2 system code
; to implement what we need during abort recovery. The operational model of
; an abort is that the machine finds the innermost acl2-unwind-protect, rips
; out of the execution of its body (or its cleanup code), executes the
; cleanup1 code with all aborts disabled and then propagates the abort upward.
; Now unfortunately this operational model cannot be implemented
; entirely locally in the compilation of an acl2-unwind-protect.
; Operationally, (acl2-unwind-protect "expl" body cleanup1
; cleanup2) sort of feels like:
; (unwind-protect ,body
; (cond (<body was aborted> ,cleanup1 <pass abort up>)
; (<body signalled erp> ,cleanup1 <pass (mv erp val state') up>)
; (t ,cleanup2 <pass (mv erp val state') up>)))
; where we do whatever we have to do to detect aborts and to pass aborts up in
; some cases and triples up in others. This can all be done with a suitable
; local nest of let, catch, unwind-protect, tests, and throw. But there is a
; problem: if the user is typing "Abort!" then what is to prevent him from
; doing it during the cleanup forms? Nothing. So in fact the sketched use of
; unwind-protect doesn't guarantee that the cleanup forms are executed fully.
; We have been unable to find a way to guarantee via locally produced compiled
; code that even idempotent cleanup forms are executed without interruption.
; Therefore, we take a step back and claim that at the top of the system is
; the ACL2 command interpreter. It will have an unwind-protect in it (quite
; probably the only unwind-protect in the whole system) and it will guarantee
; to execute all the cleanup forms before it prompts the user for the next
; expression to evaluate. An abort there will rip us out of the command
; interpreter. We shall arrange for re-entering it to execute the cleanup
; forms before prompting. If we imagine, again, that each acl2-unwind-protect
; is compiled into an unwind-protect, then since the aborts are passed up and
; the cleanup forms are each executed in turn as we ascend back to the top,
; the cleanup forms are just stacked. It suffices then for
; acl2-unwind-protect to push the relevant cleanup form (always form 1) on
; this stack before executing body and for the top-level to pop these forms
; and evaluate them one at a time before prompting for the next input.
; Actually, we must push the cleanup form and the current variable bindings in
; order to be able to evaluate the form "out of context."
; The stack in question is called *acl2-unwind-protect-stack*. It is really a
; stack of "frames". Each frame on the stack corresponds to a call of the
; general-purpose ACL2 read-eval-print loop. By so organizing it we can ensure
; that each call of the read-eval-print loop manages its own unwind protection
; (in the normal case) while also insuring that the stack is global and visible
; to all. This allows each level to clean up after aborted inferiors what
; failed to clean up after themselves. If however we abort during the last
; cleanup form, we will find ourselves in raw Lisp. See the comment about this
; case in ld-fn.
; One final observation is in order. It could be that there is no command
; interpreter because we are running an ACL2 application in raw lisp. In that
; case, "Abort!" means the machine was unplugged and all bets are off anyway.
#-acl2-loop-only
(defparameter *acl2-unwind-protect-stack* nil)
#-acl2-loop-only
(defmacro push-car (item place ctx)
(let ((g (gensym)))
`(let ((,g ,place))
(if (consp ,g)
(push ,item (car ,g))
(if *lp-ever-entered-p*
(illegal ,ctx
"Apparently you have tried to execute a form in raw Lisp ~
that is only intended to be executed inside the ACL2 ~
loop. You should probably abort (e.g., :Q in akcl or ~
gcl, :A in LispWorks, :POP in Allegro), then type (LP) ~
and try again. If this explanation seems incorrect, ~
then please contact the implementors of ACL2."
nil)
(illegal ,ctx
"Please enter the ACL2 loop by typing (LP) <return>."
nil))))))
(defmacro acl2-unwind-protect (expl body cleanup1 cleanup2)
; Note: If the names used for the erp and val results are changed in the #+
; code, then change them in the #- code also. We use the same names (rather
; than using gensym) just because we know they are acceptable if translate
; approves the check-vars-not-free.
; Note: Keep this function in sync with translated-acl2-unwind-protectp4. That
; function not only knows the precise form of the expression generated below
; but even knows the variable names used!
#+acl2-loop-only
(declare (ignore expl))
#+acl2-loop-only
`(mv-let (acl2-unwind-protect-erp acl2-unwind-protect-val state)
(check-vars-not-free
(acl2-unwind-protect-erp acl2-unwind-protect-val)
,body)
(cond
(acl2-unwind-protect-erp
(pprogn (check-vars-not-free
(acl2-unwind-protect-erp acl2-unwind-protect-val)
,cleanup1)
(mv acl2-unwind-protect-erp
acl2-unwind-protect-val
state)))
(t (pprogn (check-vars-not-free
(acl2-unwind-protect-erp acl2-unwind-protect-val)
,cleanup2)
(mv acl2-unwind-protect-erp
acl2-unwind-protect-val
state)))))
; The raw code is very similar. But it starts out by pushing onto the undo
; stack the name of the cleanup function and the values of the arguments. Note
; however that we do this only if the state is the live state. That is the
; only state that matters after an abort. Suppose unwind protected code is
; modifying some state object other than the live one (e.g., we are computing
; some explicit value during a proof). Suppose an abort occurs. Consider the
; operational model described: we rip out of the computation, execute the
; cleanup code for the nearest unwind protect, and then pass the abort upwards,
; continuing until we get to the top level. No state besides the live one is
; relevant because no value is returned from an aborted computation. The fake
; state cleaned up at each stop on the way up is just wasted time. So we don't
; push the cleanup code for fake states. If body concludes without an abort we
; execute the appropriate cleanup form and then we pop the undo stack (if we
; pushed something). Note that it is possible that body completes without
; error, cleanup2 is started (and begins smashing state) and then (perhaps even
; after the completion of cleanup2 but before the pop) an abort rips us out,
; causing cleanup1 to be executed after cleanup2. Idempotency is not enough to
; say.
#-acl2-loop-only
`(let ((temp (and (live-state-p state)
; We have seen warnings from LispWorks 4.2.7 of this form that appear to be
; related to the present binding, but we do not yet know how to eliminate them:
;
; Eliminating a test of a variable with a declared type : TEMP [type CONS]
(cons ,expl (function (lambda nil ,cleanup1))))))
; FUNCTION captures the binding environment in which cleanup1 would
; have been executed. So by applying the resulting function to no
; arguments we evaluate cleanup1 in the current environment. We save
; this cons in temp so we can recognize it below. If we're not
; operating on the live state, temp is nil.
(cond (temp
(push-car temp
*acl2-unwind-protect-stack*
'acl2-unwind-protect)))
(mv-let (acl2-unwind-protect-erp acl2-unwind-protect-val state)
,body
; Roughly speaking, we should execute cleanup1 or cleanup2, as
; appropriate based on acl2-unwind-protect-erp, and then pop the
; stack. (Indeed, we used to do this.) However, it is possible that
; the execution of body pushed more forms on the stack and they
; haven't been cleaned off yet because of hard errors. Therefore, we
; first restore the stack to just after the pushing of temp, if we
; pushed temp.
(cond (temp (acl2-unwind -1 temp)))
(cond
(acl2-unwind-protect-erp
(pprogn ,cleanup1
(cond (temp
(pop (car *acl2-unwind-protect-stack*))
state)
(t state))
(mv acl2-unwind-protect-erp
acl2-unwind-protect-val
state)))
(t (pprogn ,cleanup2
(cond (temp
(pop (car *acl2-unwind-protect-stack*))
state)
(t state))
(mv acl2-unwind-protect-erp
acl2-unwind-protect-val
state)))))))
#-acl2-loop-only
(defun-one-output acl2-unwind (n flg)
; flg = nil, pop until length of stack is n. Do not mess with new top-most
; frame.
; flg = t, pop until the length of the stack is n and there is
; at most one form in the top-most frame. This configures the stack
; the way it was when frame n was first built.
; (consp flg), pop until the top-most form in the top frame is eq to
; flg. We do not execute that form. Note that n is irrelevant in
; this case.
; In all cases, no form is removed from the stack until the form has been
; executed. Thus, an interruption in this process will leave the still-undone
; cleanup forms on the stack for continued processing.
; There is a very odd aspect to this function: the value of each cleanup form
; is simply discarded! What is going on? To think about this it is clarifying
; first to consider the case of cleanup in the absence of aborts, i.e., to
; think about the logical semantics of unwind protection. Consider then
; (acl2-unwind-protect "expl" body cleanup1 cleanup2). Call the initial STATE st.
; Suppose body computes normally but returns (mv t nil st'). That is, body
; signals an error and returns a modified state (e.g., that has the error
; message printed to it). Then cleanup1 is executed on st' to produce st''
; and then the error triple (mv t nil st'') is propagated upwards. Note that
; unlike all the other variables in the cleanup form, the STATE used by
; cleanup1 is the post-body value of the variable, not the pre-body value.
; Now reflect on our abort processing. Before body is executed we captured the
; binding environment in which cleanup1 would have been executed, except that
; that environment contains the pre-body value for STATE. If an abort occurs
; during body we evaluate the cleanup function on those saved values.
; Technically we should replace the value of STATE by the post-body state, st',
; produced by body before the abort. Technically we should then pass upward to
; the next cleanup form the state, st'', produced by the just executed cleanup
; form.
; What prevents us from having to do this is the fact that we are always
; cleaning up the live state and only the live state. The slot holding STATE
; in the environment captured by FUNCTION contains *the-live-state*, which is
; both the pre-body and post-body value of STATE. The result of the cleanup
; form is guaranteed to be *the-live-state*. And so it only looks like we are
; ignoring the values of the cleanup forms!
(cond ((cond
((eq flg nil)
(= (length *acl2-unwind-protect-stack*) n))
((eq flg t)
(and (= (length *acl2-unwind-protect-stack*) n)
(or (null (car *acl2-unwind-protect-stack*))
(null (cdr (car *acl2-unwind-protect-stack*))))))
(t (eq flg (car (car *acl2-unwind-protect-stack*)))))
nil)
((null (car *acl2-unwind-protect-stack*))
(pop *acl2-unwind-protect-stack*)
(acl2-unwind n flg))
(t (let ((*wormholep* nil))
; We bind *wormholep* to nil so that we do not try to store undo forms
; for the state changes we are about to make.
(apply (cdr (car (car *acl2-unwind-protect-stack*)))
; The presence of expl requires us to take the cdr!
nil))
(pop (car *acl2-unwind-protect-stack*))
(acl2-unwind n flg))))
; The above function, acl2-unwind, will be called in the command interpreter
; before any command is read from the user. Thus, by the time a user command
; is executed we are guaranteed that all cleanup forms from the previous
; command have been completed, regardless of how often it and its cleanup forms
; were interrupted. This completes our consideration of user-caused aborts
; during the execution of ACL2 source or compiled code by the Common Lisp
; system. Now we turn to the even more complicated (!) business of the
; "correct" execution acl2-unwind-protect by ACL2's own EV.
; The code for EV is presented several files from here. But we discuss
; the design issues here while the previous discussion is still fresh.
; By way of foreshadowing, ev is an interpreter for the logic.
; The first problem is that when EV sees an acl2-unwind-protect it doesn't see
; an acl2-unwind-protect at all. It sees the translation of the macro
; expansion. To make matters worse, there are two translations of an MV-LET
; expression: one if the expression occurs inside a function definition (or is
; otherwise deemed "executable") and another if it does not. The functions
; translated-acl2-unwind-protectp and translated-acl2-unwind-protectp4
; recognize and return the relevant parts of a translated acl2-unwind-protect.
; We can't define them here because they use case-match, which isn't yet
; defined.
; So imagine that EV encounters a translated acl2-unwind-protect form, say
; (acl2-unwind-protect "expl" body cleanup1 cleanup2). Of course, if the
; evaluation is error and abort free, then it is done correctly. If an abort
; occurs we are free (by the unplugging argument) to do whatever we want. But
; what should EV do if there is some kind of an evaluation error in body? For
; example, suppose body calls an undefined function or violates some guard. A
; simple concrete question is "what should EV return on
; (acl2-unwind-protect "expl"
; (mv nil (car 0) state)
; (f-put-global 'foo 'error state)
; (f-put-global 'foo 'no-error state))?"
; For what it is worth, our answer to this concrete question is:
; (mv t "guard violation msg for car" (f-put-global 'foo 'error state)).
; To discuss this, we have to tip-toe carefully around a variety of "errors."
; Let us review EV's functionality.
; EV returns (mv erp val latches), where val is the value of the given
; form when erp is nil. If the form returns a multiple value, then val
; is the corresponding list. Note well: if form returns an error
; triple, then the error flag of that triple is the car of val, not
; erp. If erp is t, then some sort of "evaluation error" occurred
; (such as a udf, ubv or guard violation) and val is an error message.
; Latches is an alist that contains the current values of all stobjs,
; including one for 'state. We distinguish "evaluation errors" (erp =
; t) from the "programmed errors" that may be signaled by some bodies.
; A programmed error is signaled by val being a list of the form
; (t nil state), except that the actual state is to be found in the final
; value of the latches, not in val.
; It is useful to draw an analogy between Common Lisp execution of
; ACL2 source code and the EV interpretation of such code. In that
; analogy, EV's "evaluation errors" correspond to "aborts" and "hard
; errors," while EV's "programmed errors" correspond to "soft errors."
; It is this analogy that guides us in the design of EV. What does EV
; do if an evaluation error occurs during body? Consider the analogy:
; if Common Lisp gets a hard error during the evaluation of body, it
; evaluates cleanup1 and then passes the hard error up. Therefore, if
; EV gets an evaluation error during the evaluation of body, it
; evaluates cleanup1 and then passes the evaluation error up. In
; particular, if the attempt to eval body produces (mv t "msg"
; latches') then EV returns (mv t "msg" latches''), where latches'' is
; obtained by evaluating cleanup1 with STATE bound to latches'. This is
; analogous to what Common Lisp does for the live state. EV can do it
; for any state (live or otherwise) because it is tracking explicitly
; "the last returned state" during the computation, while Common Lisp
; is not. Furthermore, Common Lisp need not pass non-live states up
; since it is only the cleaned up live state that matters -- no other
; value is returned from aborted computations. But EV may be called
; by ACL2 code that makes use of the last state returned during the
; computation.
; If we could stop here the situation would be pretty neat. But there
; is more. EV must deal with a third kind of error: true aborts. We
; have just spoken of evaluation errors (i.e., guard violations and
; other errors detected by EV during evaluation) and of programmed
; errors signaled by the code EV is evaluating. But what if the user
; types "Abort?" Certainly neither EV nor its caller "catches" the
; abort: we just rip our way up through the unwind protects. But if
; EV was being used to modify the live state in an unwind protected
; way, those cleanup forms must be evaluated. This is just another
; way of saying that EV's interpretation of acl2-unwind-protect must
; be phrased in terms of acl2-unwind-protect just so that the live
; state is cleaned up after aborts. We can't actually do that because
; acl2-unwind-protect is too structured and insists that we deal with
; (mv erp val state) triples when EV is dealing with (mv erp (mv erp
; val state) latches) triples. But we use the same raw mechanism of
; the *acl2-unwind-protect-stack*.
; Now the question arises, "what gives us the right to design EV by
; analogy?" The spec for EV is that it returns the correct value when
; it reports no error (returned erp = nil). When an evaluation error
; is reported then all bets are off, i.e., the plug was pulled, and we
; can pretty much return the latches we want, as long as it, indeed,
; contains the final values of all the stobjs.
; This completes the unwind-protect essay. There are some additional comments
; in the code for EV.
; It is IMPERATIVE that the following macro, when-logic, is ONLY used when its
; second argument is a form that evaluates to an error triple. Keep this
; function in sync with boot-translate.
(defmacro when-logic (str x)
(list 'if
'(eq (default-defun-mode-from-state state)
:program)
(list 'skip-when-logic (list 'quote str) 'state)
x))
; ---------------------------------------------------------------------------
; The *initial-event-defmacros* Discussion
; Lasciate ogni speranza, voi ch' entrate
; The following sequence of defmacros is critically important during
; boot strapping because they define the macros we have been using all
; this time! In fact, this very sequence of forms (minus those not
; marked by the Warning message seen repeatedly below) appears
; elsewhere in this system as a quoted list of constants,
; *initial-event-defmacros*.
; We'll present the defmacros first and then explain the rules for
; adding to or changing them. See also the discussion at
; *initial-event-defmacros*.
#+acl2-loop-only
(defmacro in-package (str)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section ACL2::Other
select current package~/
~bv[]
Example:
(in-package \"MY-PKG\")~/
General Form:
(in-package str)
~ev[]
where ~c[str] is a string that names an existing ACL2 package, i.e.,
one of the initial packages such as ~c[\"KEYWORD\"] or ~c[\"ACL2\"] or a
package introduced with ~ilc[defpkg]. For a complete list of the known
packages created with ~ilc[defpkg], evaluate
~bv[]
(strip-cars (known-package-alist state)).
~ev[]
~l[defpkg]. An ACL2 book (~pl[books]) must contain a single ~c[in-package]
form, which must be the first form in that book."
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'in-package-fn (list 'quote str) 'state))
#+acl2-loop-only
(defmacro defpkg (&whole event-form name form &optional doc book-path hidden-p)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
; Keep this in sync with get-cmds-from-portcullis1, make-hidden-defpkg,
; equal-modulo-hidden-defpkgs, and (of course) the #-acl2-loop-only definition
; of defpkg.
":Doc-Section Events
define a new symbol package~/
~bv[]
Example:
(defpkg \"MY-PKG\"
(union-eq *acl2-exports*
*common-lisp-symbols-from-main-lisp-package*))~/
General Form:
(defpkg \"name\" term doc-string)
~ev[]
where ~c[\"name\"] is a non-empty string consisting of standard characters
(~pl[standard-char-p]), none of which is lower case, that names the package
to be created; ~c[term] is a variable-free expression that evaluates to a
list of symbols, where no two distinct symbols in the list may have the same
~ilc[symbol-name], to be imported into the newly created package; and
~ilc[doc-string] is an optional ~il[documentation] string; ~pl[doc-string].
The name of the new package must be ``new'': the host lisp must not contain
any package of that name. There are two exceptions to this newness rule,
discussed at the end of this documentation.
(There is actually an additional argument, book-path, that is used for error
reporting but has no logical content. Users should generally ignore this
argument, as well as the rest of this sentence: a book-path will be specified
for ~ilc[defpkg] events added by ACL2 to the ~il[portcullis] of a book's
~il[certificate]; ~pl[hidden-death-package].)
~c[Defpkg] forms can be entered at the top-level of the ACL2 ~il[command]
loop. They should not occur in ~il[books] (~pl[certify-book]).
After a successful ~c[defpkg] it is possible to ``intern'' a string
into the package using ~ilc[intern-in-package-of-symbol]. The result
is a symbol that is in the indicated package, provided the imports
allow it. For example, suppose ~c['my-pkg::abc] is a symbol whose
~ilc[symbol-package-name] is ~c[\"MY-PKG\"]. Suppose further that
the imports specified in the ~c[defpkg] for ~c[\"MY-PKG\"] do not include
a symbol whose ~ilc[symbol-name] is ~c[\"XYZ\"]. Then
~bv[]
(intern-in-package-of-symbol \"XYZ\" 'my-pkg::abc)
~ev[]
returns a symbol whose ~ilc[symbol-name] is ~c[\"XYZ\"] and whose
~ilc[symbol-package-name] is ~c[\"MY-PKG\"]. On the other hand, if
the imports to the ~c[defpkg] does include a symbol with the name
~c[\"XYZ\"], say in the package ~c[\"LISP\"], then
~bv[]
(intern-in-package-of-symbol \"XYZ\" 'my-pkg::abc)
~ev[]
returns that symbol (which is uniquely determined by the restriction
on the imports list above). ~l[intern-in-package-of-symbol].
Upon admission of a ~c[defpkg] event, the function ~c[pkg-imports] is
extended to compute a list of all symbols imported into the given package,
without duplicates.
~c[Defpkg] is the only means by which an ACL2 user can create a new
package or specify what it imports. That is, ACL2 does not support
the Common Lisp functions ~c[make-package] or ~c[import]. Currently, ACL2
does not support exporting at all.
The Common Lisp function ~ilc[intern] is weakly supported by ACL2;
~pl[intern]. A more general form of that function is also provided:
~pl[intern$].
We now explain the two exceptions to the newness rule for package
names. The careful experimenter will note that if a package is
created with a ~c[defpkg] that is subsequently undone, the host lisp
system will contain the created package even after the undo.
Because ACL2 hangs onto ~il[world]s after they have been undone, e.g., to
implement ~c[:]~ilc[oops] but, more importantly, to implement error recovery,
we cannot actually destroy a package upon undoing it. Thus, the
first exception to the newness rule is that ~c[name] is allowed to be
the name of an existing package if that package was created by an
undone ~c[defpkg] and the newly proposed set of imports is identical to the
old one. ~l[package-reincarnation-import-restrictions]. This
exception does not violate the spirit of the newness rule, since one
is disinclined to believe in the existence of undone packages. The
second exception is that ~c[name] is allowed to be the name of an
existing package if the package was created by a ~c[defpkg] with
identical set of imports. That is, it is permissible to execute
``redundant'' ~c[defpkg] ~il[command]s. The redundancy test is based on the
values of the two import forms (comparing them after sorting and removing
duplicates), not on the forms themselves.
Finally, we explain why we require the package name to contain standard
characters, none of which is lower case. We have seen at least one
implementation that handled lower-case package names incorrectly. Since we
see no need for lower-case characters in package names, which can lead to
confusion anyhow (note for example that ~c[foo::bar] is a symbol whose
~ilc[symbol-package-name] is ~c[\"FOO\"], not ~c[\"foo\"]), we simply
disallow them. Since the notion of ``lower case'' is only well-specified in
Common Lisp for standard characters, we restrict to these.
NOTE: Also ~pl[managing-acl2-packages] for contributed documentation on
managing ACL2 packages.~/
:cited-by Programming"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defpkg-fn
(list 'quote name)
(list 'quote form)
'state
(list 'quote doc)
(list 'quote book-path)
(list 'quote hidden-p)
(list 'quote event-form)))
(defdoc managing-acl2-packages
":Doc-Section defpkg
user-contributed documentation on packages~/
Jared Davis has contributed documentation on managing ACL2
packages. See
~url[http://www.cs.utexas.edu/users/moore/acl2/contrib/managing-acl2-packages.html].~/~/")
(deflabel hidden-defpkg
:doc
":Doc-Section defpkg
handling defpkg events that are local~/
~l[hidden-death-package]~/~/")
(deflabel hidden-death-package
:doc
":Doc-Section defpkg
handling ~ilc[defpkg] ~il[events] that are ~ilc[local]~/
This documentation topic explains a little bit about certain errors users may
see when attempting to evaluate a ~ilc[defpkg] event. In brief, if you see
an error that refers you to this topic, you are probably trying to admit a
~ilc[defpkg] event, and you should change the name of the package to be
introduced by that event.
Recall that ~c[defpkg] events introduce axioms, for example as follows.
~bv[]
ACL2 !>(defpkg \"PKG0\" '(a b))
Summary
Form: ( DEFPKG \"PKG0\" ...)
Rules: NIL
Warnings: None
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
\"PKG0\"
ACL2 !>:pr! \"PKG0\"
Rune: (:REWRITE PKG0-PACKAGE)
Status: Enabled
Lhs: (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
Rhs: \"PKG0\"
Hyps: (AND (STRINGP X)
(NOT (MEMBER-SYMBOL-NAME X '(A B)))
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y) \"PKG0\"))
Equiv: EQUAL
Backchain-limit-lst: NIL
Subclass: BACKCHAIN
Loop-stopper: NIL
ACL2 !>
~ev[]
Now, a ~ilc[defpkg] event may be executed underneath an ~ilc[encapsulate] or
~ilc[include-book] form that is marked ~ilc[local]. In that case, traces of
the added axiom will disappear after the surrounding ~ilc[encapsulate] or
~ilc[include-book] form is admitted. This can cause inconsistencies. (You
can take our word for it, or you can look at the example shown in the
``Essay on Hidden Packages'' in source file ~c[axioms.lisp].)
In order to prevent unsoundness, then, ACL2 maintains the following
invariant. Let us say that a ~c[defpkg] event is ``hidden'' if it is in
support of the current logical ~il[world] but is not present in that world as
an event, because it is ~ilc[local] as indicated above. We maintain the
invariant that all ~ilc[defpkg] ~il[events], even if ``hidden'', are tracked
under-the-hood in the current logical ~il[world]. Sometimes this property
causes ~ilc[defpkg] events to be written to the ~il[portcullis] of a book's
~il[certificate] (~pl[books]). At any rate, if you then try to define the
package in a manner inconsistent with the earlier such definition, that is,
with a different imports list, you will see an error because of the
above-mentioned tracking.
(By the way, this topic's name comes from Holly Bell, who heard
\"hidden death package\" instead of \"hidden defpkg\". The description
seemed to fit. Thanks, Holly!)~/~/")
#+acl2-loop-only
(defmacro defun (&whole event-form &rest def)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section acl2::Events
define a function symbol~/
~bv[]
Examples:
(defun app (x y)
(if (consp x)
(cons (car x) (app (cdr x) y))
y))
(defun fact (n)
(declare (xargs :guard (and (integerp n)
(>= n 0))))
(if (zp n)
1
(* n (fact (1- n)))))~/
General Form:
(defun fn (var1 ... varn) doc-string dcl ... dcl body),
~ev[]
where ~c[fn] is the symbol you wish to define and is a new symbolic name
(~pl[name]), ~c[(var1 ... varn)] is its list of formal parameters
(~pl[name]), and ~c[body] is its body. The definitional axiom is logically
admissible provided certain restrictions are met. These are sketched below.
Note that ACL2 does not support the use of ~c[lambda-list] keywords (such as
~c[&optional]) in the formals list of functions. We do support some such
keywords in macros and often you can achieve the desired syntax by defining a
macro in addition to the general version of your function. ~l[defmacro].
The ~il[documentation] string, ~ilc[doc-string], is optional; for a
description of its form, ~pl[doc-string].
The ~em[declarations] (~pl[declare]), ~c[dcl], are also optional. If more
than one ~c[dcl] form appears, they are effectively grouped together as one.
Perhaps the most commonly used ACL2 specific declaration is of the form
~c[(declare (xargs :guard g :measure m))]. This declaration in the ~c[defun]
of some function ~c[fn] has the effect of making the ``~il[guard]'' for
~c[fn] be the term ~c[g] and the ``measure'' be the term ~c[m]. The notion
of ``measure'' is crucial to ACL2's definitional principle. The notion of
``guard'' is not, and is discussed elsewhere; ~pl[verify-guards] and
~pl[set-verify-guards-eagerness]. Note that the ~c[:measure] is ignored in
~c[:]~ilc[program] mode; ~pl[defun-mode].
We now briefly discuss the ACL2 definitional principle, using the following
definition form which is offered as a more or less generic example.
~bv[]
(defun fn (x y)
(declare (xargs :guard (g x y)
:measure (m x y)))
(if (test x y)
(stop x y)
(step (fn (d x) y))))
~ev[]
Note that in our generic example, ~c[fn] has just two arguments, ~c[x] and
~c[y], the ~il[guard] and measure terms involve both of them, and the body is
a simple case split on ~c[(test x y)] leading to a ``non-recursive'' branch,
~c[(stop x y)], and a ``recursive'' branch. In the recursive branch, ~c[fn]
is called after ``decrementing'' ~c[x] to ~c[(d x)] and some step function is
applied to the result. Of course, this generic example is quite specific in
form but is intended to illustrate the more general case.
Provided this definition is admissible under the logic, as outlined below, it
adds the following axiom to the logic.
~bv[]
Defining Axiom:
(fn x y)
=
(if (test x y)
(stop x y)
(step (fn (d x) y)))
~ev[]
Note that the ~il[guard] of ~c[fn] has no bearing on this logical axiom.
This defining axiom is actually implemented in the ACL2 system by a
~c[:]~ilc[definition] rule, namely
~bv[]
(equal (fn x y)
(if (test a b)
(stop a b)
(step (fn (d a) b)))).
~ev[]
~l[definition] for a discussion of how definition rules are applied. Roughly
speaking, the rule causes certain instances of ~c[(fn x y)] to be replaced by
the corresponding instances of the body above. This is called ``opening up''
~c[(fn x y)]. The instances of ~c[(fn x y)] opened are chosen primarily by
heuristics which determine that the recursive calls of ~c[fn] in the opened
body (after simplification) are more desirable than the unopened call of
~c[fn].
This discussion has assumed that the definition of ~c[fn] was admissible.
Exactly what does that mean? First, ~c[fn] must be a previously
unaxiomatized function symbol (however, ~pl[ld-redefinition-action]).
Second, the formal parameters must be distinct variable names. Third, the
~il[guard], measure, and body should all be terms and should mention no free
variables except the formal parameters. Thus, for example, body may not
contain references to ``global'' or ``special'' variables; ACL2 constants or
additional formals should be used instead.
The final conditions on admissibility concern the termination of the
recursion. Roughly put, all applications of ~c[fn] must terminate. In
particular, there must exist a binary relation, ~c[rel], and some unary
predicate ~c[mp] such that ~c[rel] is well-founded on objects satisfying
~c[mp], the measure term ~c[m] must always produce something satisfying
~c[mp], and the measure term must decrease according to ~c[rel] in each
recursive call, under the hypothesis that all the tests governing the call
are satisfied. By the meaning of well-foundedness, we know there are no
infinitely descending chains of successively ~c[rel]-smaller ~c[mp]-objects.
Thus, the recursion must terminate.
The only primitive well-founded relation in ACL2 is ~ilc[o<] (~pl[o<]), which
is known to be well-founded on the ~ilc[o-p]s (~pl[o-p]). For the proof of
well-foundedness, ~pl[proof-of-well-foundedness]. However it is possible to
add new well-founded relations. For details, ~pl[well-founded-relation]. We
discuss later how to specify which well-founded relation is selected by
~c[defun] and in the present discussion we assume, without loss of
generality, that it is ~ilc[o<] on the ~ilc[o-p]s.
For example, for our generic definition of ~c[fn] above, with measure term
~c[(m x y)], two theorems must be proved. The first establishes that ~c[m]
produces an ordinal:
~bv[]
(o-p (m x y)).
~ev[]
The second shows that ~c[m] decreases in the (only) recursive call of ~c[fn]:
~bv[]
(implies (not (test x y))
(o< (m (d x) y) (m x y))).
~ev[]
Observe that in the latter formula we must show that the ``~c[m]-size'' of
~c[(d x)] and ~c[y] is ``smaller than'' the ~c[m]-size of ~c[x] and ~c[y],
provided the test, ~c[(test x y)], in the body fails, thus leading to the
recursive call ~c[(fn (d x) y)].
~l[o<] for a discussion of this notion of ``smaller than.'' It should be
noted that the most commonly used ordinals are the natural numbers and that
on natural numbers, ~ilc[o<] is just the familiar ``less than'' relation
(~ilc[<]). Thus, it is very common to use a measure ~c[m] that returns a
nonnegative integer, for then ~c[(o-p (m x y))] becomes a simple conjecture
about the type of ~c[m] and the second formula above becomes a conjecture
about the less-than relationship of nonnegative integer arithmetic.
The most commonly used measure function is ~ilc[acl2-count], which computes a
nonnegative integer size for all ACL2 objects. ~l[acl2-count].
Probably the most common recursive scheme in Lisp ~il[programming] is when
some formal is supposed to be a list and in the recursive call it is replaced
by its ~ilc[cdr]. For example, ~c[(test x y)] might be simply ~c[(atom x)]
and ~c[(d x)] might be ~c[(cdr x)]. In that case, ~c[(acl2-count x)] is a
suitable measure because the ~ilc[acl2-count] of a ~ilc[cons] is strictly
larger than the ~ilc[acl2-count]s of its ~ilc[car] and ~ilc[cdr]. Thus,
``recursion by ~ilc[car]'' and ``recursion by ~ilc[cdr]'' are trivially
admitted if ~ilc[acl2-count] is used as the measure and the definition
protects every recursive call by a test insuring that the decremented
argument is a ~ilc[consp]. Similarly, ``recursion by ~ilc[1-]'' in which a
positive integer formal is decremented by one in recursion, is also trivially
admissible. ~l[built-in-clause] to extend the class of trivially admissible
recursive schemes.
We now turn to the question of which well-founded relation ~c[defun] uses.
It should first be observed that ~c[defun] must actually select both a
relation (e.g., ~ilc[o<]) and a domain predicate (e.g., ~ilc[o-p]) on which
that relation is known to be well-founded. But, as noted elsewhere
(~pl[well-founded-relation]), every known well-founded relation has a unique
domain predicate associated with it and so it suffices to identify simply the
relation here.
The ~ilc[xargs] field of a ~ilc[declare] permits the explicit specification
of any known well-founded relation with the keyword
~c[:]~ilc[well-founded-relation]. An example is given below. If the
~ilc[xargs] for a ~c[defun] specifies a well-founded relation, that relation
and its associated domain predicate are used in generating the termination
conditions for the definition.
If no ~c[:]~ilc[well-founded-relation] is specified, ~c[defun] uses the
~c[:]~ilc[well-founded-relation] specified in the ~ilc[acl2-defaults-table].
~l[set-well-founded-relation] to see how to set the default well-founded
relation (and, implicitly, its domain predicate). The initial default
well-founded relation is ~ilc[o<] (with domain predicate ~ilc[o-p]).
This completes the brief sketch of the ACL2 definitional principle.
Optionally, ~pl[ruler-extenders] for a more detailed discussion of the
termination analysis and resulting proof obligations for admissibility, as
well as a discussion of the relation to how ACL2 stores induction schemes.
On very rare occasions ACL2 will seem to \"hang\" when processing a
definition, especially if there are many subexpressions of the body whose
function symbol is ~ilc[if] (or which macroexpand to such an expression). In
those cases you may wish to supply the following to ~ilc[xargs]:
~c[:normalize nil]. This is an advanced feature that turns off ACL2's usual
propagation upward of ~c[if] tests.
The following example illustrates all of the available declarations and most
hint keywords, but is completely nonsensical. For documentation, ~pl[xargs]
and ~pl[hints].
~bv[]
(defun example (x y z a b c i j)
(declare (ignore a b c)
(type integer i j)
(xargs :guard (symbolp x)
:measure (- i j)
:ruler-extenders :basic
:well-founded-relation my-wfr
:hints ((\"Goal\"
:do-not-induct t
:do-not '(generalize fertilize)
:expand ((assoc x a) (member y z))
:restrict ((<-trans ((x x) (y (foo x)))))
:hands-off (length binary-append)
:in-theory (set-difference-theories
(current-theory :here)
'(assoc))
:induct (and (nth n a) (nth n b))
:use ((:instance assoc-of-append
(x a) (y b) (z c))
(:functional-instance
(:instance p-f (x a) (y b))
(p consp)
(f assoc)))))
:guard-hints ((\"Subgoal *1/3'\"
:use ((:instance assoc-of-append
(x a) (y b) (z c)))))
:mode :logic
:normalize nil
:verify-guards nil
:non-executable t
:otf-flg t))
(example-body x y z i j))
~ev[]~/
:cited-by Programming"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defun-fn
(list 'quote def)
'state
(list 'quote event-form)
#+:non-standard-analysis ; std-p
nil))
#+(and acl2-loop-only :non-standard-analysis)
(defmacro defun-std (&whole event-form &rest def)
":Doc-Section acl2::Events
define a function symbol~/~/
~l[defun] for details. (More documentation on features
related to non-standard analysis may be available in the future.)"
(list 'defun-fn
(list 'quote def)
'state
(list 'quote event-form)
t))
#+acl2-loop-only
(defmacro defuns (&whole event-form &rest def-lst)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section Miscellaneous
an alternative to ~ilc[mutual-recursion]~/
~bv[]
Example:
(DEFUNS
(evenlp (x)
(if (consp x) (oddlp (cdr x)) t))
(oddlp (x)
(if (consp x) (evenlp (cdr x)) nil)))~/
General Form:
(DEFUNS defuns-tuple1 ... defuns-tuplen)
~ev[]
is equivalent to
~bv[]
(MUTUAL-RECURSION
(DEFUN . defuns-tuple1)
...
(DEFUN . defuns-tuplen))
~ev[]
In fact, ~c[defuns] is the more primitive of the two and
~ilc[mutual-recursion] is just a macro that expands to a call of ~ilc[defun]
after stripping off the ~ilc[defun] at the ~ilc[car] of each argument to
~ilc[mutual-recursion]. We provide and use ~ilc[mutual-recursion] rather than
~c[defuns] because by leaving the ~ilc[defun]s in place, ~ilc[mutual-recursion]
forms can be processed by the Emacs ~c[tags] program.
~l[mutual-recursion]."
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defuns-fn
(list 'quote def-lst)
'state
(list 'quote event-form)
#+:non-standard-analysis ; std-p
nil))
#+(and acl2-loop-only :non-standard-analysis)
(defmacro defuns-std (&whole event-form &rest def-lst)
":Doc-Section Miscellaneous
an alternative to ~ilc[mutual-recursion]~/~/
~l[defuns] for details. (More documentation on features
related to non-standard analysis may be available in the future.)"
(list 'defuns-fn
(list 'quote def-lst)
'state
(list 'quote event-form)
t))
(defmacro verify-termination (&rest lst)
":Doc-Section Events
convert a function from :program mode to :logic mode~/
~bv[]
Example:
(verify-termination fact)~/
General Forms:
(verify-termination fn dcl ... dcl)
(verify-termination (fn1 dcl ... dcl)
(fn2 dcl ... dcl)
...)
~ev[]
where ~c[fn] and the ~c[fni] are function symbols having ~c[:]~ilc[program] mode
(~pl[defun-mode]) and all of the ~c[dcl]s are either ~ilc[declare]
forms or ~il[documentation] strings. The first form above is an
abbreviation for
~bv[]
(verify-termination (fn dcl ... dcl))
~ev[]
so we limit our discussion to the second form. Each of the ~c[fni]
must be in the same clique of mutually recursively defined
functions, but not every function in the clique need be among the
~c[fni].
~c[Verify-termination] attempts to establish the admissibility of the
~c[fni]. ~c[Verify-termination] retrieves their definitions, creates modified
definitions using the ~c[dcl]s supplied above, and resubmits these
definitions. You could avoid using ~c[verify-termination] by typing the new
definitions yourself. So in that sense, ~c[verify-termination] adds no new
functionality. But if you have prototyped your system in ~c[:]~ilc[program]
mode and tested it, you can use ~c[verify-termination] to resubmit your
definitions and change their ~il[defun-mode]s to ~c[:]~ilc[logic], addings
~il[hints] without having to retype or recopy the code.
The ~ilc[defun] ~il[command] executed by ~c[verify-termination] is obtained
by retrieving the ~ilc[defun] (or ~ilc[mutual-recursion]) ~il[command] that
introduced the clique in question and then possibly modifying each definition
as follows. Consider a function, ~c[fn], in the clique. If ~c[fn] is not
among the ~c[fni] above, its definition is left unmodified other than to add
~c[(declare (xargs :mode :logic))]. Otherwise, ~c[fn] is some ~c[fni] and we
modify its definition by inserting into it the corresponding ~c[dcl]s listed
with ~c[fni] in the arguments to ~c[verify-termination], as well as
~c[(declare (xargs :mode :logic))]. In addition, we throw out from the old
declarations in ~c[fn] the ~c[:mode] specification and anything that is
specified in the new ~c[dcl]s.
For example, suppose that ~c[fact] was introduced with:
~bv[]
(defun fact (n)
(declare (type integer n)
(xargs :mode :program))
(if (zp n) 1 (* n (fact (1- n))))).
~ev[]
Suppose later we do ~c[(verify-termination fact)]. Then the
following definition is submitted.
~bv[]
(defun fact (n)
(declare (type integer n))
(if (zp n) 1 (* n (fact (1- n))))).
~ev[]
Observe that this is the same definition as the original one, except
the old specification of the ~c[:mode] has been deleted so that the
~il[defun-mode] now defaults to ~c[:]~ilc[logic]. Although the termination
proof succeeds, ACL2 also tries to verify the ~il[guard], because we have
(implicitly) provided a ~il[guard], namely ~c[(integerp n)], for this
function. (~l[guard] for a general discussion of guards, and
~pl[type-spec] for a discussion of how type declarations are
used in guards.) Unfortunately, the ~il[guard] verification fails,
because the subterm ~c[(zp n)] requires that ~c[n] be nonnegative, as
can be seen by invoking ~c[:args zp]. (For a discussion of termination
issues relating to recursion on the naturals, ~pl[zero-test-idioms].)
So we might be tempted to submit the following:
~bv[]
(verify-termination
fact
(declare (xargs :guard (and (integerp n) (<= 0 n))))).
~ev[]
However, this is considered a changing of the guard (from ~c[(integerp n)]),
which is illegal. If we instead change the guard in the earlier ~c[defun]
after undoing that earlier definition with ~c[:]~ilc[ubt]~c[ fact], then
~c[(verify-termination fact)] will succeed.
~st[Remark on system functions.] There may be times when you want to apply
~c[verify-termination] (and also, perhaps, ~ilc[verify-guards]) to functions
that are predefined in ACL2. It may be necessary in such cases to modify the
system code first. See Part II of
~url[http://www.cs.utexas.edu/users/moore/acl2/open-architecture/] for a
discussion of the process for contributing updates to the system code and
~il[books] with such ~c[verify-termination] or ~ilc[verify-guards]
~il[events], perhaps resulting in more system functions being built-in as
~il[guard]-verified. To see which built-in functions have already received
such treatment, see community books directory ~c[books/system/]; or, evaluate
the constant ~c[*system-verify-guards-alist*], each of whose entries
associates the name of a community book with a list of functions whose
guard-verification is proved by including that book. See the above URL for
more details.
Note that if ~c[fn1] is already in ~c[:]~ilc[logic] mode, then the
~c[verify-termination] call has no effect. It is generally considered to be
redundant, in the sense that it returns without error; but if the ~c[fn1] is
a constrained function (i.e., introduced in the signature of an
~ilc[encapsulate], or by ~ilc[defchoose]), then an error occurs. This error
is intended to highlight unintended uses of ~c[verify-termination]; but if
you do not want to see an error in this case, you can write and use your own
macro in place of ~c[verify-termination]. The following explanation of the
implementation of ~c[verify-termination] may help with such a task.
We conclude with a discussion of the use of ~ilc[make-event] to implement
~c[verify-termination]. This discussion can be skipped; we include it only
for those who want to create variants of ~c[verify-termination], or who are
interested in seeing an application of ~ilc[make-event].
Consider the following proof of ~c[nil], which succeeded up through
Version_3.4 of ACL2.
~bv[]
(encapsulate
()
(defun foo (x y)
(declare (xargs :mode :program))
(if (or (zp x) (zp y))
(list x y)
(foo (1+ x) (1- y))))
(local (defun foo (x y)
(declare (xargs :measure (acl2-count y)))
(if (or (zp x) (zp y))
(list x y)
(foo (1+ x) (1- y)))))
(verify-termination foo))
(defthm bad-lemma
(zp x)
:hints ((\"Goal\" :induct (foo x 1)))
:rule-classes nil)
~ev[]
How did this work? In the first pass of the ~ilc[encapsulate], the second
~ilc[defun] of ~c[foo] promoted ~c[foo] from ~c[:program] to ~c[:logic] mode,
with ~c[y] as the unique measured variable. The following call to
~c[verify-termination] was then redundant. However, on the second pass of
the ~ilc[encapsulate], the second (~ilc[local]) definition of ~c[foo] was
skipped, and the ~c[verify-termination] event then used the first definition
of ~c[foo] to guess the measure, based (as with all guesses of measures) on a
purely syntactic criterion. ACL2 incorrectly chose ~c[(acl2-count x)] as the
measure, installing ~c[x] as the unique measured variable, which in turn led
to an unsound induction scheme subsequently used to prove ~c[nil] (lemma
~c[bad-lemma], above)
Now, ~c[verify-termination] is a macro whose calls expand to ~ilc[make-event]
calls. So in the first pass above, the ~c[verify-termination] call generated
a ~c[defun] event identical to the ~ilc[local] ~ilc[defun] of ~c[foo], which
was correctly identified as redundant. That expansion was recorded, and on
the second pass of the ~ilc[encapsulate], the expansion was recalled and used
in place of the ~c[verify-termination] call (that is how ~ilc[make-event]
works). So instead of a measure being guessed for the ~c[verify-termination]
call on the second pass, the same measure was used as was used on the first
pass, and a sound induction scheme was stored. The attempt to prove ~c[nil]
(lemma ~c[bad-lemma]) then failed."
`(make-event
(verify-termination-fn ',lst state)))
#+acl2-loop-only
(defmacro verify-termination-boot-strap (&whole event-form &rest lst)
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'verify-termination-boot-strap-fn
(list 'quote lst)
'state
(list 'quote event-form)))
#+acl2-loop-only
(defmacro verify-guards (&whole event-form name &key hints otf-flg guard-debug
doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Note: If you change the default for guard-debug, then consider changing it in
; chk-acceptable-defuns as well, and fix the "Otherwise" message about
; :guard-debug in prove-guard-clauses.
":Doc-Section Events
verify the ~il[guard]s of a function~/
~l[guard] for a general discussion of guards.
Before discussing the ~c[verify-guards] event, we first discuss guard
verification, which can take place at definition time or, later, using
~c[verify-guards]. Typically, guard verification takes place at definition
time if a guard (or type, or ~il[stobjs]) has been supplied explicitly unless
~c[:verify-guards nil] has been specified; ~pl[defun] and ~pl[xargs], and
~pl[set-verify-guards-eagerness] for how to change this default. The point
of guard verification is to ensure that during evaluation of an expression
without free variables, no guard violation takes place.
Technical note: the first argument of ~c[verify-guards] must be a function
symbol or the name of a ~ilc[defthm] or ~ilc[defaxiom] event, not a
macro-alias for a function symbol (~pl[macro-aliases-table]).
~l[verify-guards+] for a utility that does not have this restriction.
Guard verification is intended to guarantee that for any call of a given
function, if its ~il[guard] holds for that call then the ~il[guard] will hold
for every function call in the body of that function. Moreover, in order to
avoid guard violations during evaluation of the function's guard itself,
guard verification also is intended to guarantee that the guards are
satisfied for all calls in the guard itself. Consider the following simple
example.
~bv[]
(defun f (x)
(declare (xargs :guard (and (consp x)
(integerp (car x)))))
(if (rationalp (cdr x))
(+ (car x) (cdr x))
17))
~ev[]
If you evaluate ~c[(f t)], for example, in the top-level loop, you will (by
default) get a guard error. The point of guard verification is to guarantee
the absence of guard errors, and we start by using this example to illustrate
the proof obligations that guarantee such absence.
The body of the above definition has the following function calls, where the
first is the entire body.
~bv[]
(if (rationalp (cdr x))
(< (car x) (cdr x))
17)
(rationalp (cdr x)) ; the test of the top-level IF call
(cdr x) ; from (rationalp (cdr x))
(< (car x) (cdr x)) ; the true branch of the top-level IF call
(car x) ; from (< (car x) (cdr x))
(cdr x) ; from (< (car x) (cdr x))
~ev[]
We thus see potentially six conditions to prove, one for each call. The
guards of the function symbols of those calls are ~c[t] for ~ilc[if] and
~ilc[rationalp], ~c[(or (consp x) (equal x nil))] for both ~c[(car x)] and
~c[(cdr x)], and finally that both arguments are rationals for ~c[<].
Moreover, we can take advantage of ``contextual assumptions'': the
~c[if]-test conditions and the top-level ~c[:guard]. Thus, for
~c[verify-guards] the proof obligation from the body of ~c[f] is as follows.
~bv[]
(implies
(and (consp x) (integerp (car x))) ; from the :guard
(and t ; from the top-level IF call
t ; from (rationalp (cdr x))
(or (consp x) (equal x nil)) ; from the first (cdr x)
(implies
(rationalp (cdr x)) ; IF-test for calls in the true branch
(and (or (consp x) (equal x nil)) ; from (car x)
(or (consp x) (equal x nil)) ; from the second (cdr x)
(and (rationalp (car x)) (rationalp (cdr x))) ; from the < call
))))
~ev[]
But the ~c[:guard] itself generates a similar sort of proof obligation. Note
that the guard ~c[(and (consp x) (integerp (car x)))] is really an
abbreviation (i.e. via the macro ~ilc[AND]) for the term
~c[(if (consp x) (integerp (car x)) nil)]. The guard proof obligation for
the guard itself is thus as follows.
~bv[]
(and t ; from (consp x)
(implies (consp x)
(and t ; from (integerp (car x)) ;
(consp x) ; from (car x) ;
)))
~ev[]
All of the above proof obligations are indeed theorems, and guard
verification succeeds for the above definition of ~c[f].
The example above illustrates the general procedure for generating the guard
proof obligation. Each function call is considered in the body or guard of
the function, and it is required that the guard is met for that call, under
certain ``contextual assumptions'', which are as follows. In the case of the
body of the named function, it is assumed that the guard holds for that
function on its formal parameters. And in both cases ~-[] the body of the
named function and also its guard ~-[] the governing tests from superior
calls of ~ilc[IF] are also assumed.
As mentioned above, if the guard on a function is not ~c[t], then guard
verification requires not only consideration of the body under the assumption
that the guard is true, but also consideration of the guard itself. Thus,
for example, guard verification fails in the following example, even though
there are no proof obligations arising from the body, because the guard
itself can cause a guard violation when evaluated for an arbitrary value of
~c[x]:
~bv[]
(defun foo (x)
(declare (xargs :guard (car x)))
x)
~ev[]
We turn now to the ~c[verify-guards] event as a way of verifying the
~il[guard]s for a function or theorem.
~bv[]
Examples:
(verify-guards flatten)
(verify-guards flatten
:hints ((\"Goal\" :use (:instance assoc-of-app)))
:otf-flg t
:guard-debug t ; default = nil
:doc \"string\")~/
General Form:
(verify-guards name
:hints hints
:otf-flg otf-flg
:guard-debug t ; typically t, but any value is legal
:doc doc-string)
~ev[]
In the General Form above, ~c[name] is the name of a ~c[:]~ilc[logic]
function (~pl[defun-mode]) or of a theorem or axiom. In the most common case
~c[name] is the name of a function that has not yet had its ~il[guard]s
verified, each subroutine of which has had its ~il[guard]s verified. The
values ~ilc[hints], ~ilc[otf-flg], and ~ilc[guard-debug] are as described in
the corresponding ~il[documentation] entries; and ~ilc[doc-string], if
supplied, is a string ~st[not] beginning with ``~c[:Doc-Section]''. The four
keyword arguments above are all optional. To admit this event, the
conjunction of the guard proof obligations must be proved. If that proof is
successful, ~c[name] is considered to have had its ~il[guard]s verified.
~l[verify-guards-formula] for a utility that lets you view the formula to be
proved by ~c[verify-guards], but without creating an event.
If ~c[name] is one of several functions in a mutually recursive clique,
~c[verify-guards] will attempt to verify the ~il[guard]s of all of the
functions.
If ~c[name] is a theorem or axiom name, ~c[verify-guards] verifies the
guards of the associated formula. When a theorem has had its guards
verified then you know that the theorem will evaluate to non-~c[nil]
in all Common Lisps, without causing a runtime error (other than possibly
a resource error). In particular, you know that the theorem's validity
does not depend upon ACL2's arbitrary completion of the domains of partial
Common Lisp functions.
For example, if ~c[app] is defined as
~bv[]
(defun app (x y)
(declare (xargs :guard (true-listp x)))
(if (endp x)
y
(cons (car x) (app (cdr x) y))))
~ev[]
then we can verify the guards of ~c[app] and we can prove the theorem:
~bv[]
(defthm assoc-of-app
(equal (app (app a b) c) (app a (app b c))))
~ev[]
However, if you go into almost any Common Lisp in which ~c[app] is defined
as shown and evaluate
~bv[]
(equal (app (app 1 2) 3) (app 1 (app 2 3)))
~ev[]
we get an error or, perhaps, something worse like ~c[nil]! How can
this happen since the formula is an instance of a theorem? It is supposed
to be true!
It happens because the theorem exploits the fact that ACL2 has completed
the domains of the partially defined Common Lisp functions like ~ilc[car]
and ~ilc[cdr], defining them to be ~c[nil] on all non-conses. The formula
above violates the guards on ~c[app]. It is therefore ``unreasonable''
to expect it to be valid in Common Lisp.
But the following formula is valid in Common Lisp:
~bv[]
(if (and (true-listp a)
(true-listp b))
(equal (app (app a b) c) (app a (app b c)))
t)
~ev[]
That is, no matter what the values of ~c[a], ~c[b] and ~c[c] the formula
above evaluates to ~c[t] in all Common Lisps (unless the Lisp engine runs out
of memory or stack computing it). Furthermore the above formula is a theorem:
~bv[]
(defthm guarded-assoc-of-app
(if (and (true-listp a)
(true-listp b))
(equal (app (app a b) c) (app a (app b c)))
t))
~ev[]
This formula, ~c[guarded-assoc-of-app], is very easy to prove from
~c[assoc-of-app]. So why prove it? The interesting thing about
~c[guarded-assoc-of-app] is that we can verify the guards of the
formula. That is, ~c[(verify-guards guarded-assoc-of-app)] succeeds.
Note that it has to prove that if ~c[a] and ~c[b] are true lists then
so is ~c[(app a b)] to establish that the guard on the outermost ~c[app]
on the left is satisfied. By verifying the guards of the theorem we
know it will evaluate to true in all Common Lisps. Put another way,
we know that the validity of the formula does not depend on ACL2's
completion of the partial functions or that the formula is ``well-typed.''
One last complication: The careful reader might have thought we could
state ~c[guarded-assoc-of-app] as
~bv[]
(implies (and (true-listp a)
(true-listp b))
(equal (app (app a b) c)
(app a (app b c))))
~ev[]
rather than using the ~c[if] form of the theorem. We cannot! The
reason is technical: ~ilc[implies] is defined as a function in ACL2.
When it is called, both arguments are evaluated and then the obvious truth
table is checked. That is, ~c[implies] is not ``lazy.'' Hence, when
we write the guarded theorem in the ~c[implies] form we have to prove
the guards on the conclusion without knowing that the hypothesis is true.
It would have been better had we defined ~c[implies] as a macro that
expanded to the ~c[if] form, making it lazy. But we did not and after
we introduced guards we did not want to make such a basic change.
Recall however that ~c[verify-guards] is almost always used to verify
the guards on a function definition rather than a theorem. We now
return to that discussion.
Because ~c[name] is not uniquely associated with the ~c[verify-guards] event
(it necessarily names a previously defined function) the
~il[documentation] string, ~ilc[doc-string], is not stored in the
~il[documentation] database. Thus, we actually prohibit ~ilc[doc-string]
from having the form of an ACL2 ~il[documentation] string;
~pl[doc-string].
~c[Verify-guards] must often be used when the value of a recursive call
of a defined function is given as an argument to a subroutine that
is ~il[guard]ed. An example of such a situation is given below. Suppose
~c[app] (read ``append'') has a ~il[guard] requiring its first argument to be
a ~ilc[true-listp]. Consider
~bv[]
(defun rev (x)
(declare (xargs :guard (true-listp x)))
(cond ((endp x) nil)
(t (app (rev (cdr x)) (list (car x))))))
~ev[]
Observe that the value of a recursive call of ~c[rev] is being passed
into a ~il[guard]ed subroutine, ~c[app]. In order to verify the ~il[guard]s of
this definition we must show that ~c[(rev (cdr x))] produces a
~ilc[true-listp], since that is what the ~il[guard] of ~c[app] requires. How do we
know that ~c[(rev (cdr x))] is a ~ilc[true-listp]? The most elegant argument
is a two-step one, appealing to the following two lemmas: (1) When ~c[x]
is a ~ilc[true-listp], ~c[(cdr x)] is a ~ilc[true-listp]. (2) When ~c[z] is a
~ilc[true-listp], ~c[(rev z)] is a ~ilc[true-listp]. But the second lemma is a
generalized property of ~c[rev], the function we are defining. This
property could not be stated before ~c[rev] is defined and so is not
known to the theorem prover when ~c[rev] is defined.
Therefore, we might break the admission of ~c[rev] into three steps:
define ~c[rev] without addressing its ~il[guard] verification, prove some
general properties about ~c[rev], and then verify the ~il[guard]s. This can
be done as follows:
~bv[]
(defun rev (x)
(declare (xargs :guard (true-listp x)
:verify-guards nil)) ; Note this additional xarg.
(cond ((endp x) nil)
(t (app (rev (cdr x)) (list (car x))))))
(defthm true-listp-rev
(implies (true-listp x2)
(true-listp (rev x2))))
(verify-guards rev)
~ev[]
The ACL2 system can actually admit the original definition of
~c[rev], verifying the ~il[guard]s as part of the ~ilc[defun] event. The
reason is that, in this particular case, the system's heuristics
just happen to hit upon the lemma ~c[true-listp-rev]. But in many
more complicated functions it is necessary for the user to formulate
the inductively provable properties before ~il[guard] verification is
attempted.
~st[Remark on computation of guard conjectures and evaluation]. When ACL2
computes the ~il[guard] conjecture for the body of a function, it
evaluates any ground subexpressions (those with no free variables), for
calls of functions whose ~c[:]~ilc[executable-counterpart] ~il[rune]s are
~ilc[enable]d. Note that here, ``enabled'' refers to the current global
~il[theory], not to any ~c[:]~ilc[hints] given to the guard verification
process; after all, the guard conjecture is computed even before its initial
goal is produced. Also note that this evaluation is done in an environment
as though ~c[:set-guard-checking :all] had been executed, so that we can
trust that this evaluation takes place without guard violations;
~pl[set-guard-checking].
If you want to verify the ~il[guard]s on functions that are built into ACL2,
you will first need to put them into ~c[:]~ilc[logic] mode.
~l[verify-termination], specifically the ``Remark on system functions'' in
that ~il[documentation]."
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'verify-guards-fn
(list 'quote name)
'state
(list 'quote hints)
(list 'quote otf-flg)
(list 'quote guard-debug)
(list 'quote doc)
(list 'quote event-form)))
(defmacro verify-guards+ (name &rest rest)
; We considered renaming verify-guards as verify-guards-basic, and then
; defining verify-guards on top of verify-guards-basic just as we now define
; verify-guards+ on top of verify-guards. But that could be complicated to
; carry out during the boot-strap, and it could be challenging to present a
; nice view to the user, simulataneously promoting the fiction that
; verify-guards is a primitive while giving accurate feedback. So we are
; leaving verify-guards as the primitive, but improving it to point to
; verify-guards+ when there is a macro alias.
; The example in the documentation below doesn't immediately yield a proof of
; nil, but perhaps mbe could be used for that (we haven't tried). At any rate,
; violation of the intent of guard verification is bad enough.
":Doc-Section Events
verify the ~il[guard]s of a function~/
We assume familiarity with ~il[guard] verification; ~pl[verify-guards].
Unlike ~c[verify-guards], the macro call ~c[(verify-guards+ mac ...)] will
verify guards for a function, ~c[fn], such that the macro ~c[mac] is
associated with the function symbol ~c[fn] in ~ilc[macro-aliases-table]
(also ~pl[add-macro-alias]). For example, if you define a macro ~c[app] and
list append function ~c[binary-app], and you associate macro ~c[app] with
function symbol ~c[binary-app] in ~ilc[macro-aliases-table], then evaluation
of the form ~c[(verify-guard+ app)] will have the effect of evaluating
~c[(verify-guards fn)]. Note that in this setting, evaluation of
~c[(verify-guard app)] would cause an error, because ~c[app] is a macro and
~c[verify-guards], unlike ~c[verify-guards+], cannot handle macros.~/
The rest of this ~il[documentation] topic discusses why we do not simply
arrange that ~c[verify-guards] be permitted to take a macro alias. The
following example shows a soundness issue in doing so.
~bv[]
(encapsulate
()
(defun f1 (x)
(declare (xargs :guard (consp x)
:verify-guards nil))
(car x))
(defun f2 (x)
(declare (xargs :guard t
:verify-guards nil))
(cdr x))
(defmacro mac (x)
x)
(add-macro-alias mac f2) ; silly macro alias ;
(local (add-macro-alias mac f1)) ; alternate silly macro alias ;
(verify-guards mac))
~ev[]
If we were to allow macro aliases in ~ilc[verify-guards], this event would be
admitted, because on the first pass we are verifying guards of ~c[f1]. But
after the ~ilc[encapsulate] form completes evaluation, it would appear that
~c[f2] is guard-verified. That could of course cause a raw Lisp error.
The enhanced functionality provided by ~c[verify-guards+] does not have the
above problem, because it takes advantage of ~ilc[make-event] to avoid taking
advantage of the contradictory results produced by the two calls of
~c[add-macro-alias]. ~l[make-event]. If the specific example above is
modified by replacing ~c[verify-guards] with ~c[verify-guards+], then the
first pass through the ~ilc[encapsulate] form will expand the form
~c[(verify-guards+ mac)] to ~c[(verify-guards f1)]. That same expansion will
be used for the ~c[verify-guards+] call during the second pass through the
~c[encapsulate] form, which is evaluated successfully and leaves us in a
~il[world] where ~c[f1] is guard-verified and ~c[f2] is not.~/"
`(make-event
(let* ((name ',name)
(rest ',rest)
(fn (deref-macro-name name (macro-aliases (w state)))))
(pprogn (observation 'verify-guards+
"Attempting to verify guards for ~x0."
fn)
(value (list* 'verify-guards fn rest))))
:expansion? (verify-guards ,name ,@rest)))
(defdoc defpun
":Doc-Section acl2::Events
define a tail-recursive function symbol~/~/
~c[Defpun] is a macro developed by Pete Manolios and J Moore that allows
tail-recursive definitions. It is defined in community book
~c[books/misc/defpun.lisp], so to use it, execute the following event.
~bv[]
(include-book \"misc/defpun\" :dir :system)
~ev[]
Details of defpun are provided by Manolios and Moore in the ``Partial
Functions in ACL2'' published with the ACL2 2000 workshop; see
~url[http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/]. Also see
~url[http://www.cs.utexas.edu/users/moore/publications/defpun/index.html].
A variant, ~c[defp], has been developed by Matt Kaufmann to allow more
general forms of tail recursion. If ~c[defpun] doesn't work for you, try
~c[defp] by first executing the following event.
~bv[]
(include-book \"misc/defp\" :dir :system)
~ev[]
Sandip Ray has contributed a variant of ~c[defpun], ~c[defpun-exec], that
supports executability. See community book
~c[books/defexec/defpun-exec/defpun-exec.lisp]:
~bv[]
(include-book \"defexec/defpun-exec/defpun-exec\" :dir :system)
~ev[]
He has also contributed community book
~c[books/misc/misc2/defpun-exec-domain-example.lisp], for functions that are
uniquely defined in a particular domain.")
#+acl2-loop-only
(defmacro defmacro (&whole event-form &rest mdef)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section acl2::Events
define a macro~/
~bv[]
Example Defmacros:
(defmacro xor (x y)
(list 'if x (list 'not y) y))
(defmacro git (sym key)
(list 'getprop sym key nil
'(quote current-acl2-world)
'(w state)))
(defmacro one-of (x &rest rst)
(declare (xargs :guard (symbol-listp rst)))
(cond ((null rst) nil)
(t (list 'or
(list 'eq x (list 'quote (car rst)))
(list* 'one-of x (cdr rst))))))
Example Expansions:
term macroexpansion
(xor a b) (if a (not b) b)
(xor a (foo b)) (if a (not (foo b)) (foo b))
(git 'car 'lemmas) (getprop 'car 'lemmas nil
'current-acl2-world
(w state))
(one-of x a b c) (or (eq x 'a)
(or (eq x 'b)
(or (eq x 'c) nil)))
(one-of x 1 2 3) ill-formed (guard violation)~/
General Form:
(defmacro name macro-args doc-string dcl ... dcl body)
~ev[]
where ~c[name] is a new symbolic name (~pl[name]), ~c[macro-args] specifies
the formal parameters of the macro, and ~c[body] is a term. The formal
parameters can be specified in a much more general way than is allowed by
ACL2 ~ilc[defun] ~il[events]; ~pl[macro-args] for a description of keyword
(~c[&key]) and optional (~c[&optional]) parameters as well as other so-called
``lambda-list keywords'', ~c[&rest] and ~c[&whole]. ~ilc[Doc-string] is an
optional ~il[documentation] string; ~pl[doc-string]. Each ~c[dcl] is an
optional declaration (~pl[declare]) except that the only ~ilc[xargs] keyword
permitted by ~c[defmacro] is ~c[:]~ilc[guard].
For compute-intensive applications see the community book
~c[misc/defmac.lisp], which can speed up macroexpansion by introducing an
auxiliary ~c[defun]. For more information, evaluate the form
~c[(include-book \"misc/defmac\" :dir :system)] and then evaluate
~c[:doc defmac].
Macroexpansion occurs when a form is read in, i.e., before the
evaluation or proof of that form is undertaken. To experiment with
macroexpansion, ~pl[trans]. When a form whose ~ilc[car] is ~c[name]
arises as the form is read in, the arguments are bound as described
in CLTL pp. 60 and 145, the ~il[guard] is checked, and then the ~c[body] is
evaluated. The result is used in place of the original form.
In ACL2, macros do not have access to the ACL2 state ~ilc[state]. (If
~ilc[state] or any user-defined stobj (~pl[stobj]) is a macro argument, it is
treated as an ordinary variable, bound at macro-expansion time to a piece of
syntax.) This is in part a reflection of CLTL, p. 143, ``More generally, an
implementation of Common Lisp has great latitude in deciding exactly when to
expand macro calls with a program. ... Macros should be written in such a
way as to depend as little as possible on the execution environment to
produce a correct expansion.'' In ACL2, the product of macroexpansion is
independent of the current environment and is determined entirely by the
macro body and the functions and constants it references. It is possible,
however, to define macros that produce expansions that refer to ~ilc[state]
or other single-threaded objects (~pl[stobj]) or variables not among the
macro's arguments. See the ~c[git] example above. For a related utility
that does have access to the ACL2 ~il[state], ~pl[make-event].~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defmacro-fn
(list 'quote mdef)
'state
(list 'quote event-form)))
#+acl2-loop-only
(defmacro defconst (&whole event-form name form &optional doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section acl2::Events
define a constant~/
~bv[]
Examples:
(defconst *digits* '(0 1 2 3 4 5 6 7 8 9))
(defconst *n-digits* (the unsigned-byte (length *digits*)))~/
General Form:
(defconst name term doc-string)
~ev[]
where ~c[name] is a symbol beginning and ending with the character ~c[*],
~c[term] is a variable-free term that is evaluated to determine the
value of the constant, and ~ilc[doc-string] is an optional ~il[documentation]
string (~pl[doc-string]).
When a constant symbol is used as a ~il[term], ACL2 replaces it by
its value; ~pl[term].
Note that ~c[defconst] uses a ``safe mode'' to evaluate its form, in order
to avoids soundness issues but with an efficiency penalty (perhaps increasing
the evaluation time by several hundred percent). If efficiency is a concern,
or if for some reason you need the form to be evaluated without safe mode
(e.g., you are an advanced system hacker using trust tags to traffic in raw
Lisp code), consider using the macro ~c[defconst-fast] instead, defined in
community book ~c[books/make-event/defconst-fast.lisp], for example:
~bv[]
(defconst-fast *x* (expensive-fn ...))
~ev[]
A more general utility may be found in community book
~c[books/tools/defconsts.lisp]. Also ~pl[using-tables-efficiently] for an
analogous issue with ~ilc[table] events.
It may be of interest to note that ~c[defconst] is implemented at the
lisp level using ~c[defparameter], as opposed to ~c[defconstant].
(Implementation note: this is important for proper support of
undoing and redefinition.)
We close with a technical remark, perhaps of interest only to users of
ACL2(h), the experimental extension of ACL2 that supports hash cons, function
memoization, and hash-table-based ``fast alists''; ~pl[hons-and-memoization].
For an event of the form ~c[(defconst *C* (quote OBJ))], i.e.,
~c[(defconst *C* 'OBJ)], then the value associated with ~c[*C*] is ~c[OBJ];
that is, the value of ~c[*C*] is ~ilc[eq] to the actual object ~c[OBJ]
occurring in the ~c[defconst] form. So for example, if ~ilc[make-event] is
used to generate such a ~c[defconst] event, as it is in the two books
mentioned above, and ~c[OBJ] is a fast alist (using ACL2(h)), then the value
of ~c[*C*] is a fast alist. This guarantee disappears if the term in the
~c[defconst] form is not a quoted object, i.e., if it is not of the form
~c[(quote OBJ)].~/
:cited-by Programming"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defconst-fn
(list 'quote name)
(list 'quote form)
'state
(list 'quote doc)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro defthm (&whole event-form
name term
&key (rule-classes '(:REWRITE))
instructions
hints
otf-flg
doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section Events
prove and name a theorem~/
~bv[]
Examples:
(defthm assoc-of-app
(equal (app (app a b) c)
(app a (app b c))))
~ev[]
The following nonsensical example illustrates all the optional
arguments but is illegal because not all combinations are permitted.
~l[hints] for a complete list of ~il[hints].
~bv[]
(defthm main
(implies (hyps x y z) (concl x y z))
:rule-classes (:REWRITE :GENERALIZE)
:instructions (induct prove promote (dive 1) x
(dive 2) = top (drop 2) prove)
:hints ((\"Goal\"
:do-not '(generalize fertilize)
:in-theory (set-difference-theories
(current-theory :here)
'(assoc))
:induct (and (nth n a) (nth n b))
:use ((:instance assoc-of-append
(x a) (y b) (z c))
(:functional-instance
(:instance p-f (x a) (y b))
(p consp)
(f assoc)))))
:otf-flg t
:doc \"#0[one-liner/example/details]\")~/
General Form:
(defthm name term
:rule-classes rule-classes
:instructions instructions
:hints hints
:otf-flg otf-flg
:doc doc-string)
~ev[]
where ~c[name] is a new symbolic name (~pl[name]), ~c[term] is a
term alleged to be a theorem, and ~ilc[rule-classes], ~ilc[instructions],
~ilc[hints], ~ilc[otf-flg] and ~ilc[doc-string] are as described in their
respective ~il[documentation]. The five keyword arguments above are
all optional, however you may not supply both ~c[:]~ilc[instructions]
and ~c[:]~ilc[hints], since one drives the proof checker and the other
drives the theorem prover. If ~c[:]~ilc[rule-classes] is not specified,
the list ~c[(:rewrite)] is used; if you wish the theorem to generate
no rules, specify ~c[:]~ilc[rule-classes] ~c[nil].
When ACL2 processes a ~c[defthm] event, it first tries to prove the
~il[term] using the indicated hints (~pl[hints]) or ~il[instructions]
(~pl[proof-checker]). If it is successful, it stores the rules
described by the rule-classes (~pl[rule-classes]), proving the
necessary corollaries.~/"
(list 'defthm-fn
(list 'quote name)
(list 'quote term)
'state
(list 'quote rule-classes)
(list 'quote instructions)
(list 'quote hints)
(list 'quote otf-flg)
(list 'quote doc)
(list 'quote event-form)
#+:non-standard-analysis ; std-p
nil))
#+acl2-loop-only
(defmacro defthmd (&whole event-form
name term
&rest rst)
":Doc-Section acl2::Events
prove and name a theorem and then disable it~/~/
Use ~c[defthmd] instead of ~ilc[defthm] when you want to disable a theorem
immediately after proving it. This macro has been provided for users who
prefer working in a mode where theorems are only enabled when explicitly
directed by ~c[:]~ilc[in-theory]. Specifically, the form
~bv[]
(defthmd NAME TERM ...)
~ev[]
expands to:
~bv[]
(progn
(defthmd NAME TERM ...)
(with-output
:off summary
(in-theory (disable NAME)))
(value-triple '(:defthmd NAME))).
~ev[]
Note that ~c[defthmd] commands are never redundant (~pl[redundant-events]).
Even if the ~c[defthm] event is redundant, then the ~ilc[in-theory] event
will still be executed.
The summary for the ~ilc[in-theory] event is suppressed. ~l[defthm] for
documentation of ~c[defthm]."
(declare (xargs :guard t) (ignore term rst))
(list 'progn
(cons 'defthm (cdr event-form))
(list
'with-output
:off 'summary
(list 'in-theory
(list 'disable name)))
(list 'value-triple
(list 'quote (xd-name 'defthmd name))
:on-skip-proofs t)))
#+(and acl2-loop-only :non-standard-analysis)
(defmacro defthm-std (&whole event-form
name term
&key (rule-classes '(:REWRITE))
instructions
hints
otf-flg
doc)
":Doc-Section Events
prove and name a theorem~/~/
~l[defthm] for details. (More documentation on features
related to non-standard analysis may be available in the future.)"
(list 'defthm-fn
(list 'quote name)
(list 'quote term)
'state
(list 'quote rule-classes)
(list 'quote instructions)
(list 'quote hints)
(list 'quote otf-flg)
(list 'quote doc)
(list 'quote event-form)
t))
#+acl2-loop-only
(defmacro defaxiom (&whole event-form name term
&key (rule-classes '(:REWRITE))
doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section Events
add an axiom~/
WARNING: We strongly recommend that you not add axioms. If at all
possible you should use ~ilc[defun] or ~ilc[mutual-recursion] to define new
concepts recursively or use ~ilc[encapsulate] to constrain them
constructively. If your goal is to defer a proof by using a
top-down style, consider using ~ilc[skip-proofs]; see the discussion
on ``Top-Down Proof'' in Section B.1.2 of ``Computer-Aided
Reasoning: An Approach.'' Adding new axioms frequently renders the
logic inconsistent.
~bv[]
Example:
(defaxiom sbar (equal t nil)
:rule-classes nil
:doc \":Doc-Section ...\")~/
General Form:
(defaxiom name term
:rule-classes rule-classes
:doc doc-string)
~ev[]
where ~c[name] is a new symbolic name (~pl[name]), ~c[term] is a term
intended to be a new axiom, and ~ilc[rule-classes] and ~ilc[doc-string] are as
described in the corresponding ~il[documentation] topics . The two keyword
arguments are optional. If ~c[:]~ilc[rule-classes] is not supplied, the list
~c[(:rewrite)] is used; if you wish the axiom to generate no rules,
specify ~c[:]~ilc[rule-classes] ~c[nil].~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defaxiom-fn
(list 'quote name)
(list 'quote term)
'state
(list 'quote rule-classes)
(list 'quote doc)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro deflabel (&whole event-form name &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
build a landmark and/or add a ~il[documentation] topic~/
~bv[]
Examples:
(deflabel interp-section
:doc
\":Doc-Section ...\")~/
General Form:
(deflabel name :doc doc-string)
~ev[]
where ~c[name] is a new symbolic name (~pl[name]) and ~ilc[doc-string] is an
optional ~il[documentation] string (~pl[doc-string]). This event adds the
~il[documentation] string for symbol ~c[name] to the ~c[:]~ilc[doc] database.
By virtue of the fact that ~c[deflabel] is an event, it also marks the
current ~il[history] with the ~c[name]. Thus, even undocumented labels are
convenient as landmarks in a proof development. For example, you may wish to
undo back through some label or compute a theory expression (~pl[theories])
in terms of some labels. ~c[Deflabel] ~il[events] are never considered
redundant. ~l[redundant-events].
~l[defdoc] for a means of attaching a ~il[documentation] string to a
name without marking the current ~il[history] with that name.~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'deflabel-fn
(list 'quote name)
'state
(list 'quote doc)
(list 'quote event-form)))
(deflabel theories
:doc
":Doc-Section Theories
sets of ~il[rune]s to ~il[enable]/~il[disable] in concert~/
~bv[]
Example: '((:definition app) ; or (:d app)
(:executable-counterpart app)
(:i app)
rv
(rv)
assoc-of-app)
~ev[]
See:~/
A theory is a list of ``runic designators'' as described below. Each runic
designator denotes a set of ``runes'' (~pl[rune]) and by unioning together
the runes denoted by each member of a theory we define the set of runes
corresponding to a theory. Theories are used to control which rules are
``~il[enable]d,'' i.e., available for automatic application by the theorem
prover. There is always a ``current'' theory. A rule is ~il[enable]d
precisely if its ~il[rune] is an element of the set of ~il[rune]s
corresponding to the current theory. At the top-level, the current theory is
the theory selected by the most recent ~ilc[in-theory] event, extended with
the rule names introduced since then. Inside the theorem prover, the
~c[:]~ilc[in-theory] hint (~pl[hints]) can be used to select a particular
theory as current during the proof attempt for a particular goal.
Theories are generally constructed by ``theory expressions.'' Formally, a
theory expression is any term, containing at most the single free variable
~ilc[world], that when evaluated with ~ilc[world] bound to the current ACL2
world (~pl[world]) produces a theory. ACL2 provides various functions for
the convenient construction and manipulation of theories. These are called
``theory functions''(~pl[theory-functions]). For example, the theory
function ~ilc[union-theories] takes two theories and produces their union.
The theory function ~ilc[universal-theory] returns the theory containing all
known rule names as of the introduction of a given logical name. But a
theory expression can contain constants, e.g.,
~bv[]
'(len (len) (:rewrite car-cons) car-cdr-elim)
~ev[]
and user-defined functions. The only important criterion is that a theory
expression mention no variable freely except ~ilc[world] and evaluate to a
theory.
More often than not, theory expressions typed by the user do not mention the
variable ~ilc[world]. This is because user-typed theory expressions are
generally composed of applications of ACL2's theory functions. These
``functions'' are actually macros that expand into terms in which ~ilc[world]
is used freely and appropriately. Thus, the technical definition of ``theory
expression'' should not mislead you into thinking that interestng theory
expressions must mention ~ilc[world]; they probably do and you just didn't
know it!
One aspect of this arrangement is that theory expressions cannot generally be
evaluated at the top-level of ACL2, because ~ilc[world] is not bound. To see
the value of a theory expression, ~c[expr], at the top-level, type
~bv[]
ACL2 !>(LET ((WORLD (W STATE))) expr).
~ev[]
However, because the built-in theories are quite long, you may be sorry you
printed the value of a theory expression!
A theory is a true list of runic designators and to each theory there
corresponds a set of ~il[rune]s, obtained by unioning together the sets of
~il[rune]s denoted by each runic designator. For example, the theory
constant
~bv[]
'(len (len) (:e nth) (:rewrite car-cons) car-cdr-elim)
~ev[]
corresponds to the set of ~il[rune]s
~bv[]
{(:definition len)
(:induction len)
(:executable-counterpart len)
(:executable-counterpart nth)
(:elim car-cdr-elim)
(:rewrite car-cons)} .
~ev[]
Observe that the theory contains five elements but its runic correspondent
contains six. That is because runic designators can denote sets of several
~il[rune]s, as is the case for the first designator, ~c[len]. If the above
theory were selected as current then the six rules named in its runic
counterpart would be ~il[enable]d and all other rules would be ~il[disable]d.
We now precisely define the runic designators and the set of ~il[rune]s
denoted by each. When we refer below to the ``macro-aliases dereference of''
a symbol, ~c[symb], we mean the (function) symbol corresponding ~c[symb] in
the macro-aliases-table if there is such a symbol, else ~c[symb] itself;
~pl[macro-aliases-table]. For example, the macro-aliases dereference of
~ilc[append] is ~ilc[binary-append], and the macro-aliases dereference of
~ilc[nth] is ~c[nth].~bq[]
o A ~il[rune] is a runic designator and denotes the singleton set
containing that rune.
o Suppose that ~c[symb] is a symbol and ~c[symb'] is the macro-aliases
dereference of ~c[symb], where ~c[symb'] is a function symbol introduced with
a ~ilc[defun] (or ~ilc[defuns]) event. Then ~c[symb] is a runic designator
and denotes the set containing the runes ~c[(:definition symb')] and
~c[(:induction symb')], omitting the latter if no such ~il[induction] rune
exists (presumably because the definition of ~c[symb'] is not singly
recursive).
o Suppose that ~c[symb] is a symbol and ~c[symb'] is the macro-aliases
dereference of ~c[symb], where ~c[symb'] is a function symbol introduced with
a ~ilc[defun] (or ~ilc[defuns]) event. Then ~c[(symb)] is a runic designator
and denotes the singleton set containing the rune
~c[(:executable-counterpart symb')].
o If ~c[symb] is the name of a ~ilc[defthm] (or ~ilc[defaxiom]) event that
introduced at least one rule, then ~c[symb] is a runic designator and
denotes the set of the names of all rules introduced by the named
event.
o If ~c[str] is the string naming some ~ilc[defpkg] event and ~c[symb] is the
symbol returned by ~c[(intern str \"ACL2\")], then ~c[symb] is a runic
designator and denotes the singleton set containing ~c[(:rewrite symb)],
which is the name of the rule stating the conditions under which the
~ilc[symbol-package-name] of ~c[(intern x str)] is ~c[str].
o If ~c[symb] is the name of a ~ilc[deftheory] event, then ~c[symb] is a runic
designator and denotes the runic theory corresponding to ~c[symb].
o Finally, suppose that ~c[symb] is a symbol and ~c[symb'] is the
macro-aliases dereference of ~c[symb]. Then ~c[(:KWD symb . rest)] is a
runic designator if ~c[(:KWD' symb' . rest)] is a ~il[rune], where ~c[:KWD]
is one of ~c[:d], ~c[:e], ~c[:i], or ~c[:t], and correspondingly ~c[:KWD'] is
~c[:definition], ~c[:executable-counterpart], ~c[:induction], or
~c[:type-prescription], respectively. In this case, ~c[(:KWD symb . rest)]
denotes the runic theory corresponding to the rune ~c[(:KWD' symb' . rest)].
~eq[]Note that including a function name, e.g., ~ilc[len], in the current
theory ~il[enable]s that function but does not ~il[enable] the executable
counterpart. Similarly, including ~c[(len)] or ~c[(:e len)] ~il[enable]s the
executable counterpart but not the symbolic definition. And including the
name of a proved lemma ~il[enable]s all of the rules added by the event. Of
course, one can include explicitly the ~il[rune]s naming the rules in
question and so can avoid entirely the use of non-runic elements in theories.
Because a ~il[rune] is a runic designator denoting the set containing that
~il[rune], a list of ~il[rune]s is a theory and denotes itself. We call such
theories ``runic theories.'' To every theory there corresponds a runic
theory obtained by unioning together the sets denoted by each designator in
the theory. When a theory is selected as ``current'' it is actually its
runic correspondent that is effectively used. That is, a ~il[rune] is
~il[enable]d iff it is a member of the runic correspondent of the current
theory. The value of a theory defined with ~ilc[deftheory] is the runic
correspondent of the theory computed by the defining theory expression. The
theory manipulation functions, e.g., ~ilc[union-theories], actually convert
their theory arguments to their runic correspondents before performing the
required set operation. The manipulation functions always return runic
theories. Thus, it is sometimes convenient to think of
(non-runic) theories as merely abbreviations for their runic
correspondents, abbreviations which are ``expanded'' at the first
opportunity by theory manipulation functions and the ``theory
consumer'' functions such as ~ilc[in-theory] and ~ilc[deftheory].~/")
#+acl2-loop-only
(defmacro deftheory (&whole event-form name expr &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
define a theory (to ~il[enable] or ~il[disable] a set of rules)~/
~bv[]
Example:
(deftheory interp-theory
(set-difference-theories
(universal-theory :here)
(universal-theory 'interp-section)))~/
General Form:
(deftheory name term :doc doc-string)
~ev[]
where ~c[name] is a new symbolic name (~pl[name]), ~c[term] is a term
that when evaluated will produce a theory (~pl[theories]), and
~ilc[doc-string] is an optional ~il[documentation] string
(~pl[doc-string]). Except for the variable ~ilc[world], ~c[term] must
contain no free variables. ~c[Term] is evaluated with ~ilc[world] bound to
the current world (~pl[world]) and the resulting theory is then
converted to a ~em[runic theory] (~pl[theories]) and associated with
~c[name]. Henceforth, this runic theory is returned as the value of the
theory expression ~c[(theory name)].
The value returned is the length of the resulting theory. For example, in
the following, the theory associated with ~c['FOO] has 54 ~il[rune]s:
~bv[]
ACL2 !>(deftheory foo (union-theories '(binary-append)
(theory 'minimal-theory)))
Summary
Form: ( DEFTHEORY FOO ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
54
ACL2 !>
~ev[]
Note that the theory being defined depends on the context. For example,
consider the following (contrived) example book.
~bv[]
(in-package \"ACL2\")
(defund foo (x) (consp x)) ; defund disables foo
(local (in-theory (enable foo)))
(deftheory my-theory (current-theory :here))
(in-theory (disable foo))
(defthm foo-property
(implies (consp x)
(foo x))
:hints ((\"Goal\" :in-theory (enable my-theory))))
~ev[]
At the time ~c[foo-property] is proved admissible during book certification
(~pl[certify-book]), the ~ilc[local] ~ilc[in-theory] event has previously
been evaluated, so the ~il[definition] of ~c[foo] is ~il[enable]d. Thus, the
~c[:in-theory] hint on ~c[foo-property] will ~il[enable] ~c[foo], and the
theorem proves. HOWEVER, when the book is later included
(~pl[include-book]), the ~ilc[local] event is skipped, so the definition of
~c[foo] is ~il[disable]d at the time the ~il[theory] ~c[my-theory] is
defined. Hence, unlike the case for the admissibility pass of the book's
certification, that theory does not include the definition of ~c[foo] when
the book is included.
There is, however, a way to ensure that a ~il[theory] defined in a book is
the same at ~ilc[include-book] time as it was during the admissibility pass
of the book's certification; ~pl[deftheory-static].~/
:cited-by Theories"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'deftheory-fn
(list 'quote name)
(list 'quote expr)
'state
(list 'quote doc)
(list 'quote event-form)))
(defmacro deftheory-static (name theory)
":Doc-Section Events
define a `static' theory (to ~il[enable] or ~il[disable] a set of rules)~/
This macro provides a variant of ~ilc[deftheory], such that the resulting
theory is the same at ~ilc[include-book] time as it was at ~ilc[certify-book]
time.
We assume that the reader is familiar with ~il[theories]; ~pl[deftheory]. We
begin here by illustrating how ~c[deftheory-static] differs from
~ilc[deftheory]. Suppose for example that the following events are the first
two events in a book, where that book is certified in the initial ACL2
~il[world] (~pl[ground-zero]).
~bv[]
(deftheory my-theory
(current-theory :here))
(deftheory-static my-static-theory
(current-theory :here))
~ev[]
Now suppose we include that book after executing the following event.
~bv[]
(in-theory (disable car-cons))
~ev[]
Suppose that later we execute ~c[(in-theory (theory 'my-theory))]. Then the
rule ~c[car-cons] will be disabled, because it was disabled at the time the
expression ~c[(current-theory :here)] was evaluated when processing the
~c[deftheory] of ~c[my-theory] while including the book. However, if we
execute ~c[(in-theory (theory 'my-static-theory))], then the rule
~c[car-cons] will be enabled, because the value of the theory
~c[my-static-theory] was saved at the time the book was certified.~/
~bv[]
General Form:
(deftheory-static name term :doc doc-string)
~ev[]
The arguments are handled the same as for ~ilc[deftheory]. Thus, ~c[name] is
a new symbolic name (~pl[name]), ~c[term] is a term that when evaluated will
produce a theory (~pl[theories]), and ~ilc[doc-string] is an optional
~il[documentation] string (~pl[doc-string]). Except for the variable
~ilc[world], ~c[term] must contain no free variables. ~c[Term] is evaluated
with ~ilc[world] bound to the current world (~pl[world]) and the resulting
theory is then converted to a ~em[runic theory] (~pl[theories]) and
associated with ~c[name]. Henceforth, this runic theory is returned as the
value of the theory expression ~c[(theory name)].
As for ~ilc[deftheory], the value returned is the length of the resulting
theory.
We conclude with an optional discussion about the implementation of
~c[deftheory-static], for those familiar with ~ilc[make-event]. The
following macroexpansion of the ~c[deftheory-static] form above shows how
this works (~pl[trans1]).
~bv[]
ACL2 !>:trans1 (deftheory-static my-static-theory
(current-theory :here))
(MAKE-EVENT (LET ((WORLD (W STATE)))
(LIST 'DEFTHEORY
'MY-STATIC-THEORY
(LIST 'QUOTE (CURRENT-THEORY :HERE)))))
ACL2 !>
~ev[]
The idea is that upon evaluation of this ~c[make-event] form, the first step
is to evaluate the indicated ~ilc[LET] expression to obtain a form
~c[(deftheory my-theory '(...))], where ``~c[(...)]'' is a list of all
~il[rune]s in current theory. If this form is in a book being certified,
then the resulting ~c[deftheory] form is stored in the book's certificate,
and is used when the book is included later.~/
:cited-by Theories"
`(make-event
(let ((world (w state)))
(list 'deftheory ',name
(list 'quote ,theory)))))
#+acl2-loop-only
(defmacro defstobj (&whole event-form name &rest args)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations (other than those
; that are always skipped), remove it from the list of exceptions in
; install-event just below its "Comment on irrelevance of skip-proofs".
":Doc-Section Events
define a new single-threaded object ~/
Note: Novices are advised to avoid ~c[defstobj], perhaps instead using
community books ~c[books/cutil/defaggregate.lisp] or
~c[books/data-structures/structures.lisp]. At the least, consider using
~c[(]~ilc[set-verify-guards-eagerness]~c[ 0)] to avoid ~il[guard]
verification. On the other hand, after you learn to use ~c[defstobj],
~pl[defabsstobj] for another way to introduce single-threaded objects.
~bv[]
Example:
(defconst *mem-size* 10) ; for use of *mem-size* just below
(defstobj st
(reg :type (array (unsigned-byte 31) (8))
:initially 0)
(p-c :type (unsigned-byte 31)
:initially 555)
halt ; = (halt :type t :initially nil)
(mem :type (array (unsigned-byte 31) (*mem-size*))
:initially 0 :resizable t))
General Form:
(defstobj name
(field1 :type type1 :initially val1 :resizable b1)
...
(fieldk :type typek :initially valk :resizable bk)
:renaming alist
:doc doc-string
:inline flg
:congruent-to old-stobj-name)
~ev[]
where ~c[name] is a new symbol, each ~c[fieldi] is a symbol, each ~c[typei]
is either a type-indicator (a ~ilc[type-spec] or ~il[stobj] name) or of the
form ~c[(ARRAY type-indicator max)], each ~c[vali] is an object satisfying
~c[typei], and each ~c[bi] is ~c[t] or ~c[nil]. Each pair
~c[:initially vali] and ~c[:resizable bi] may be omitted; more on this below.
The ~c[:renaming alist] argument is optional and allows the user to override
the default function names introduced by this event. The ~ilc[doc-string] is
also optional. The ~c[:inline flg] Boolean argument is also optional and
declares to ACL2 that the generated access and update functions for the stobj
should be implemented as macros under the hood (which has the effect of
inlining the function calls). The optional ~c[:congruent-to old-stobj-name]
argument specifies an existing stobj with exactly the same structure, and is
discussed below. We describe further restrictions on the ~c[fieldi],
~c[typei], ~c[vali], and on ~c[alist] below. We recommend that you read
about single-threaded objects (stobjs) in ACL2 before proceeding; ~pl[stobj].
The effect of this event is to introduce a new single-threaded object (i.e.,
a ``~il[stobj]''), named ~c[name], and the associated recognizers, creator,
accessors, updaters, constants, and, for fields of ~c[ARRAY] type, length and
resize functions.~/
~em[The Single-Threaded Object Introduced]
The ~c[defstobj] event effectively introduces a new global variable, named
~c[name], which has as its initial logical value a list of ~c[k] elements,
where ~c[k] is the number of ``field descriptors'' provided. The elements
are listed in the same order in which the field descriptors appear. If the
~c[:type] of a field is ~c[(ARRAY type-indicator (max))] then ~c[max] is a
non-negative integer or a symbol introduced by ~ilc[defconst]) whose value is
a non-negative integer, and the corresponding element of the stobj is
initially of length specified by ~c[max].
Whether the value ~c[:type] is of the form ~c[(ARRAY type-indicator (max))]
or, otherwise, just ~c[type-indicator], then ~c[type-indicator] is typically
a type-spec; ~pl[type-spec]. However, ~c[type-indicator] can also be the
name of a stobj that was previously introduced (by ~c[defstobj] or
~ilc[defabsstobj]). We ignore this ``nested stobj'' case below;
~pl[nested-stobjs] for a discussion of stobjs within stobjs.
The keyword value ~c[:initially val] specifies the initial value of a field,
except for the case of a ~c[:type] ~c[(ARRAY type-indicator (max))], in which
case ~c[val] is the initial value of the corresponding array.
Note that the actual representation of the stobj in the underlying Lisp may
be quite different; ~pl[stobj-example-2]. For the moment we focus entirely
on the logical aspects of the object.
In addition, the ~c[defstobj] event introduces functions for recognizing and
creating the stobj and for recognizing, accessing, and updating its fields.
For fields of ~c[ARRAY] type, length and resize functions are also
introduced. Constants are introduced that correspond to the accessor
functions.
~em[Restrictions on the Field Descriptions in Defstobj]
Each field descriptor is of the form:
~bv[]
(fieldi :TYPE typei :INITIALLY vali)
~ev[]
Note that the type and initial value are given in ``keyword argument'' format
and may be given in either order. The ~c[typei] and ~c[vali] ``arguments''
are not evaluated. If omitted, the type defaults to ~c[t] (unrestricted) and
the initial value defaults to ~c[nil].
Each ~c[typei] must be either a ~ilc[type-spec] or else a list of the form
~c[(ARRAY type-spec (max))]. (Again, we are ignoring the case of nested
stobjs, discussed elsewhere; ~pl[nested-stobjs].) The latter forms are said
to be ``array types.'' Examples of legal ~c[typei] are:
~bv[]
(INTEGER 0 31)
(SIGNED-BYTE 31)
(ARRAY (SIGNED-BYTE 31) (16))
(ARRAY (SIGNED-BYTE 31) (*c*)) ; where *c* has a non-negative integer value
~ev[]
The ~c[typei] describes the objects which are expected to occupy the given
field. Those objects in ~c[fieldi] should satisfy ~c[typei]. We are more
precise below about what we mean by ``expected.'' We first present the
restrictions on ~c[typei] and ~c[vali].
Non-Array Types
When ~c[typei] is a ~ilc[type-spec] it restricts the contents, ~c[x], of
~c[fieldi] according to the ``meaning'' formula given in the table for
~ilc[type-spec]. For example, the first ~c[typei] above restricts the field
to be an integer between 0 and 31, inclusive. The second restricts the field
to be an integer between -2^30 and (2^30)-1, inclusive.
The initial value, ~c[vali], of a field description may be any ACL2 object
but must satisfy ~c[typei]. Note that ~c[vali] is not a form to be evaluated
but an object. A form that evaluates to ~c[vali] could be written ~c['vali],
but ~c[defstobj] does not expect you to write the quote mark. For example,
the field description
~bv[]
(days-off :initially (saturday sunday))
~ev[]
describes a field named ~c[days-off] whose initial value is the list
consisting of the two symbols ~c[SATURDAY] and ~c[SUNDAY]. In particular,
the initial value is NOT obtained by applying the function ~c[saturday] to
the variable ~c[sunday]! Had we written
~bv[]
(days-off :initially '(saturday sunday))
~ev[]
it would be equivalent to writing
~bv[]
(days-off :initially (quote (saturday sunday)))
~ev[]
which would initialize the field to a list of length two, whose first element
is the symbol ~c[quote] and whose second element is a list containing the
symbols ~c[saturday] and ~c[sunday].
Array Types
When ~c[typei] is of the form ~c[(ARRAY type-spec (max))], the field is
supposed to be a list of items, initially of length specified by ~c[max],
each of which satisfies the indicated ~c[type-spec]. ~c[Max] must be a
non-negative integer or a defined constant evaluating to a non-negative
integer. Thus, each of
~bv[]
(ARRAY (SIGNED-BYTE 31) (16))
(ARRAY (SIGNED-BYTE 31) (*c*)) ; given previous event (defconst *c* 16)
~ev[]
restricts the field to be a list of integers, initially of length 16, where
each integer in the list is a ~c[(SIGNED-BYTE 31)]. We sometimes call such a
list an ``array'' (because it is represented as an array in the underlying
Common Lisp). The elements of an array field are indexed by position,
starting at 0. Thus, the maximum legal index of an array field one less than
is specified by ~c[max]. Note that the value of ~c[max] must be less than
the Common Lisp constant ~c[array-dimension-limit], and also (though this
presumably follows) less than the Common Lisp constant
~c[array-total-size-limit].
Note also that the ~c[ARRAY] type requires that the ~c[max] be enclosed in
parentheses. This makes ACL2's notation consistent with the Common Lisp
convention of describing the (multi-)dimensionality of arrays. But ACL2
currently supports only single dimensional arrays in stobjs.
For array fields, the initial value ~c[vali] must be an object satisfying the
~ilc[type-spec] of the ~c[ARRAY] description. The initial value of the field
is a list of ~c[max] repetitions of ~c[vali].
Array fields can be ``resized,'' that is, their lengths can be changed, if
~c[:resizable t] is supplied as shown in the example and General Form above.
The new length must satisfy the same restriction as does ~c[max], as
described above. Each array field in a ~c[defstobj] event gives rise to a
length function, which gives the length of the field, and a resize function,
which modifies the length of the field if ~c[:resizable t] was supplied with
the field when the ~c[defstobj] was introduced and otherwise causes an error.
If ~c[:resizable t] was supplied and the resize function specifies a new
length ~c[k], then: if ~c[k] is less than the existing array length, the array
is shortened simply by dropping elements with index at least ~c[k];
otherwise, the array is extended to length ~c[k] by mapping the new indices
to the initial value (supplied by ~c[:initially], else default ~c[nil]).
Array resizing is relatively slow, so we recommend using it somewhat
sparingly.
~em[The Default Function Names]
To recap, in
~bv[]
(defstobj name
(field1 :type type1 :initially val1)
...
(fieldk :type typek :initially valk)
:renaming alist
:doc doc-string
:inline inline-flag)
~ev[]
~c[name] must be a new symbol, each ~c[fieldi] must be a symbol,
each ~c[typei] must be a ~ilc[type-spec] or ~c[(ARRAY type-spec (max))],
and each ~c[vali] must be an object satisfying ~c[typei].
Roughly speaking, for each ~c[fieldi], a ~c[defstobj] introduces a
recognizer function, an accessor function, and an updater function.
The accessor function, for example, takes the stobj and returns the
indicated component; the updater takes a new component value and the
stobj and return a new stobj with the component replaced by the new
value. But that summary is inaccurate for array fields.
The accessor function for an array field does not take the stobj and return
the indicated component array, which is a list of length specified by
~c[max]. Instead, it takes an additional index argument and returns the
indicated element of the array component. Similarly, the updater function
for an array field takes an index, a new value, and the stobj, and returns a
new stobj with the indicated element replaced by the new value.
These functions ~-[] the recognizer, accessor, and updater, and also length
and resize functions in the case of array fields ~-[] have ``default names.''
The default names depend on the field name, ~c[fieldi], and on whether the
field is an array field or not. For clarity, suppose ~c[fieldi] is named
~c[c]. The default names are shown below in calls, which also indicate the
arities of the functions. In the expressions, we use ~c[x] as the object to
be recognized by field recognizers, ~c[i] as an array index, ~c[v] as the
``new value'' to be installed by an updater, and ~c[name] as the
single-threaded object.
~bv[]
non-array field array field
recognizer (cP x) (cP x)
accessor (c name) (cI i name)
updater (UPDATE-c v name) (UPDATE-cI i v name)
length (c-LENGTH name)
resize (RESIZE-c k name)
~ev[]
Finally, a recognizer and a creator for the entire single-threaded object are
introduced. The creator returns the initial stobj, but may only be used in
limited contexts; ~pl[with-local-stobj]. If the single-threaded object is
named ~c[name], then the default names and arities are as shown below.
~bv[]
top recognizer (nameP x)
creator (CREATE-name)
~ev[]
For example, the event
~bv[]
(DEFSTOBJ $S
(X :TYPE INTEGER :INITIALLY 0)
(A :TYPE (ARRAY (INTEGER 0 9) (3)) :INITIALLY 9))
~ev[]
introduces a stobj named ~c[$S]. The stobj has two fields, ~c[X] and ~c[A].
The ~c[A] field is an array. The ~c[X] field contains an integer and is
initially 0. The ~c[A] field contains a list of integers, each between 0 and
9, inclusively. Initially, each of the three elements of the ~c[A] field is
9.
This event introduces the following sequence of definitions:
~bv[]
(DEFUN XP (X) ...) ; recognizer for X field
(DEFUN AP (X) ...) ; recognizer of A field
(DEFUN $SP ($S) ...) ; top-level recognizer for stobj $S
(DEFUN CREATE-$S () ...) ; creator for stobj $S
(DEFUN X ($S) ...) ; accessor for X field
(DEFUN UPDATE-X (V $S) ...) ; updater for X field
(DEFUN A-LENGTH ($S) ...) ; length of A field
(DEFUN RESIZE-A (K $S) ...) ; resizer for A field
(DEFUN AI (I $S) ...) ; accessor for A field at index I
(DEFUN UPDATE-AI (I V $S) ...) ; updater for A field at index I
~ev[]
~em[Avoiding the Default Function Names]
If you do not like the default names listed above you may use the optional
~c[:renaming] alist to substitute names of your own choosing. Each element
of ~c[alist] should be of the form ~c[(fn1 fn2)], where ~c[fn1] is a default
name and ~c[fn2] is your choice for that name.
For example
~bv[]
(DEFSTOBJ $S
(X :TYPE INTEGER :INITIALLY 0)
(A :TYPE (ARRAY (INTEGER 0 9) (3)) :INITIALLY 9)
:renaming ((X XACCESSOR) (CREATE-$S MAKE$S)))
~ev[]
introduces the following definitions
~bv[]
(DEFUN XP (X) ...) ; recognizer for X field
(DEFUN AP (X) ...) ; recognizer of A field
(DEFUN $SP ($S) ...) ; top-level recognizer for stobj $S
(DEFUN MAKE$S () ...) ; creator for stobj $S
(DEFUN XACCESSOR ($S) ...) ; accessor for X field
(DEFUN UPDATE-X (V $S) ...) ; updater for X field
(DEFUN A-LENGTH ($S) ...) ; length of A field
(DEFUN RESIZE-A (K $S) ...) ; resizer for A field
(DEFUN AI (I $S) ...) ; accessor for A field at index I
(DEFUN UPDATE-AI (I V $S) ...) ; updater for A field at index I
~ev[]
Note that even though the renaming alist substitutes ``~c[XACCESSOR]'' for
``~c[X]'' the updater for the ~c[X] field is still called ``~c[UPDATE-X].''
That is because the renaming is applied to the default function names, not to
the field descriptors in the event.
Use of the ~c[:renaming] alist may be necessary to avoid name clashes between
the default names and and pre-existing function symbols.
~em[Constants]
~c[Defstobj] events also introduce constant definitions
(~pl[defconst]). One constant is introduced for each accessor function by
prefixing and suffixing a `~c[*]' character on the function name. The value
of that constant is the position of the field being accessed. For example,
if the accessor functions are ~c[a], ~c[b], and ~c[c], in that order, then
the following constant definitions are introduced.
~bv[]
(defconst *a* 0)
(defconst *b* 1)
(defconst *c* 2)
~ev[]
These constants are used for certain calls of ~ilc[nth] and ~ilc[update-nth]
that are displayed to the user in proof output. For example, for stobj
~c[st] with accessor functions ~c[a], ~c[b], and ~c[c], in that order, the
term ~c[(nth '2 st)] would be printed during a proof as ~c[(nth *c* st)].
Also ~pl[term], in particular the discussion there of untranslated terms, and
~pl[nth-aliases-table].
~em[Inspecting the Effects of a Defstobj]
Because the stobj functions are introduced as ``sub-events'' of the
~c[defstobj] the history commands ~c[:]~ilc[pe] and ~c[:]~ilc[pc] will not
print the definitions of these functions but will print the superior
~c[defstobj] event. To see the definitions of these functions use the
history command ~c[:]~ilc[pcb!].
To see an s-expression containing the definitions what constitute the raw
Lisp implementation of the event, evaluate the form
~bv[]
(nth 4 (global-val 'cltl-command (w state)))
~ev[]
~em[immediately after] the ~c[defstobj] event has been processed.
A ~c[defstobj] is considered redundant only if the name, field descriptors,
renaming alist, and inline flag are identical to a previously executed
~c[defstobj]. Note that a redundant ~c[defstobj] does not reset the
~il[stobj] fields to their initial values.
~em[Inlining and Performance]
The ~c[:inline] keyword argument controls whether or not accessor, updater,
and length functions are inlined (as macros under the hood, in raw Lisp). If
~c[:inline t] is provided then these are inlined; otherwise they are not.
The advantage of inlining is potentially better performance; there have been
contrived examples, doing essentially nothing except accessing and updating
array fields, where inlining reduced the time by a factor of 10 or more; and
inlining has sped up realistic examples by a factor of at least 2. Inlining
may get within a factor of 2 of C execution times for such contrived
examples, and within a few percent of C execution times on realistic
examples.
A drawback to inlining is that redefinition may not work as expected, much as
redefinition may not work as expected for macros: defined functions that call
a macro, or inlined stobj function, will not see a subsequent redefinition of
the macro or inlined function. Another drawback to inlining is that because
inlined functions are implemented as macros in raw Lisp, tracing
(~pl[trace$]) will not show their calls. These drawbacks are avoided by
default, but the user who is not concerned about them is advised to specify
~c[:inline t].
~em[Specifying Congruent Stobjs]
Two stobjs are may be considered to be ``congruent'' if they have the same
structure, that is, their ~c[defstobj] events are identical when ignoring
field names. In particular, every stobj is congruent to itself. In order to
tell ACL2 that a new stobj ~c[st2] is indeed to be considered as congruent to
an existing stobj ~c[st1], the ~c[defstobj] event introducing ~c[st2] is
given the keyword argument ~c[:congruent-to st1]. Congruence is an
equivalence relation: when you specify a new stobj to be congruent to an old
one, you are also specifying that the new stobj is congruent to all other
stobjs that are congruent to the old one. Thus, continuing the example
above, if you specify that ~c[st3] is ~c[:congruent-to st2], then ~c[st1],
~c[st2], and ~c[st3] will all be congruent to each other.
When two stobjs are congruent, ACL2 allows you to substitute one for another
in a function call. Any number of stobjs may be replaced with congruent
stobjs in the call, provided no two get replaced with the same stobj. The
return values are correspondingly modified: if stobj ~c[st1] is replaced by
~c[st2] at an argument position, and if ~c[st1] is returned in the output
~il[signature] of the function, then ~c[st2] is returned in place of ~c[st1].
The following example illustrates congruent stobjs. For more examples of how
to take advantage of congruent stobjs, and also of how to misuse them, see
community book ~c[books/misc/congruent-stobjs-test.lisp].
~bv[]
(defstobj st1 fld1)
(defstobj st2 fld2 :congruent-to st1)
(defstobj st3 fld3 :congruent-to st2) ; equivalently, :congruent-to st1
(defun f (st1 st2 st3)
(declare (xargs :stobjs (st1 st2 st3)))
(list (fld2 st1) (fld3 st2) (fld1 st3)))
(update-fld1 1 st1)
(update-fld1 2 st2) ; notice use of update-fld1 on st2
(update-fld1 3 st3) ; notice use of update-fld1 on st3
(assert-event (equal (f st3 st2 st1) '(3 2 1)))
~ev[]
The following example shows an error that occurs when stobj arguments are
repeated, i.e., at least two stobj arguments (in this case, three) get
replaced by the same stobj.
~bv[]
ACL2 !>(f st1 st1 st1)
ACL2 Error in TOP-LEVEL: The form ST1 is being used, as an argument
to a call of F, where the single-threaded object ST2 was expected,
even though these are congruent stobjs. See :DOC defstobj, in particular
the discussion of congruent stobjs. Note: this error occurred in
the context (F ST1 ST1 ST1).
ACL2 !>
~ev[]~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defstobj-fn
(list 'quote name)
(list 'quote args)
'state
(list 'quote event-form)))
#+acl2-loop-only
(defmacro in-theory (&whole event-form expr &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
designate ``current'' theory (enabling its rules)~/
~bv[]
Example:
(in-theory (set-difference-theories
(universal-theory :here)
'(flatten (:executable-counterpart flatten))))~/
General Form:
(in-theory term :doc doc-string)
~ev[]
where ~c[term] is a term that when evaluated will produce a theory
(~pl[theories]), and ~ilc[doc-string] is an optional ~il[documentation]
string not beginning with ``~c[:Doc-Section] ...''. Because no unique name
is associated with an ~c[in-theory] event, there is no way we can store the
~il[documentation] string ~ilc[doc-string] in our ~il[documentation]
database. Hence, we actually prohibit ~ilc[doc-string] from having the form
of an ACL2 ~il[documentation] string; ~pl[doc-string].
Except for the variable ~ilc[world], ~c[term] must contain no free variables.
~c[Term] is evaluated with the variable ~ilc[world] bound to the current
~il[world] to obtain a theory and the corresponding runic theory
(~pl[theories]) is then made the current theory. Thus,
immediately after the ~c[in-theory], a rule is ~il[enable]d iff its rule name
is a member of the runic interpretation (~pl[theories]) of some
member of the value of ~c[term]. ~l[theory-functions] for a list
of the commonly used theory manipulation functions.
Note that it is often useful to surround ~c[in-theory] ~il[events] with
~c[local], that is, to use ~c[(local (in-theory ...))]. This use of
~ilc[local] in ~ilc[encapsulate] events and ~il[books] will prevent the
effect of this theory change from being exported outside the context of that
~c[encapsulate] or book.
Also ~pl[hints] for a discussion of the ~c[:in-theory] hint, including some
explanation of the important point that an ~c[:in-theory] hint will always be
evaluated relative to the current ACL2 logical ~il[world], not relative to
the theory of a previous goal.
~ilc[In-theory] returns an error triple (~pl[error-triples]). When the
return is without error, the value is of the form
~c[(mv nil (:NUMBER-OF-ENABLED-RUNES k) state)] where ~c[k] is the length of
the new current theory. This value of ~c[k] is what is printed when an
~c[in-theory] event evaluates without error at the top level.~/
:cited-by Theories"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'in-theory-fn
(list 'quote expr)
'state
(list 'quote doc)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro in-arithmetic-theory (&whole event-form expr &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
designate theory for some rewriting done for non-linear arithmetic~/
We assume familiarity with ~il[theories]; in particular, ~pl[in-theory] for
the normal way to set the current theory. Here, we discuss an analogous
event that pertains only to non-linear arithmetic
(~pl[non-linear-arithmetic]).
~bv[]
Example:
(in-arithmetic-theory '(lemma1 lemma2))~/
General Form:
(in-arithmetic-theory term :doc doc-string)
~ev[]
where ~c[term] is a term that when evaluated will produce a theory
(~pl[theories]), and ~ilc[doc-string] is an optional ~il[documentation]
string not beginning with ``~c[:Doc-Section] ...''. Except for the
variable ~ilc[world], ~c[term] must contain no free variables. ~c[Term] is
evaluated with the variable ~ilc[world] bound to the current ~il[world] to
obtain a theory and the corresponding runic theory
(~pl[theories]) is then used by non-linear arithmetic
(~pl[non-linear-arithmetic]).
Warning: If ~c[term] involves macros such as ~ilc[ENABLE] and ~ilc[DISABLE]
you will probably not get what you expect! Those macros are defined
relative to the ~ilc[CURRENT-THEORY]. But in this context you might
wish they were defined in terms of the ``~c[CURRENT-ARITHMETIC-THEORY]''
which is not actually a defined function. We do not anticipate that users
will repeatedly modify the arithmetic theory. We expect ~c[term] most often
to be a constant list of runes and so have not provided ``arithmetic theory
manipulation functions'' analogous to ~ilc[CURRENT-THEORY] and ~ilc[ENABLE].
Because no unique name is associated with an ~c[in-arithmetic-theory] event,
there is no way we can store the ~il[documentation] string ~ilc[doc-string]
in our il[documentation] database. Hence, we actually prohibit ~ilc[doc-string]
from having the form of an ACL2 ~il[documentation] string;
~pl[doc-string].
~l[non-linear-arithmetic].~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'in-arithmetic-theory-fn
(list 'quote expr)
'state
(list 'quote doc)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro regenerate-tau-database (&whole event-form &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
regenerate the tau database relative to the current enabled theory~/
~bv[]
Example:
(regenerate-tau-database)~/
General Form:
(regenerate-tau-database :doc doc-string)
~ev[]
where ~ilc[doc-string] is an optional ~il[documentation] string not beginning
with ``~c[:Doc-Section] ...''. Because no unique name is associated with a
~c[regenerate-tau-database] event, there is no way we can store the
~il[documentation] string ~ilc[doc-string] in our il[documentation] database.
Hence, we actually prohibit ~ilc[doc-string] from having the form of an ACL2
~il[documentation] string; ~pl[doc-string].
The tau database is regenerated by scanning the current logical world and
re-processing every rule-generating event in it relative to the current
enabled theory and current tau auto mode settings.
~l[introduction-to-the-tau-system] for background details.
This command was intended to allow the user to remove a fact from the tau
database, by regenerating the database without the fact. But as the
following discussion highlights, ~c[regenerate-tau-database] does not really
solve the problem. We regard it as a placeholder for a more sophisticated
mechanism. However, we have trouble understanding why a user might wish to
remove a fact from the database and are awaiting further user experiences
before designing the more sophisticated mechanism.
Suppose, for example, that you wanted to remove a signature rule provided by
some rule with name ~i[rune]. You could disable ~i[rune] and regenerate the
database. We discuss why you might ~-[] or might not ~-[] want to do this
later. But suppose you did it. Unfortunately, the database you get will
not be just like the one you started with minus the signature rule. The
reason is that the database you started with was generated incrementally and
the current theory might have evolved. To take a simple example, your
starting database might have included a rule that has been disabled since it
was first added. Thus, the part of your starting database built before the
disabling was constructed with the rule enabled and the part built afterwards
has the rule disabled. You are unlikely to get the same database whether
you enable or disable that rule now.
You might hope that the avoidance of ~c[in-theory] events would eliminate the
problem but it does not because even the ~ilc[ground-zero] theory is
constructed incrementally from the ``pre-history'' commands used to boot up
ACL2. Those pre-history commands include some global ~c[in-theory] commands.
Since every session starts from the ~c[ground-zero] state, the starting
database is already ``infected'' with global ~c[in-theory] commands.
The reason we hope that it will not be necessary to remove tau facts is that
the tau system is designed merely to be fast and benign (see
~i[Design Philosophy] in ~il[introduction-to-the-tau-system]). The tau system's
coverage should grows monotonically with the addition of rules. According to
this understanding of tau, adding a signature rule, for example, may allow
tau to prove some additional goals but will not prevent it from proving goals
it could prove previously. If this is understanding of tau is accurate, we
see no fundamental reason to support the removal of a fact. This, of course,
ignores the possibility that the user wishes to explore alternative proof
strategies or measure performance.
We welcome user observations and experience on this issue.~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'regenerate-tau-database-fn
'state
(list 'quote doc)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro push-untouchable (&whole event-form name fn-p &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section switches-parameters-and-modes
add name or list of names to the list of untouchable symbols~/
~bv[]
Examples:
(push-untouchable my-var nil)
(push-untouchable set-mem t)~/
General Form:
(push-untouchable name{s} fn-p :doc doc-string)
~ev[]
where ~c[name{s}] is a non-~c[nil] symbol or a non-~c[nil] true list of
symbols, ~c[fn-p] is any value (but generally ~c[nil] or ~c[t]), and
~ilc[doc-string] is an optional ~il[documentation] string not
beginning with ``~c[:Doc-Section] ...''. If ~c[name{s}] is a symbol it
is treated as the singleton list containing that symbol. The effect
of this event is to union the given symbols into the list of
``untouchable variables'' in the current world if ~c[fn-p] is
~c[nil], else to union the symbols into the list of ``untouchable
functions''. This event is redundant if every symbol listed is
already a member of the appropriate untouchables list (variables or
functions).
When a symbol is on the untouchables list it is syntactically
illegal for any event to call a function or macro of that name, if
~c[fn-p] is non-~c[nil], or to change the value of a state global
variable of that name, if ~c[fn-p] is ~c[nil]. Thus, the effect of
pushing a function symbol, ~c[name], onto untouchables is to prevent
any future event from using that symbol as a function or macro, or
as a state global variable (according to ~c[fn-p]). This is
generally done to ``fence off'' some primitive function symbol from
``users'' after the developer has used the symbol freely in the
development of some higher level mechanism.
Also ~pl[remove-untouchable].~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(declare (xargs :guard (and name
(or (symbolp name)
(symbol-listp name))
(booleanp fn-p))))
(list 'push-untouchable-fn
(list 'quote name)
(list 'quote fn-p)
'state
(list 'quote doc)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro remove-untouchable (&whole event-form name fn-p &key doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section switches-parameters-and-modes
remove names from lists of untouchable symbols~/
~bv[]
Example Forms:
(remove-untouchable my-var nil) ; then state global my-var is not untouchable
(remove-untouchable set-mem t) ; then function set-mem is not untouchable
~ev[]
Also ~pl[push-untouchable].
This documentation topic is directed at those who build systems on top of
ACL2. We first describe a means for removing restrictions related to
so-called ``untouchables'': functions (or macros) that cannot be called, or
state global variables that cannot be modified or unbound, without
intervention that requires an active trust tag (~pl[defttag]). Then we
describe the ~c[remove-untouchable] event.
We begin by discussing untouchable state global variables
~c[temp-touchable-vars] and ~c[temp-touchable-fns], which initially have
value ~c[nil]. These can often be used in place of ~c[remove-untouchable].
When the value is ~c[t], no variable (respectively, no function or macro) is
treated as untouchable, regardless of the set of initial untouchables or the
~c[remove-untouchable] or ~ilc[push-untouchable] ~il[events] that have been
admitted. Otherwise the value of each of these two variables is a
~ilc[symbol-listp], and no member of this list is treated as an untouchable
variable (in the case of ~c[temp-touchable-vars]) or as an untouchable
function or macro (in the case of ~c[temp-touchable-fns]). These two state
global variables can be set by ~c[set-temp-touchable-vars] and
~c[set-temp-touchable-fns], respectively, provided there is an active trust
tag (~pl[defttag]). Here is an illustrative example. This macro executes the
indicated forms in a context where there are no untouchable variables, but
requires an active trust tag when invoked.
~bv[]
(defmacro with-all-touchable (&rest forms)
`(progn!
:state-global-bindings
((temp-touchable-vars t set-temp-touchable-vars))
(progn! ,@forms)))
~ev[]
An equivalent version, which however is not recommended since
~ilc[state-global-let*] may have surprising behavior in raw Lisp, is as
follows.
~bv[]
(defmacro with-all-touchable (&rest forms)
`(progn!
(state-global-let*
((temp-touchable-vars t set-temp-touchable-vars))
(progn! ,@forms))))
~ev[]
Finally, the value ~c[t] for ~c[temp-touchable-vars] removes the requirement
that built-in state globals cannot be made unbound (with
~c[makunbound-global]).~/
We now turn to the ~c[remove-untouchable] event, in case the approach above
is for some reason not adequate. This event is illegal by default, since it
can be used to provide access to ACL2 internal functions and data structures
that are intentionally made untouchable for the user. If you want to call
it, you must first create an active trust tag; ~pl[defttag].
~bv[]
General Form:
(remove-untouchable name{s} fn-p :doc doc-string)
~ev[]
where ~c[name{s}] is a non-~c[nil] symbol or a non-~c[nil] true list of symbols,
~c[fn-p] is any value (but generally ~c[nil] or ~c[t]), and ~ilc[doc-string]
is an optional ~il[documentation] string not beginning with
``~c[:Doc-Section] ...''. If ~c[name{s}] is a symbol it is treated as the
singleton list containing that symbol. The effect of this event is to remove
the given symbols from the list of ``untouchable variables'' in the current
world if ~c[fn-p] is ~c[nil], else to remove the symbols into the list of
``untouchable functions''. This event is redundant if no symbol listed is a
member of the appropriate untouchables list (variables or functions).~/"
(declare (xargs :guard (and name
(or (symbolp name)
(symbol-listp name))
(booleanp fn-p))))
`(cond ((not (ttag (w state)))
(er soft 'remove-untouchable
"It is illegal to execute remove-untouchable when there is no ~
active ttag; see :DOC defttag."))
(t ,(list 'remove-untouchable-fn
(list 'quote name)
(list 'quote fn-p)
'state
(list 'quote doc)
(list 'quote event-form)))))
#+acl2-loop-only
(defmacro set-body (&whole event-form fn name-or-rune)
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
set the definition body~/
~bv[]
Examples:
(set-body foo (:definition foo)) ; restore original definition of foo
(set-body foo foo) ; same as just above
(set-body foo my-foo-def) ; use my-foo-def for the body of foo
(set-body foo (:definition my-foo-def)) ; same as just above
~ev[]
Rules of class ~c[:]~ilc[definition] can install a new definition body, used
for example by ~c[:expand] ~il[hints]. ~l[definition] and also ~pl[hints]
for a detailed discussion of the ~c[:install-body] fields of
~c[:]~ilc[definition] rules and their role in ~c[:expand] hints.
There may be several such definitions, but by default, the latest one is used
by ~c[:expand] hints. Although the ~c[:with] keyword may be used in
~c[:expand] hints to override this behavior locally (~pl[hints]), it may be
convenient to install a definition for expansion other than the latest one
~-[] for example, the original definition. ~c[Set-body] may be used for this
purpose.
~bv[]
General Form:
(set-body function-symbol rule-name)
~ev[]
where ~c[rule-name] is either a ~c[:definition] ~il[rune] or is a function
symbol, ~c[sym], which represents the rune ~c[(:definition sym)].
You can view all definitions available for expansion;
~pl[show-bodies].~/~/"
`(set-body-fn ',fn ',name-or-rune state ',event-form))
#+acl2-loop-only
(defmacro table (&whole event-form name &rest args)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
user-managed tables~/
~bv[]
Examples:
(table tests 1 '(...)) ; set contents of tests[1] to '(...)
(table tests 25) ; get contents of tests[25]
(table tests) ; return table tests as an alist
(table tests nil nil :clear) ; clear table tests
(table tests nil '((foo . 7)) :clear) ; set table tests to ((foo . 7))
(table tests nil nil :guard) ; fetch the table guard
(table tests nil nil :guard term) ; set the table guard~/
General Form:
(table table-name key-term value-term op term)
~ev[]
where ~c[table-name] is a symbol that is the name of a (possibly new)
table, ~c[key-term] and ~c[value-term], if present, are arbitrary terms
involving (at most) the single variable ~ilc[world], ~c[op], if present, is
one of the table operations below, and ~c[term], if present, is a term.
~c[Table] returns an ACL2 ``error triple'' (~pl[error-triples]). The effect
of ~c[table] on ~ilc[state] depends on ~c[op] and how many arguments are
presented. Some invocations actually have no effect on the ACL2 ~il[world]
and hence an invocation of ~c[table] is not always an ``event''. We explain
below, after giving some background information.
~b[Important Note:] The ~c[table] forms above are calls of a macro that
expand to involve the special variable ~ilc[state]. This will prevent you
from accessing a table from within a hint or theory where you do not have the
~ilc[state] variable. However, the form
~bv[]
(table-alist 'tests world)
~ev[]
returns the alist representation of the table named ~c[test] in the
given world. Often you have access to ~c[world].
The ACL2 system provides ``tables'' by which the user can associate
one object with another. Tables are in essence just conventional
association lists ~-[] lists of pairs ~-[] but the ACL2 environment
provides a means of storing these lists in the ``ACL2 world'' of the
current ~ilc[state]. The ACL2 user could accomplish the same ends by
using ACL2 ``global variables;'' however, limitations on global
variable names are imposed to ensure ACL2's soundness. By
convention, no table is important to ACL2's soundness, even though
some features of the system use tables, and the user is invited to
make free use of tables. Because tables are stored in the ACL2
~il[world] they are restored by ~ilc[include-book] and undone by ~c[:]~ilc[ubt]. Many
users of Nqthm requested a facility by which user data could be
saved in Nqthm ``lib files'' and tables are ACL2's answer to that
request.
Abstractly, each table is an association list mapping ``keys'' to
``values.'' In addition, each table has a ``~c[:guard],'' which is a
term that must be true of any key and value used. By setting the
~c[:guard] on a table you may enforce an invariant on the objects in the
table, e.g., that all keys are positive integers and all values are
symbols. Each table has a ``name,'' which must be a symbol. Given
a table name, the following operations can be performed on the table.
~c[:put] ~-[] associate a value with a key (possibly changing the value
currently associated with that key).
~c[:get] ~-[] retrieve the value associated with a key (or nil if no
value has been associated with that key).
~c[:alist] ~-[] return an alist showing all keys and non-nil values in
the table.
~c[:clear] ~-[] clear the table (so that every value is nil), or if val
is supplied then set table to that value (which must be an alist).
~c[:guard] ~-[] fetch or set the :guard of the table.
When the operations above suggest that the table or its ~c[:guard] are
modified, what is actually meant is that the current ~il[state] is redefined
so that in it, the affected table name has the appropriate properties. in
such cases, the ~c[table] form is an event (~pl[events]). In the ~c[:put]
case, if the key is already in the table and associated with the proposed
value, then the ~c[table] event is redundant (~pl[redundant-events]).
~c[Table] forms are commonly typed by the user while interacting with
the system. ~c[:Put] and ~c[:get] forms are especially common. Therefore,
we have adopted a positional syntax that is intended to be
convenient for most applications. Essentially, some operations
admit a ``short form'' of invocation.
~bv[]
(table name key-term value-term :put) ; long form
(table name key-term value-term) ; short form
~ev[]
evaluates the key- and value-terms, obtaining two objects that we
call ~c[key] and ~c[value], checks that the ~c[key] and ~c[value] satisfy the
~c[:guard] on the named table and then ``modifies'' the named table
so that the value associated with ~c[key] is ~c[value]. When used like
this, ~c[table] is actually an event in the sense that it changes the
ACL2 ~il[world]. In general, the forms evaluated to obtain the ~c[key] and
~c[value] may involve the variable ~ilc[world], which is bound to the
then-current ~il[world] during the evaluation of the forms. However, in
the special case that the table in question is named
~ilc[acl2-defaults-table], the ~c[key] and ~c[value] terms may not contain any
variables. Essentially, the keys and values used in ~il[events] setting
the ~ilc[acl2-defaults-table] must be explicitly given constants.
~l[acl2-defaults-table].
~bv[]
(table name key-term nil :get) ; long form
(table name key-term) ; short form
~ev[]
evaluates the key-term (see note below), obtaining an object, ~c[key],
and returns the value associated with ~c[key] in the named table (or,
~c[nil] if there is no value associated with ~c[key]). When used like this,
~c[table] is not an event; the value is simply returned.
~bv[]
(table name nil nil :alist) ; long form
(table name) ; short form
~ev[]
returns an alist representing the named table; for every key in
the table with a non-~c[nil] associated value, the alist pairs the key
and its value. The order in which the keys are presented is
unspecified. When used like this, ~c[table] is not an event; the alist
is simply returned.
~bv[]
(table name nil val :clear)
~ev[]
sets the named table to the alist ~c[val], making the checks that ~c[:put]
makes for each key and value of ~c[val]. When used like this, ~c[table] is
an event because it changes the ACL2 ~il[world].
~bv[]
(table name nil nil :guard)
~ev[]
returns the translated form of the guard of the named table.
~bv[]
(table name nil nil :guard term)
~ev[]
Provided the named table is empty and has not yet been assigned a
~c[:guard] and ~c[term] (which is not evaluated) is a term that mentions at
most the variables ~c[key], ~c[val] and ~ilc[world], this event sets the ~c[:guard] of
the named table to ~c[term]. Whenever a subsequent ~c[:put] occurs, ~c[term]
will be evaluated with ~c[key] bound to the key argument of the ~c[:put],
~c[val] bound to the ~c[val] argument of the ~c[:put], and ~ilc[world] bound to the
then current ~il[world]. An error will be caused by the ~c[:put] if the
result of the evaluation is ~c[nil].
Note that it is not allowed to change the ~c[:guard] on a table once it
has been explicitly set. Before the ~c[:guard] is explicitly set, it is
effectively just ~c[t]. After it is set it can be changed only by
undoing the event that set it. The purpose of this restriction is
to prevent the user from changing the ~c[:guards] on tables provided by
other people or the system.
The intuition behind the ~c[:guard] mechanism on tables is to enforce
invariants on the keys and values in a table, so that the values,
say, can be used without run-time checking. But if the ~c[:guard] of a
table is sensitive to the ACL2 ~il[world], it may be possible to cause
some value in the table to cease satisfying the ~c[:guard] without doing
any operations on the table. Consider for example the ~c[:guard] ``no
value in this table is the name of an event.'' As described, that is
enforced each time a value is stored. Thus, ~c['bang] can be ~c[:put] in
the table provided there is no event named ~c[bang]. But once it is in
the table, there is nothing to prevent the user from defining ~c[bang]
as a function, causing the table to contain a value that could not
be ~c[:put] there anymore. Observe that not all state-sensitive ~c[:guard]s
suffer this problem. The ~c[:guard] ``every value is an event name''
remains invariant, courtesy of the fact that undoing back through an
event name in the table would necessarily undo the ~c[:put] of the name
into the table.
~c[Table] was designed primarily for convenient top-level use. Tables
are not especially efficient. Each table is represented by an alist
stored on the property list of the table name. ~c[:Get] is just a
~c[getprop] and ~ilc[assoc-equal]. ~c[:Put] does a ~c[getprop] to the get the table
alist, a ~c[put-assoc-equal] to record the new association, and a
~c[putprop] to store the new table alist ~-[] plus the overhead associated
with ~c[:guard]s and undoable ~il[events], and checking (for redundancy) if
the key is already bound to its proposed value. Note that there are never
duplicate keys in the resulting ~c[alist]; in particular, when the
operation ~c[:clear] is used to install new ~c[alist], duplicate keys are
removed from that alist.
A table name may be any symbol whatsoever. Symbols already in use
as function or theorem names, for example, may be used as table
names. Symbols in use only as table names may be defined with
~ilc[defun], etc. Because there are no restrictions on the user's choice
of table names, table names are not included among the logical
names. Thus, ~c[:pe name] will never display a table event (for a
logical name other than ~c[:here]). Either ~c[:pe name] will display a
``normal'' event such as ~c[(defun name ...)] or ~c[(defthm name ...)] or
else ~c[:pe name] will cause an error indicating that ~c[name] is not a
logical name. This happens even if ~c[name] is in use as a table name.
Similarly, we do not permit table names to have ~il[documentation]
strings, since the same name might already have a ~il[documentation]
string. If you want to associate a ~il[documentation] string with a
table name that is being used no other way, define the name as a
label and use the ~c[:]~ilc[doc] feature of ~ilc[deflabel]
(~pl[deflabel]); also ~pl[defdoc].~/"
; At one time the table macro expanded to several different forms,
; depending on whether it was really expected to affect world. That
; was abandoned when it was actually included in the source files
; because of the important invariant that these defmacros be
; translatable by boot-translate.
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'table-fn
(list 'quote name)
(list 'quote args)
'state
(list 'quote event-form)))
#+acl2-loop-only
(defmacro encapsulate (&whole event-form signatures &rest cmd-lst)
; Warning: See the Important Boot-Strapping Invariants before modifying!
":Doc-Section Events
hide some ~il[events] and/or constrain some functions~/
~c[Encapsulate] provides a way to execute a sequence of ~il[events] and then
hide some of the resulting effects. There are two kinds of encapsulations:
``trivial'' and ``non-trivial''. We discuss these briefly before providing
detailed ~il[documentation].
A trivial encapsulation is an event of the following form.
~bv[]
(encapsulate
() ; nil here indicates \"trivial\"
<event-1>
...
<event-k>)
~ev[]
We use the term ``sub-events'' to refer to ~c[<event-1>] through
~c[<event-k>]. Each sub-event ~c[<event-i>] may be ``~il[local]'', that is,
of the form ~c[(local <event-i'>)]; the other sub-events are called
``non-local''. When this ~c[encapsulate] form is submitted to ACL2, it is
processed in two passes. On the first pass, each sub-event is processed in
sequence; admission of the ~c[encapsulate] fails if any ~c[<event-i>] fails
to be admitted. Then a second pass is made after rolling back the logical
~il[world] to what it was just before executing the ~c[encapsulate] form. In
the second pass, only the non-~il[local] forms ~c[<event-i>] are evaluated,
again in order, and proofs are skipped.
For example, the following trivial encapsulation exports a single event,
~c[member-equal-reverse]. The lemma ~c[member-revappend] is used (as a
~il[rewrite] rule) to prove ~c[member-equal-reverse] on the first pass, but
since ~c[member-revappend] is ~il[local], it is ignored on the second (final)
pass.
~bv[]
(encapsulate
()
(local
(defthm member-revappend
(iff (member-equal a (revappend x y))
(or (member-equal a x)
(member-equal a y)))
:hints ((\"Goal\" :induct (revappend x y)))))
(defthm member-equal-reverse
(iff (member-equal a (reverse x))
(member-equal a x))))
~ev[]
Of course, one might prefer to prove these ~il[events] at the top level,
rather than within an encapsulation; but the point here is to illustrate that
you can have ~il[local] ~il[events] that do not become part of the logical
~il[world]. (Such a capability is also provided at the level of ~il[books];
in particular, ~pl[include-book].)
On the other hand, non-trivial encapsulations provide a way to introduce
axioms about new function symbols, without introducing inconsistency and
without introducing complete definitions. The following example illustrates
how that works.
~bv[]
(encapsulate
; The following list has a single signature, introducing a function foo of
; one argument that returns one value. (The list is non-empty, so we call
; this a \"non-trivial\" encapsulation.)
( ((foo *) => *) )
; Introduce a ``witness'' (example) for foo, marked as local so that
; it is not exported:
(local (defun foo (x) x))
; Introduce a non-local property to be exported:
(defthm foo-preserves-consp
(implies (consp x)
(consp (foo x))))
)
~ev[]
The form above introduces a new function symbol, ~c[foo], with the indicated
property and no definition. In fact, the output from ACL2 concludes as
follows.
~bv[]
The following constraint is associated with the function FOO:
(IMPLIES (CONSP X) (CONSP (FOO X)))
~ev[]
To understand this example, we consider how non-trivial encapsulations are
processed. The same two passes are made as for trivial encapsulations, and
the (~il[local]) definition of ~c[foo] is ignored on the second pass, and
hence does not appear in the resulting ACL2 logical ~il[world]. But before
the second pass, each ~il[signature] is stored in the ~il[world]. Thus, when
the theorem ~c[foo-preserves-consp] is encountered in the second pass,
~c[foo] is a known function symbol with the indicated signature.
We turn now to more complete documentation. But discussion of redundancy for
~c[encapsulate] events may be found elsewhere; ~pl[redundant-encapsulate].
~bv[]
Other Examples:
(encapsulate (((an-element *) => *))
; The list of signatures above could also be written
; ((an-element (lst) t))
(local (defun an-element (lst)
(if (consp lst) (car lst) nil)))
(local (defthm member-equal-car
(implies (and lst (true-listp lst))
(member-equal (car lst) lst))))
(defthm thm1
(implies (null lst) (null (an-element lst))))
(defthm thm2
(implies (and (true-listp lst)
(not (null lst)))
(member-equal (an-element lst) lst))))
(encapsulate
() ; empty signature: no constrained functions indicated
(local (defthm hack
(implies (and (syntaxp (quotep x))
(syntaxp (quotep y)))
(equal (+ x y z)
(+ (+ x y) z)))))
(defthm nthcdr-add1-conditional
(implies (not (zp (1+ n)))
(equal (nthcdr (1+ n) x)
(nthcdr n (cdr x))))))~/
General Form:
(encapsulate (signature ... signature)
ev1
...
evn)
~ev[]
where each ~ilc[signature] is a well-formed signature, each ~c[signature]
describes a different function symbol, and each ~c[evi] is an embedded event
form (~l[embedded-event-form]). Also ~pl[signature], in particular for a
discussion of how a signature can assign a ~il[guard] to a function symbol.
There must be at least one ~c[evi]. The ~c[evi] inside ~ilc[local] special
forms are called ``local'' ~il[events] below. ~il[Events] that are not
~ilc[local] are sometimes said to be ``exported'' by the encapsulation. We
make the further restriction that no ~ilc[defaxiom] event may be introduced
in the scope of an ~c[encapsulate] (not even by ~c[encapsulate] or
~ilc[include-book] events that are among the ~c[evi]). Furthermore, no
non-~ilc[local] ~ilc[include-book] event is permitted in the scope of any
~c[encapsulate] with a non-empty list of signatures.
To be well-formed, an ~c[encapsulate] event must have the properties that
each event in the body (including the ~ilc[local] ones) can be successfully
executed in sequence and that in the resulting theory, each function
mentioned among the ~il[signature]s was introduced via a ~ilc[local] event
and has the ~il[signature] listed. (A utility is provided to assist in
debugging failures of such execution; ~pl[redo-flat].) In addition, the body
may contain no ``local incompatibilities'' which, roughly stated, means that
the ~il[events] that are not ~ilc[local] must not syntactically require
symbols defined by ~ilc[local] ~ilc[events], except for the functions listed
in the ~il[signature]s. ~l[local-incompatibility]. Finally, no
non-~ilc[local] recursive definition in the body may involve in its suggested
induction scheme any function symbol listed among the ~il[signature]s.
~l[subversive-recursions].
Observe that if the ~il[signature]s list is empty, the resulting ``trivial''
~c[encapsulate] may still be useful for deriving theorems to be exported
whose proofs require lemmas you prefer to hide (i.e., made ~ilc[local]).
Whether trivial or not (i.e., whether the signature is empty or not),
~c[encapsulate] exports the results of evaluating its non-~ilc[local]
~il[events], but its ~ilc[local] ~il[events] are ignored for the resulting
logical ~il[world].
The result of a non-trivial ~c[encapsulate] event is an extension of the
logic in which, roughly speaking, the functions listed in the ~il[signature]s
are constrained to have the ~il[signature]s listed and to satisfy the
non-~ilc[local] theorems proved about them. In fact, other functions
introduced in the ~c[encapsulate] event may be considered to have
``~il[constraint]s'' as well. (~l[constraint] for details, which are only
relevant to functional instantiation.) Since the ~il[constraint]s were all
theorems in the ``ephemeral'' or ``local'' theory, we are assured that the
extension produced by ~c[encapsulate] is sound. In essence, the ~ilc[local]
definitions of the constrained functions are just ``witness functions'' that
establish the consistency of the ~il[constraint]s. Because those definitions
are ~ilc[local], they are not present in the theory produced by
encapsulation. After a non-trivial ~c[encapsulate] event is admitted,
theorems about the constrained function symbols may then be proved ~-[]
theorems whose proofs necessarily employ only the ~il[constraint]s. Thus,
those theorems may be later functionally instantiated, as with the
~c[:functional-instance] lemma instance (~pl[lemma-instance]), to derive
analogous theorems about different functions, provided the
constraints (~pl[constraint]) can be proved about the new functions.
The ~il[default-defun-mode] for the first event in an encapsulation is
the default ~il[defun-mode] ``outside'' the encapsulation. But since
~il[events] changing the ~il[defun-mode] are permitted within the body of an
~c[encapsulate], the default ~il[defun-mode] may be changed. However,
~il[defun-mode] changes occurring within the body of the ~c[encapsulate]
are not exported. In particular, the ~ilc[acl2-defaults-table] after
an ~c[encapsulate] is always the same as it was before the
~c[encapsulate], even though the ~c[encapsulate] body might contain
~il[defun-mode] changing ~il[events], ~c[:]~ilc[program] and ~c[:]~ilc[logic].
~l[defun-mode]. More generally, after execution of an
~c[encapsulate] event, the value of ~ilc[acl2-defaults-table] is
restored to what it was immediately before that event was executed.
~l[acl2-defaults-table].
We make some remarks on ~il[guard]s and evaluation. Calls of functions
introduced in the ~il[signature]s list cannot be evaluated in the ACL2
read-eval-print loop. ~l[defattach] for a way to overcome this limitation.
Moreover, any ~c[:]~ilc[guard] supplied in the signature is automatically
associated in the ~il[world] with its corresponding function symbol, with no
requirement other than that the guard is a legal term all of whose function
symbols are in ~c[:]~ilc[logic] mode with their ~il[guard]s verified. In
particular, there need not be any relationship between a guard in a signature
and the guard in a ~c[local] witness function. Finally, note that for
functions introduced non-~il[local]ly inside a non-trivial ~c[encapsulate]
event, ~il[guard] verification is illegal unless ACL2 determines that the
proof obligations hold outside the ~ilc[encapsulate] event as well.
~bv[]
(encapsulate
((f (x) t))
(local (defun f (x) (declare (xargs :guard t)) (consp x)))
;; ERROR!
(defun g (x)
(declare (xargs :guard (f x)))
(car x)))
~ev[]
The order of the ~il[events] in the vicinity of an ~c[encapsulate] is
confusing. We discuss it in some detail here because when logical names are
being used with theory functions to compute sets of rules, it is sometimes
important to know the order in which ~il[events] were executed.
(~l[logical-name] and ~pl[theory-functions].) What, for example, is the set
of function names extant in the middle of an encapsulation?
If the most recent event is ~c[previous] and then you execute an
~c[encapsulate] constraining ~c[an-element] with two non-~ilc[local]
~il[events] in its body, ~c[thm1] and ~c[thm2], then the order of the
~il[events] after the encapsulation is (reading chronologically forward):
~c[previous], ~c[thm1], ~c[thm2], ~c[an-element] (the ~c[encapsulate]
itself). Actually, between ~c[previous] and ~c[thm1] certain extensions were
made to the ~il[world] by the superior ~c[encapsulate], to permit
~c[an-element] to be used as a function symbol in ~c[thm1].
Remark for ACL2(r) (~pl[real]). For ACL2(r), ~ilc[encapsulate] can be used
to introduce classical and non-classical functions, as determined by the
signatures; ~pl[signature]. Those marked as classical (respectively
non-classical) must have classical (respectively, non-classical) ~ilc[local]
witness functions. A related requirement applies to functional
instantiation; ~pl[lemma-instance].~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'encapsulate-fn
(list 'quote signatures)
(list 'quote cmd-lst)
'state
(list 'quote event-form)))
(defdoc redundant-encapsulate
":Doc-Section encapsulate
redundancy of ~ilc[encapsulate] ~il[events]~/
For this ~il[documentation] topic we assume familiarity with ~c[encapsulate]
events and the notion of redundancy for ~il[events]; ~pl[encapsulate] and
~pl[redundant-events].
The typical way for an ~c[encapsulate] event to be redundant is when a
syntactically identical ~c[encapsulate] has already been executed under the
same ~ilc[default-defun-mode], ~ilc[default-ruler-extenders], and
~ilc[default-verify-guards-eagerness]. But more generally, the
~c[encapsulate] events need not be syntactically identical; for example, it
suffices that they agree when the contents of ~ilc[local] sub-events are
ignored. The precise criterion for redundancy is given below, but let us
first look at a consequence of the point just made about ignoring the
contents of ~ilc[local] sub-events. Consider the following sequence of two
events.
~bv[]
(encapsulate
()
(defun f (x) x)
(local (defthm f-identity
(equal (f x) x))))
(encapsulate
()
(defun f (x) x)
(local (defthm false-claim
(equal (f x) (not x)))))
~ev[]
You might be surprised to learn that the second is actually redundant, even
though ~c[false-claim] is clearly not a theorem; indeed, its negation is a
theorem! The following two points may soften the blow. First, this behavior
is as specified above (and is specified more precisely below): the contents
of ~il[local] events are ignored when checking redundancy of
~ilc[encapsulate] events. Second, this behavior is sound, because the
logical meaning of an ~ilc[encapsulate] event is taken from the events that
it exports, which do not include events that are ~il[local] to the
~c[encapsulate] event.
Some users, however, want to use ~ilc[encapsulate] events for testing in a
way that is thwarted by this ignoring of ~il[local] sub-events. Consider
the following sort of example.
~bv[]
(encapsulate ()
(local (defthm test1 ...)))
(encapsulate ()
(local (defthm test2 ...)))
~ev[]
Since the contents of local events are ignored when checking redundancy of an
~c[encapsulate] event, the second form just above is indeed redundant,
presumably not as expected by whomever wrote these two tests. A solution is
to add distinct non-local forms, for example as follows.
~bv[]
(encapsulate ()
(value-triple \"test1\")
(local (defthm test1 ...)))
(encapsulate ()
(value-triple \"test2\")
(local (defthm test2 ...)))
~ev[]
A different solution is to use ~ilc[make-event] for testing, as follows.
~bv[]
(make-event (er-progn (defthm test1 ...)
(value '(value-triple nil))))
(make-event (er-progn (defthm test2 ...)
(value '(value-triple nil))))
~ev[]
Also see community books ~c[misc/eval.lisp], ~c[make-event/eval-check.lisp],
and ~c[make-event/eval-tests.lisp] for more ways to test in books.
The precise criterion for redundancy of ~ilc[encapsulate] ~il[events] is that
the existing and proposed ~c[encapsulate] events contain the same signatures
and the same number of top-level events ~-[] let ~c[k] be that number ~-[]
and for each ~c[i < k], the ~c[i]th top-level events ~c[E1] and ~c[E2] from
the earlier and current ~c[encapsulate]s have one of the following
properties.
o ~c[E1] and ~c[E2] are equal; or
o ~c[E1] is of the form ~c[(record-expansion E2 ...)]; or else
o ~c[E1] and ~c[E2] are equal after replacing each ~ilc[local] sub-event by
~c[(local (value-triple :elided))], where a sub-event of an event ~c[E] is
either ~c[E] itself, or a sub-event of a constituent event of ~c[E] in the
case that ~c[E] is a call of ~ilc[with-output], ~ilc[with-prover-time-limit],
~ilc[with-prover-step-limit], ~c[record-expansion], ~ilc[time$], ~ilc[progn],
~ilc[progn!], or ~c[encapsulate] itself.~/~/")
(defconst *load-compiled-file-values*
'(t nil :warn :default :comp))
#+acl2-loop-only
(defmacro include-book (&whole event-form user-book-name
&key
; Warning: If you change the defaults below, be sure to change the
; construction of event-form in include-book-fn!
(load-compiled-file ':default)
(uncertified-okp 't)
(defaxioms-okp 't)
(skip-proofs-okp 't)
(ttags ':default)
dir
doc)
; Warning: See the Important Boot-Strapping Invariants before modifying!
(declare (xargs :guard
(member-eq load-compiled-file *load-compiled-file-values*)))
":Doc-Section Events
load the ~il[events] in a file~/
~bv[]
Examples:
(include-book \"my-arith\")
(include-book \"/home/smith/my-arith\")
(include-book \"/../../my-arith\")
General Form:
(include-book file :load-compiled-file action
:uncertified-okp t/nil ; [default t]
:defaxioms-okp t/nil ; [default t]
:skip-proofs-okp t/nil ; [default t]
:ttags ttags ; [default nil]
:dir directory
:doc doc-string)
~ev[]
where ~c[file] is a book name. ~l[books] for general information,
~pl[book-name] for information about book names, and ~pl[pathname] for
information about file names. ~c[Action] is one of ~c[t], ~c[nil],
~c[:default], ~c[:warn], or ~c[:comp]; these values are explained below, and
the default is ~c[:default]. The three ~c[-okp] keyword arguments, which
default to ~c[t], determine whether errors or warnings are generated under
certain conditions explained below; when the argument is ~c[t], warnings are
generated. The ~c[dir] argument, if supplied, is a keyword that represents
an absolute pathname for a directory (~pl[pathname]), to be used instead of
the current book directory (~pl[cbd]) for resolving the given ~c[file]
argument to an absolute pathname. In particular, by default ~c[:dir :system]
resolves ~c[file] using the ~c[books/] directory of your ACL2 installation,
unless your ACL2 executable was built somewhere other than where it currently
resides; please see the ``Books Directory'' below. To define other keywords
that can be used for ~c[dir], ~pl[add-include-book-dir]. ~c[Doc-string] is
an optional ~il[documentation] string; ~pl[doc-string]. If the book has no
~ilc[certificate], if its ~ilc[certificate] is invalid or if the certificate
was produced by a different ~il[version] of ACL2, a warning is printed and
the book is included anyway; ~pl[certificate]. This can lead to serious
errors, perhaps mitigated by the presence of a ~c[.port] file from an earlier
certification; ~pl[uncertified-books]. If the portcullis of the
~il[certificate] (~pl[portcullis]) cannot be raised in the host logical
~il[world], an error is caused and no change occurs to the logic. Otherwise,
the non-~ilc[local] ~il[events] in file are assumed. Then the ~il[keep] of
the ~il[certificate] is checked to ensure that the correct files were read;
~pl[keep]. A warning is printed if uncertified ~il[books] were included.
Even if no warning is printed, ~c[include-book] places a burden on you;
~pl[certificate].
If you use ~il[guard]s, please note ~c[include-book] is executed as though
~c[(set-guard-checking nil)] has been evaluated; ~Pl[set-guard-checking]. If
you want guards checked, please ~pl[ld] and/or ~pl[rebuild].
The value of ~c[:load-compiled-file] controls whether a compiled file for the
given ~c[file] is loaded by ~c[include-book]. Note that this keyword applies
only to the given ~c[file], not to any included sub-books. In order to skip
loading all compiled files, for the given ~c[file] as well as all included
sub-books ~-[] for example, to avoid Lisp errors such as ``Wrong FASL
version'' ~-[] use ~c[(set-compiler-enabled nil state)]; ~pl[compilation].
Otherwise, if keyword argument ~c[:load-compiled-file] is missing or its
value is the keyword ~c[:default], then it is treated as ~c[:warn]. If its
value is ~c[nil], no attempt is made to load the compiled file for the book
provided. In order to load the compiled file, it must be more recent than
the book's ~il[certificate] (except in raw mode, where it must be more recent
than the book itself; ~pl[set-raw-mode]). For non-~c[nil] values of
~c[:load-compiled-file] that do not result in a loaded compiled file, ACL2
proceeds as follows. Note that a load of a compiled file or expansion file
aborts partway through whenever an ~ilc[include-book] form is encountered for
which no suitable compiled or expansion file can be loaded. For much more
detail, ~pl[book-compiled-file].
~bq[]
~c[t]: Cause an error if the compiled file is not loaded. This same
requirement is imposed on every ~ilc[include-book] form evaluated during the
course of evaluation of the present ~c[include-book] form, except that for
those subsidiary ~c[include-book]s that do not themselves specify
~c[:load-compiled-file t], it suffices to load the expansion file
(~pl[book-compiled-file]).
~c[:warn]: An attempt is made to load the compiled file, and a warning is
printed if that load fails to run to completion.
~c[:comp]: A compiled file is loaded as with value ~c[t], except that if a
suitable ``expansion file'' exists but the compiled file does not, then the
compiled file is first created. ~l[book-compiled-file].~eq[]
The three ~c[-okp] arguments, ~c[:uncertified-okp], ~c[defaxioms-okp],
and ~c[skip-proofs-okp], determine the system's behavior when
the book or any subbook is found to be uncertified, when the book
or any subbook is found to contain ~ilc[defaxiom] events, and when
the book or any subbook is found to contain ~ilc[skip-proofs] events,
respectively. All three default to ~c[t], which means it is ``ok''
for the condition to arise. In this case, a warning is printed but
the processing to load the book is allowed to proceed. When one of
these arguments is ~c[nil] and the corresponding condition arises,
an error is signaled and processing is aborted. ~st[Exception]:
~c[:uncertified-okp] is ignored if the ~c[include-book] is being
performed on behalf of a ~ilc[certify-book].
The keyword argument ~c[:ttags] may normally be omitted. A few constructs,
used for example if you are building your own system based on ACL2, may
require it. ~l[defttag] for an explanation of this argument.
~c[Include-book] is similar in spirit to ~ilc[encapsulate] in that it is
a single event that ``contains'' other ~il[events], in this case the
~il[events] listed in the file named. ~c[Include-book] processes the
non-~ilc[local] event forms in the file, assuming that each is
admissible. ~ilc[Local] ~il[events] in the file are ignored. You may
use ~c[include-book] to load several ~il[books], creating the logical
~il[world] that contains the definitions and theorems of all of
them.
If any non-~ilc[local] event of the book attempts to define a ~il[name]
that has already been defined ~-[] and the book's definition is not
syntactically identical to the existing definition ~-[] the attempt to
include the book fails, an error message is printed, and no change
to the logical ~il[world] occurs. ~l[redundant-events] for the
details.
When a book is included, the default ~il[defun-mode]
(~pl[default-defun-mode]) for the first event is always ~c[:]~ilc[logic].
That is, the default ~il[defun-mode] ``outside'' the book ~-[] in the
environment in which ~c[include-book] was called ~-[] is irrelevant to the
book. ~il[Events] that change the ~il[defun-mode] are permitted within a
book (provided they are not in ~ilc[local] forms). However, such changes
within a book are not exported, i.e., at the conclusion of an
~c[include-book], the ``outside'' default ~il[defun-mode] is always the same
as it was before the ~c[include-book].
Unlike every other event in ACL2, ~c[include-book] puts a burden on
you. Used improperly, ~c[include-book] can be unsound in the sense
that it can create an inconsistent extension of a consistent logical
~il[world]. A certification mechanism is available to help you
carry this burden ~-[] but it must be understood up front that even
certification is no guarantee against inconsistency here. The
fundamental problem is one of file system security.
~l[certificate] for a discussion of the security issues.
At the beginning of execution of an ~c[include-book] form, even before
executing ~il[portcullis] ~il[command]s, the value of
~ilc[acl2-defaults-table] is restored to the value it had at startup. After
execution of an ~c[include-book] form, the value of ~ilc[acl2-defaults-table]
is restored to what it was immediately before that ~c[include-book] form was
executed. ~l[acl2-defaults-table].
~b[Books Directory.] We refer to the ``books directory'' of an executable
image as the full pathname string of the directory associated with
~c[include-book] keyword option ~c[:dir :system] for that image. By default,
it is the ~c[books/] subdirectory of the directory where the sources reside
and the executable image is thus built (except for ACL2(r) ~-[] ~pl[real]
~-[], where it is ~c[books/nonstd/]). If those books reside elsewhere, the
environment variable ~c[ACL2_SYSTEM_BOOKS] can be set to the ~c[books/]
directory under which they reside (a Unix-style pathname, typically ending in
~c[books/] or ~c[books], is permissible). In most cases, your ACL2
executable is a small script in which you can set this environment variable
just above the line on which the actual ACL2 image is invoked, for example:
~bv[]
export ACL2_SYSTEM_BOOKS
ACL2_SYSTEM_BOOKS=/home/acl2/4-0/acl2-sources/books
~ev[]
If you follow suggestions in the installation instructions, these books will
be the ACL2 community books; ~pl[community-books].
This concludes the guided tour through ~il[books]. ~l[set-compile-fns] for a
subtle point about the interaction between ~c[include-book] and on-the-fly
~il[compilation]. ~l[certify-book] for a discussion of how to certify a
book.~/
:cited-by Programming"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'include-book-fn
(list 'quote user-book-name)
'state
(list 'quote load-compiled-file)
(list 'quote :none)
(list 'quote uncertified-okp)
(list 'quote defaxioms-okp)
(list 'quote skip-proofs-okp)
(list 'quote ttags)
(list 'quote doc)
(list 'quote dir)
(list 'quote event-form)))
#+acl2-loop-only
(defmacro make-event (&whole event-form
form
&key
expansion? check-expansion on-behalf-of)
; Essay on Make-event
; This essay incorporates by reference :doc make-event and :doc
; make-event-details. That is, one should start by reading those documentation
; topics. This is a place to add details that seem of interest only to the
; implementors, not to ACL2 users.
; When we lay down a command landmark for a command for which expansion has
; taken place, we need to record that expansion somehow for subsequent calls of
; certify-book, in order to recover portcullis commands. Thus,
; add-command-landmark and make-command-tuple have an argument for the
; expansion (which could be nil, indicating that no expansion took place).
; We use record-expansion (as described in :doc make-event-details) in order to
; support redundancy of encapsulate, as implemented by redundant-encapsulatep
; and its subroutines. Here is a summary of the issue. Consider: (encapsulate
; ((foo (x) t)) ... (make-event <form>)). We have several goals.
; + Be able to execute this form a second time and have it be redundant.
; + If this form is redundant yet in a book, it cannot cause a new expansion
; result for the make-event or the encapsulate, and include-book has to do
; the right thing even, if possible, in raw mode.
; + We want to store a proper expansion of an encapsulate.
; + We want to recognize redundancy without having to execute the encapsulate.
; + If an encapsulate form is redundant then its stored version is identical
; to the stored version of the earlier form for which it is redundant.
; The last of these properties is important because otherwise unsoundness could
; result! Suppose for example that a book bar.lisp contains (local
; (include-book "foo")), where foo.lisp contains an encapsulate that causes a
; later encapsulate in bar.lisp to be redundant. What should we know at the
; point we see the later encapsulate? We should know that the event logically
; represented by the encapsulate is the same as the one logically represented
; by the earlier encapsulate, so we certainly do not want to re-do its
; expansion at include-book time. Thus, when an encapsulate is redundant, we
; store the expanded version of the earlier encapsulate as the expansion of the
; current unexpanded encapsulate, unless the two are identical. But how do we
; expand a non-redundant encapsulate? We expand it by replacing every
; sub-event ev by (record-expansion ev exp), when ev has an expansion exp.
; Then, we recognize a subsequent encapsulate as redundant with this one if
; their signatures are equal and each of the subsequent encapsulate's events,
; ev2, is either the same as the corresponding event ev1 of the old encapsulate
; or else ev1 is of the form (record-expansion ev2 ...).
; We elide local forms arising from make-event expansions when writing to book
; certificates, in order to save space. See elide-locals.
; Note that when :puff (specifically puff-command-block) is applied to an
; include-book form, it uses the expansion-alist from the book's certificate if
; there is an up-to-date certificate.
":Doc-Section Events
evaluate (expand) a given form and then evaluate the result~/
~c[Make-event] is a utility for generating ~il[events]. It provides a
capability not offered by Lisp macros (~pl[defmacro]), as it allows access to
the ACL2 ~ilc[state] and logical ~il[world]. In essence, the expression
~c[(make-event form)] replaces itself with the result of evaluating ~c[form],
say, ~c[ev], as though one had submitted ~c[ev] instead of the ~c[make-event]
call. For example, ~c[(make-event (quote (defun f (x) x)))] is equivalent to
the event ~c[(defun f (x) x)].
We break this documentation into the following sections.
~st[Introduction]~nl[]
~st[Detailed Documentation]~nl[]
~st[Error Reporting]~nl[]
~st[Restriction to Event Contexts]~nl[]
~st[Examples Illustrating How to Access State]~nl[]
~st[Advanced Expansion Control]
We begin with an informal introduction, which focuses on examples and
introduces the key notion of ``expansion phase''.
~st[Introduction]
~c[Make-event] is particularly useful for those who program using the ACL2
~ilc[state]; ~pl[programming-with-state]. That is because the evaluation of
~c[form] may read and even modify the ACL2 ~ilc[state].
Suppose for example that we want to define a constant ~c[*world-length*],
that is the length of the current ACL2 ~il[world]. A ~c[make-event] form can
accomplish this task, as follows.
~bv[]
ACL2 !>(length (w state))
98883
ACL2 !>(make-event
(list 'defconst '*world-length* (length (w state))))
Summary
Form: ( DEFCONST *WORLD-LENGTH* ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
Summary
Form: ( MAKE-EVENT (LIST ...))
Rules: NIL
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
*WORLD-LENGTH*
ACL2 !>*world-length*
98883
ACL2 !>(length (w state))
98890
ACL2 !>
~ev[]
How did this work? First, evaluation of the form
~c[(list 'defconst '*world-length* (length (w state)))] returned the event
form ~c[(defconst *world-length* 98883)]. Then that event form was
automatically submitted to ACL2. Of course, that changed the ACL2 logical
~il[world], which is why the final value of ~c[(length (w state))] is greater
than its initial value.
The example above illustrates how the evaluation of a ~c[make-event] call
takes place in two phases. The first phase evaluates the argument of the
call, in this case ~c[(list 'defconst '*world-length* (length (w state)))],
to compute an event form, in this case ~c[(defconst *world-length* 98883)].
We call this evaluation the ``expansion'' phase. Then the resulting event
form is evaluated, which in this case defines the constant
~c[*world-length*].
Now suppose we would like to introduce such a ~ilc[defconst] form any time we
like. It is common practice to define macros to automate such tasks. Now we
might be tempted simply to make the following definition.
~bv[]
; WRONG!
(defmacro define-world-length-constant (name state)
(list 'defconst name (length (w state))))
~ev[]
But ACL2 rejects such a definition, because a macro cannot take the ACL2
state as a parameter; instead, the formal parameter to this macro named
~c[\"STATE\"] merely represents an ordinary object. You can try to
experiment with other such direct methods to define such a macro, but they
won't work.
Instead, however, you can use the approach illustrated by the ~c[make-event]
example above to define the desired macro, as follows.
~bv[]
(defmacro define-world-length-constant (name)
`(make-event (list 'defconst ',name (length (w state)))))
~ev[]
Here are example uses of this macro.
~bv[]
ACL2 !>(define-world-length-constant *foo*)
Summary
Form: ( DEFCONST *FOO* ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
Summary
Form: ( MAKE-EVENT (LIST ...))
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
*FOO*
ACL2 !>*foo*
98891
ACL2 !>:pe *foo*
2:x(DEFINE-WORLD-LENGTH-CONSTANT *FOO*)
\
> (DEFCONST *FOO* 98891)
ACL2 !>(length (w state))
98897
ACL2 !>(define-world-length-constant *bar*)
Summary
Form: ( DEFCONST *BAR* ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
Summary
Form: ( MAKE-EVENT (LIST ...))
Rules: NIL
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
*BAR*
ACL2 !>*bar*
98897
ACL2 !>:pe *bar*
3:x(DEFINE-WORLD-LENGTH-CONSTANT *BAR*)
\
> (DEFCONST *BAR* 98897)
ACL2 !>(length (w state))
98903
ACL2 !>
~ev[]
Finally, we note that the expansion phase can be used for computation that
has side effects, generally by modifying state. Here is a modification of
the above example that does not change the world at all, but instead saves
the length of the world in a state global.
~bv[]
(make-event
(pprogn (f-put-global 'my-world-length (length (w state)) state)
(value '(value-triple nil))))
~ev[]
Notice that this time, the value returned by the expansion phase is not an
event form, but rather, is an error triple (~pl[error-triples]) whose value
component is an event form, namely, the event form ~c[(value-triple nil)].
Evaluation of that event form does not change the ACL2 world
(~pl[value-triple]). Thus, the sole purpose of the ~c[make-event] call above
is to change the ~il[state] by associating the length of the current logical
world with the state global named ~c['my-world-length]. After evaluating
this form, ~c[(@ my-world-length)] provides the length of the ACL2 world, as
illustrated by the following transcript.
~bv[]
ACL2 !>:pbt 0
0:x(EXIT-BOOT-STRAP-MODE)
ACL2 !>(length (w state))
98883
ACL2 !>(make-event
(pprogn (f-put-global 'my-world-length (length (w state)) state)
(value '(value-triple nil))))
Summary
Form: ( MAKE-EVENT (PPROGN ...))
Rules: NIL
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
NIL
ACL2 !>(length (w state))
98883
ACL2 !>:pbt 0
0:x(EXIT-BOOT-STRAP-MODE)
ACL2 !>
~ev[]
When ~c[make-event] is invoked by a book, it is expanded during book
certification but not, by default, when the book is included. So for the
example ~c[(define-world-length-constant *foo*)] given above, if that form is
in a book, then the value of ~c[*foo*] will be the length of the world at the
time this form was invoked during book certification, regardless of world
length at ~ilc[include-book] time. (The expansion is recorded in the book's
~il[certificate], and re-used.) To overcome this default, you can specified
keyword value ~c[:CHECK-EXPANSION t]. This will cause an error if the
expansion is different, but it can be useful for side effects. For example,
if you insert the following form in a book, then the length of the world will
be printed when the form is encountered, whether during ~ilc[certify-book] or
during ~ilc[include-book].
~bv[]
(make-event
(pprogn (fms \"Length of current world: ~~x0~~|\"
(list (cons #\\0 (length (w state))))
*standard-co* state nil)
(value '(value-triple nil)))
:check-expansion t)
~ev[]~/
~st[Detailed Documentation]
~bv[]
Examples:
; Trivial example: evaluate (quote (defun foo (x) x)) to obtain
; (defun foo (x) x), which is then evaluated.
(make-event (quote (defun foo (x) x)))
; Evaluate (generate-form state) to obtain (mv nil val state), and
; then evaluate val. (Generate-form is not specified here, but
; imagine for example that it explores the state and then generates
; some desired definition or theorem.)
(make-event (generate-form state))
; As above, but make sure that if this form is in a book, then when
; we include the book, the evaluation of (generate-form state)
; should return the same value as it did when the book was
; certified.
(make-event (generate-form state)
:CHECK-EXPANSION t)
; As above (where the :CHECK-EXPANSION value can be included or
; not), where if there is an error during expansion, then the error
; message will explain that expansion was on behalf of the indicated
; object, typically specified as the first argument.
(make-event (generate-form state)
:ON-BEHALF-OF (generate-form state))
General Form:
(make-event form :CHECK-EXPANSION chk :ON-BEHALF-OF obj :EXPANSION? form)
~ev[]
where ~c[chk] is ~c[nil] (the default), ~c[t], or the intended ``expansion
result'' from the evaluation of ~c[form] (as explained below); and if
supplied, ~c[obj] is an arbitrary ACL2 object, used only in reporting errors
in expansion, i.e., in the evaluation of form. The ~c[:EXPANSION?] keyword
is discussed in the final section, on Advanced Expansion Control.
We strongly recommend that you browse some ~c[.lisp] files in the community
books directory ~c[books/make-event/]. You may even find it helpful, in
order to understand ~c[make-event], to do so before continuing to read this
documentation. You may also find it useful to browse community book
~c[books/misc/eval.lisp], which contains definitions of macros
~c[must-succeed] and ~c[must-fail] that are useful for testing and are used
in many books in the ~c[books/make-event/] directory, especially
~c[eval-tests.lisp]. Another example, ~c[books/make-event/defrule.lisp],
shows how to use macros whose calls expand to ~c[make-event] forms, which in
turn can generate ~il[events]. For more examples, see file
~c[books/make-event/Readme.lsp]. Other than the examples, the explanations
here should suffice for most users. If you want explanations of subtler
details, ~pl[make-event-details].
Note that ~c[make-event] may only be used at the ``top level'' or where an
event is expected. See the section ``Restriction to Event Contexts'', below.
~c[Make-event] is related to Lisp macroexpansion in the sense that its
argument is evaluated to obtain an expansion result, which is evaluated
again. Let us elaborate on each of these notions in turn: ``is evaluated,''
``expansion result'', and ``evaluated again.'' The final section, on
Advanced Expansion Control, will generalize these processes in a way that we
ignore for now.~bq[]
``is evaluated'' ~-[] The argument can be any expression, which is evaluated
as would be any expression submitted to ACL2's top level loop. Thus,
~ilc[state] and user-defined ~ilc[stobj]s may appear in the form supplied to
~c[make-event]. Henceforth, we will refer to this evaluation as
``expansion.'' Expansion is actually done in a way that restores ACL2's
built-in ~ilc[state] global variables, including the logical ~il[world], to
their pre-expansion values (with a few exceptions ~-[]
~pl[make-event-details] ~-[] and where we note that changes to user-defined
~ilc[state] global variables (~pl[assign]) are preserved). So, for example,
events might be evaluated during expansion, but they will disappear from the
logical ~il[world] after expansion returns its result. Moreover, proofs are
enabled by default at the start of expansion (~pl[ld-skip-proofsp]) if
keyword ~c[:CHECK-EXPANSION] is supplied and has a non-~c[nil] value.
``expansion result'' ~-[] The above expansion may result in an ordinary
(non-~ilc[state], non-~ilc[stobj]) value, which we call the ``expansion
result.'' Or, expansion may result in a multiple value of the form
~c[(mv erp val state)], or, more generally,
~c[(mv erp val state stobj-1 ... stobj-k)] where each ~c[stobj-i] is a
~il[stobj]; then the expansion result is ~c[val] unless ~c[erp] is not
~c[nil], in which case there is no expansion result, and the original
~c[make-event] evaluates to a soft error. In either case (single or multiple
value), either ~c[val] is an embedded event form (~pl[embedded-event-form]),
or else the original ~c[make-event] evaluates to a soft error, printed as
described under ``Error Reporting'' below.
``evaluated again'' ~-[] the expansion result is evaluated in place of the
original ~c[make-event].
~eq[]The expansion process can invoke subsidiary calls of ~c[make-event], and
the expansion result can (perhaps after macroexpansion) be a call of
~c[make-event]. It can be useful to track all these ~c[make-event] calls.
The ~il[state] global variable ~c[make-event-debug] may be set to a
non-~c[nil] value, for example ~c[(assign make-event-debug t)], in order to
see a trace of the expansion process, where a level is displayed (as in
``~c[3>]'') to indicate the depth of subsidiary expansions.
Expansion of a ~c[make-event] call will yield an event that replaces the
original ~c[make-event] call. In particular, if you put a ~c[make-event]
form in a book, then in essence it is replaced by its expansion result,
created during the proof pass of the ~ilc[certify-book] process. We now
elaborate on this idea of keeping the original expansion.
A ~c[make-event] call generates a ``~c[make-event] replacement'' that may be
stored by the system. In the simplest case, this replacement is the
expansion result. When a book is certified, these replacements are stored in
a book's certificate (technically, in the ~c[:EXPANSION-ALIST] field). Thus,
although the book is not textually altered during certification, one may
imagine a ``book expansion'' corresponding to the original book, in which
events are substituted by replacements that were generated during the proof
phase of certification. A subsequent ~ilc[include-book] will then include
the book expansion corresponding to the indicated book. When a book is
compiled during ~ilc[certify-book], it is actually the corresponding book
expansion, stored as a temporary file, that is compiled instead. That
temporary file is deleted after compilation unless one first evaluates the
form ~c[(assign keep-tmp-files t)]. Note however that all of the original
forms must still be legal ~il[events]; ~pl[embedded-event-form]. So for
example, if the first event in a book is ~c[(local (defmacro my-id (x) x))],
and is followed by ~c[(my-id (make-event ...))], the final
``~c[include-book]'' pass of ~ilc[certify-book] will fail because ~c[my-id]
is not defined when the ~c[my-id] call is encountered.
A ~c[make-event] replacement might not be the expansion when either of the
keyword arguments ~c[:CHECK-EXPANSION] or ~c[:EXPANSION?] is supplied. We
deal with the latter in the final section, on Advanced Expansion Control. If
~c[:CHECK-EXPANSION t] is supplied and the expansion is ~c[exp], then the
replacement is obtained from the original ~c[make-event] call, by
substituting ~c[exp] for ~c[t] as the value of keyword ~c[:CHECK-EXPANSION].
Such a ~c[make-event] call ~-[] during the second pass of an
~ilc[encapsulate] or during event processing on behalf of ~ilc[include-book]
~-[] will do the expansion again and check that the expansion result is equal
to the original expansion result, ~c[exp]. In the unusual case that you know
the expected expansion result, ~c[res], you can specify
~c[:CHECK-EXPANSION res] in the first place, so that the check is also done
during the initial evaluation of the ~c[make-event] form. IMPORTANT BUT
OBSCURE DETAIL: That expansion check is only done when processing events, not
during a preliminary load of a book's compiled file. The following paragraph
elaborates.
(Here are details on the point made just above, for those who use the
~c[:CHECK-EXPANSION] argument to perform side-effects on the ~il[state].
When you include a book, ACL2 generally loads a compiled file before
processing the events in the book; ~pl[book-compiled-file]. While it is true
that a non-~c[nil] ~c[:CHECK-EXPANSION] argument causes ~ilc[include-book] to
perform expansion of the ~c[make-event] form during event processing it does
~em[not] perform expansion when the compiled file (or expansion file; again,
~pl[book-compiled-file]) is loaded.)
ACL2 performs the following space-saving optimization: when the expansion
result is a ~ilc[local] event, then the ~c[make-event] replacement is
~c[(local (value-triple :ELIDED))].
The notion of ``expansion'' and ``replacement'' extend to the case that a
call of ~c[make-event] is found in the course of macroexpansion. The
following example illustrates this point.
~bv[]
(encapsulate
()
(defmacro my-mac ()
'(make-event '(defun foo (x) x)))
(my-mac))
:pe :here
~ev[]
The above call of ~ilc[pe] shows that the form ~c[(my-mac)] has a
~c[make-event] expansion (and replacement) of ~c[(DEFUN FOO (X) X)]:
~bv[]
(ENCAPSULATE NIL
(DEFMACRO MY-MAC
NIL
'(MAKE-EVENT '(DEFUN FOO (X) X)))
(RECORD-EXPANSION (MY-MAC)
(DEFUN FOO (X) X)))
~ev[]
~st[Error Reporting]
Suppose that expansion produces a soft error as described above. That is,
suppose that the argument of a ~c[make-event] call evaluates to a multiple
value ~c[(mv erp val state ...)] where ~c[erp] is not ~c[nil]. If ~c[erp] is
a string, then that string is printed in the error message. If ~c[erp] is
a ~ilc[cons] pair whose ~ilc[car] is a string, then the error prints
~c[\"~~@0\"] with ~c[#\\0] bound to that ~c[cons] pair; ~pl[fmt]. Any other
non-~c[nil] value of ~c[erp] causes a generic error message to be printed.
~st[Restriction to Event Contexts]
A ~c[make-event] call must occur either at the top level, or during
~c[make-event] expansion, or as an argument of an event constructor. We
explain in more detail below. This restriction is imposed to enable ACL2 to
track expansions produced by ~c[make-event].
The following examples illustrate this restriction.
~bv[]
; Legal:
(progn (with-output
:on summary
(make-event '(defun foo (x) x))))
; Illegal:
(mv-let (erp val state)
(make-event '(defun foo (x) x))
(mv erp val state))
~ev[]
More precisely: a ~c[make-event] call that is not itself evaluated during
~c[make-event] expansion is subject to the following requirement. After
macroexpansion has taken place, such a ~c[make-event] call must be in an
``event context'', defined recursively as follows. (All but the first two
cases below correspond to similar cases for constructing events;
~pl[embedded-event-form].)
~bq[]
o A form submitted at the top level, or more generally, supplied to a call of
~ilc[ld], is in an event context.
o A form occurring at the top level of a book is in an event context.
o If ~c[(]~ilc[LOCAL]~c[ x1)] is in an event context, then so is ~c[x1].
o If ~c[(]~ilc[SKIP-PROOFS]~c[ x1)] is in an event context, then so is
~c[x1].
o If ~c[(]~ilc[MAKE-EVENT]~c[ x ...)] is in an event context and its
expansion ~c[x1] is an embedded event form, then ~c[x1] is in an event
context.
o If ~c[(]~ilc[WITH-OUTPUT]~c[ ... x1)],
~c[(]~ilc[WITH-PROVER-STEP-LIMIT]~c[ ... x1 ...)], or
~c[(]~ilc[WITH-PROVER-TIME-LIMIT]~c[ ... x1)] is in an event context, then so
is ~c[x1].
o For any call of ~ilc[PROGN] or ~ilc[PROGN!], each of its arguments is in an
event context.
o For any call of ~ilc[ENCAPSULATE], each of its arguments except the
first (the signature list) is in an event context.
o If ~c[(RECORD-EXPANSION x1 x2)] is in an event context, then ~c[x1] and
~c[x2] are in event contexts. Note: ~c[record-expansion] is intended for use
only by the implementation, which imposes the additional restriction that
~c[x1] and its subsidiary ~c[make-event] calls (if any) must specify a
~c[:CHECK-EXPANSION] argument that is a ~il[consp].
~eq[]
Low-level remark, for system implementors. There is the one exception to
the above restriction: a single ~ilc[state-global-let*] form immediately
under a ~c[progn!] call. For example:
~bv[]
(progn! (state-global-let* <bindings> (make-event ...)))
~ev[]
However, the following form may be preferable (~pl[progn!]):
~bv[]
(progn! :STATE-GLOBAL-BINDINGS <bindings> (make-event ...))
~ev[]
Also ~pl[remove-untouchable] for an interesting use of this exception.
~st[Examples Illustrating How to Access State]
You can modify the ACL2 ~il[state] by doing your state-changing computation
during the expansion phase, before expansion returns the event that is
submitted. Here are some examples.
First consider the following. Notice that expansion modifies state global
~c[my-global] during ~c[make-event] expansion, and then expansion returns a
~ilc[defun] event to be evaluated.
~bv[]
(make-event
(er-progn (assign my-global (length (w state)))
(value '(defun foo (x) (cons x x)))))
~ev[]
Then we get:
~bv[]
ACL2 !>(@ my-global)
72271
ACL2 !>:pe foo
L 1:x(MAKE-EVENT (ER-PROGN # #))
\
>L (DEFUN FOO (X) (CONS X X))
ACL2 !>
~ev[]
Here's a slightly fancier example, where the computation affects the
~ilc[defun]. In a new session, execute:
~bv[]
(make-event
(er-progn (assign my-global (length (w state)))
(value `(defun foo (x) (cons x ,(@ my-global))))))
~ev[]
Then:
~bv[]
ACL2 !>(@ my-global)
72271
ACL2 !>:pe foo
L 1:x(MAKE-EVENT (ER-PROGN # #))
\
>L (DEFUN FOO (X) (CONS X 72271))
ACL2 !>
~ev[]
Note that ACL2 ~il[table] ~il[events] may avoid the need to use ~il[state]
globals. For example, instead of the example above, consider this example in
a new session.
~bv[]
(make-event
(let ((world-len (length (w state))))
`(progn (table my-table :STORED-WORLD-LENGTH ,world-len)
(defun foo (x) (cons x ,world-len)))))
~ev[]
Then:
~bv[]
ACL2 !>(table my-table)
((:STORED-WORLD-LENGTH . 72271))
ACL2 !>:pe foo
1:x(MAKE-EVENT (LET # #))
\
>L (DEFUN FOO (X) (CONS X 72271))
ACL2 !>
~ev[]
By the way, most built-in ~il[state] globals revert after expansion. But
your own global (like ~c[my-global] above) can be set during expansion, and
the new value will persist.
~st[Advanced Expansion Control]
We conclude this ~il[documentation] section by discussing three kinds of
additional control over ~c[make-event] expansion. These are all illustrated
in community book ~c[books/make-event/make-event-keywords-or-exp.lisp].
The discussion below is split into the following three parts.
(1) The value produced by expansion may have the form ~c[(:DO-PROOFS exp)],
which specifies ~c[exp] as the expansion result, to be evaluated without
skipping proofs even when including a book.
(2) The value produced by expansion may have the form
~c[(:OR exp-1 ... exp-k)], which specifies that the first form ~c[exp-i] to
evaluate without error is the expansion result.
(3) The keyword argument ~c[:EXPANSION?] can serve to eliminate the storing
of ~c[make-event] replacements, as described above for the ``book expansion''
of a book.
We now elaborate on each of these.
(1) ~c[:DO-PROOFS] ``call'' produced by expansion.
We have discussed the expansion result produced by the expansion phase of
evaluating a ~c[make-event] call. However, if the expansion phase produces
an expression of the form ~c[(:DO-PROOFS exp)], then the expansion result is
actually ~c[exp]. The ~c[:DO-PROOFS] wrapper indicates that even if proofs
are currently being skipped (~pl[ld-skip-proofsp]), then evaluation of
~c[exp] should take place with proofs not skipped. For example, proofs will
be performed when evaluating the ~c[make-event] expansion, namely the
indicated ~c[defthm] event, in the following example.
~bv[]
(set-ld-skip-proofsp t state)
(make-event '(:DO-PROOFS
(defthm app-assoc (equal
(append (append x y) z)
(append x y z)))))
~ev[]
Note that such use of ~c[:DO-PROOFS] causes proofs to be performed when
evaluating the expansion while including an uncertified book. But when
including a certified book, then unless ~c[:CHECK-EXPANSION] is supplied a
non-~c[nil] value, the ~c[make-event] replacement will just be the expansion,
which does not include the ~c[:DO-PROOFS] wrapper and hence will be evaluated
with proofs skipped.
(2) ~c[:OR] ``call'' produced by expansion.
There may be times where you want to try different expansions. For example,
the community book ~c[books/make-event/proof-by-arith.lisp] attempts to admit
a given event, which we'll denote ~c[EV], by trying events of the following
form as ~c[BOOK] varies over different community books.
~bv[]
(encapsulate
()
(local (include-book BOOK :DIR :SYSTEM))
EV)
~ev[]
A naive implementation of this macro would evaluate all such
~ilc[encapsulate] events until one succeeds, and then return that successful
event as the expansion. Then that event would need to be evaluated again!
With some hacking one could avoid that re-evaluation by using
~ilc[skip-proofs], but that won't work if you are trying to create a
certified book without skipped proofs. Instead, the implementation creates
an expansion of the form ~c[(:OR ev-1 ev-2 ... ev-k)], where the list
~c[(ev-1 ev-2 ... ev-k)] enumerates the generated encapsulate events. In
general, for this ``disjunctive case'' of a result from expansion, each
~c[ev-i] is evaluated in sequence, and the first that succeeds without error
is considered to be the expansion result ~-[] and a repeat evaluation is
avoided. If evaluation of each ~c[ev-i] results in an error, then so does
the ~c[make-event] call.
This special use of ~c[:OR] in a value produced by expansion is only
supported at the top level. That is, the result can be
~c[(:OR ev-1 ev-2 ... ev-k)] but then each ~c[ev-i] must be a legal expansion
result, without such further use of ~c[:OR] ~-[] except, ~c[ev-i] may be
~c[(:DO-PROOFS ev-i')], where ~c[ev-i'] then would serve as the expansion
rather than ~c[ev-i].
(3) The ~c[:EXPANSION?] keyword argument.
If keyword argument ~c[:EXPANSION?] has a non~c[nil] value, then the
~c[:CHECK-EXPANSION] keyword must be omitted or have value ~c[nil] or ~c[t],
hence not a cons pair.
The idea of the ~c[:EXPANSION?] keyword is to give you a way to avoid storing
expansion results in a book's ~il[certificate]. Roughly speaking, when the
expansion result matches the value of ~c[:EXPANSION?], then no expansion
result is stored for the event by book certification; then when the book is
later included, the value of ~c[:EXPANSION?] is used as the expansion, thus
bypassing the expansion phase. One could say that the event is its own
make-event replacement, but it is more accurate to say that there is no
make-event replacement at all, since nothing is stored in the certificate for
this event. Below, we elaborate on make-event replacements when
~c[:EXPANSION] is used and also discuss other properties of this keyword.
We modify the notion of ``expansion result'' for ~c[make-event] forms to
comprehend the use of the ~c[:EXPANSION?] keyword. For that purpose, let's
consider a call of ~c[make-event] to be ``reducible'' if it has an
~c[:EXPANSION?] keyword with non-~c[nil] value, ~c[exp], and its
~c[:CHECK-EXPANSION] keyword is missing or has value ~c[nil], in which case
the ``reduction'' of this ~c[make-event] call is defined to be ~c[exp]. The
expansion result as originally defined is modified by the following
``recursive reduction'' process: recur through the original expansion,
passing through calls of ~ilc[local], ~ilc[skip-proofs], ~ilc[with-output],
~ilc[with-prover-step-limit], and ~ilc[with-prover-time-limit], and
replacing (recursively) any reducible call of ~c[make-event] by its
reduction. Furthermore, we refer to two forms as ``reduction equivalent'' if
their recursive reductions are equal. Note that the recursive reduction
process does not pass through ~ilc[progn] or ~ilc[encapsulate], but that
process is applied to the computation of expansions for their subsidiary
~ilc[make-event] calls.
To explain further the effect of ~c[:EXPANSION? exp], we split into the
following two cases.
o Case 1: Evaluation is not taking place when including a book or evaluating
the second pass of an ~ilc[encapsulate] event; more precisely, the value of
~c[(ld-skip-proofsp state)] is not the symbol ~c[INCLUDE-BOOK]. There are
two subcases.
~bq[]
- Case 1a: The expansion result is not reduction-equivalent to ~c[exp]. Then
the ~c[make-event] call is processed as though the ~c[:EXPANSION?] keyword
had been omitted.
- Case 2a: The expansion result is reduction-equivalent to ~c[exp]. Then
there is no ~c[make-event] replacement for this call of ~c[make-event]; no
replacement will be put into the ~il[certificate] file for a book containing
this ~c[make-event] call. When that book is subsequently included, the
original form will be evaluated in the manner described in the next
case.~eq[]
o Case 2: Evaluation is taking place when including a book or evaluating the
second pass of an ~ilc[encapsulate] event; more precisely, the value of
~c[(ld-skip-proofsp state)] is the symbol ~c[INCLUDE-BOOK]. Then the
expansion is ~c[exp]. The expansion phase is skipped unless
~c[:CHECK-EXPANSION] is ~c[t].
The ~c[:EXPANSION?] keyword can be particularly useful in concert with the
disjunctive (``~c[:OR]'') case (2) discussed above. Suppose that expansion
produces a value as discussed in (2) above, ~c[(:OR exp-1 ... exp-k)]. If
one of these expressions ~c[exp-i] is more likely than the others to be the
expansion, then you may wish to specify ~c[:EXPANSION? exp-i], as this will
avoid storing a ~c[make-event] replacement in that common case. This could
be useful if the expressions are large, to avoid enlarging the
~il[certificate] file for a book containing the ~c[make-event] call.
It is legal to specify both ~c[:EXPANSION? exp] and ~c[:CHECK-EXPANSION t].
When either ~c[(ld-skip-proofsp state)] is the symbol ~c[INCLUDE-BOOK], or
evaluation is taking place in raw Lisp, then this combination is treated the
same as if ~c[:EXPANSION?] is omitted and the value of ~c[:CHECK-EXPANSION]
is ~c[exp]. Otherwise, this combination is treated the same as
~c[:CHECK-EXPANSION t], modified to accommodate the effect of ~c[:EXPANSION?]
as discussed above: if the expansion is indeed the value of ~c[:EXPANSION?],
then no ~c[make-event] replacement is generated."
(declare (xargs :guard t))
; Keep this in sync with the -acl2-loop-only definition.
`(make-event-fn ',form
',expansion?
',check-expansion
',on-behalf-of
',event-form
state))
(defdoc make-event-details
":Doc-Section Make-event
details on ~ilc[make-event] expansion~/
The normal user of ~c[make-event] can probably ignore this section, but we
include it for completeness. We assume that the reader has read and
understood the basic documentation for ~c[make-event] (~pl[make-event]), but
we begin below with a summary of expansion.~/
~st[Introduction]
Here is a summary of how we handle expansion involving ~c[make-event] forms.
~c[(make-event form :check-expansion nil)]
This shows the ~c[:check-expansion] default of ~c[nil], and is typical user
input. We compute the expansion ~c[exp] of ~c[form], which is the expansion
of the original ~c[make-event] expression and is evaluated in place of that
expression.
~c[(make-event form :check-expansion t)]
The user presumably wants it checked that the expansion doesn't change in the
future, in particular during ~ilc[include-book]. If the expansion of
~c[form] is ~c[exp], then we will evaluate ~c[exp] to obtain the value as
before, but this time we record that the expansion of the original
~c[make-event] expression is ~c[(make-event form :check-expansion exp)]
rather than simply ~c[exp].
~c[(make-event form :check-expansion exp) ; exp a cons]
This is generated for the case that ~c[:check-expansion] is ~c[t], as
explained above. Evaluation is handled as described in that above case,
except here we check that the expansion result is the given ~c[exp].
(Actually, the user is also allowed supply such a form.) The original
~c[make-event] expression does not undergo any expansion (intuitively, it
expands to itself).
Now let us take a look at how we expand ~ilc[progn] forms (~ilc[encapsulate]
is handled similarly).
~c[(progn ... (make-event form :check-expansion nil) ...)]
The expansion is obtained by replacing the ~c[make-event] form as follows.
Let ~c[exp] be the expansion of ~c[form], Then replace the above
~c[make-event] form, which we denote as ~c[F], by
~c[(record-expansion F exp)]. Here, ~c[record-expansion] is a macro that
returns its second argument.
~c[(progn ... (make-event form :check-expansion t) ...)]
The expansion is of the form ~c[(record-expansion F exp)] as in the ~c[nil]
case above, except that this time ~c[exp] is
~c[(make-event form :check-expansion exp')], where ~c[exp'] is the expansion
of ~c[form].
~c[(progn ... (make-event form :check-expansion exp) ...) ; exp a cons]
No expansion takes place unless expansion takes place for at least one of the
other subforms of the ~c[progn], in which case each such form ~c[F] is
replaced by ~c[(record-expansion F exp)] where ~c[exp] is the expansion of
~c[F].
~st[Detailed semantics]
In our explanation of the semantics of ~c[make-event], we assume familiarity
with the notion of ``embedded event form'' (~pl[embedded-event-form]).
Let's say that the ``actual embedded event form'' corresponding to a given
form is the underlying call of an ACL2 event: that is, ~ilc[LOCAL]s are
dropped when ~c[ld-skip-proofsp] is ~c['include-book], and macros are
expanded away, thus leaving us with a ~ilc[progn], a ~ilc[make-event], or an
event form (possibly ~ilc[encapsulate]), any of which might have surrounding
~ilc[local], ~ilc[skip-proofs], or ~ilc[with-output] calls.
Thus, such an actual embedded event form can be viewed as having the form
~c[(rebuild-expansion wrappers base-form)] where ~c[base-form] is a
~c[progn], a ~c[make-event], or an event form (possibly ~c[encapsulate]), and
~c[wrappers] are (as in ACL2 source function ~c[destructure-expansion]) the
result of successively removing the event form from the result of
macroexpansion, leaving a sequence of ~c[(local)], ~c[(skip-proofs)], and
~c[(with-output ...)] forms. In this case we say that the form
``destructures into'' the indicated ~c[wrappers] and ~c[base-form], and that
it can be ``rebuilt from'' those ~c[wrappers] and ~c[base-form].
Elsewhere we define the notion of the ``expansion result'' from an evaluation
(~pl[make-event]), and we mention that when expansion concludes, the ACL2
logical ~il[world] and most of the ~c[state] are restored to their
pre-expansion values. Specifically, after evaluation of the argument of
~c[make-event] (even if it is aborted), the ACL2 logical world is restored to
its pre-evaluation value, as are all state global variables in the list
~c[*protected-system-state-globals*]. Thus, assignments to
user-defined state globals (~pl[assign]) do persist after expansion, since
they are not in that list.
We recursively define the combination of evaluation and expansion of an
embedded event form, as follows. We also simultaneously define the notion of
``expansion takes place,'' which is assumed to propagate upward (in a sense
that will be obvious), such that if no expansion takes place, then the
expansion of the given form is considered to be itself. It is useful to keep
in mind a goal that we will consider later: Every ~c[make-event] subterm of
an expansion result has a ~c[:check-expansion] field that is a ~ilc[consp],
where for this purpose ~c[make-event] is viewed as a macro that returns its
~c[:check-expansion] field. (Implementation note: The latest expansion of a
~ilc[make-event], ~ilc[progn], ~ilc[progn!], or ~ilc[encapsulate] is stored
in state global ~c['last-make-event-expansion], except that if no expansion
has taken place for that form then ~c['last-make-event-expansion] has value
~c[nil].)~bq[]
If the given form is not an embedded event form, then simply cause a soft
error, ~c[(mv erp val state)] where ~c[erp] is not ~c[nil]. Otherwise:
If the evaluation of the given form does not take place (presumably because
~ilc[local] events are being skipped), then no expansion takes place.
Otherwise:
Let ~c[x] be the actual embedded event form corresponding to the given
form, which destructures into wrappers ~c[W] and base-form ~c[B]. Then the
original form is evaluated by evaluating ~c[x], and its expansion is as
follows.
If ~c[B] is ~c[(make-event form :check-expansion val)], then expansion
takes place if and only if ~c[val] is not a ~c[consp] and no error occurs,
as now described. Let ~c[R] be the expansion result from protected
evaluation of ~c[form], if there is no error. ~c[R] must be an embedded
event form, or it is an error. Then evaluate/expand ~c[R], where if
~c[val] is not ~c[nil] then state global ~c['ld-skip-proofsp] is
initialized to ~c[nil]. (This initialization is important so that
subsequent expansions are checked in a corresponding environment, i.e.,
where proofs are turned on in both the original and subsquent
environments.) It is an error if this evaluation causes an error.
Otherwise, the evaluation yields a value, which is the result of evaluation
of the original ~c[make-event] expression, as well as an expansion,
~c[E_R]. Let ~c[E] be rebuilt from ~c[W] and ~c[E_R]. The expansion of
the original form is ~c[E] if ~c[val] is ~c[nil], and otherwise is the
result of replacing the original form's ~c[:check-expansion] field with
~c[E], with the added requirement that if ~c[val] is not ~c[t] (thus, a
~c[consp]) then ~c[E] must equal ~c[val] or else we cause an error.
If ~c[B] is either ~c[(progn form1 form2 ...)] or
~c[(encapsulate sigs form1 form2 ...)], then after evaluating ~c[B], the
expansion of the original form is the result of rebuilding from ~c[B], with
wrappers ~c[W], after replacing each ~c[formi] in ~c[B] for which expansion
takes place by ~c[(record-expansion formi formi')], where ~c[formi'] is the
expansion of ~c[formi]. Note that these expansions are determined as the
~c[formi] are evaluated in sequence (where in the case of ~c[encapsulate],
this determination occurs only during the first pass). Except, if no
expansion takes place for any ~c[formi], then the expansion of the original
form is itself.
Otherwise, the expansion of the original form is itself.
~eq[]Similarly to the ~ilc[progn] and ~ilc[encapsulate] cases above, book
certification causes a book to be replaced by its so-called ``book
expansion.'' There, each event ~c[ev] for which expansion took place during
the proof pass of certification ~-[] say, producing ~c[ev'] ~-[] is replaced
by ~c[(record-expansion ev ev')].
Implementation Note. The book expansion is actually implemented by way of
the ~c[:expansion-alist] field of its ~il[certificate], which associates
0-based positions of top-level forms in the book (not including the initial
~ilc[in-package] form) with their expansions. Thus, the book's source file
is not overwritten; rather, the certificate's expansion-alist is applied when
the book is included or compiled. End of Implementation Note.
It is straightforward by computational induction to see that for any
expansion of an embedded event form, every ~c[make-event] sub-event has a
~ilc[consp] ~c[:check-expansion] field. Here, by ``sub-event'' we mean to
expand macros; and we also mean to traverse ~c[progn] and ~c[encapsulate]
forms as well as ~c[:check-expansion] fields of ~c[make-event] forms. Thus,
we will only see ~c[make-event] forms with ~c[consp] ~c[:check-expansion]
fields in the course of ~c[include-book] forms, the second pass of
~c[encapsulate] forms, and raw Lisp. This fact guarantees that an event form
will always be treated as its original expansion.
~st[Notes on ttags]
~l[defttag] for documentation of the notion of ``trust tag'' (``ttag''). We
note here that even if an event ~c[(defttag tag-name)] for non-~c[nil]
~c[tag-name] is admitted only during the expansion phase of a
~ilc[make-event] form, then such expansion will nevertheless still cause
~c[tag-name] to be recorded in the logical ~il[world] (assuming that the
~c[make-event] form is admitted). So in order to certify such a book, a
suitable ~c[:ttags] argument must be supplied; ~pl[certify-book].
ACL2 does provide a way to avoid the need for ~c[:ttags] arguments in such
cases. The idea is to certify a book twice, where the results of
~c[make-event] expansion are saved from the first call of ~ilc[certify-book]
and provided to the second call. ~l[set-write-acl2x].
Finally, we discuss a very unusual case where certification does not involve
trust tags but a subsequent ~ilc[include-book] does involve trust tags: a
~c[make-event] call specifying ~c[:check-expansion t], whose expansion
generates a ~ilc[defttag] event during ~ilc[include-book] but not
~ilc[certify-book]. Consider the following book.
~bv[]
(in-package \"ACL2\")
(make-event
(er-progn
(if (@ skip-notify-on-defttag) ; non-nil when including a certified book
(pprogn
(fms \"Value of (@ skip-notify-on-defttag): ~~x0~~|\"
(list (cons #\0 (@ skip-notify-on-defttag)))
*standard-co* state nil)
(encapsulate
()
(defttag :foo)
(value-triple \"Imagine something bad here!\")))
(value nil))
(value '(value-triple :some-value)))
:check-expansion t)
~ev[]
This book certifies successfully without the need for a ~c[:ttags] argument
for ~ilc[certify-book]. Indeed, the above book's ~il[certificate] does not
specify ~c[:foo] as a trust tag associated with the book, because no
~c[defttag] event was executed during book certification. Unfortunately, if
we try to include this book without specifying a value of ~c[:ttags] that
allows ~c[:foo], book inclusion will cause executing of the above
~ilc[defttag]. If that inclusion happens in the context of certifying some
superior book and the appropriate ~c[:ttags] arguments have not been
provided, that certification will fail.~/")
(defdoc using-tables-efficiently
":Doc-Section Table
Notes on how to use tables efficiently~/
(Thanks to Jared Davis for contributing this ~il[documentation] topic, to
which we have made only minor modifications.)
Suppose your book contains ~ilc[table] ~il[events], or macros that expand
into ~c[table] events, of the following form:
~bv[]
(table my-table 'my-field <computation>)
~ev[]
Then ~c[<computation>] will be evaluated ~em[twice] during ~ilc[certify-book]
and ~em[again] every time you include the book with ~ilc[include-book]. In
some cases this overhead can be avoided using ~ilc[make-event].
See also community book ~c[books/make-event/defconst-fast.lisp] for an
analogous trick involving ~ilc[defconst].~/
As an example, suppose we want to store numbers in a table only if they
satisfy some computationally expensive predicate. We'll introduce a new
book, ~c[number-table.lisp], and create a table to store these numbers:
~bv[]
(table number-table 'data nil)
~ev[]
Instead of implementing a ``computationally expensive predicate,'' we'll
write a function that just prints a message when it is called and accepts
even numbers:
~bv[]
(defun expensive-computation (n)
(prog2$ (cw \"Expensive computation on ~~x0.~~%\" n)
(evenp n)))
~ev[]
Now we'll implement a macro, ~c[add-number], which will add its argument to
the table only if it satisfies the expensive predicate:
~bv[]
(defmacro add-number (n)
`(table number-table 'data
(let ((current-data
(cdr (assoc-eq 'data (table-alist 'number-table world)))))
(if (expensive-computation ,n)
(cons ,n current-data)
current-data))))
~ev[]
Finally, we'll call ~c[add-number] a few times to finish the book.
~bv[]
(add-number 1)
(add-number 2)
(add-number 3)
~ev[]
When we now invoke ~c[(certify-book \"number-table\")], we see the expensive
predicate being called twice for each number: once in Step 2, the main pass,
then again in Step 3, the admissibility check. Worse, the computation is
performed again for each number when we use ~ilc[include-book] to load
~c[number-table], e.g.,
~bv[]
ACL2 !>(include-book \"number-table\")
Expensive computation on 1.
Expensive computation on 2.
Expensive computation on 3.
~ev[]
To avoid these repeated executions, we can pull the test out of the ~c[table]
event using ~ilc[make-event]. Here's an alternate implementation of
~c[add-number] that won't repeat the computation:
~bv[]
(defmacro add-number (n)
`(make-event
(if (expensive-computation ,n)
'(table number-table 'data
(cons ,n (cdr (assoc 'data
(table-alist 'number-table world)))))
'(value-triple :expensive-computation-failed))))
~ev[]
When we recertify ~c[number-table.lisp], we'll see the expensive computation
is still called once for each number in Step 2, but is no longer called
during Step 3. Similarly, the ~ilc[include-book] no longer shows any calls
of the expensive computation.~/
:cite make-event")
(defmacro record-expansion (x y)
; This funny macro simply returns its second argument. However, we use it in
; the implementation to replace a given embedded event form x by its make-event
; expansion y, while retaining the information that y came from expanding x.
(declare (ignore x))
y)
; Essay on Soundness Threats
; Several of ACL2's rich set of features have the potential to compromise
; soundness unless we take suitable care, including:
; * defaxiom
; * hidden defpkg events (known-package-alist)
; * skip-proofs (skip-proofs and set-ld-skip-proofsp)
; * illegal certification world: uncertified books, non-events (including
; redefinition), trust tags (defttag)
; * acl2-defaults-table
; * local [not yet explained here, but there's lots we could say -- see release
; notes for related soundness bugs!]
; Here we briefly discuss these soundness threats and how we deal with them,
; pointing to other essays for further details. Many of these issues are
; caused by LOCAL, which can introduce axioms that ultimately disappear.
; To see the potential problem with defaxiom, imagine an event such as
; (encapsulate () (local (defaxiom temp <formula>)) (defthm foo <formula>)).
; Such an event would leave us in an ACL2 logical world for which <formula> is
; stored under the name foo as through it were a logical consequence of the
; axioms in that logical world, which presumably it is not. Our solution is to
; disallow defaxiom events in the scope of LOCAL. This is a bit tricky since
; the LOCAL may not be lexically apparent, as when a defaxiom occurs inside a
; book that is locally included. We therefore track LOCAL by binding state
; global variable 'in-local-flg to t (see the #+acl2-loop-only definition of
; LOCAL).
; The "hidden defpkg" problem is discussed in the Essay on Hidden Packages and
; is briefly summarized in :doc topic hidden-death-package. The basic problem
; is that a defpkg event introduces axioms, yet it may be introduced
; temporarily through a local include-book. The problem is thus similar to the
; defaxiom problem discussed just above, and a solution would be to disallow
; defpkg events in the scope of LOCAL. But that solution would be harsh: For
; example, community book books/arithmetic/top.lisp defines packages and yet we
; would like to be able to include this book locally when proving arithmetic
; facts. Our solution is to store all packages, even such "hidden" packages,
; in a world global 'known-package-alist. We are careful to track such
; packages during the first pass (proof pass) of encapsulate and certify-book.
; In the case of certify-book, we write out such defpkg events to the
; portcullis of the certificate so that they are not hidden when executing a
; subsequent corresponding include-book.
; The Essay on Skip-proofs describes our handling of skip-proofs in some
; detail, but here is a summary. We want to claim correctness for a system of
; books that is validated using certify-book without any keyword parameters.
; We thus want to require a non-nil value of keyword parameter :skip-proofs-okp
; for any book that depends on a skip-proofs event, whether that dependency is
; in the book's certification world, is in the book itself, or is
; (hereditarily) in an included book. We thus maintain a world global
; 'skip-proofs-seen with value t whenever the world depends on a skip-proofs,
; as explained in the above essay.
; Certification worlds are checked for legality by
; chk-acceptable-certify-book1, which collects uncertified books (using
; collect-uncertified-books) from the existing include-book-alist, checks if
; any redefinition was done, and (if not doing the Pcertify or Convert step of
; provisional certification) checks that pcert-books is empty. We of course
; miss uncertified locally-included books this way, but the only relevance of
; such books is whether they employed skip-proofs, ttags, or defaxioms, and
; this information is ultimately stored in the certificate of a parent book
; that is non-locally included in the certification world. We track locally
; included provisionally certified books under encapsulates, but as with
; uncertified books, we are not concerned about any locally included
; provisionally certified book under a certified book.
; The acl2-defaults-table stores the default defun-mode, and hence can affect
; soundness. However, chk-acceptable-certify-book1 checks that the default
; defun mode is logic at certification time, and we take various measures to
; avoid other potential pitfalls (probably identifiable by tags-searches
; through the source code for acl2-defaults-table and for default-defun-mode).
; When additional, tricky soundness threats are identified, it would be good to
; describe them here, along with how we deal with them.
; End of Essay on Soundness Threats
; Essay on Skip-proofs
; The skip-proofs event allows a modular, top-down style of proof. Skip-proofs
; differs from defaxiom: skip-proofs is intended for use when proof obligations
; are believed to be theorems but it is convenient to defer their proofs, while
; defaxiom is to be used for extending the first-order theory. Therefore,
; while we disallow local defaxiom events (which really do not make sense; are
; we extending the theory or not?), it does make sense to allow local
; skip-proofs events. Indeed, if we were to disallow local skip-proofs events
; then we would be ruling out the top-down, modular style of proof outlined in
; Kaufmann's article in the case studies book.
; But we then must track skip-proofs events in support of our correctness
; story. Our claim is that when a certified book has an empty portcullis and
; all of :SKIPPED-PROOFSP, :AXIOMSP, and :TTAGS are NIL in its certificate,
; then it is sound to extend a history by including such a book without error.
; In Version_2.5 we did such tracking using world global include-book-alist.
; That tracking proved inadequate, however. Consider the following books "top"
; and "sub".
; ; book "top"
; (in-package "ACL2")
; (encapsulate
; ()
; (local (include-book "sub"))
; (defthm bad nil
; :rule-classes nil))
; ; book "sub"
; (in-package "ACL2")
; (skip-proofs
; (defthm bad nil
; :rule-classes nil))
; In Version_2.5, if you certify these books in the initial logical world and
; then (include-book "top"), then you will not see a "Skip-proofs" warning when
; you do the include-book, because the value of :SKIPPED-PROOFSP in the
; cert-annotations of the certificate of "foo" is nil.
; Version_2.6 through Version_3.4 more carefully tracked include-books for the
; presence of supporting skip-proofs events, including skip-proofs that are
; local inside an encapsulate, using a state global, 'include-book-alist-state.
; When constructing a book's certificate, the value of
; 'include-book-alist-state was bound to nil initially and then updated by
; include-book, and its final value was used to create the post-alist of the
; certificate. (We do not have to worry about analogous handling of :AXIOMSP
; because defaxioms are never allowed in a local context.)
; But that approach entailed, at certification time, looking in certificates of
; already-included books for skip-proofs information. This was inefficient for
; very large certificates such as those found in the work at Centaur
; Technology. So starting after Version_3.4 we are adopting a different
; approach. We no longer have state global 'skipped-proofsp. Instead, we
; focus only on maintaining world global 'skip-proofs-seen, consulting
; 'ld-skip-proofsp when we call install-event.
; We maintain the invariant that skip-proofs-seen is a form evaluated with
; proofs skipped in support of the construction of the current ACL2 logical
; world, if such exists (otherwise skip-proofs-seen is nil). This "form" can
; be (:include-book full-book-name) if full-book-name logically supports the
; current ACL2 world (perhaps locally) and contains a skip-proofs form. When
; we install an event, we set world global 'skip-proofs-seen (if it is not
; already set) if the event is evaluated with a non-nil value of state global
; 'ld-skip-proofsp, unless we are inside an include-book or the second pass of
; an encapsulate. (Note that the certificate of a book already carries the
; information of whether skip-proofs was invoked during cerification, and we
; use that information when including a book.) We may also avoid setting
; 'skip-proofs-seen if the event has no logical content, for example, a
; deflabel event. However, we avoid updating 'skip-proofs-seen in the cases of
; encapsulate and include-book, since they manage this global themselves, as
; follows. Encapsulate checks the value of 'skip-proofs-seen after its first
; pass and installs that value at the end of its second pass. Include-book
; sets 'skip-proofs-seen based on its certificate (its so-called cert-obj),
; which provides skip-proofs information at the top level and also in its
; post-alist (which is set based on world global include-book-alist-all). Note
; that certify-book does not set skip-proofs-seen in the resulting world, but
; since certify-book is not a valid embedded event form for a certification
; world, that is not a problem.
; Up through Version_3.4, we updated world globals 'skip-proofs-seen and
; 'redef-seen in maybe-add-command-landmark intead of as indicated above (in
; particular, instead of using install-event). But with progn!, this is
; misguided -- these should be updated at the event level, not the command
; level -- as the following example shows.
; (progn! (set-ld-redefinition-action '(:doit . :overwrite) state)
; (defun foo (x) (cons x x))
; (set-ld-redefinition-action nil state))
; Of course, this isn't exactly a soundness bug, since one needs an active
; trust tag in order to evaluate progn!. Nevertheless, we would like to avoid
; such a simple way to prove nil whenever there is any active trust tag!
; Finally, we note a related problem with Version_2.5 that was fixed in
; Version_2.6. Suppose that foo.lisp and bar.lisp both have this unique
; form after (in-package "ACL2"):
; (defthm bad nil
; :rule-classes nil)
; Now suppose we do this in a fresh session:
; (encapsulate ()
; (local (include-book "foo"))
; (defthm bad nil
; :rule-classes nil))
; Then (certify-book "bar" 1) succeeded in Version_2.5, and in subsequent
; sessions, if we evaluated (include-book "bar"), that succeeded without
; warning or error.
; End of Essay on Skip-proofs
#+acl2-loop-only
(defmacro skip-proofs (x)
":Doc-Section Other
skip proofs for a given form ~-[] a quick way to introduce unsoundness~/
~bv[]
Example Form:
(skip-proofs
(defun foo (x)
(if (atom x) nil (cons (car x) (foo (reverse (cdr x)))))))
General Form:
(skip-proofs form)
~ev[]
where ~c[form] is processed as usual except that the proof obligations
usually generated are merely assumed.
Normally ~c[form] is an event; ~pl[events]. If you want to put
~c[skip-proofs] around more than one event, consider the following
(~pl[progn]): ~c[(skip-proofs (progn event1 event2 ... eventk))].
WARNING: ~c[Skip-proofs] allows inconsistent ~il[events] to be admitted to
the logic. Use it at your own risk!~/
Sometimes in the development of a formal model or proof it is convenient to
skip the proofs required by a given event. By embedding the event in a
~c[skip-proofs] form, you can avoid the proof burdens generated by the event,
at the risk of introducing unsoundness. Below we list four illustrative
situations in which you might find ~c[skip-proofs] useful.
1. The termination argument for a proposed function definition is
complicated. You presume you could admit it, but are not sure that
your definition has the desired properties. By embedding the
~ilc[defun] event in a ~c[skip-proofs] you can ``admit'' the
function and experiment with theorems about it before undoing
(~pl[ubt]) and then paying the price of its admission. Note however that you
might still have to supply a measure. The set of formals used in some valid
measure, known as the ``measured subset'' of the set of formals, is used by
ACL2's induction heuristics and therefore needs to be suitably specified.
You may wish to specify the special measure of ~c[(:? v1 ... vk)], where
~c[(v1 ... vk)] enumerates the measured subset.
2. You intend eventually to verify the ~il[guard]s for a definition but do
not want to take the time now to pursue that. By embedding the
~ilc[verify-guards] event in a ~c[skip-proofs] you can get the system to
behave as though the ~il[guard]s were verified.
3. You are repeatedly recertifying a book while making many experimental
changes. A certain ~ilc[defthm] in the book takes a very long time to prove
and you believe the proof is not affected by the changes you are making. By
embedding the ~ilc[defthm] event in a ~c[skip-proofs] you allow the theorem
to be assumed without proof during the experimental recertifications.
4. You are constructing a proof top-down and wish to defer the proof of a
~ilc[defthm] until you are convinced of its utility. You can embed the
~c[defthm] in a ~c[skip-proofs]. Of course, you may find later (when you
attempt prove the theorem) that the proposed ~c[defthm] is not a theorem.
Unsoundness or Lisp errors may result if the presumptions underlying a use of
~c[skip-proofs] are incorrect. Therefore, ~c[skip-proofs] must be considered
a dangerous (though useful) tool in system development.
Roughly speaking, a ~ilc[defthm] embedded in a ~c[skip-proofs] is
essentially a ~ilc[defaxiom], except that it is not noted as an axiom
for the purposes of functional instantiation
(~pl[lemma-instance]). But a skipped ~ilc[defun] is much more subtle since
not only is the definitional equation being assumed but so are formulas
relating to termination and type. The situation is also difficult to
characterize if the ~c[skip-proofs] ~il[events] are within the scope of an
~ilc[encapsulate] in which constrained functions are being introduced. In
such contexts no clear logical story is maintained; in particular,
constraints aren't properly tracked for definitions. A proof script
involving ~c[skip-proofs] should be regarded as work-in-progress, not as a
completed proof with some unproved assumptions. A ~c[skip-proofs] event
represents a promise by the author to admit the given event without further
axioms. In other words, ~c[skip-proofs] should only be used when the belief
is that the proof obligations are indeed theorems in the existing ACL2
logical ~il[world].
ACL2 allows the certification of ~il[books] containing ~c[skip-proofs]
~il[events] by providing the keyword argument ~c[:skip-proofs-okp t] to the
~ilc[certify-book] command. This is contrary to the spirit of certified
~il[books], since one is supposedly assured by a valid ~il[certificate] that
a book has been ``blessed.'' But certification, too, takes the view of
~c[skip-proofs] as ``work-in-progress'' and so allows the author of the book
to promise to finish. When such ~il[books] are certified, a warning to the
author is printed, reminding him or her of the incurred obligation. When
~il[books] containing ~c[skip-proofs] are included into a session, a warning
to the user is printed, reminding the user that the book is in fact
incomplete and possibly inconsistent. This warning is in fact an error if
~c[:skip-proofs-okp] is ~c[nil] in the ~ilc[include-book] form;
~pl[include-book].
We conclude with a technical note. ~c[Skip-proofs] works by binding the
~ilc[ld] special ~ilc[ld-skip-proofsp] to ~c[t] unless it is already bound to
a non-~c[nil] value; ~pl[ld-skip-proofsp].~/"
`(state-global-let*
((ld-skip-proofsp (or (f-get-global 'ld-skip-proofsp state)
t))
(inside-skip-proofs
; See the comment inside install-event for a discussion of the use of this
; binding.
t))
,x))
#+acl2-loop-only
(defmacro local (x)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Keep this in sync with chk-embedded-event-form: if we skip the check on x
; there, we should skip evaluation of x here.
":Doc-Section Events
hiding an event in an encapsulation or book~/
~bv[]
Examples:
(local (defthm hack1
(implies (and (acl2-numberp x)
(acl2-numberp y)
(equal (* x y) 1))
(equal y (/ x)))))
(local (defun double-naturals-induction (a b)
(cond ((and (integerp a) (integerp b) (< 0 a) (< 0 b))
(double-naturals-induction (1- a) (1- b)))
(t (list a b)))))~/
General Form:
(local ev)
~ev[]
where ~c[ev] is an event form. If the current default ~il[defun-mode]
(~pl[default-defun-mode]) is ~c[:]~ilc[logic] and ~ilc[ld-skip-proofsp] is
~c[nil] or ~c[t], then ~c[(local ev)] is equivalent to ~c[ev]. But if
the current default ~il[defun-mode] is ~c[:]~ilc[program] or if
~ilc[ld-skip-proofsp] is ~c[']~ilc[include-book], then ~c[(local ev)] is a
~c[no-op]. Thus, if such forms are in the event list of an
~ilc[encapsulate] event or in a book, they are processed when the
encapsulation or book is checked for admissibility in ~c[:]~ilc[logic] mode
but are skipped when extending the host ~il[world]. Such ~il[events] are thus
considered ``local'' to the verification of the encapsulation or
book. The non-local ~il[events] are the ones ``exported'' by the
encapsulation or book. ~l[encapsulate] for a thorough
discussion. Also ~pl[local-incompatibility] for a discussion of
a commonly encountered problem with such event hiding: you can't
make an event local if its presence is required to make sense of a
non-local one.
Note that ~il[events] that change the default ~il[defun-mode], and in fact any
~il[events] that set the ~ilc[acl2-defaults-table], are disallowed inside
the scope of ~c[local]. ~l[embedded-event-form]."
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'if
'(equal (ld-skip-proofsp state) 'include-book)
'(mv nil nil state)
(list 'if
'(equal (ld-skip-proofsp state) 'initialize-acl2)
'(mv nil nil state)
(list 'state-global-let*
'((in-local-flg t))
(list 'when-logic "LOCAL" x)))))
#+acl2-loop-only
(defmacro defchoose (&whole event-form &rest def)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
":Doc-Section Events
define a Skolem (witnessing) function~/
~bv[]
Examples:
(defchoose choose-x-for-p1-and-p2 (x) (y z)
(and (p1 x y z)
(p2 x y z)))
(defchoose choose-x-for-p1-and-p2 x (y z) ; equivalent to the above
(and (p1 x y z)
(p2 x y z)))
; The following is as above, but strengthens the axiom added to pick a sort
; of canonical witness, as described below.
(defchoose choose-x-for-p1-and-p2 x (y z)
(and (p1 x y z)
(p2 x y z))
:strengthen t)
(defchoose choose-x-and-y-for-p1-and-p2 (x y) (z)
(and (p1 x y z)
(p2 x y z)))~/
General Form:
(defchoose fn
(bound-var1 ... bound-varn)
(free-var1 ... free-vark)
body
:doc doc-string
:strengthen b),
~ev[]
where ~c[fn] is the symbol you wish to define and is a new symbolic
name (~pl[name]), ~c[(bound-var1 ... bound-varn)] is a list of
distinct `bound' variables (see below), ~c[(free-var1 ... free-vark)]
is the list of formal parameters of ~c[fn] and is disjoint from the
bound variables, and ~c[body] is a term. The use of ~c[lambda-list]
keywords (such as ~c[&optional]) is not allowed. The ~il[documentation]
string argument, ~c[:doc doc-string], is optional; for a description of the
form of ~c[doc-string] ~pl[doc-string]. The ~c[:strengthen] keyword argument
is optional; if supplied, it must be ~c[t] or ~c[nil].
The system treats ~c[fn] very much as though it were declared in the
~il[signature] of an ~ilc[encapsulate] event, with a single axiom exported as
described below. If you supply a ~c[:use] hint (~pl[hints]), ~c[:use fn], it
will refer to that axiom. No rule (of class ~c[:]~ilc[rewrite] or otherwise;
~pl[rule-classes]) is created for ~c[fn].
~c[Defchoose] is only executed in ~il[defun-mode] ~c[:]~ilc[logic];
~pl[defun-mode]. Also ~pl[defun-sk].
In the most common case, where there is only one bound variable, it is
permissible to omit the enclosing parentheses on that variable. The effect
is the same whether or not those parentheses are omitted. We describe this
case first, where there is only one bound variable, and then address the
other case. Both cases are discussed assuming ~c[:strengthen] is ~c[nil],
which is the default. We deal with the case ~c[:strengthen t] at the end.
The effect of the form
~bv[]
(defchoose fn bound-var (free-var1 ... free-vark)
body)
~ev[]
is to introduce a new function symbol, ~c[fn], with formal parameters
~c[(free-var1 ... free-vark)]. Now consider the following axiom, which
states that ~c[fn] picks a value of ~c[bound-var] so that the body will be
true, if such a value exists:
~bv[]
(1) (implies body
(let ((bound-var (fn free-var1 ... free-vark)))
body))
~ev[]
This axiom is ``clearly conservative'' under the conditions expressed above:
the function ~c[fn] simply picks out a ``witnessing'' value of ~c[bound-var]
if there is one. For a rigorous statement and proof of this conservativity
claim, ~pl[conservativity-of-defchoose].
Next consider the case that there is more than one bound variable, i.e.,
there is more than one bound-var in the following.
~bv[]
(defchoose fn
(bound-var1 ... bound-varn)
(free-var1 ... free-vark)
body)
~ev[]
Then ~c[fn] returns a multiple value with ~c[n] components, and formula (1)
above is expressed using ~ilc[mv-let] as follows:
~bv[]
(implies body
(mv-let (bound-var1 ... bound-varn)
(fn free-var1 ... free-vark)
body))
~ev[]
We now discuss the case that ~c[:strengthen t] is supplied. For simplicity
we return to our simplest case, with ~c[defchoose] applied to function
~c[fn], a single free variable ~c[y], and a single bound variable
~c[bound-var]. The idea is that if we pick the ``smallest'' witnessing
~c[bound-var] for two different free variables ~c[y] and ~c[y1], then either
those two witnesses are the same, or else one is less than the other, in
which case the smaller one is a witness for its free variable but not for the
other. (See comments in source function ~c[defchoose-constraint-extra] for
more details.) Below, ~c[body1] is the result of replacing ~c[y] by ~c[y1]
in ~c[body].
~bv[]
(2) (or (equal (fn y) (fn y1))
(let ((bound-var (fn y)))
(and body
(not body1)))
(let ((bound-var (fn y1)))
(and body1
(not body))))
~ev[]
An important application of this additional axiom is to be able to define a
``fixing'' function that picks a canonical representative of each equivalence
class, for a given equivalence relation. The following events illustrate
this point.
~bv[]
(encapsulate
((equiv (x y) t))
(local (defun equiv (x y) (equal x y)))
(defequiv equiv))
(defchoose efix (x) (y)
(equiv x y)
:strengthen t)
(defthm equiv-implies-equal-efix-1
(implies (equiv y y1)
(equal (efix y) (efix y1)))
:hints ((\"Goal\" :use efix))
:rule-classes (:congruence))
(defthm efix-fixes
(equiv (efix x) x)
:hints ((\"Goal\" :use ((:instance efix (y x))))))
~ev[]
If there is more than one bound variable, then (2) is modified in complete
analogy to (1) to use ~ilc[mv-let] in place of ~ilc[let].
Comment for logicians: As we point out in the documentation for
~ilc[defun-sk], ~c[defchoose] is ``appropriate,'' by which we mean that
it is conservative, even in the presence of ~c[epsilon-0] induction.
For a proof, ~l[conservativity-of-defchoose].~/"
; Warning: See the Important Boot-Strapping Invariants before modifying!
(list 'defchoose-fn
(list 'quote def)
'state
(list 'quote event-form)))
(deflabel conservativity-of-defchoose
:doc
":Doc-Section defchoose
proof of conservativity of ~ilc[defchoose]~/
This documentation topic provides underlying theory. It is of theoretical
interest only; it has no relationship to the effective use of ACL2.~/
The argument below for the conservativity of ~il[defchoose] replaces the
terse and somewhat misleading reference to a forcing argument in Appendix B
of the paper by ACL2 authors Kaufmann and Moore, ``Structured Theory
Development for a Mechanized Logic'' (Journal of Automated Reasoning 26,
no. 2 (2001), pp. 161-203).
Our basic idea is to to take a (countable) first-order structure for ACL2, M,
together with a function symbol, f, introduced by ~il[defchoose], and find a
way to expand M with an interpretation of f (without changing the universe of
M) so that e0-induction continues to hold in the expansion. A remark at the
end of this documentation topic shows why care is necessary. A concept
called ``forcing'', originally introduced by Paul Cohen for set theory, has
long since been adapted by logicians (in a simplified form) to model theory.
This simplified model-theoretic forcing provides the means for making our
careful expansion.
The forcing argument presented below is intended to be completely
self-contained for those familiar with basic first-order logic and ACL2. No
background in forcing (model-theoretic or otherwise) is expected, though we
do expect a rudimentary background in first-order logic and familiarity with
the following.
Preliminaries. We write s[p<-p0] to denote the result of extending or
modifying the assignment s by binding p to p0. Now let A be a subset of the
universe U of a first-order structure M. A is said to be ``first-order
definable with parameters'' in M if for some formula phi, variable x, and
assignment s binding the free variables of phi except perhaps for x, A = {a
\\in U: M |= phi[s[x<-a]]. Note that we are writing ``\\in'' to denote set
membership. Finally, we indicate the end of a proof (or of a theorem
statement, when the proof is omitted) with the symbol ``-|''.
We gratefully acknowledge very helpful feedback from John Cowles, who found
several errors in a draft of this note and suggested the exercises. We also
thank Ruben Gamboa for helpful feedback, and we thank Jim Schmerl for an
observation that led us directly to this proof in the first place.
We are given a consistent first-order theory T, extending the ACL2
ground-zero theory, that satisfies the e0-induction scheme. We wish to show
that the extension of T by the following arbitrary defchoose event is
conservative, where g is a new function symbol.
~bv[]
(defchoose g <bound-vars> <free-vars> <body>)
~ev[]
Note that by ``the extension of T'' here we mean the extension of T by not
only the new defchoose axiom displayed just below, but also the addition of
e0-induction axioms for formulas in the language with the new defchoose
function symbol, g.
~bv[]
<body> -> (LET <free-vars> = g(<bound-vars>) in <body>)
~ev[]
By definition of conservativity, since proofs are finite, it clearly suffices
to consider an arbitrary finite subset of T. Then by the completeness,
soundness, and downward Lowenheim-Skolem theorems of first-order logic, it
suffices to show that an arbitrary countable model of T can be expanded
(i.e., by interpreting the new symbol g without changing the universe of the
model) to a model of the corresponding defchoose axiom above, in which all
e0-induction axioms hold in the language of that model.
Below, we will carry out a so-called ~em[forcing] construction, which
allows us to expand any countable model M of T to a model M[G] that satisfies
e0-induction and also satisfies the above axiom generated from the above
defchoose event. The ideas in this argument are standard in model theory; no
novelty is claimed here.
Fix a countable model M of a theory T that satisfies e0-induction and extends
the ACL2 ground-zero theory. Also fix the above defchoose axiom, where g is
not in the language of T.
We start by defining a partial order P as follows. Let Nb and Nf be the
lengths of <bound-vars> and <free-vars>, respectively. P consists of all fn in
M such that the following formula is true in M. Roughly speaking, it says that
fn is a finite function witnessing the above requirement for g.
~bv[]
alistp(fn) &
no-duplicatesp-equal(strip-cars(fn)) &
(forall <bound-vars>, <free-vars> .
(member-equal(cons(<bound-vars>,<free-vars>), fn) ->
(length(<bound-vars>) = Nb &
length(<free-vars>) = Nf &
((exists <free-vars> . <body>) -> <body>))))
~ev[]
P is ordered by subset, i.e., we say that p2 ~em[extends] p1 if p1 is a
subset (not necessarily proper) of p2 (more precisely, M |=
subsetp-equal(p1,p2)).
Remark. The original argument in Appendix B of the aforementioned paper can
essentially be salvaged, as we now show. The key observation is that the
particular choice of P is nearly irrelevant for the argument that follows
below. In particular, we can instead define P to consist of finite one-one
functions with domain contained in the set of natural numbers. More
precisely, consider the following definitions.
~bv[]
(defun function-p (fn)
(declare (xargs :guard t))
(and (alistp fn)
(no-duplicatesp-equal (strip-cars fn))))
(defun nat-listp (l)
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (natp (car l))
(nat-listp (cdr l))))))
(defun nat-function-p (x)
(and (function-p x)
(nat-listp (strip-cars x))))
~ev[]
and define inverse as follows.
~bv[]
(defun inverse (fn)
(declare (xargs :guard (alistp fn)))
(if (endp fn)
nil
(cons (cons (cdar fn) (caar fn))
(inverse (cdr fn)))))
~ev[]
Then P may instead be defined to consist of those fn for which
nat-function-p(fn) & function-p(inverse(fn)). With this alternate definition
of P, the argument below then goes through virtually unchanged, and we get an
expansion M[G] of M in which there is a definable enumeration of the
universe. The conservativity of defchoose then follows easily because the
function being introduced can be defined explicitly using that enumeration
(namely, always pick the least witness in the sense of the enumeration).
End of Remark.
Next we present the relevant forcing concepts from model theory.
A ~em[dense] subset of P is a subset D of P such that for every p \\in P,
there is d \\in D such that d extends p. A subset G of P is ~em[generic]
with respect to a collection Ds of dense subsets of P, also written ``G is
Ds-generic,'' if G is closed under subset (if p2 \\in G and p2 extends p1
then p1 \\in G), G is pairwise compatible (the union-equal of any two
elements of G is in G), and every set in Ds has non-empty intersection with
G.
For p \\in P, we say that a subset D of P is ~em[dense beyond] p if for all
p1 extending p there exists p2 extending p1 such that p2 \\in D. This notion
makes sense even for D not a subset of P if we treat elements of D not in P
as nil.
Proposition 1. For any partial order P and countable collection Ds of dense
subsets of P, there is a Ds-generic subset of P.
Proof. Let Ds = {D0,D1,D2,...}. Define a sequence <p_0,p_1,...> such that
for all i, p_i \\in Di and p_(i+1) extends p_i. Let G = {p \\in P: for some
i, pi extends p}. Then G is Ds-generic. -|
Note that P is first-order definable (with parameters) in M. Let Df be the
set of dense subsets of P that are first-order definable (with parameters) in
M. A standard argument shows there are only countably many first-order
definitions with parameters in a countable model M ~-[] for example, we can
Goedel number all terms and then all formulas ~-[] hence, Df is countable.
By Proposition 1, let G be Df-generic. Notice that for any list x of length
Nb in M, the set of elements f of P for which x is in the domain of f is
dense and first-order definable. We may thus define a function g0 as
follows: g0(x_1,...,x_Nb) = y if there is some element of G containing the
pair ((x_1 ... x_Nb) . y). It is easy to see that g0 is a total function on
M. Let L be the language of T and let L[g] be the union of L with a set
containing a single new function symbol, g. Let M[G] be the expansion of M
to L[g] obtained by interpreting g to be g0 (see also Proposition 5 below).
So now we have fixed M, P, Df, G, and g0, where G is Df-generic.
Proposition 2. Let Df be the set of dense subsets of P that are first-order
definable (with parameters) in M. Suppose that p \\in G and D \\in Df. Then for
some q \\in G extending p, q \\in D.
Proof. Let D0 be the set of p' \\in D that either extend p or have no
extension in D that extends p. We leave it as a straightforward exercise to
show that D0 is dense, and D0 is clearly first-order definable (with
parameters) in M. So by genericity of G, we may pick q \\in D0 such that q
\\in G. Thus q \\in D. By definition of generic, some extension q1 of both
p and q belongs to G. Pick q2 \\in D extending q1; thus q has an extension
in D that extends p (namely, q2), so by definition of D0, q extends p. -|
Definition of forcing. Let phi(x1,...,xk) be a first-order formula in L[g]
and let p \\in P. We define a formula of L, denoted ``p ||- phi'' (``p
forces phi''), by recursion on phi (in the metatheory) as follows. (Here, we
view ``or'' and ``forall'' as abbreviations.)
~bq[]
If phi is atomic, then let phi'(A) be the result of replacing, inside-out,
each subterm of the form g(x_1,...,x_Nb) with the term (cdr (assoc-equal
(list x_1 ... x_Nb) A)), where A is neither p nor a variable occurring in
phi. Then p ||- phi is defined as follows: ``The set {A \\in P: A extends
p and phi'(A)} is dense beyond p''. That is, p ||- phi is the following
formula:
~bv[]
(forall p1 \\in P extending p)
(exists p2 \\in P extending p1) phi'(p2).
~ev[]
p ||- ~~phi is: (forall p' \\in P extending p) ~~(p' ||- phi)
p ||- phi_1 & phi_2 is: (p ||- phi_1) & (p ||- phi_2)
p ||- (exists x) phi is: (exists x) (p ||- phi)
~eq[]
We will need the following definition later.
Definition. p ||-w phi (p ~em[weakly forces] phi) is an abbreviation for p
||- ~~~~phi.
The following exercises were suggested by John Cowles as a means for gaining
familiarity with the definition of forcing.
Exercise 1. Consider the formula (phi_1 OR phi_2) as an abbreviation for
~~(~~phi_1 & ~~phi_2), Show that p ||- (phi_1 OR phi_2) is equivalent to the
following.
~bv[]
(forall p' \\in P extending p) (exists p'' \\in P extending p')
((p'' ||- phi_1) OR (p'' ||- phi_2))
~ev[]
Exercise 2. Consider the formula (forall x)phi as an abbreviation for
~~(exists x)~~phi, Show that p ||- (forall x)phi is equivalent to the following.
~bv[]
(forall x)
(forall p1 \\in P extending p)
(exists p2 \\in P extending p1) (p2 ||- phi).
~ev[]
Exercise 3. Prove that p ||-w phi is equivalent to the following.
~bv[]
(forall p' \\in P extending p)
(exists p'' \\in P extending p') (p'' ||- phi).
~ev[]
Exercise 4. Let phi be a formula of L[g]. Prove:
M |= (p ||- phi)[s[p<-p0]] implies
M |= (p ||-w phi)[s[p<-p0]].
Exercise 5. Let phi be a formula of L[g]. Prove:
M |= (p ||- ~~phi)[s[p<-p0]] iff
M |= (p ||-w ~~phi)[s[p<-p0]].
[End of exercises.]
The definition of forcing stipulates how to view ``p ||- phi(x1,...,xk)'' as
a new formula theta(p,x1,...,xk). That is, ``||-'' transforms formulas, so
for any first-order formula phi, ``p ||- phi'' is just another first-order
formula. That observation shows that a formula such as ((p ||- phi) OR (p
||- ~~phi)) is really just another first-order formula. The following
proposition thus follows easily.
Proposition 3. For any formula phi of L[g], {p0: M |= ((p ||- phi) OR (p ||-
~~phi))[s[p<-p0]]]} is a dense subset of P, which (since it is first-order
definable with parameters in M) intersects G. -|
The following proposition is easily proved by a structural induction on phi,
and is left to the reader.
Proposition 4. Let phi be a formula of L[g]. Suppose ~c[p0 \in P],
~c[p1 \in P],~nl[]
M |= (p ||- phi)[s[p<-p0]] and p1 extends p0. Then~nl[]
M |= (p ||- phi)[s[p<-p1]]. -|
We will also need the following.
Proposition 5. The following is dense for any finite set S of Nb-tuples: {p
\\in P: for some <x_1 ... x_Nb> \\in S, (list x_1 ... x_Nb) \\in
strip-cars(p)}. Thus, the function g0 is a total function. -|
The next lemma tells us that the sentences true in M[G] are those that are
forced by an element of G.
Truth Lemma. Let phi be a formula in L[g], let s be an assignment to the
free variables of phi, and let p be a variable not in the domain of s. Then
M[G] |= phi[s] iff for some p0 \\in G, M |= (p ||- phi)[s[p<-p0]].
Proof. The proof is by induction on the structure of phi. First suppose phi
is atomic. Let D* be the set of elements p0 \\in P such that every
assoc-equal evaluation from the definition of forcing phi returns a pair when
A is bound to p0. (Intuitively, this means that p0 is a sufficiently large
approximation from any G containing p0 to make sense of phi in M[G].) We
make the following claim.
~bv[]
(*) For all p0 \\in G such that p0 \\in D*,
M[G] |= phi[s] iff M |= (p ||- phi)[s[p<-p0]].
~ev[]
To prove the claim, fix p0 in both G and D*, and recall the function g0
constructed from G in the definition of M[G]. Suppose that t_1, ..., t_Nb
are terms and g(t_1, ..., t_Nb) is a subterm of phi. Then s assigns a value
in M to each of the t_i. Let a_i be the value assigned by s to t_i. Then
g0(a_1, ..., a_Nb) = (cdr (assoc-equal (list a_1 ... a_Nb) p0)), as the
assoc-equal is a pair (since p0 \\in D*) and has the indicated value (because
p0 \\in G). It follows by the definition of formula phi' in the definition
of forcing:
~bv[]
M[G] |= phi[s] iff M |= phi'(p)[s[p<-p0]]
~ev[]
Moreover, because p0 \\in D* it is clear that this holds if p0 is replaced by
an arbitrary extension of p0. Then (*) easily follows.
By Proposition 5, D* is dense, so there is some p0 in the intersection of D*
and G. The forward direction of the conclusion then follows by (*). The
reverse direction is clear from (*) by application of Proposition 2 to D* and
Proposition 4.
Next, suppose M[G] |= ~~phi[x]. Then it is not the case that M[G] |= phi, so
by the inductive hypothesis, there is no p0 \\in G for which M |= (p ||-
phi)[s[p<-p0]]. By Proposition 3, there is p0 \\in G for which M |= (p ||-
~~phi)[s[p<-p0]]. For the other direction, suppose it is not the case that
M[G] |= ~~phi[s]. So M[G] |= phi[s], and by the inductive hypothesis, there
is p0 \\in G for which M |= (p ||- phi)[s[p<-p0]]. It follows that there is
no p1 \\in G for which M |= (p ||- ~~phi)[s[p<-p1]], since from such p1 we can
find a common extension p2 of p0 and p1 (since G is generic), and since p2
extends p0 then by Proposition 4, M |= (p ||- phi)[s[p<-p2]], contradicting
(by definition of forcing) M |= (p ||- ~~phi)[s[p<-p1]] since p2 extends p1.
The case (phi_1 & phi_2) follows easily from the inductive hypothesis. For
the forward direction, apply Proposition 4 and the observation that by
genericity, if p0 \\in G and p1 \\in G then p0 and p1 they have a common
extension in G.
Finally, the case (exists x) phi follows trivially from the inductive
hypothesis. -|
Truth Lemma Corollary. The Truth Lemma holds with ||-w replacing ||-.
Proof. This is clear by applying the Truth Lemma to ~~~~phi. -|
Here is our main theorem. Recall that all first-order theories in our ACL2
context satisfy the e0-induction scheme.
Theorem. M[G] satisfies e0-induction.
Proof. We consider an arbitrary instance of e0-induction in L[g], stated
using a strict well-founded relation <| and a formula phi. We write phi(y)
to indicate that y may be among the free variables of phi, and phi(y<-x) to
denote the result of substituting x for y in phi.
~bv[]
theta(y): (forall y) [((forall x <| y) phi(y<-x)) -> phi(y)]
-> (forall y) phi(y)
~ev[]
Our goal is to prove that theta holds in M[G].
Below, we abuse notation by leaving assignments implicit and by writing ``p
||- phi(y0)'' to signify that the formula (p ||- phi(y)) is true in M under
the extension of the explicit assignment that binds y to y0. We believe that
the intended meaning will be clear.
Consider the following set D.
~bv[]
D = {p \\in P: either p ||-w phi(y0) for all y0,
or else
for some y0, p ||- ~~phi(y0) and
for all y1 <| y0 p ||-w phi(y1)}.
~ev[]
The set D is clearly first-order definable (with parameters) in M. We claim
that D is a dense subset of P. For suppose p0 \\in P; we find p1 \\in D
extending p0, as follows. If p0 ||-w phi(y0) for all y0, then we may take p1
to be p0. Otherwise, by definition of ||-w and ||-, there is some y0 such
that for some extension p0' of p0, p0' ||- ~~phi(y0). Pick a <|-minimal such
y0, and correspondingly pick p1 so that p1 extends p0 and p1 ||- ~~phi(y0).
In order to show that p1 \\in D, it remains to show that for all y1 <| y0,
p1 ||-w phi(y1), i.e., there is no q extending p1 such that q ||- ~~phi(y1).
This is indeed the case since otherwise q and y1 would contradict the
<|-minimality of y0.
Applying the genericity of G and just-proved density of D, pick p0 \\in G
such that p0 \\in D. If p0 ||-w phi(y0) for all y0, then by the Truth Lemma
Corollary, M[G] |= phi(y0) for all y0, and thus M[G] |= theta. Otherwise,
since p0 \\in D we may choose y0 such that p0 ||- ~~phi(y0) and for all y1 <|
y0, p0 ||-w phi(y1). By the Truth Lemma and its corollary, since p0 \\in G
we have:
~bv[]
(1) M[G] |= ~~phi(y0).
(2) For all y1 <| y0, M[G] |= phi(y1).
~ev[]
It follows that the antecedent of theta is false in M[G], as witnessed by y =
y0; thus M[G] |= theta. -|
Remark. We close by returning, as promised above, to the question of why so
much care is necessary in constructing an expansion of M. We assume
familiarity here with the notion of a ``non-standard'' natural number of M,
i.e., one that is greater than the interpretation of any term that has the
form (+ 1 1 1 ... 1). Here is a very simple example that illustrates the
need for some care. Consider the following event, which introduces a
function foo with the following property: for all x, if natp(x) then
natp(foo(x)).
~bv[]
(defchoose foo (y) (x)
(implies (natp x) (natp y)))
~ev[]
Certainly we can build a model of the above property from a model M of the
ground-zero theory, by interpreting foo so that for all x for which M
satisfies natp(x), foo(x) is also a natp in M. But suppose we start with a
non-standard model M of the ground-zero theory, and we happen to define
foo(x) to be 1 for all non-standard natural numbers x and 0 for all other x.
The resulting expansion of M will not satisfy the e0-induction scheme or even
the ordinary natural number induction scheme: foo(0)=0 holds in that
expansion as does the implication foo(n)=0 => foo(n+1)=0 for every natural
number n of M, standard or not; and yet foo(k)=0 fails for every non-standard
natural number k of M.")
#+acl2-loop-only
(defmacro defattach (&whole event-form &rest args)
; Warning: See the Important Boot-Strapping Invariants before modifying!
; See the Essay on Defattach.
; Developer note. A substantial test suite is stored at this UT CS file:
; /projects/acl2/devel-misc/books-devel/examples/defattach/test.lisp
":Doc-Section Events
execute constrained functions using corresponding attached functions~/
This ~il[documentation] topic is organized into the following sections:
~st[Introductory example.]~nl[]
~st[Syntax and semantics of defattach.]~nl[]
~st[Three primary uses of defattach.]~nl[]
~st[Miscellaneous remarks, with discussion of possible user errors.]
Please ~pl[encapsulate] if you intend to use ~c[defattach] but are not
already familiar with the use of ~c[encapsulate] to introduce constrained
functions.
See community book ~c[books/misc/defattach-example.lisp] for a small example.
it illustrates how ~c[defattach] may be used to build something like
``higher-order'' programs, in which constrained functions may be refined to
different executable functions. More uses of ~c[defattach] may be found in
the ACL2 source code, specifically, file ~c[boot-strap-pass-2.lisp].
The argument ~c[:skip-checks t] enables easy experimentation with
~c[defattach], by permitting use of ~c[:]~ilc[program] mode functions and the
skipping of semantic checks. Also permitted is ~c[:skip-checks nil] (the
default) and ~c[:skip-checks :cycles], which turns off only the update of the
extended ancestor relation (see below) and hence the check for cycles in this
relation; see below. We do not make any logical claims when the value of
~c[:skip-checks] is non-~c[nil]; indeed, a trust tag is required in this
case (~pl[defttag]). Remark for those who use the experimental HONS
extension (~pl[hons-and-memoization]): the interaction of memoization and
attachments is not tracked for attachments introduced with a non-~c[nil]
value of ~c[:skip-checks]. For more discussion of ~c[:skip-checks t],
~pl[defproxy]; we do not discuss ~c[:skip-checks] further, here.
~st[Introductory example.]
We begin with a short log illustrating the use of ~c[defattach]. Notice that
after evaluating the event ~c[(defattach f g)], a call of the constrained
function ~c[f] is evaluated by instead calling ~c[g] on the arguments.
~bv[]
ACL2 !>(encapsulate
((f (x) t :guard (true-listp x)))
(local (defun f (x) x))
(defthm f-property
(implies (consp x) (consp (f x)))))
[... output omitted ...]
T
ACL2 !>(defun g (x)
(declare (xargs :guard (or (consp x) (null x))))
(cons 17 (car x)))
[... output omitted ...]
G
ACL2 !>(f '(3 4)) ; undefined function error
ACL2 Error in TOP-LEVEL: ACL2 cannot ev the call of undefined function
F on argument list:
((3 4))
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>(defattach f g)
[... output omitted ...]
:ATTACHMENTS-RECORDED
ACL2 !>(f '(3 4)) ; f is evaluated using g
(17 . 3)
ACL2 !>(trace$ f g)
((F) (G))
ACL2 !>(f '(3 4)) ; f is evaluated using g
1> (ACL2_*1*_ACL2::F (3 4))
2> (ACL2_*1*_ACL2::G (3 4))
3> (G (3 4))
<3 (G (17 . 3))
<2 (ACL2_*1*_ACL2::G (17 . 3))
<1 (ACL2_*1*_ACL2::F (17 . 3))
(17 . 3)
ACL2 !>(defattach f nil) ; unattach f (remove its attachment)
[... output omitted ...]
:ATTACHMENTS-RECORDED
ACL2 !>(f '(3 4)) ; undefined function error once again
1> (ACL2_*1*_ACL2::F (3 4))
ACL2 Error in TOP-LEVEL: ACL2 cannot ev the call of undefined function
F on argument list:
((3 4))
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>
~ev[]
~st[Syntax and semantics of defattach.]
The log above shows that the event ~c[(defattach f g)] allows ~c[g] to be
used for evaluating calls of ~c[f]. From a logical perspective, the
evaluation takes place in the addition to the current session of an
``attachment equation'' axiom (universally quantified over all ~c[x]) for
each ~c[defattach] event:
~bv[]
(equal (f x) (g x)) ;;; attachment equation axiom for (defattach f g)
~ev[]
Below we explain ~c[defattach] in some detail. But it is important to keep
in mind that evaluation with the attachment equations takes place in an
extension of the logical theory of the session. ACL2 guarantees that this
so-called ``evaluation theory'' remains consistent, assuming the absence of
~ilc[defaxiom] ~il[events] from the user. This guarantee is a consequence of
a more general guarantee: an ACL2 logical ~il[world] exists in which (loosely
speaking) the attachment equation for ~c[(defattach f g)], as
~c[(defun f (...) (g ...))], takes the place of the original defining event
for ~c[f], for each ~c[defattach] event. This more general guarantee holds
even if there are ~ilc[defaxiom] events, though as explained below, no
function symbol that syntactically supports a ~c[defaxiom] formula is allowed
to get an attachment. A deeper discussion of the logical issues is
available (but not intended to be read by most users) in a long comment in
the ACL2 source code labeled ``Essay on Defattach.''
~bv[]
Example Forms:
(defattach f g) ; call g in place of calling constrained function f
(defattach (f g)) ; same as just above
(defattach (f g :hints ((\"Goal\" :in-theory (enable foo)))))
; equivalent to first form above, except with hints for the
; proof that the guard of f implies the guard of g
(defattach (f g :hints ((\"Goal\" :in-theory (enable foo)))
:otf-flg t))
; as above, except with an :otf-flg of t for the proof that
; the guard of f implies the guard of g
(defattach (f g)
:hints ((\"Goal\" :use my-thm)))
; equivalent to first form above, except with hints for the
; proof that the constraints on f hold for g
(defattach (f g)
:hints ((\"Goal\" :use my-thm))
:otf-flg t)
; as above, except with an :otf-flg of t for the proof that
; the constraints on f hold for g
(defattach (f g)
(h j)) ; Attach g to f and attach j to h
(defattach (f g :attach nil)
(h j)) ; Same as just above, including the same proof obligations,
; except for one difference: because of :attach nil, calls
; of f will not be evaluated, i.e., there will be no
; executable attachment of g to f
(defattach (f nil)
(h j)) ; Attach j to h and unattach f
(defattach (f g :hints ((\"Goal\" :in-theory (enable foo))))
(h j :hints ((\"Goal\" :in-theory (enable bar))))
:hints ((\"Goal\" :use my-thm)))
; Attach g to f and attach j to h, with hints:
; - For proving that the guard of f implies the guard of g,
; enable foo;
; - For proving that the guard of h implies the guard of j,
; enable bar; and
; - For proving that the constraints on f and h hold for
; g and j (respectively), use theorem my-thm.
(defattach f nil) ; remove the attachment of f, if any (e.g., g above)
(defattach (f nil)) ; same as just above~/
General Forms:
(defattach f g) ; single attach or, if g is nil, unattach
(defattach (f1 g1 :kwd val ...)
...
(fk gk :kwd' val' ...)
:kwd'' val'' ...)
~ev[]
where each indicated keyword-value pair is optional and each keyword is one
of ~c[:ATTACH], ~c[:HINTS], ~c[:OTF-FLG], or ~c[:INSTRUCTIONS]. The
value of each ~c[:ATTACH] keyword is either ~c[t] or ~c[nil], with default
~c[t] except that the value of ~c[:ATTACH] at the ``top level,'' after each
entry ~c[(fi gi ...)], is the default for each ~c[:ATTACH] keyword supplied
in such an entry. We discuss the ~c[:ATTACH] keyword later in this
~il[documentation] topic. The associated values for the other keywords have
the usual meanings for the proof obligations described below: the guard proof
obligation for keywords within each ~c[(fi gi ...)] entry, and the constraint
proof obligation for keywords at the top level. No keyword may occur twice
in the same context, i.e., within the same ~c[(fi gi ...)] entry or at the
top level; and ~c[:INSTRUCTIONS] may not occur in the same context with
~c[:HINTS] or ~c[:OTF-FLG].
The first General Form above is simply an abbreviation for the form
~c[(defattach (f g))], which is an instance of the second General Form above.
For the second General Form we say that ~c[gi] is ``attached to'' ~c[fi] (by
the ~c[defattach] event) if ~c[gi] is not ~c[nil], and otherwise we say that
~c[fi] is ``unattached'' (by the ~c[defattach] event). It is also convenient
to refer to ~c[<fi,gi>] as an ``attachment pair'' (of the event) if ~c[gi] is
not ~c[nil]. We may refer to the set of ~c[fi] as the ``attachment nest'' of
each ~c[fi].
We start with a brief introduction to the first General Form in the case that
~c[g] is not ~c[nil]. This form arranges that during evaluation, with
exceptions noted below, every call of the constrained function symbol ~c[f]
will in essence be replaced by a call of the function symbol ~c[g] on the
same arguments. We may then refer to ~c[g] as the ``attachment of'' ~c[f],
or say that ``~c[g] is attached to ~c[f].'' Notable exceptions, where we do
not use attachments during evaluation, are for macroexpansion, evaluation of
~ilc[defconst] and ~ilc[defpkg] terms, evaluation during ~ilc[table] events,
some ~il[stobj] operations including all ~il[stobj updates], and especially
evaluation of ground terms (terms without free variables) during proofs.
However, even for these cases we allow the use of attachments in the first
argument of ~ilc[prog2$] and, more generally, the next-to-last
(i.e., second) argument of ~ilc[return-last] when its first argument is not
of the form ~c['m] for some macro, ~c[m].
To see why attachments are disallowed during evaluation of ground terms
during proofs (except for the ~ilc[prog2$] and ~ilc[return-last] cases
mentioned above), consider the following example.
~bv[]
(defstub f (x) t)
(defun g (x) (+ 3 x))
(defattach f g)
~ev[]
If the form ~c[(f 2)] is submitted at the ACL2 prompt, the result will be
~c[5] because the attachment ~c[g] of ~c[f] is called on the argument,
~c[2]. However, during a proof the term ~c[(f 2)] will not be simplified to
~c[5], since that would be unsound, as there are no axioms about ~c[f] that
would justify such a simplification.
For the case that ~c[g] is ~c[nil] in the first General Form above, the
result is the removal of the existing attachment to ~c[f], if any. After
this removal, calls of ~c[f] will once again cause errors saying that ``ACL2
cannot ev the call of undefined function ~c[f] ...''. In this case not only
is the previous attachment to ~c[f] removed; moreover, for every function
symbol ~c[f'] in the attachment nest of ~c[f] in the ~c[defattach] event that
introduced the existing attachment to ~c[f], then ~c[f'] is unattached. (An
example near the end of this ~il[documentation] topic shows why this
unattachment needs to be done.) Such removal takes place before the current
~c[defattach] is processed, but is restored if the new event fails to be
admitted.
We focus henceforth on the second General Form. There must be at least one
attachment, i.e., ~c[i] must be at least 1. All keywords are optional; their
role is described below. The ~c[fi] must be distinct constrained function
symbols, that is, function symbols all introduced in ~il[signature]s of
~ilc[encapsulate] ~il[events] (or macros such as ~ilc[defstub] that generate
~ilc[encapsulate] events). Each non-~c[nil] ~c[gi] is a
~c[:]~ilc[logic]-mode function symbol that has had its guards verified, with
the same ~il[signature] as ~c[fi] (though formal parameters for ~c[fi] and
~c[gi] may have different names). (Note: The macro ~c[defattach!], defined
in community book ~c[books/misc/defattach-bang], avoids this restriction.)
This event generates proof obligations and an ordering check, both described
below. The effect of this event is first to remove any existing attachments
for all the function symbols ~c[fi], as described above for the first General
Form, and then to attach each ~c[gi] to ~c[fi].
Proof obligations must be checked before making attachments. For this
discussion we assume that each ~c[gi] is non-~c[nil] (otherwise first remove
all attachment pairs ~c[<fi,gi>] for which ~c[gi] is nil). Let ~c[s] be the
functional substitution mapping each ~c[fi] to ~c[gi]. For any term ~c[u],
we write ~c[u\\s] for the result of applying ~c[s] to ~c[u]; that is,
~c[u\\s] is the ``functional instance'' obtained by replacing each ~c[fi] by
~c[gi] in ~c[u]. Let ~c[G_fi] and ~c[G_gi] be the guards of ~c[fi] and
~c[gi], respectively. Let ~c[G_fi'] be the result of replacing each formal
of ~c[fi] by the corresponding formal of ~c[gi] in ~c[G_fi]. ACL2 first
proves, for each ~c[i] (in order), the formula ~c[(implies G_fi' G_gi)\\s].
If this sequence of proofs succeeds, then the remaining formula to prove is
the functional instance ~c[C\\s] of the conjunction ~c[C] of the constraints
on the symbols ~c[fi]; ~pl[constraint]. This last proof obligation is thus
similar to the one generated by functional instantiation (~pl[constraint]).
As with functional instantiation, ACL2 stores the fact that such proofs have
been done so that they are avoided in future events (~pl[lemma-instance]).
Thus, you will likely avoid some proofs with the sequence
~bv[]
(defattach f g)
(defattach f nil)
(defattach f g)
(defattach f nil)
...
~ev[]
rather than the sequence:
~bv[]
(defattach f g)
:u
(defattach f g)
:u
...
~ev[]
It remains to describe an ordering check. We begin with the following
motivating example.
~bv[]
(defstub f (x) t) ; constrained function with no constraints
(defun g (x) (declare (xargs :guard t)) (not (f x)))
(defattach f g) ; ILLEGAL!
~ev[]
Were the above ~c[defattach] event to succeed, the evaluation theory
(discussed above) would be inconsistent: ~c[(f x)] equals ~c[(g x)] by the
new attachment equation, which in turn equals ~c[(not (f x))] by definition
of ~c[g]. The evaluation would therefore be meaningless. Also, from a
practical perspective, there would be an infinite loop resulting from any
call of ~c[f].
We consider a function symbol ~c[g] to be an ``extended immediate ancestor
of'' a function symbol ~c[f] if either of the following two criteria is
met: (a) ~c[g] occurs in the formula that introduces ~c[f] (i.e., definition
body or constraint) and ~c[g] is introduced by an event different
from (earlier than) the event introducing ~c[f]; or (b) ~c[g] is attached to
~c[f]. For a proposed ~c[defattach] event, we check that this relation has
no cycles, where for condition (b) we include all attachment pairs that would
result, including those remaining from earlier ~c[defattach] events.
Of course, a special case is that no function symbol may be attached to
itself. Similarly, no function symbol may be attached to any of its
``siblings'' ~-[] function symbols introduced by the same event ~-[] as
siblings are considered equivalent for purposes of the acyclicity check.
~st[Three primary uses of defattach.]~nl[]
We anticipate three uses of ~c[defattach]:
(1) Constrained function execution
(2) Sound modification of the ACL2 system
(3) Program refinement
We discuss these in turn.
(1) The example at the beginning of this ~il[documentation] illustrates
constrained function execution.
(2) ACL2 is written essentially in itself. Thus, there is an opportunity to
attaching to system functions. For example, encapsulated
function ~c[too-many-ifs-post-rewrite], in the ACL2 source code, receives an
attachment of ~c[too-many-ifs-post-rewrite-builtin], which implements a
heuristic used in the rewriter. To find all such examples, search the source
code for the string `-builtin'.
Over time, we expect to continue replacing ACL2 source code in a similar
manner. We invite the ACL2 community to assist in this ``open architecture''
enterprise; feel free to email the ACL2 implementors if you are interested in
such activity.
(3) Recall that for an attachment pair ~c[<f,g>], a proof obligation is
(speaking informally) that ~c[g] satisfies the constraint on ~c[f]. Yet more
informally speaking, ~c[g] is ``more defined'' than ~c[f]; we can think of
~c[g] as ``refining'' ~c[f]. With these informal notions as motivation, we
can view defattach as providing refinement though the following formal
observation: the evaluation theory extends the theory of the ACL2 session,
specifically by the addition of all attachment equations. For the
logic-inclined, it may be useful to think model-theoretically: The class of
models of the evaluation theory is non-empty but is a subset of the class of
models of the current session theory.
~st[Miscellaneous remarks, with discussion of possible user errors.]
We conclude with remarks on some details.
A ~c[defattach] event is never redundant (~pl[redundant-events]); in that
sense it is analogous to ~ilc[in-theory].
As mentioned above, the use of attachments is disabled for evaluation of
ground terms during proofs. However, attachments can be used on code during
the proof process, essentially when the ``program refinement'' is on theorem
prover code rather than on functions we are reasoning about. The attachment
to ~c[too-many-ifs-post-rewrite] described above provides one example of such
attachments. Meta functions and clause-processor functions can also have
attachments, with the restriction that no common ancestor with the evaluator
can have an attachment; ~pl[evaluator-restrictions].
For an attachment pair ~c[<f,g>], evaluation of ~c[f] never consults the
~il[guard] of ~c[f]. Rather, control passes to ~c[g], whose guard is checked
if necessary. The proof obligation related to guards, as described above,
guarantees that any legal call of ~c[f] is also a legal call of ~c[g]. Thus
for guard-verified code that results in calls of ~c[f] in raw Lisp, it is
sound to replace these calls with corresponding calls of ~c[g].
~c[Defattach] events are illegal inside any ~ilc[encapsulate] event with a
non-empty ~il[signature] unless they are ~il[local] to the ~ilc[encapsulate].
We next discuss a restriction based on a notion of a function symbol
syntactically supporting an event. Function symbol ~c[f] is ~em[ancestral]
in event ~c[E] if either ~c[f] occurs in ~c[E], or (recursively) ~c[f] occurs
in an event ~c[E'] that introduces some function symbol ~c[g] that is
ancestral in ~c[E]. We require that no function symbol ancestral in the
formula of a ~ilc[defaxiom] event may have an attachment. Theoretical
reasons are discussed in comments in the ACL2 source code, but here we give a
little example showing the need for some such restriction: without it, we
show how to prove ~c[nil]!
~bv[]
(defn g1 () 1)
(defn g2 () 2)
(defstub f1 () t)
(defstub f2 () t)
(defund p (x)
(declare (ignore x))
t)
(defevaluator evl evl-list
((p x)))
(defaxiom f1-is-f2
(equal (f1) (f2)))
(defun meta-fn (x)
(cond ((equal (f1) (f2))
x)
(t *nil*)))
(defthm bad-meta-rule
(equal (evl x a)
(evl (meta-fn x) a))
:rule-classes ((:meta :trigger-fns (p))))
(defattach f1 g1)
(defattach f2 g2)
(defthm contradiction
nil
:hints ((\"Goal\" :use ((:instance (:theorem (not (p x)))
(x t)))))
:rule-classes nil)
~ev[]
To see all attachments: ~c[(all-attachments (w state))]. (Note that
attachments introduced with a non-~c[nil] value of ~c[:skip-checks] will be
omitted from this list.)
Next we discuss the ~c[:ATTACH] keyword. There is rarely if ever a reason to
specify ~c[:ATTACH T], but the following (admittedly contrived) example shows
why it may be necessary to specify ~c[:ATTACH NIL]. First we introduce three
new function symbols.
~bv[]
(defstub f (x) t)
(defun g (x)
(f x))
(encapsulate ((h (x) t))
(local (defun h (x) (g x)))
(defthm h-prop
(equal (h x) (g x))))
~ev[]
Now suppose we want to attach the function ~ilc[acl2-numberp] to both ~c[f]
and ~c[h].
~bv[]
(defattach (f acl2-numberp) (h acl2-numberp))
~ev[]
Such an attempt fails, because the following constraint is generated but is
not a theorem: ~c[(EQUAL (ACL2-NUMBERP X) (G X))]. Clearly we also need to
attach to ~c[g] as well.
~bv[]
(defattach (f acl2-numberp) (h acl2-numberp) (g acl2-numberp))
~ev[]
But this fails for a different reason, as explained by the error message:
~bv[]
ACL2 Error in ( DEFATTACH (F ACL2-NUMBERP) ...): It is illegal to
attach to function symbol G, because it was introduced with DEFUN.
See :DOC defattach.
~ev[]
That is: logically, we need to attach ~c[acl2-numberp] to ~c[g], but we
cannot actually attach to ~c[g] because it was introduced with ~ilc[defun],
not with ~ilc[encapsulate]. So we specify ~c[:ATTACH NIL] for the attachment
to ~c[g], saying that no actual attachment should be made to the code for
~c[g], even though for logical purposes we should consider that ~c[g] has
been given the indicated attachment.
~bv[]
(defattach (f acl2-numberp) (h acl2-numberp) (g acl2-numberp :attach nil))
~ev[]
Finally, we can check that ~c[f], ~c[g], and ~c[h] execute as expected.
~bv[]
ACL2 !>(assert-event (and (f 3)
(not (f t))
(g 3)
(not (g t))
(h 3)
(not (h t))))
:PASSED
ACL2 !>
~ev[]
We conclude with an example promised above, showing why it is necessary in
general to unattach all function symbols in an existing attachment nest when
unattaching any one of those function symbols. Consider the following
example.
~bv[]
(defstub f1 () t)
(encapsulate ((f2 () t))
(local (defun f2 () (f1)))
(defthm f2=f1 (equal (f2) (f1))))
(encapsulate ((f3 () t))
(local (defun f3 () (f1)))
(defthm f3=f1 (equal (f3) (f1))))
(defun four () (declare (xargs :guard t)) 4)
(defun five () (declare (xargs :guard t)) 5)
(defattach (f1 four) (f2 four))
(defattach (f1 five) (f3 five))
~ev[]
The second ~c[defattach] replaces erases the existing attachment pair
~c[<f1,four>] before installing the new attachment pairs ~c[<f1,five>] and
~c[<f3,five>]. After the second defattach, both ~c[(f1)] and ~c[(f3)]
evaluate to 5. Now suppose that the attachment pair ~c[<f2,four>] were not
erased. Then we would have ~c[(f1)] evaluating to 5 and ~c[(f2)] evaluating
to 4, contradicting the constraint ~c[f2=f1]. The evaluation theory would
thus be inconsistent, and at a more concrete level, the user might well be
surprised by evaluation results if the code were written with the assumption
specified in the constraint ~c[f2=f1].~/"
(list 'defattach-fn
(list 'quote args)
'state
(list 'quote event-form)))
; Now we define defattach in raw Lisp.
#-acl2-loop-only
(progn
(defun attachment-symbol (x)
; Here we assume that the only use of the symbol-value of *1*f is to indicate
; that this value is the function attached to f.
(*1*-symbol x))
(defun set-attachment-symbol-form (fn val)
`(defparameter ,(attachment-symbol fn) ',val))
(defmacro defattach (&rest args)
(cond
((symbolp (car args))
(set-attachment-symbol-form (car args) (cadr args)))
(t
(let (ans)
(dolist (arg args)
(cond ((keywordp arg)
(return))
(t (push (set-attachment-symbol-form
(car arg)
(cond ((let ((tail (assoc-keyword :attach
(cddr arg))))
(and tail (null (cadr tail))))
nil)
(t (cadr arg))))
ans))))
(cons 'progn ans)))))
)
; Note: Important Boot-Strapping Invariants
; If any of the above forms are modified, be sure to change the
; setting of *initial-event-defmacros* as described there. Each of
; the defmacros above (except those excused) is of a rigid form
; recognized by the function primordial-event-macro-and-fn. For
; example, there are no declarations and the bodies used above are
; simple enough to be translatable by boot-translate before the world
; is created.
; More subtly, except for local, each macro generates a call of a
; corresponding -fn function on some actuals computed from the macros
; args: THE FORMALS OF THE -fn FUNCTIONS CAN BE DETERMINED BY LOOKING
; AT THE ACTUALS! For example, we can see that the 'formals for
; 'in-theory-fn, whenever it gets defined, will be '(expr state doc
; event-form). The function primordial-event-macro-and-fn1 computes
; the formals from the actuals. Don't change the expressions above,
; don't even change the formals to the defmacros, and don't change the
; formals of the -fns unless you understand this!
; End of *initial-event-defmacros* discussion.
; GETPROP - an efficient applicative property list replacement.
; We provide here a property list facility with applicative
; semantics. The two primitive operations are putprop and
; getprop. A ``world-alist'' is a list of ``triples'' of the
; form (symbol key . val). Putprop conses triples on to a given
; world-alist. Getprop take a symbol and key and looks for the
; first member of the given world-alist with the given symbol and
; key, returning the corresponding val, or a default if no such
; triple is found.
; In the ``usual case'', the cost of a getprop will be no more than
; the cost of a couple of get's in Common Lisp, rather than a search
; linear in the length of the given world-alist. The efficiency is
; based upon the strange ``world-name'' extra argument of getprop.
; Formally, world-name is to be regarded as a parameter of getprop
; that is simply ignored. Practically speaking, getprop uses this
; hint to check whether the given world-alist is in fact currently and
; validly represented by a set of properties on property lists. To do
; this, getprop checks that as the 'acl2-world-pair property of the
; given world-name, there is a pair whose car is (eq) the given
; world-alist. If this is the case, then the cdr of the pair, say
; world-key, is a gensymed symbol. The world-key property of any
; given symbol, symb, is an alist containing exactly those pairs (key
; . val) such that (symb key . val) is in world-alist. That is, to
; find the key property of symb it is sufficient to assoc-eq for key
; up the alist obtained by (get symb world-key).
; For a more thorough description of the issues concerning
; installation of worlds, see the discussion in interface-raw.lisp,
; under the section heading EXTENDING AND RETRACTING PROPERTY LIST
; WORLDS.
; To use getprop and putprop effectively, one must think clearly in
; terms of the usual order of Lisp evaluation. Getprop is only fast
; on worlds that have been ``installed'' as by extend-world or
; retract-world.
(deflabel worldp) ; reserving this symbol for later use
(defun plist-worldp (alist)
(declare (xargs :guard t))
; The following shortcut speeds up this function's execution. It seems
; slightly risky: if we can somehow get the installed world to be eq to a world
; in a theorem (say, by honsing both), and if that world does not actually
; satisfy the logical definition of plist-worldp, then we could prove nil.
; Initially we included community book books/centaur/doc, creating a world of
; length 359,153 (in a post-4.3 development version), and it took about 1/50
; second to do this check without the above shortcut; so performance didn't
; seem too critical an issue here. However, the regression slowed down
; significantly without the shortcut. Here are statistics from HONS
; regressions using identical books, on the same unloaded machine.
; With shortcut:
; 15634.000u 1057.650s 53:22.39 521.2% 0+0k 352216+1367056io 1789pf+0w
; Without shortcut:
; 16414.440u 1048.600s 57:20.82 507.5% 0+0k 354128+1367184io 1696pf+0w
; So we have decided to keep the shortcut, since we really do expect this
; simple property to hold of any ACL2 world.
#-acl2-loop-only
(cond ((eq alist (w *the-live-state*))
(return-from plist-worldp t)))
(cond ((atom alist) (eq alist nil))
(t
(and (consp (car alist))
(symbolp (car (car alist)))
(consp (cdr (car alist)))
(symbolp (cadr (car alist)))
(plist-worldp (cdr alist))))))
(defthm plist-worldp-forward-to-assoc-eq-equal-alistp
(implies (plist-worldp x)
(assoc-eq-equal-alistp x))
:rule-classes :forward-chaining)
(defdoc getprop
":Doc-Section ACL2::ACL2-built-ins
access fast property lists~/
~bv[]
General form:
(getprop symb key default world-name world-alist)
~ev[]
See community book ~c[books/misc/getprop.lisp] for an example that
illustrates the use of ACL2 utilities ~ilc[getprop] and ~c[putprop] to take
advantage of under-the-hood Lisp (hashed) property lists.
To see the ACL2 definition of this function, ~pl[pf].~/~/")
(defun putprop (symb key value world-alist)
":Doc-Section ACL2::ACL2-built-ins
update fast property lists~/
~bv[]
General form:
(putprop symbol key value world-alist)
~ev[]
See community book ~c[books/misc/getprop.lisp] for an example that
illustrates the use of ACL2 utilities ~ilc[getprop] and ~c[putprop] to take
advantage of under-the-hood Lisp (hashed) property lists.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard (and (symbolp symb)
(symbolp key)
(plist-worldp world-alist))))
(cons (cons symb (cons key value)) world-alist))
; Occasionally you will find comments of the form:
; On Metering
; Occasionally in this code you will see forms protected by
; #+acl2-metering. If you (push :acl2-metering *features*) and then
; recompile the affected forms, you will get some additional printing
; that indicates random performance meters we have found useful.
; The following two definitions support a particularly common style of
; metering we do. Suppose you have a typical tail recursive fn for
; exploring a big list
; (defun scan (lst)
; (cond (test
; finish)
; (t
; (scan (cdr lst)))))
; We often meter it with:
; (defun scan (lst)
; (cond (test
; #+acl2-metering (meter-maid 'scan 100)
; finish)
; (t
; #+acl2-metering (setq meter-maid-cnt (1+ meter-maid-cnt))
; (scan (cdr lst)))))
; Where (meter-maid 'scan 100) tests meter-maid-cnt against 100 and if
; it is bigger prints a msg about 'scan. In any case, meter-maid
; resets cnt to 0. This style of metering is not very elegant because
; meter-maid-cnt ought to be initialized cleanly to 0 "at the top" and
; protected against error aborts (i.e., by binding it). But to do
; that we'd have to recode many of our tail recursive functions so
; they had preludes and lets. With our meter-maid style, we can just
; insert the metering text into the existing text and preserve the
; tail recursion and lack of initialization. Not often in metered
; runs do we abort (leaving meter-maid-cnt artificially high) and that
; results (at worst) in a spurious report on the next metered call.
#-acl2-loop-only
(defparameter meter-maid-cnt 0)
#-acl2-loop-only
(defun meter-maid (fn maximum &optional arg1 arg2 cnt)
(cond ((> (or cnt meter-maid-cnt) maximum)
(cond
(arg2
(format t "~%Meter: ~s on ~s and ~s used ~s cycles.~%"
fn arg1 arg2 (or cnt meter-maid-cnt)))
(arg1
(format t "~%Meter: ~s on ~s used ~s cycles.~%"
fn arg1 (or cnt meter-maid-cnt)))
(t (format t "~%Meter: ~s used ~s cycles.~%"
fn (or cnt meter-maid-cnt))))))
(setq meter-maid-cnt 0))
; If we ever find this value stored under a property, then getprop acts as
; though no value was found. Thus, this value had better never be stored as a
; "legitimate" value of the property. To belabor this point: we have here a
; fundamental difference between our getprop and Lisp's get.
(defconst *acl2-property-unbound* :acl2-property-unbound)
(defun getprop-default (symb key default)
(declare (xargs :guard t))
(prog2$
(and (consp default)
(eq (car default) :error)
(consp (cdr default))
(stringp (cadr default))
(null (cddr default))
(hard-error 'getprop
"No property was found under symbol ~x0 for key ~x1. ~@2"
(list (cons #\0 symb)
(cons #\1 key)
(cons #\2 (cadr default)))))
default))
#-acl2-loop-only
(defun-one-output sgetprop1 (symb key default world-alist inst-world-alist
inst-gensym)
(do ((tl world-alist (cdr tl)))
((null tl)
(getprop-default symb key default))
(cond ((eq tl inst-world-alist)
(return-from
sgetprop1
(let ((temp (assoc-eq key (get symb inst-gensym))))
(cond (temp
(cond
((cdr temp)
(let ((ans (car (cdr temp))))
(if (eq ans *acl2-property-unbound*)
(getprop-default symb key default)
ans)))
(t (getprop-default symb key default))))
(t (getprop-default symb key default))))))
((and (eq symb (caar tl))
(eq key (cadar tl)))
(return-from
sgetprop1
(let ((ans (cddar tl)))
(if (eq ans *acl2-property-unbound*)
(getprop-default symb key default)
ans)))))))
; The following code, not generally loaded, is used to augment fgetprop to
; determine the frequency with which we access properties. See the
; fgetprop-stats comment in fgetprop for a description of how to use
; this code.
; (defvar fgetprop-stats nil)
;
; (defvar analyzed-fgetprop-stats nil)
;
; (compile
; (defun update-fgetprop-stats (sym key)
; (let* ((sym-entry (assoc sym fgetprop-stats :test #'eq))
; (key-entry (assoc key (cdr sym-entry) :test #'eq)))
; (cond (key-entry (setf (cdr key-entry) (1+ (cdr key-entry))))
; (sym-entry (setf (cdr sym-entry) (cons (cons key 1) (cdr sym-entry))))
; (t (setq fgetprop-stats
; (cons (cons sym (list (cons key 1))) fgetprop-stats)))))))
;
; (compile
; (defun analyze-fgetprop-stats nil
; (format t "Properties accessed and access counts:~%")
; (loop
; for x in (sort (let ((prop-alist nil))
; (loop
; for pair in fgetprop-stats
; do
; (loop
; for x in (cdr pair)
; do
; (let ((temp (assoc (car x) prop-alist :test #'eq)))
; (cond (temp (setf (cdr temp) (+ (cdr temp) (cdr x))))
; (t (setq prop-alist
; (cons (cons (car x) (cdr x))
; prop-alist)))))))
; prop-alist)
; #'(lambda (x y) (> (cdr x) (cdr y))))
; do
; (format t "~A~50T~9D~%" (car x) (cdr x)))
; (terpri t)
; (setq analyzed-fgetprop-stats
; (sort
; (loop
; for pair in fgetprop-stats
; collect
; (let* ((other-cutoff 1)
; (others
; (loop
; for x in (cdr pair) when (<= (cdr x) other-cutoff)
; sum (cdr x))))
; (list* (car pair)
; (loop for x in (cdr pair) sum (cdr x))
; (let ((temp
; (sort (loop
; for x in (cdr pair)
; when
; (or (= others 0)
; (= others other-cutoff) ;i.e., just 1 other
; (> (cdr x) other-cutoff))
; collect x)
; #'(lambda (x y)(> (cdr x) (cdr y))))))
; (if (> others other-cutoff)
; (append temp
; (list (cons "all other" others)))
; temp)))))
; #'(lambda (x y) (> (cadr x) (cadr y)))))
; (format t "Analyzed fgetprop-stats~%")
; (loop
; for trip in analyzed-fgetprop-stats
; do
; (format t "~S~45T~9D~%" (car trip) (cadr trip))
; (loop
; for pair in (cddr trip)
; do
; (format t " ~A~50T~9D~%" (car pair) (cdr pair))))
; t))
; Note: In versions before V2.2 the following defvar was in
; interface-raw.lisp. But it is used earlier than that in the
; initialization process.
(defun fgetprop (symb key default world-alist)
; This is getprop's meaning when we know the world name is 'current-acl2-world.
; The invariant maintained for the 'current-acl2-world is the same as that
; maintained for other world names with the additional fact that the installed
; alist itself is the value of the state global variable 'current-acl2-world,
; whose raw lisp counterpart is ACL2_GLOBAL_ACL2::CURRENT-ACL2-WORLD, and the
; gensym under which the property alist is stored for each symbol is also kept
; in the raw lisp global *current-acl2-world-key*. Put another way, (get
; 'current-acl2-world 'acl2-world-pair) returns a pair equal to (cons
; ACL2_GLOBAL_ACL2::CURRENT-ACL2-WORLD *current-acl2-world-key*).
(declare (xargs :guard (and (symbolp symb)
(symbolp key)
(plist-worldp world-alist))))
#+acl2-loop-only
(cond ((endp world-alist) default)
((and (eq symb (caar world-alist))
(eq key (cadar world-alist)))
(let ((ans (cddar world-alist)))
(if (eq ans *acl2-property-unbound*)
default
ans)))
(t (fgetprop symb key default (cdr world-alist))))
; The following two lines are commented out. They collect the fgetprop-stats.
; Those stats will tell you, for a given run of the system, which properties
; are accessed, the frequency with which they are accessed, and a breakdown by
; symbol of all the properties accessed. If you wish to collect the
; fgetprop-stats, then load the code above into raw lisp, remove the two
; semi-colons below, reload this defun of fgetprop, and run some experiments.
; Then use (analyze-fgetprop-stats) to print out the results. It is generally
; advisable to compile all the defuns just loaded.
; #-acl2-loop-only
; (update-fgetprop-stats symb key)
#-acl2-loop-only
(cond
((eq world-alist
(symbol-value 'ACL2_GLOBAL_ACL2::CURRENT-ACL2-WORLD))
(let ((temp
(assoc-eq key
(get symb *current-acl2-world-key*))))
(cond (temp
(cond
((cdr temp)
(let ((ans (car (cdr temp))))
(if (eq ans *acl2-property-unbound*)
(getprop-default symb key default)
ans)))
(t (getprop-default symb key default))))
(t (getprop-default symb key default)))))
(t (sgetprop1 symb key default world-alist
(symbol-value 'ACL2_GLOBAL_ACL2::CURRENT-ACL2-WORLD)
*current-acl2-world-key*))))
(defun sgetprop (symb key default world-name world-alist)
; This is getprop's meaning when we don't know the world-name.
(declare (xargs :guard (and (symbolp symb)
(symbolp key)
(symbolp world-name)
(plist-worldp world-alist))))
; Note that if default has the form '(:error string) where string is a
; stringp, then in raw Lisp we execute a hard error with context
; 'getprop and string string. Otherwise (and logically in any case),
; default is what we return when there is no key property of symb.
#+acl2-loop-only
(cond ((endp world-alist) default)
((and (eq symb (caar world-alist))
(eq key (cadar world-alist)))
(let ((ans (cddar world-alist)))
(if (eq ans *acl2-property-unbound*)
default
ans)))
(t (sgetprop symb key default world-name (cdr world-alist))))
#-acl2-loop-only
(let ((pair (get world-name 'acl2-world-pair)))
(cond (pair (sgetprop1 symb key default world-alist (car pair) (cdr pair)))
(t (do ((tl world-alist (cdr tl)))
((null tl)
(getprop-default symb key default))
(cond ((and (eq symb (caar tl))
(eq key (cadar tl)))
(return-from
sgetprop
(let ((ans (cddar tl)))
(if (eq ans *acl2-property-unbound*)
(getprop-default symb key default)
ans))))))))))
(defun ordered-symbol-alistp (x)
; An ordered-symbol-alist is an alist whose keys are symbols which are
; in the symbol-< order.
(declare (xargs :guard t))
(cond ((atom x) (null x))
((atom (car x)) nil)
(t (and (symbolp (caar x))
(or (atom (cdr x))
(and (consp (cadr x))
(symbolp (caadr x))
(symbol-< (caar x)
(caadr x))))
(ordered-symbol-alistp (cdr x))))))
(in-theory (disable symbol-<))
(defthm ordered-symbol-alistp-forward-to-symbol-alistp
(implies (ordered-symbol-alistp x)
(symbol-alistp x))
:rule-classes :forward-chaining)
(defun add-pair (key value l)
(declare (xargs :guard (and (symbolp key)
(ordered-symbol-alistp l))))
(cond ((endp l)
(list (cons key value)))
((eq key (caar l))
(cons (cons key value) (cdr l)))
((symbol-< key (caar l))
(cons (cons key value) l))
(t (cons (car l)
(add-pair key value (cdr l))))))
; Delete-assoc
(defun delete-assoc-eq-exec (key alist)
(declare (xargs :guard (if (symbolp key)
(alistp alist)
(symbol-alistp alist))))
(cond ((endp alist) nil)
((eq key (caar alist)) (cdr alist))
(t (cons (car alist) (delete-assoc-eq-exec key (cdr alist))))))
(defun delete-assoc-eql-exec (key alist)
(declare (xargs :guard (if (eqlablep key)
(alistp alist)
(eqlable-alistp alist))))
(cond ((endp alist) nil)
((eql key (caar alist)) (cdr alist))
(t (cons (car alist) (delete-assoc-eql-exec key (cdr alist))))))
(defun delete-assoc-equal (key alist)
(declare (xargs :guard (alistp alist)))
(cond ((endp alist) nil)
((equal key (caar alist)) (cdr alist))
(t (cons (car alist) (delete-assoc-equal key (cdr alist))))))
(defmacro delete-assoc-eq (key lst)
`(delete-assoc ,key ,lst :test 'eq))
(defthm delete-assoc-eq-exec-is-delete-assoc-equal
(equal (delete-assoc-eq-exec key lst)
(delete-assoc-equal key lst)))
(defthm delete-assoc-eql-exec-is-delete-assoc-equal
(equal (delete-assoc-eql-exec key lst)
(delete-assoc-equal key lst)))
(defmacro delete-assoc (key alist &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
remove the first pair from an association list for a given key~/
~bv[]
General Forms:
(delete-assoc key alist)
(delete-assoc key alist :test 'eql) ; same as above (eql as equality test)
(delete-assoc key alist :test 'eq) ; same, but eq is equality test
(delete-assoc key alist :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Delete-assoc key alist)] returns an alist that is the same as the list
~c[alist], except that the first pair in ~c[alist] with a ~ilc[car] of
~c[key] is deleted, if there is one; otherwise ~c[alist] is returned. Note
that the order of the elements of ~c[alist] is unchanged (though one may be
deleted).~/
The ~il[guard] for a call of ~c[delete-assoc] depends on the test. In all
cases, the second argument must satisfy ~ilc[alistp]. If the test is
~ilc[eql], then either the first argument must be suitable for ~ilc[eql]
(~pl[eqlablep]) or the second argument must satisfy ~ilc[eqlable-alistp]. If
the test is ~ilc[eq], then either the first argument must be a symbol or the
second argument must satisfy ~ilc[symbol-alistp].
~l[equality-variants] for a discussion of the relation between
~c[delete-assoc] and its variants:
~bq[]
~c[(delete-assoc-eq key alist)] is equivalent to
~c[(delete-assoc key alist :test 'eq)];
~c[(delete-assoc-equal key alist)] is equivalent to
~c[(delete-assoc key alist :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[delete-assoc-equal].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((key ,key) (alist ,alist))
:logic (delete-assoc-equal key alist)
:exec (delete-assoc-eq-exec key alist)))
((equal test ''eql)
`(let-mbe ((key ,key) (alist ,alist))
:logic (delete-assoc-equal key alist)
:exec (delete-assoc-eql-exec key alist)))
(t ; (equal test 'equal)
`(delete-assoc-equal ,key ,alist))))
(defun getprops1 (alist)
; Each element of alist is of the form (key val1 ... valk), i.e., key is bound
; to a stack of vali's. We transform each element to (key . val1), i.e., each
; key is bound to the top-most vali. An empty stack or a top value of
; *acl2-property-unbound* means there is no binding for key.
(declare (xargs :guard (true-list-listp alist)))
(cond ((endp alist) nil)
((or (null (cdar alist))
(eq (car (cdar alist)) *acl2-property-unbound*))
(getprops1 (cdr alist)))
(t (cons (cons (caar alist) (cadar alist))
(getprops1 (cdr alist))))))
(defun getprops (symb world-name world-alist)
; returns all of the properties of symb in world-alist, as a list of
; key-value pairs, sorted according to ordered-symbol-alistp. We
; respect the *acl2-property-unbound* convention.
(declare (xargs :guard (and (symbolp symb)
(symbolp world-name)
(plist-worldp world-alist))
:mode :program))
#+acl2-metering
(setq meter-maid-cnt (1+ meter-maid-cnt))
(cond #-acl2-loop-only
((eq world-alist (car (get world-name 'acl2-world-pair)))
#+acl2-metering
(meter-maid 'getprops 100 symb)
(sort (getprops1 (get symb (cdr (get world-name 'acl2-world-pair))))
#'(lambda (x y)
(symbol-< (car x) (car y)))))
((endp world-alist)
#+acl2-metering
(meter-maid 'getprops 100 symb)
nil)
((eq symb (caar world-alist))
(let ((alist (getprops symb world-name (cdr world-alist))))
(if (eq (cddar world-alist) *acl2-property-unbound*)
(if (assoc-eq (cadar world-alist) alist)
(delete-assoc-eq (cadar world-alist) alist)
alist)
(add-pair (cadar world-alist)
(cddar world-alist)
alist))))
(t (getprops symb world-name (cdr world-alist)))))
(verify-termination-boot-strap getprops (declare (xargs :mode :logic
:verify-guards nil)))
; We don't verify the guards for getprops until we have LOCAL, which really
; means, until LOCAL has STATE-GLOBAL-LET*.
; We disable the following function in order to protect people from getting
; burned by string<-l.
(in-theory (disable string<))
(defthm equal-char-code
(implies (and (characterp x)
(characterp y))
(implies (equal (char-code x) (char-code y))
(equal x y)))
:rule-classes nil
:hints (("Goal" :use
((:instance
code-char-char-code-is-identity
(c x))
(:instance
code-char-char-code-is-identity
(c y))))))
(defun has-propsp1 (alist exceptions known-unbound)
; This function is only called from raw lisp code in has-propsp. Alist is the
; alist of ACL2 properties stored on the property list of some symbol. As
; such, each element of alist is of the form (prop val1 val2 ... valk) where
; val1 is the most recently stored value of the property prop for that symbol.
; We here check that each val1 is *acl2-property-unbound* (unless prop is among
; exceptions or known-unbound).
(declare (xargs :guard (and (assoc-eq-equal-alistp alist)
(true-listp exceptions)
(true-listp known-unbound))))
(cond ((endp alist) nil)
((or (null (cdar alist))
(eq (cadar alist) *acl2-property-unbound*)
(member-eq (caar alist) exceptions)
(member-eq (caar alist) known-unbound))
(has-propsp1 (cdr alist) exceptions known-unbound))
(t t)))
(defun has-propsp (symb exceptions world-name world-alist known-unbound)
; We return t iff symb has properties other than those listed in exceptions.
(declare (xargs :guard (and (symbolp symb)
(symbolp world-name)
(plist-worldp world-alist)
(true-listp exceptions)
(true-listp known-unbound))))
#+acl2-metering
(setq meter-maid-cnt (1+ meter-maid-cnt))
(cond #-acl2-loop-only
((eq world-alist (car (get world-name 'acl2-world-pair)))
#+acl2-metering
(meter-maid 'has-propsp 100 symb)
(has-propsp1 (get symb (cdr (get world-name 'acl2-world-pair)))
exceptions
known-unbound))
((endp world-alist)
#+acl2-metering
(meter-maid 'has-propsp 100 symb)
nil)
((or (not (eq symb (caar world-alist)))
(member-eq (cadar world-alist) exceptions)
(member-eq (cadar world-alist) known-unbound))
(has-propsp symb exceptions world-name (cdr world-alist)
known-unbound))
((eq (cddar world-alist) *acl2-property-unbound*)
(has-propsp symb exceptions world-name (cdr world-alist)
(cons (cadar world-alist) known-unbound)))
(t t)))
(defun extend-world (name wrld)
; Logically speaking, this function is a no-op that returns wrld.
; Practically speaking, it changes the Lisp property list
; state so that future getprops on name and wrld will be fast.
; However, wrld must be an extension of the current world installed
; under name, or else a hard error occurs. Finally, if name is
; 'current-acl2-world, then no changes are made, since we do not want
; the user to smash our world.
#+acl2-loop-only
(declare (xargs :guard t)
(ignore name))
#+acl2-loop-only
wrld
#-acl2-loop-only
(cond ((eq name 'current-acl2-world)
wrld)
(t (extend-world1 name wrld))))
(defun retract-world (name wrld)
; Logically speaking, this function is a no-op that returns wrld.
; Practically speaking, it changes the Lisp property list
; state so that future getprops on name and wrld will be fast.
; However, wrld must be a retraction of the current world installed
; under name, or else a hard error occurs. Finally, if name is
; 'current-acl2-world, then no changes are made, since we do not want
; the user to smash our world.
#+acl2-loop-only
(declare (xargs :guard t)
(ignore name))
#+acl2-loop-only
wrld
#-acl2-loop-only
(cond ((eq name 'current-acl2-world)
wrld)
(t (retract-world1 name wrld))))
(defun global-val (var wrld)
; If you are tempted to access a global variable value with getprop
; directly, so you can specify your own default value, it suggests
; that you have not initialized the global variable. See the
; discussion in primordial-world-globals. Follow the discipline of
; always initializing and always accessing with global-val.
(declare (xargs :guard (and (symbolp var)
(plist-worldp wrld))))
(getprop var 'global-value
'(:error "GLOBAL-VAL didn't find a value. Initialize this ~
symbol in PRIMORDIAL-WORLD-GLOBALS.")
'current-acl2-world wrld))
; Declarations.
(defun function-symbolp (sym wrld)
; Sym must be a symbolp. We return t if sym is a function symbol and
; nil otherwise. We exploit the fact that every function symbol has a
; formals property. Of course, the property may be NIL so when we
; seek it we default to t so we can detect the absence of the
; property. Of course, if someone were to putprop 'formals t we would
; therefore claim the symbol weren't a function-symbolp. This fact is
; exploited when we prepare the world for the redefinition of a
; symbol. If for some reason you change the default, you must change
; it there too. It would be a good idea to search for 'formals t.
(declare (xargs :guard (and (symbolp sym)
(plist-worldp wrld))))
(not (eq (getprop sym 'formals t 'current-acl2-world wrld) t)))
; We define translate-declaration-to-guard and accompanying functions in
; program mode, including the-fn, simply so that they take up a little less
; space in the image by avoiding the need to store 'def-bodies and
; 'unnormalized-body properties.
(defun translate-declaration-to-guard/integer (lo var hi)
(declare (xargs :guard t
:mode :program))
(let ((lower-bound
(cond ((integerp lo) lo)
((eq lo '*) '*)
((and (consp lo)
(integerp (car lo))
(null (cdr lo)))
(1+ (car lo)))
(t nil)))
(upper-bound
(cond ((integerp hi) hi)
((eq hi '*) '*)
((and (consp hi)
(integerp (car hi))
(null (cdr hi)))
(1- (car hi)))
(t nil))))
(cond ((and upper-bound lower-bound)
(cond ((eq lower-bound '*)
(cond ((eq upper-bound '*)
(list 'integerp var))
(t (list 'and
(list 'integerp var)
(list '<= var upper-bound)))))
(t (cond ((eq upper-bound '*)
(list 'and
(list 'integerp var)
(list '<= lower-bound var)))
(t
; It is tempting to use integer-range-p below. However, integer-range-p was
; introduced in Version_2.7 in support of signed-byte-p and unsigned-byte-p,
; whose definitions were kept similar to those that had been in the ihs library
; for some time. Hence, integer-range-p is defined in terms of a strict <
; comparison to the upper integer, which does not fit well with our current
; needs. (It feels wrong to use (< var (1+ upper-bound)), even though not
; unsound.)
(list 'and
(list 'integerp var)
(list '<= lower-bound var)
(list '<= var upper-bound)))))))
(t nil))))
(defun weak-satisfies-type-spec-p (x)
(declare (xargs :guard t))
(and (consp x)
(eq (car x) 'satisfies)
(true-listp x)
(equal (length x) 2)
(symbolp (cadr x))))
;; RAG - I added entries for 'real and 'complex. Guards with 'complex
;; have CHANGED SEMANTICS! Yikes! Before, the moniker 'complex had
;; the semantics of complex-rationalp. Now, it has the semantics of
;; complexp. I added a new declaration, 'complex-rational, to stand
;; for the old semantics of 'complex.
(defun translate-declaration-to-guard1 (x var wrld)
; Wrld is either an ACL2 logical world or a symbol; see
; translate-declaration-to-guard.
(declare (xargs :guard (or (symbolp wrld)
(plist-worldp wrld))
:mode :program))
(cond ((or (eq x 'integer)
(eq x 'signed-byte))
(list 'integerp var))
((and (consp x)
(eq (car x) 'integer)
(true-listp x)
(equal (length x) 3))
(translate-declaration-to-guard/integer (cadr x) var (caddr x)))
((eq x 'rational) (list 'rationalp var))
((eq x 'real) (list 'real/rationalp var))
((eq x 'complex) (list 'complex/complex-rationalp var))
((and (consp x)
(eq (car x) 'rational)
(true-listp x)
(equal (length x) 3))
(let ((lower-bound
(cond ((rationalp (cadr x)) (cadr x))
((eq (cadr x) '*) '*)
((and (consp (cadr x))
(rationalp (car (cadr x)))
(null (cdr (cadr x))))
(list (car (cadr x))))
(t nil)))
(upper-bound
(cond ((rationalp (caddr x)) (caddr x))
((eq (caddr x) '*) '*)
((and (consp (caddr x))
(rationalp (car (caddr x)))
(null (cdr (caddr x))))
(list (car (caddr x))))
(t nil))))
(cond
((and upper-bound lower-bound)
(cond
((eq lower-bound '*)
(cond
((eq upper-bound '*)
(list 'rationalp var))
(t (list 'and
(list 'rationalp var)
(cond ((consp upper-bound)
(list '< var (car upper-bound)))
(t (list '<= var upper-bound)))))))
(t (cond
((eq upper-bound '*)
(list 'and
(list 'rationalp var)
(cond ((consp lower-bound)
(list '< (car lower-bound) var))
(t (list '<= lower-bound var)))))
(t (list 'and
(list 'rationalp var)
(cond ((consp lower-bound)
(list '< (car lower-bound) var))
(t (list '<= lower-bound var)))
(cond ((consp upper-bound)
(list '> (car upper-bound) var))
(t (list '<= var upper-bound)))))))))
(t nil))))
((and (consp x)
(eq (car x) 'real)
(true-listp x)
(equal (length x) 3))
(let ((lower-bound
(cond ((real/rationalp (cadr x)) (cadr x))
((eq (cadr x) '*) '*)
((and (consp (cadr x))
(real/rationalp (car (cadr x)))
(null (cdr (cadr x))))
(list (car (cadr x))))
(t nil)))
(upper-bound
(cond ((real/rationalp (caddr x)) (caddr x))
((eq (caddr x) '*) '*)
((and (consp (caddr x))
(real/rationalp (car (caddr x)))
(null (cdr (caddr x))))
(list (car (caddr x))))
(t nil))))
(cond
((and upper-bound lower-bound)
(cond
((eq lower-bound '*)
(cond
((eq upper-bound '*)
(list 'real/rationalp var))
(t (list 'and
(list 'real/rationalp var)
(cond ((consp upper-bound)
(list '< var (car upper-bound)))
(t (list '<= var upper-bound)))))))
(t (cond
((eq upper-bound '*)
(list 'and
(list 'real/rationalp var)
(cond ((consp lower-bound)
(list '< (car lower-bound) var))
(t (list '<= lower-bound var)))))
(t (list 'and
(list 'real/rationalp var)
(cond ((consp lower-bound)
(list '< (car lower-bound) var))
(t (list '<= lower-bound var)))
(cond ((consp upper-bound)
(list '> (car upper-bound) var))
(t (list '<= var upper-bound)))))))))
(t nil))))
((eq x 'bit) (list 'or
(list 'equal var 1)
(list 'equal var 0)))
((and (consp x)
(eq (car x) 'mod)
(true-listp x)
(equal (length x) 2)
(integerp (cadr x)))
(translate-declaration-to-guard/integer 0 var (1- (cadr x))))
((and (consp x)
(eq (car x) 'signed-byte)
(true-listp x)
(equal (length x) 2)
(integerp (cadr x))
(> (cadr x) 0))
(list 'signed-byte-p (cadr x) var))
((eq x 'unsigned-byte)
(translate-declaration-to-guard/integer 0 var '*))
((and (consp x)
(eq (car x) 'unsigned-byte)
(true-listp x)
(equal (length x) 2)
(integerp (cadr x))
(> (cadr x) 0))
(list 'unsigned-byte-p (cadr x) var))
((eq x 'atom) (list 'atom var))
((eq x 'character) (list 'characterp var))
((eq x 'cons) (list 'consp var))
((eq x 'list) (list 'listp var))
((eq x 'nil)
; We return a translated nil here instead of just nil so as not to
; look like we're saying "This is an unrecognized declaration."
''nil)
((eq x 'null) (list 'eq var nil))
((eq x 'ratio) (list 'and
(list 'rationalp var)
(list 'not (list 'integerp var))))
((eq x 'standard-char) (list 'standard-charp var))
((eq x 'string) (list 'stringp var))
((and (consp x)
(eq (car x) 'string)
(true-listp x)
(equal (length x) 2)
(integerp (cadr x))
(>= (cadr x) 0))
(list 'and
(list 'stringp var)
(list 'equal
(list 'length var)
(cadr x))))
((eq x 'symbol) (list 'symbolp var))
((eq x 't) t)
((and (weak-satisfies-type-spec-p x)
(or (symbolp wrld)
(eql (length (getprop (cadr x) 'formals nil
'current-acl2-world wrld))
1)))
(list (cadr x) var))
((and (consp x)
(eq (car x) 'member)
(eqlable-listp (cdr x)))
(list 'member var (list 'quote (cdr x))))
(t nil)))
(mutual-recursion
;; RAG - This was modified to change the moniker 'complex to use
;; complexp instead of complex-rationalp.
(defun translate-declaration-to-guard (x var wrld)
; This function is typically called on the sort of x you might write in a TYPE
; declaration, e.g., (DECLARE (TYPE x var1 ... varn)). Thus, x might be
; something like '(or symbol cons (integer 0 128)) meaning that var is either a
; symbolp, a consp, or an integer in the given range. X is taken as a
; declaration about the variable symbol var and is converted into an
; UNTRANSLATED term about var, except that we return nil if x is seen not to be
; a valid type-spec for ACL2.
; Wrld is an ACL2 logical world or a symbol (typically, nil), the difference
; being that a symbol indicates that we should do a weaker check. This extra
; argument was added after Version_3.0 when Dave Greve pointed out that Common
; Lisp only allows the type-spec (satisfies pred) when pred is a unary function
; symbol, not a macro. Thus, a non-symbol wrld can only strengthen this
; function, i.e., causing it to return nil in more cases.
(declare (xargs :guard (or (symbolp wrld)
(plist-worldp wrld))
:mode :program
; See the comment above translate-declaration-to-guard/integer.
; :measure (acl2-count x)
))
(cond ((atom x) (translate-declaration-to-guard1 x var wrld))
((eq (car x) 'not)
(cond ((and (true-listp x)
(equal (length x) 2))
(let ((term (translate-declaration-to-guard (cadr x)
var
wrld)))
(and term
(list 'not term))))
(t nil)))
((eq (car x) 'and)
(cond ((true-listp x)
(cond ((null (cdr x)) t)
(t (let ((args (translate-declaration-to-guard-lst
(cdr x)
var
wrld)))
(cond (args (cons 'and args))
(t nil))))))
(t nil)))
((eq (car x) 'or)
(cond ((true-listp x)
(cond ((null (cdr x)) ''nil)
(t (let ((args (translate-declaration-to-guard-lst
(cdr x)
var
wrld)))
(cond (args (cons 'or args))
(t nil))))))
(t nil)))
((eq (car x) 'complex)
(cond ((and (consp (cdr x))
(null (cddr x)))
(let ((r (translate-declaration-to-guard (cadr x)
(list 'realpart var)
wrld))
(i (translate-declaration-to-guard (cadr x)
(list 'imagpart var)
wrld)))
(cond ((and r i)
(list 'and
(list 'complex/complex-rationalp var)
r
i))
(t nil))))
(t nil)))
(t (translate-declaration-to-guard1 x var wrld))))
(defun translate-declaration-to-guard-lst (l var wrld)
; Wrld is an ACL2 logical world or a symbol; see
; translate-declaration-to-guard.
(declare (xargs ; :measure (acl2-count l)
:guard (and (true-listp l)
(consp l)
(or (null wrld)
(plist-worldp wrld)))
:mode :program))
(and (consp l)
(let ((frst (translate-declaration-to-guard (car l) var wrld)))
(cond ((null frst)
nil)
((endp (cdr l))
(list frst))
(t (let ((rst (translate-declaration-to-guard-lst
(cdr l)
var
wrld)))
(cond ((null rst) nil)
(t (cons frst rst)))))))))
)
(deflabel declare
; Warning: Keep this in sync with acceptable-dcls-alist.
:doc
":Doc-Section ACL2::Programming
declarations~/
~bv[]
Examples:
(declare (ignore x y z))
(declare (ignorable x y z)
(type integer i j k)
(type (satisfies integerp) m1 m2))
(declare (xargs :guard (and (integerp i)
(<= 0 i))
:guard-hints ((\"Goal\" :use (:instance lemma3
(x (+ i j)))))))~/
General Form:
(declare d1 ... dn)
where, in ACL2, each di is of one of the following forms:
(ignore v1 ... vn) -- where each vi is a variable introduced in
the immediately superior lexical environment. These variables must not
occur free in the scope of the declaration.
(ignorable v1 ... vn) -- where each vi is a variable introduced in
the immediately superior lexical environment. These variables need not
occur free in the scope of the declaration. This declaration can be useful
for inhibiting compiler warnings.
(type type-spec v1 ... vn) -- where each vi is a variable introduced in the
immediately superior lexical environment and type-spec is a type specifier
(as described in the documentation for ~il[type-spec]).
(xargs :key1 val1 ... :keyn valn) -- where the legal values of the keyi's
and their respective vali's are described in the documentation for
~il[xargs]. Xargs declarations are only allowed at the top level of
definitions (defun and defmacro, as shown below).
(optimize ...) -- for example, ~c[(optimize (safety 3))]. This is allowed
only at the top level of ~ilc[defun] forms. See any Common Lisp
documentation for more information.
~ev[]
Declarations in ACL2 may occur only where ~c[dcl] occurs below:
~bv[]
(DEFUN name args doc-string dcl ... dcl body)
(DEFMACRO name args doc-string dcl ... dcl body)
(LET ((v1 t1) ...) dcl ... dcl body)
(MV-LET (v1 ...) term dcl ... dcl body)
(FLET ((name args dcl ... dcl body)
...))
~ev[]
Of course, if a form macroexpands into one of these (as ~ilc[let*] expands
into nested ~ilc[let]s and our ~c[er-let*] expands into nested ~ilc[mv-let]s)
then declarations are permitted as handled by the macros involved.
~c[Declare] is defined in Common Lisp. See any Common Lisp documentation for
more information.~/")
(deflabel type-spec
:doc
":Doc-Section declare
type specifiers in declarations~/
~bv[]
Examples:
The symbol INTEGER in (declare (type INTEGER i j k)) is a type-spec. Other
type-specs supported by ACL2 include RATIONAL, COMPLEX, (INTEGER 0 127),
(RATIONAL 1 *), CHARACTER, and ATOM. ~terminal[Type :more for a complete listing.]
~ev[]~/
The type-specs and their meanings (when applied to the variable ~c[x]
as in ~c[(declare (type type-spec x))] are given below.
~bv[]
type-spec meaning
(AND type1 ... typek) (AND (p1 X) ... (pk X))
where (pj x) is the meaning for type-spec typej
ATOM (ATOM X)
BIT (OR (EQUAL X 1) (EQUAL X 0))
CHARACTER (CHARACTERP X)
COMPLEX (AND (COMPLEX-RATIONALP X)
(RATIONALP (REALPART X))
(RATIONALP (IMAGPART X)))
(COMPLEX RATIONAL) same as COMPLEX, above
(COMPLEX type) (AND (COMPLEX-RATIONALP X)
(p (REALPART X))
(p (IMAGPART X)))
where (p x) is the meaning for type-spec type
CONS (CONSP X)
INTEGER (INTEGERP X)
(INTEGER i j) (AND (INTEGERP X) ; See notes below
(<= i X)
(<= X j))
(MEMBER x1 ... xn) (MEMBER X '(x1 ... xn))
(MOD i) same as (INTEGER 0 i-1)
NIL NIL
(NOT type) (NOT (p X))
where (p x) is the meaning for type-spec type
NULL (EQ X NIL)
(OR type1 ... typek) (OR (p1 X) ... (pk X))
where (pj x) is the meaning for type-spec typej
RATIO (AND (RATIONALP X) (NOT (INTEGERP X)))
RATIONAL (RATIONALP X)
(RATIONAL i j) (AND (RATIONALP X) ; See notes below
(<= i X)
(<= X j))
REAL (RATIONALP X) ; (REALP X) in ACL2(r)
(REAL i j) (AND (RATIONALP X) ; See notes below
(<= i X)
(<= X j))
(SATISFIES pred) (pred X) ; Lisp requires a unary function, not a macro
SIGNED-BYTE (INTEGERP X)
(SIGNED-BYTE i) same as (INTEGER k m) where k=-2^(i-1), m=2^(i-1)-1
STANDARD-CHAR (STANDARD-CHARP X)
STRING (STRINGP X)
(STRING max) (AND (STRINGP X) (EQUAL (LENGTH X) max))
SYMBOL (SYMBOLP X)
T T
UNSIGNED-BYTE same as (INTEGER 0 *)
(UNSIGNED-BYTE i) same as (INTEGER 0 (2^i)-1)
~ev[]
~em[Notes:]
In general, ~c[(integer i j)] means
~bv[]
(AND (INTEGERP X)
(<= i X)
(<= X j)).
~ev[]
But if ~c[i] is the symbol ~c[*], the first inequality is omitted. If ~c[j]
is the symbol ~c[*], the second inequality is omitted. If instead of
being an integer, the second element of the type specification is a
list containing an integer, ~c[(i)], then the first inequality is made
strict. An analogous remark holds for the ~c[(j)] case. The ~c[RATIONAL]
and ~c[REAL] type specifiers are similarly generalized.~/")
(defun the-check (guard x y)
(declare (xargs :guard (or guard (hard-error
nil
"The object ~xa does not satisfy the ~
declaration ~xb."
(list (cons #\a y)
(cons #\b x))))))
(declare (ignore x guard))
y)
(defun the-fn (x y)
(declare (xargs :guard (translate-declaration-to-guard x 'var nil)
; As noted above the definition of translate-declaration-to-guard/integer, we
; are trying to save a little space in the image.
:mode :program))
(let ((guard (translate-declaration-to-guard x 'var nil)))
; Observe that we translate the type expression, x, wrt the variable var and
; then bind var to y below. It is logically equivalent to translate wrt to y
; instead and then generate the if-expression below instead of the let. Why do
; we do that? Because y (or var) is liable to occur many times in the guard
; and if y is a huge expression we blow ourselves away there. A good example
; of this comes up if one translates the expression (the-type-set xxx). When
; we translated the declaration wrt to 'xxx we got an expression in which 'xxx
; occurred five times (using a version of this function present through
; Version_6.1). By generating the let below, it occurs only once.
; Comment from Version_6.1 and before, probably still mostly relevant today,
; although (the-error type val) has been supplanted using the-check.
; We have tried an experiment in which we treat the (symbolp y) case
; specially: translate wrt to y and just lay down the if-expression (if guard
; y (the-error 'x y)). The system was able to do an :init, so this did not
; blow us out of the water -- as we know it does if you so treat all y's.
; But this IF-expressions in the guard are therefore turned loose in the
; surrounding term and contribute to the explosion of normalized bodies. So
; we have backtracked to this, which has the advantage of keeping the
; normalized sizes just linearly bigger.
(cond ((null guard)
(illegal nil
"Illegal-type."
(list (cons #\0 x))))
(t
`(let ((var ,y))
; The following declaration allows a check at translate time that any part
; (satisfies pred) of x is such that pred is a unary function symbol in the
; current world. An optimization in dcl-guardian guarantees that this
; declaration won't generate any proof obligations.
; WARNING: Do not change the form of this declaration without visiting the
; corresponding code for the-fn in chk-dcl-lst and dcl-guardian.
(declare (type (or t ,x) var))
(the-check ,guard ',x var))))))
#+acl2-loop-only
(defmacro the (x y)
":Doc-Section ACL2::ACL2-built-ins
run-time type check~/
~c[(The typ val)] checks that ~c[val] satisfies the type specification
~c[typ] (~pl[type-spec]). An error is caused if the check fails, and
otherwise, ~c[val] is the value of this expression. Here are some examples.
~bv[]
(the integer 3) ; returns 3
(the (integer 0 6) 3) ; returns 3
(the (integer 0 6) 7) ; causes an error (see below for exception)
~ev[]
~l[type-spec] for a discussion of the legal type specifications.
There is an exception to the rule that failure of the type-check causes an
error: there is no error when ~il[guard]-checking has been turned off with
~c[:set-guard-checking :NONE] or ~c[(with-guard-checking :NONE ...)].
~l[set-guard-checking] and ~pl[with-guard-checking].~/
The following remark is for those who verify guards for their
functions (~pl[guard] and ~pl[verify-guards]). We remark that a call of
~c[(the TYPE EXPR)] in the body of a function definition generates a guard
proof obligation that the type, ~c[TYPE], holds for the value of the
expression, ~c[EXPR]. Consider the following example.
~bv[]
(defun f (x)
(declare (xargs :guard (p1 x)))
(if (p2 x)
(the integer x)
17))
~ev[]
The ~il[guard] proof obligation generated for the ~c[THE] expression above is
as follows.
~bv[]
(implies (and (p1 x) (p2 x))
(let ((var x)) (integerp var)))
~ev[]
~c[THE] is defined in Common Lisp. See any Common Lisp documentation
for more information.~/"
(declare (xargs :guard (translate-declaration-to-guard x 'var nil)))
(the-fn x y))
; THEORY PROTO-PRIMITIVES
; Thus far it has been impossible to use the :in-theory hint in
; defthm and defun -- unless one wants to quote a theory -- because
; there are no primitives for getting all the names in the world.
; We here define the necessary basic functions, just so we can
; conveniently disable. See the extended discussion of theories
; in "other-events.lisp" where deftheory is defined.
; ARRAYS - efficient applicative arrays.
; We provide functions for accessing and updating both one and two
; dimensional arrays, with applicative semantics, but good access time
; to the most recently updated copy and usually constant update time.
; We first describe the one dimensional array data type. From the
; formal point of view, an array is simply an alist, i.e. a list of
; pairs. With one exception, the key (i.e., the car) of each pair is
; a nonnegative integer. However each array must have (at least) one
; pair whose car is :header and whose cdr is a keyword list, whose
; keys include :dimensions, :maximum-length, and :default. Thus, for
; example, the list '((1 . 2) (:header :dimensions (3) :maximum-length
; 7 :default a) (0 . 6)) represents the sequence #s(6 2 7). In the
; case of a one dimensional array, the dimension is a list of length
; one which is a nonnegative integer one greater than the maximum
; permitted index. (Other keywords, e.g. :purpose, for
; identification, are permitted and ignored.) Formally speakign, to
; find the value of a non-negative integer key in such an alist, we
; search the alist (with the function aref1) for the first pair whose
; car matches the key. If such a pair is found, then aref1 returns
; the cdr of the pair; otherwise aref1 returns the value associated
; with the :default key. It is illegal to give aref1 an an index
; equal to or greater than the car of the value associated with the
; :dimensions key. In the normal case, updating happens by simply
; consing a new pair on to the alist with the function aset1.
; However, when the list resulting from such a cons has length greater
; than the value associated with the :maximum-length key, the alist is
; ``compressed'' back to an alist of minimal length, but with the same
; aref1 search semantics.
; For efficiency, the user is asked to call the array functions with
; an additional argument, a symbol, called the ``name'' of the given
; array. From the point of view of the formal semantics, the name
; argument is simply and completely ignored. However, as with the
; implementation of property lists described above, the name provides
; a hint about where to find a ``real'' Common Lisp array that may
; currently represent the given alist, in which case an array access
; can go quite quickly because the real array may be accessed
; directly.
; A further requirement for fast access is that the user initially
; alert the implementation to the desire to make fast accesses by
; calling the function compress1 on the array (and the desired name).
; compress1 then associates with the alist (under the name) a ``real''
; array. Compress1 returns a list that begins with the header and has
; its other elements in key-ascending order unless otherwise indicated
; by the hearder, with aref1-irrelevant pairs deleted. If the alist
; is already in this normal form, then no consing is done. If there
; is already an array associated with the given name, and if it
; happens to have the desired length, then no array allocation is done
; but instead that array is ``stolen''.
; In the usual case, whenever an array is updated (with aset1), the
; ``real'' array which acts as its shadow and supports efficient
; access, is set to support the ``new'' array, and no longer supports
; the ``old'' array. Thus one must, for efficiency's sake, be
; extremely conscious of the usual order of Common Lisp evaluation.
; For two dimensional arrays, the value of the key :dimensions should
; be a list of two positive integers and the aset2 and aref2 function
; take two indices.
; The following constant was originally introduced in order to
; "require that array indices fit into 32 bits so that some compilers
; can lay down faster code. In the case of two dimensional arrays, we
; require that the product of legal indices fit into 32 bits." In
; fact, we now make stronger requirements based on the
; array-total-size-limit and array-dimension-limit of the underlying
; Common Lisp implementation, as enforced by make-array$, whose
; definition follows shortly after this.
(defconst *maximum-positive-32-bit-integer*
(1- (expt 2 31)))
#-acl2-loop-only
(defconst *our-array-total-size-limit*
; GCL 2.3.8 has a bug that defines array-total-size-limit to be a symbol,
; 'ARRAY-DIMENSION-LIMIT. (Presumably the intention was to define
; array-total-size-limit to be the value of that symbol.) So we define our own
; version of array-total-size-limit.
(if (eql array-total-size-limit 'ARRAY-DIMENSION-LIMIT)
array-dimension-limit
array-total-size-limit))
#-acl2-loop-only
(defun-one-output chk-make-array$ (dimensions form)
(or (let* ((dimensions
(if (integerp dimensions) (list dimensions) dimensions)))
(and (true-listp dimensions)
(do ((tl dimensions (cdr tl)))
((null tl) t)
(let ((dim (car dimensions)))
(or (and (integerp dim)
(<= 0 dim)
(< dim array-dimension-limit))
(return nil))))
(< (let ((prod 1))
(do ((tl dimensions (cdr tl)))
((null tl))
(setq prod (* prod (car dimensions))))
prod)
*our-array-total-size-limit*)))
(illegal 'make-array$
"The dimensions of an array must obey restrictions of ~
the underlying Common Lisp: each must be a ~
non-negative integer less than the value of ~
array-dimension-limit (here, ~x0) and their product ~
must be less than the value of array-total-size-limit ~
(here, ~x1). The call ~x2, which has dimensions ~x3, ~
is thus illegal."
(list (cons #\0
array-dimension-limit)
(cons #\1
array-total-size-limit)
(cons #\2 form)
(cons #\3 dimensions)))))
#-acl2-loop-only
(defmacro make-array$ (&whole form dimensions &rest args)
; Common Lisp implementations are supposed to have limits on the dimensions of
; arrays: array-dimension-limit is a strict bound on each dimension, and
; array-total-size-limit is a strict bound on the product of the dimensions.
; But, we do not want to rely on the implementation to signal an error in such
; cases (as opposed to returning garbage or corrupting the image), let alone
; provide a useful error message. So we provide this function for creation of
; arrays.
; In case we find the following information useful later, here is a summary of
; the above constants in various 32-bit lisps, observed many years ago as of
; the time you are reading this comment.
; Lisp array-dimension-limit array-total-size-limit
; --------------- --------------------- ----------------------
; CLISP 2.30 16777216 [2^24] 16777216 [2^24]
; CMUCL 18e 536870911 [2^29-1] 536870911 [2^29-1]
; SBCL 0.0 536870911 [2^29-1] 536870911 [2^29-1]
; GCL 2.5.0 2147483647 [2^31-1] 2147483647 [2^31-1]
; LISPWORKS 4.2.7 8388607 [2^23-1] 2096896 [2^21-256]
; Allegro CL 6.2 16777216 [2^24] 16777216 [2^24]
; MCL 4.2 16777216 [2^24] 16777216 [2^24]
; OpenMCL Version (Beta: Darwin) 0.13.6 (CCL):
; 16777216 [2^24] 16777216 [2^24]
; We go through some effort to find violations at compile time, partly for
; efficiency but mostly in order to provide compile-time feedback when there is
; a problem.
(declare (ignore args))
(cond ((integerp dimensions)
(prog2$ (chk-make-array$ dimensions (kwote form))
`(make-array ,@(cdr form))))
((and (true-listp dimensions) ; (quote dims)
(equal (length dimensions) 2)
(eq (car dimensions) 'quote))
(prog2$ (chk-make-array$ (cadr dimensions) (kwote form))
`(make-array ,@(cdr form))))
(t `(prog2$ (chk-make-array$ ,dimensions ',form)
(make-array ,@(cdr form))))))
; For 1 and 2 dimensional arrays, there may be a property, 'acl2-array, stored
; under a symbol name. If so, this property has is a list of length four,
; (object actual-array to-go-array header), where object is an alist;
; actual-array, is the current ``real'' array associated with object under
; name; to-go-array is an array of length one whose content is the number of
; additional conses that may be added before compresses is required; and header
; is the first pair beginning with :header in object. (To-go-array is kept as
; an array rather than as a mere integer in order to avoid number boxing.)
; We use a one-slot cache for efficiency; see the Essay on Array Caching.
#-acl2-loop-only
(progn
; Essay on Array Caching
; We use the following approach, developed by Jared Davis and Sol Swords, to
; speed up ACL2 Arrays by avoiding (get name 'acl2-array) in the common case
; that you are reading/writing from the same array. We basically just add a
; one-slot cache, stored in the special *acl2-array-cache*. This is a
; performance win (on CCL, at least) because getting a property seems to be
; more expensive than getting a special. We could try this on other Lisps too,
; e.g., with these loops:
;
; (defparameter *foo* 1)
; (time
; (loop for i fixnum from 1 to 100000000 do (consp *foo*))) ; 0.07 secs
; (time
; (loop for i fixnum from 1 to 100000000 do (get 'consp 'sally))) ; 1.39 secs
;
; Our approach is simply to use macros in place of direct access to property
; lists, as follows.
;
; (get name 'acl2-array) --> (get-acl2-array-property name)
; (setf (get name 'acl2-array) prop) --> (set-acl2-array-property name prop)
; Finally, we inline aref1 and aref2. To see why, consider the following
; timing results. In each case, we started with ACL2 Version_4.3 built on CCL.
; The four results are based on two dimensions: either loading a patch file or
; not that implements our one-slot cache, and either inlining aref1 or not.
; The test run was the one contributed by Jared Davis and Sol Swords that is
; exhibited in a comment in set-acl2-array-property.
; 16.1 ; no patch
; 8.9 ; patch but no inline
; 11.6 ; no patch, but inline
; 4.3 ; patch and inline
; #+ACL2-PAR note: Unsurpisingly, when we add the semi-necessary locking to the
; array caching scheme (alternatively, we could investigate using a
; compare-and-swap-based mechanism like atomic increments), we experience a
; very large slow down. In Rager's experiment, it was about 40x slower. This
; is a terrible performance penalty, so in #+ACL2-PAR, we do not use array
; caching.
(defparameter *acl2-array-cache*
; This special is always the same cons, but its car and cdr may be
; destructively modified. Its value always has the form (name . prop), where
; name is a symbol and prop is either nil or (get name 'acl2-array).
(cons nil nil))
(defmacro set-acl2-array-property (name prop)
; Use this macro instead of (setf (get name 'acl2-array) prop). We update the
; 'acl2-array property of name, and install (name . prop) into the array cache.
; See the Essay on Array Caching.
; We are tempted to handle name as we handle prop, by let-binding name below.
; However, by using ,name directly we have reduced the time from 5.0 seconds to
; 4.3 seconds in the following test from Jared Davis and Sol Swords.
; (defun count-down (n)
; (if (zp n)
; nil
; (cons (- n 1)
; (count-down (- n 1)))))
;
; (defconst *test-array*
; (compress1 '*test-array*
; (cons (list :HEADER
; :DIMENSIONS (list 100)
; :MAXIMUM-LENGTH (+ 100 1)
; :DEFAULT 0
; :NAME '*test-array*)
; (pairlis$ (count-down 100)
; (make-list 100)))))
;
; (let ((arr *test-array*))
; (time (loop for i fixnum from 1 to 1000000000 do
; (aref1 '*test-array* arr 10))))
; Therefore, we use ,name directly but add the following compile-time check to
; ensure that ,name refers to the given formal parameter rather than to the
; let-bound prop or cache.
(when (or (not (symbolp name))
(eq name 'prop)
(eq name '*acl2-array-cache*))
(error "Bad call, ~s: See set-acl2-array-property"
`(set-acl2-array-property ,name ,prop)))
#-acl2-par
`(let ((prop ,prop)
(cache *acl2-array-cache*))
(setf (cdr cache) nil) ; Invalidate the cache in case of interrupts.
(setf (get ,name 'acl2-array) prop)
(setf (car cache) ,name)
(setf (cdr cache) prop))
#+acl2-par
`(setf (get ,name 'acl2-array) ,prop))
(defmacro get-acl2-array-property (name)
; Use this macro instead of (get name 'acl2-array). We get the 'acl2-array
; property for name from the cache if possible, or from the property list if it
; is not cached. On a cache miss, we update the cache so that it points to the
; newly accessed array. See the Essay on Array Caching.
; See set-acl2-array-property for an explanation of the following compile-time
; check.
(when (or (not (symbolp name))
(eq name 'prop)
(eq name '*acl2-array-cache*))
(error "Bad call, ~s: See set-acl2-array-property"
`(get-acl2-array-property ,name)))
#-acl2-par
`(let ((cache *acl2-array-cache*))
(or (and (eq ,name (car cache))
(cdr cache))
(let ((prop (get ,name 'acl2-array)))
(setf (cdr cache) nil) ; Invalidate the cache in case of interrupts.
(setf (car cache) ,name)
(setf (cdr cache) prop))))
#+acl2-par
`(get ,name 'acl2-array))
)
(defun bounded-integer-alistp (l n)
; Check that l is a true-list of pairs, (n . x), where each n is
; either :header or a nonnegative integer less than n.
(declare (xargs :guard t))
(cond ((atom l) (null l))
(t (and (consp (car l))
(let ((key (caar l)))
(and (or (eq key :header)
(and (integerp key)
(integerp n)
(>= key 0)
(< key n)))
(bounded-integer-alistp (cdr l) n)))))))
(defthm bounded-integer-alistp-forward-to-eqlable-alistp
(implies (bounded-integer-alistp x n)
(eqlable-alistp x))
:rule-classes :forward-chaining)
(defun keyword-value-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for true lists whose even-position elements are keywords~/
~c[(keyword-value-listp l)] is true if and only if ~c[l] is a list of
even length of the form ~c[(k1 a1 k2 a2 ... kn an)], where each ~c[ki]
is a keyword.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom l) (null l))
(t (and (keywordp (car l))
(consp (cdr l))
(keyword-value-listp (cddr l))))))
(defthm keyword-value-listp-forward-to-true-listp
(implies (keyword-value-listp x)
(true-listp x))
:rule-classes :forward-chaining)
(defun assoc-keyword (key l)
":Doc-Section ACL2::ACL2-built-ins
look up key in a ~ilc[keyword-value-listp]~/
If ~c[l] is a list of even length of the form ~c[(k1 a1 k2 a2 ... kn an)],
where each ~c[ki] is a keyword, then ~c[(assoc-keyword key l)] is the
first tail of ~c[l] starting with ~c[key] if key is some ~c[ki], and is
~c[nil] otherwise.~/
The ~il[guard] for ~c[(assoc-keyword key l)] is ~c[(keyword-value-listp l)].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (keyword-value-listp l)))
(cond ((endp l) nil)
((eq key (car l)) l)
(t (assoc-keyword key (cddr l)))))
; The following seems useful, though at this point its use isn't clear.
(defthm keyword-value-listp-assoc-keyword
(implies (keyword-value-listp l)
(keyword-value-listp (assoc-keyword key l)))
:rule-classes ((:forward-chaining
:trigger-terms ((assoc-keyword key l)))))
(defthm consp-assoc-equal
; This type-prescription rule (formerly two rules, consp-assoc-eq and
; consp-assoc) may have been partly responsible for a 2.5% real-time regression
; slowdown (3.2% user time) after implementing equality variants, after
; Version_4.2. In particular, it contributed to a significant slowdown in
; example4 of examples.lisp in community book
; books/workshops/2000/moore-manolios/partial-functions/tjvm.lisp. So, we are
; disabling it by default, later below.
; We include a corresponding :forward-chaining rule, which seems much less
; expensive, but still allows the event aref1 to be admitted.
(implies (alistp l)
(or (consp (assoc-equal name l))
(equal (assoc-equal name l) nil)))
:rule-classes (:type-prescription
(:forward-chaining :trigger-terms ((assoc-equal name l)))))
#+acl2-loop-only
(defmacro f-get-global (x st)
":Doc-Section ACL2::ACL2-built-ins
get the value of a global variable in ~ilc[state]~/
~bv[]
Examples:
(+ (f-get-global 'y state) 1)
(f-put-global 'a
(aset1 'ascii-map-array
(f-get-global 'a state)
66
'Upper-case-B)
state)~/
General Form:
(f-get-global 'symbol state)
~ev[]
where ~c[symbol] is any symbol to which you have ~ilc[assign]ed a global
value.
The macro ~ilc[@] is closely related to ~c[f-get-global]: ~c[(@ var)]
macroexpands to ~c[(f-get-global 'var state)].
The macro ~ilc[f-get-global] makes it convenient to set the value of a
symbol. The ~c[:]~ilc[ubt] operation has no effect on the ~c[global-table]
of ~ilc[state]. Thus, you may use these globals to hang onto useful data
structures even though you may undo back past where you computed and saved
them.~/"
(list 'get-global x st))
#-acl2-loop-only
(progn
; With f-get-global and set-difference-eq defined, we are ready to define
; raw Lisp support for defpkg-raw.
(defun our-import (syms pkg)
; We have seen a case in which Allegro CL 8.0 spent about 20% of the time in
; IMPORT, on an include-book (with lots of nested include-books, and 20 defpkg
; forms executed altogether). That time was reduced to near 0 by using the
; present function, OUR-IMPORT, in place of IMPORT, presumably because
; (according to the profiler) calls to EXCL::INTERNAL-STRING= were avoided,
; probably in favor of hashing. We saw no significant change in time in GCL,
; however, so we exclude GCL and any non-ANSI (hence maybe no LOOP) Common Lisp
; from this enhancement. It might be worthwhile to consider other Common Lisp
; implementations besides Allegro CL and GCL. Perhaps Allegro CL will speed up
; its handling of IMPORT in future implementations (we have sent email to Franz
; Inc. about this), in which case we might consider deleting this function.
#+(and (not gcl) cltl2)
(loop for sym in syms do (import (or sym (list sym)) pkg))
#-(and (not gcl) cltl2)
(import syms pkg))
(defvar *defpkg-virgins* nil)
(defun check-proposed-imports (name package-entry proposed-imports)
(cond
((equal proposed-imports (package-entry-imports package-entry))
; The package has already been built in Common Lisp and the imports are
; identical. There is nothing for us to do.
nil)
(t
; The package has already been built in Common Lisp but with the wrong imports.
; There is nothing we can do. We do not want to unintern any symbols in it
; because we may thus render bad some saved logical worlds. See :DOC
; package-reincarnation-import-restrictions. In addition, see the Lisp comment
; that is part of that deflabel (but which is not actually part of the
; ACL2 documentation).
(let* ((old-book-path
(reverse (unrelativize-book-path
(package-entry-book-path package-entry)
(f-get-global 'system-books-dir *the-live-state*))))
(current-book-path
(reverse
(append (strip-cars (symbol-value 'acl2::*load-compiled-stack*))
(global-val 'include-book-path (w *the-live-state*)))))
(old-imports (package-entry-imports package-entry))
(proposed-not-old (set-difference-eq proposed-imports old-imports))
(old-not-proposed (set-difference-eq old-imports proposed-imports))
(current-package (f-get-global 'current-package *the-live-state*)))
(interface-er
"~%We cannot reincarnate the package ~x0 because it was previously ~
defined with a different list of imported symbols.~|~%The previous ~
definition was made ~#1~[at the top level.~|~/in the portcullis of ~
the last of the book at the end of the following sequence of included ~
books, which starts with the top-most book at the front of the list ~
and works down to the book that defined the package.~|~% ~
~F2~|~]~%The proposed definition is being made ~#3~[at the top ~
level.~|~/in the portcullis of the last of the book at the end of the ~
following sequence of included books, which starts with the top-most ~
book at the front of the list and works down to the book that is ~
trying to define the package.~|~% ~F4~|~]~%~#5~[The previous ~
definition imported the following list of symbols that are not ~
imports of the proposed definition, and is shown with respect to ~
current package ~x9:~|~% ~x6.~|~%~/~]~#7~[The proposed definition ~
imports the following list of symbols not imported by the previous ~
definition, and is shown with respect to current package ~x9:~|~% ~
~x8.~|~%~/~]See :DOC package-reincarnation-import-restrictions."
name
(if old-book-path 1 0)
old-book-path
(if current-book-path 1 0)
current-book-path
(if old-not-proposed 0 1)
old-not-proposed
(if proposed-not-old 0 1)
proposed-not-old
current-package
)))))
(defun-one-output defpkg-raw1 (name imports book-path event-form)
(let ((package-entry (find-package-entry name *ever-known-package-alist*))
(pkg (find-package name))
(global-name (concatenate 'string
acl2::*global-package-prefix*
name))
(*1*-name (concatenate 'string
acl2::*1*-package-prefix*
name))
(proposed-imports (sort-symbol-listp imports)))
(assert pkg) ; see defpkg-raw
; We bind proposed-imports to the value of the imports argument. We do not
; want to evaluate it more than once below. We DO reference, and hence
; evaluate, name more than once below. But name must be an explicit string
; constant.
(cond
(package-entry
; There is nothing for us to do other than to do a check.
(check-proposed-imports name package-entry proposed-imports)
name)
((not (member-equal name *defpkg-virgins*))
; The package has been built in this Common Lisp but not by defpkg-raw1. It
; may be new because of the defpackage form in defpkg-raw, in which case it is
; an element of *defpkg-virgins*. Otherwise, it was defined in Common Lisp
; outside ACL2, and we should cause an error.
(error
"~%It is illegal to defpkg ~s because a package of that name ~
already exists in this lisp.~%"
name))
(t
(assert (not (assoc-equal name *package-alist*)))
(let* ((incomplete-p t)
(saved-ever-known-package-alist *ever-known-package-alist*)
(wrld (w *the-live-state*))
(not-boot-strap (not (getprop 'boot-strap-flg 'global-value nil
'current-acl2-world
wrld))))
(setq *defpkg-virgins*
(remove1-equal name *defpkg-virgins*))
(unwind-protect
(progn
(setq *ever-known-package-alist*
(cons (make-package-entry
:name name
:imports proposed-imports
:book-path
; We store a suitable path for use by check-proposed-imports.
(and not-boot-strap
(append
book-path
(strip-cars
(symbol-value 'acl2::*load-compiled-stack*))
(getprop 'include-book-path 'global-value
nil 'current-acl2-world wrld)))
:defpkg-event-form event-form)
*ever-known-package-alist*))
(when proposed-imports
; Without the qualifier above, clisp imports nil if proposed-imports = nil.
(our-import proposed-imports (find-package name)))
; So at this point we have set the package's imports appropriately. We now
; handle the dual packages in which the state globals and executable
; counterparts of symbols from pkg will reside. We do not reinitialize these
; hidden variables if we are recovering from an error or booting.
(cond
((and (not *in-recover-world-flg*)
not-boot-strap)
(cond ((find-package global-name)
(do-symbols (sym (find-package global-name))
(makunbound sym)))
(t (make-package global-name :use nil)))
(cond ((find-package *1*-name)
nil)
(t (make-package *1*-name :use nil)))))
(setq incomplete-p nil)
name)
(when incomplete-p
(setq *ever-known-package-alist*
saved-ever-known-package-alist)
(do-symbols (sym pkg)
(unintern sym))
(delete-package (find-package name)))))))))
(defun package-has-no-imports (name)
(let ((pkg (find-package name)))
(do-symbols (sym pkg)
(when (not (eq (symbol-package sym) pkg))
(return-from package-has-no-imports nil))))
t)
#-acl2-loop-only
(defmacro maybe-make-package (name)
; When we moved to Version_4.3, with LispWorks once again a supported host
; Lisp, we modified the macro maybe-introduce-empty-pkg-1 to avoid the use of
; defpackage; see the comment in that macro. Unfortunately, the new approach
; didn't work for CMUCL (at least, for version 19e). The following example
; shows why; even with an eval-when form specifying :compile-toplevel, the
; compiled code seems to skip the underlying package-creation form, as shown
; below. Therefore we revert to the use of defpackage for CMUCL, which appears
; not to cause problems.
; % cat pkg-bug-cmucl.lisp
;
; (in-package "CL-USER")
;
; (eval-when (:load-toplevel :execute :compile-toplevel)
; (cond ((not (find-package "MYPKG"))
; (print "*** About to make package ***")
; (terpri)
; (make-package "MYPKG" :use nil))))
;
; (defparameter *foo* 'mypkg::x)
; % /projects/acl2/lisps/cmucl-19e-linux/bin/cmucl
; CMU Common Lisp 19e (19E), running on kindness
; With core: /v/filer4b/v11q001/acl2/lisps/cmucl-19e-linux/lib/cmucl/lib/lisp.core
; Dumped on: Thu, 2008-05-01 11:56:07-05:00 on usrtc3142
; See <http://www.cons.org/cmucl/> for support information.
; Loaded subsystems:
; Python 1.1, target Intel x86
; CLOS based on Gerd's PCL 2004/04/14 03:32:47
; * (load "pkg-bug-cmucl.lisp")
;
; ; Loading #P"/v/filer4b/v41q001/kaufmann/temp/pkg-bug-cmucl.lisp".
;
; "*** About to make package ***"
; T
; * (compile-file "pkg-bug-cmucl.lisp")
;
; ; Python version 1.1, VM version Intel x86 on 04 JUL 11 09:57:13 am.
; ; Compiling: /v/filer4b/v41q001/kaufmann/temp/pkg-bug-cmucl.lisp 04 JUL 11 09:56:24 am
;
; ; Byte Compiling Top-Level Form:
;
; ; pkg-bug-cmucl.x86f written.
; ; Compilation finished in 0:00:00.
;
; #P"/v/filer4b/v41q001/kaufmann/temp/pkg-bug-cmucl.x86f"
; NIL
; NIL
; * (quit)
; % /projects/acl2/lisps/cmucl-19e-linux/bin/cmucl
; CMU Common Lisp 19e (19E), running on kindness
; With core: /v/filer4b/v11q001/acl2/lisps/cmucl-19e-linux/lib/cmucl/lib/lisp.core
; Dumped on: Thu, 2008-05-01 11:56:07-05:00 on usrtc3142
; See <http://www.cons.org/cmucl/> for support information.
; Loaded subsystems:
; Python 1.1, target Intel x86
; CLOS based on Gerd's PCL 2004/04/14 03:32:47
; * (load "pkg-bug-cmucl.x86f")
;
; ; Loading #P"/v/filer4b/v41q001/kaufmann/temp/pkg-bug-cmucl.x86f".
;
;
; Error in function LISP::FOP-PACKAGE: The package "MYPKG" does not exist.
; [Condition of type SIMPLE-ERROR]
;
; Restarts:
; 0: [CONTINUE] Return NIL from load of "pkg-bug-cmucl.x86f".
; 1: [ABORT ] Return to Top-Level.
;
; Debug (type H for help)
;
; (LISP::FOP-PACKAGE)
; Source: Error finding source:
; Error in function DEBUG::GET-FILE-TOP-LEVEL-FORM: Source file no longer exists:
; target:code/load.lisp.
; 0]
#-cmu
`(when (not (find-package ,name))
(make-package ,name :use nil))
#+cmu
`(defpackage ,name (:use)))
(defmacro maybe-introduce-empty-pkg-1 (name)
; It appears that GCL, requires a user::defpackage (non-ANSI case) or
; defpackage (ANSI case; this may be the same as user::defpackage) form near
; the top of a file in order to read the corresponding compiled file. For
; example, an error occurred upon attempting to load the community books file
; books/data-structures/defalist.o after certifying the corresponding book
; using GCL, because the form (MAYBE-INTRODUCE-EMPTY-PKG-1 "U") near the top of
; the file was insufficient to allow reading a symbol in the "U" package
; occurring later in the corresponding source file.
; On the other hand, the CL HyperSpec does not pin down the effect of
; defpackage when a package already exists. Indeed, the defpackage approach
; that we use for GCL does not work for LispWorks 6.0.
; So, we have quite different definitions of this macro for GCL and LispWorks.
; All other Lisps we have encountered seem happy with the approach we have
; adopted for Lispworks, so we adopt that approach for them, too.
#-gcl
`(eval-when
#+cltl2 (:load-toplevel :execute :compile-toplevel)
#-cltl2 (load eval compile) ; though probably #-gcl implies #+cltl2
(progn
(maybe-make-package ,name)
(maybe-make-package ,(concatenate 'string
acl2::*global-package-prefix*
name))
(maybe-make-package ,(concatenate 'string
acl2::*1*-package-prefix*
name))))
#+gcl
(let ((defp #+cltl2 'defpackage #-cltl2 'user::defpackage))
`(progn
(,defp ,name
(:use))
(,defp ,(concatenate 'string
acl2::*global-package-prefix*
name)
(:use))
(,defp ,(concatenate 'string
acl2::*1*-package-prefix*
name)
(:use)))))
(defmacro maybe-introduce-empty-pkg-2 (name)
`(when (and (not (member ,name *defpkg-virgins*
:test 'equal))
(not (assoc ,name *ever-known-package-alist*
:test 'equal))
(package-has-no-imports ,name))
(push ,name *defpkg-virgins*)))
(defmacro defpkg-raw (name imports book-path event-form)
; Defpkg checks that name is a string. Event-form is a cons. So we don't need
; to worry about capture below.
`(let ((package-entry (find-package-entry ,name *ever-known-package-alist*))
(*safe-mode-verified-p* t))
(cond
((and package-entry
(let ((old-event-form
(package-entry-defpkg-event-form package-entry)))
(and (equal (cadr old-event-form) (cadr ,event-form))
(equal (caddr old-event-form) (caddr ,event-form)))))
; This shorcut is potentially a big concern! We are checking that the name and
; term of the defpkg form agrees with an old defpkg form. But these two forms
; may have been evaluated in different worlds! Nevertheless, for now we trust
; that they really are equivalent, for efficiency's sake. Defpkg-fn will call
; chk-acceptable-defpkg, which will call
; chk-package-reincarnation-import-restrictions, and if there is a discrepancy
; between the current and old package, we'll find out then.
,name)
(t
(maybe-introduce-empty-pkg-1 ,name)
(maybe-introduce-empty-pkg-2 ,name)
(defpkg-raw1 ,name ,imports ,book-path ,event-form)))))
)
#-acl2-loop-only
(defun-one-output slow-array-warning (fn nm)
(let ((action (f-get-global 'slow-array-action *the-live-state*)))
(when action
(format
*error-output*
"~%~%**********************************************************~%~
Slow Array Access! A call of ~a on an array named~%~
~a is being executed slowly. See :DOC slow-array-warning.~%~
**********************************************************~%~%"
fn nm)
(when (not (eq action :warning))
(format
*error-output*
"To avoid the following break and get only the above warning:~%~s~%"
'(assign slow-array-action :warning))
(break$)))))
(deflabel arrays
:doc
":Doc-Section ACL2::Programming
an introduction to ACL2 arrays~/
Below we begin a detailed presentation of ACL2 arrays. ACL2's single-threaded
objects (~pl[stobj]) provide a similar functionality that is generally more
efficient when there are updates (writes), but is also more restrictive.
~/
~l[arrays-example] for a brief introduction illustrating the use
of ACL2 arrays.
ACL2 provides relatively efficient 1- and 2-dimensional arrays.
Arrays are awkward to provide efficiently in an applicative language
because the programmer rightly expects to be able to ``modify'' an
array object with the effect of changing the behavior of the element
accessing function on that object. This, of course, does not make
any sense in an applicative setting. The element accessing function
is, after all, a function, and its behavior on a given object is
immutable. To ``modify'' an array object in an applicative setting
we must actually produce a new array object. Arranging for this to
be done efficiently is a challenge to the implementors of the
language. In addition, the programmer accustomed to the von Neumann
view of arrays must learn how to use immutable applicative arrays
efficiently.
In this note we explain 1-dimensional arrays. In particular, we
explain briefly how to create, access, and ``modify'' them, how they
are implemented, and how to program with them. 2-dimensional arrays
are dealt with by analogy.
~em[The Logical Description of ACL2 Arrays]
An ACL2 1-dimensional array is an object that associates arbitrary
objects with certain integers, called ``indices.'' Every array has a
dimension, ~c[dim], which is a positive integer. The indices of an
array are the consecutive integers from ~c[0] through ~c[dim-1]. To obtain
the object associated with the index ~c[i] in an array ~c[a], one uses
~c[(aref1 name a i)]. ~c[Name] is a symbol that is irrelevant to the
semantics of ~ilc[aref1] but affects the speed with which it computes. We
will talk more about array ``names'' later. To produce a new array
object that is like ~c[a] but which associates ~c[val] with index ~c[i], one
uses ~c[(aset1 name a i val)].
An ACL2 1-dimensional array is actually an alist. There is no
special ACL2 function for creating arrays; they are generally built
with the standard list processing functions ~ilc[list] and ~ilc[cons]. However,
there is a special ACL2 function, called ~ilc[compress1], for speeding up
access to the elements of such an alist. We discuss ~ilc[compress1]
later.
One element of the alist must be the ``header'' of the array. The
~il[header] of a 1-dimensional array with dimension ~c[dim] is of the form:
~bv[]
(:HEADER :DIMENSIONS (dim)
:MAXIMUM-LENGTH max
:DEFAULT obj ; optional
:NAME name ; optional
:ORDER order ; optional values are < (the default), >, or :none/nil
).
~ev[]
~c[Obj] may be any object and is called the ``default value'' of the array.
~ilc[Max] must be an integer greater than ~c[dim]. ~c[Name] must be a
symbol. The ~c[:]~ilc[default] and ~c[:name] entries are optional; if
~c[:]~ilc[default] is omitted, the default value is ~c[nil]. The function
~ilc[header], when given a name and a 1- or 2-dimensional array, returns the
~il[header] of the array. The functions ~ilc[dimensions],
~ilc[maximum-length], and ~ilc[default] are similar and return the
corresponding fields of the ~il[header] of the array. The role of the
~c[:]~ilc[dimensions] field is obvious: it specifies the legal indices into
the array. The roles played by the ~c[:]~ilc[maximum-length] and
~c[:]~ilc[default] fields are described below.
Aside from the ~il[header], the other elements of the alist must each be
of the form ~c[(i . val)], where ~c[i] is an integer and ~c[0 <= i < dim], and
~c[val] is an arbitrary object.
The ~c[:order] field of the header is ignored for 2-dimensional arrays. For
1-dimensional arrays, it specifies the order of keys (~c[i], above) when the
array is compressed as with ~ilc[compress1], as described below. An
~c[:order] of ~c[:none] or ~c[nil] specifies no reordering of the alist by
~ilc[compress1], and an order of ~c[>] specifies reordering by
~ilc[compress1] so that keys are in descending order. Otherwise, the alist
is reordered by ~ilc[compress1] so that keys are in ascending order.
~c[(Aref1 name a i)] is ~il[guard]ed so that ~c[name] must be a symbol, ~c[a] must be
an array and ~c[i] must be an index into ~c[a]. The value of
~c[(aref1 name a i)] is either ~c[(cdr (assoc i a))] or else is the
default value of ~c[a], depending on whether there is a pair in ~c[a]
whose ~ilc[car] is ~c[i]. Note that ~c[name] is irrelevant to the value of
an ~ilc[aref1] expression. You might ~c[:pe aref1] to see how simple
the definition is.
~c[(Aset1 name a i val)] is ~il[guard]ed analogously to the ~ilc[aref1] expression.
The value of the ~ilc[aset1] expression is essentially
~c[(cons (cons i val) a)]. Again, ~c[name] is irrelevant. Note
~c[(aset1 name a i val)] is an array, ~c[a'], with the property that
~c[(aref1 name a' i)] is ~c[val] and, except for index ~c[i], all other
indices into ~c[a'] produce the same value as in ~c[a]. Note also
that if ~c[a] is viewed as an alist (which it is) the pair
``binding'' ~c[i] to its old value is in ~c[a'] but ``covered up'' by
the new pair. Thus, the length of an array grows by one when
~ilc[aset1] is done.
Because ~ilc[aset1] covers old values with new ones, an array produced by
a sequence of ~ilc[aset1] calls may have many irrelevant pairs in it. The
function ~ilc[compress1] can remove these irrelevant pairs. Thus,
~c[(compress1 name a)] returns an array that is equivalent
(vis-a-vis ~ilc[aref1]) to ~c[a] but which may be shorter. For technical
reasons, the alist returned by ~ilc[compress1] may also list the pairs
in a different order than listed in ~c[a].
To prevent arrays from growing excessively long due to repeated ~ilc[aset1]
operations, ~ilc[aset1] actually calls ~ilc[compress1] on the new alist
whenever the length of the new alist exceeds the ~c[:]~ilc[maximum-length]
entry, ~ilc[max], in the ~il[header] of the array. See the definition of
~ilc[aset1] (for example by using ~c[:]~ilc[pe]). This is primarily just a
mechanism for freeing up ~ilc[cons] space consumed while doing ~ilc[aset1]
operations. Note however that this ~ilc[compress1] call is replaced by a
hard error if the header specifies an ~c[:order] of ~c[:none] or ~c[nil].
This completes the logical description of 1-dimensional arrays.
2-dimensional arrays are analogous. The ~c[:]~ilc[dimensions] entry of the
~il[header] of a 2-dimensional array should be ~c[(dim1 dim2)]. A pair of
indices, ~c[i] and ~c[j], is legal iff ~c[0 <= i < dim1] and ~c[0 <= j < dim2].
The ~c[:]~ilc[maximum-length] must be greater than ~c[dim1*dim2]. ~ilc[Aref2], ~ilc[aset2],
and ~ilc[compress2] are like their counterparts but take an additional
~c[index] argument. Finally, the pairs in a 2-dimensional array are of
the form ~c[((i . j) . val)].
~em[The Implementation of ACL2 Arrays]
Very informally speaking, the function ~ilc[compress1] ``creates'' an
ACL2 array that provides fast access, while the function ~ilc[aref1]
``maintains'' fast access. We now describe this informal idea more
carefully.
~ilc[Aref1] is essentially ~ilc[assoc]. If ~ilc[aref1] were implemented naively the
time taken to access an array element would be linear in the
dimension of the array and the number of ``assignments'' to it (the
number of ~ilc[aset1] calls done to create the array from the initial
alist). This is intolerable; arrays are ``supposed'' to provide
constant-time access and change.
The apparently irrelevant names associated with ACL2 arrays allow us
to provide constant-time access and change when arrays are used in
``conventional'' ways. The implementation of arrays makes it clear
what we mean by ``conventional.''
Recall that array names are symbols. Behind the scenes, ACL2
associates two objects with each ACL2 array name. The first object
is called the ``semantic value'' of the name and is an alist. The
second object is called the ``raw lisp array'' and is a Common Lisp
array.
When ~c[(compress1 name alist)] builds a new alist, ~c[a'], it sets the
semantic value of ~c[name] to that new alist. Furthermore, it creates a
Common Lisp array and writes into it all of the index/value pairs of
~c[a'], initializing unassigned indices with the default value. This
array becomes the raw lisp array of ~c[name]. ~ilc[Compress1] then returns
~c[a'], the semantic value, as its result, as required by the definition
of ~ilc[compress1].
When ~c[(aref1 name a i)] is invoked, ~ilc[aref1] first determines whether the
semantic value of ~c[name] is ~c[a] (i.e., is ~ilc[eq] to the alist ~c[a]). If so,
~ilc[aref1] can determine the ~c[i]th element of ~c[a] by invoking Common Lisp's
~c[aref] function on the raw lisp array associated with name. Note that
no linear search of the alist ~c[a] is required; the operation is done
in constant time and involves retrieval of two global variables, an
~ilc[eq] test and ~c[jump], and a raw lisp array access. In fact, an ACL2
array access of this sort is about 5 times slower than a C array
access. On the other hand, if ~c[name] has no semantic value or if it
is different from ~c[a], then ~ilc[aref1] determines the answer by linear
search of ~c[a] as suggested by the ~c[assoc-like] definition of ~ilc[aref1].
Thus, ~ilc[aref1] always returns the axiomatically specified result. It
returns in constant time if the array being accessed is the current
semantic value of the name used. The ramifications of this are
discussed after we deal with ~ilc[aset1].
When ~c[(aset1 name a i val)] is invoked, ~ilc[aset1] does two ~ilc[cons]es to
create the new array. Call that array ~c[a']. It will be returned as
the answer. (In this discussion we ignore the case in which ~ilc[aset1]
does a ~ilc[compress1].) However, before returning, ~ilc[aset1] determines if
~c[name]'s semantic value is ~c[a]. If so, it makes the new semantic value
of ~c[name] be ~c[a'] and it smashes the raw lisp array of ~c[name] with ~c[val] at
index ~c[i], before returning ~c[a'] as the result. Thus, after doing an
~ilc[aset1] and obtaining a new semantic value ~c[a'], all ~ilc[aref1]s on that new
array will be fast. Any ~ilc[aref1]s on the old semantic value, ~c[a], will
be slow.
To understand the performance implications of this design, consider
the chronological sequence in which ACL2 (Common Lisp) evaluates
expressions: basically inner-most first, left-to-right,
call-by-value. An array use, such as ~c[(aref1 name a i)], is ``fast''
(constant-time) if the alist supplied, ~c[a], is the value returned by
the most recently executed ~ilc[compress1] or ~ilc[aset1] on the name supplied.
In the functional expression of ``conventional'' array processing,
all uses of an array are fast.
The ~c[:name] field of the ~il[header] of an array is completely irrelevant.
Our convention is to store in that field the symbol we mean to use
as the name of the raw lisp array. But no ACL2 function inspects
~c[:name] and its primary value is that it allows the user, by
inspecting the semantic value of the array ~-[] the alist ~-[] to recall
the name of the raw array that probably holds that value. We say
``probably'' since there is no enforcement that the alist was
compressed under the name in the ~il[header] or that all ~c[aset]s used that
name. Such enforcement would be inefficient.
~em[Some Programming Examples]
In the following examples we will use ACL2 ``global variables'' to
hold several arrays. ~l[@], and ~pl[assign].
Let the ~ilc[state] global variable ~c[a] be the 1-dimensional compressed
array of dimension ~c[5] constructed below.
~bv[]
ACL2 !>(assign a (compress1 'demo
'((:header :dimensions (5)
:maximum-length 15
:default uninitialized
:name demo)
(0 . zero))))
~ev[]
Then ~c[(aref1 'demo (@ a) 0)] is ~c[zero] and ~c[(aref1 'demo (@ a) 1)] is
~c[uninitialized].
Now execute
~bv[]
ACL2 !>(assign b (aset1 'demo (@ a) 1 'one))
~ev[]
Then ~c[(aref1 'demo (@ b) 0)] is ~c[zero] and ~c[(aref1 'demo (@ b) 1)] is
~c[one].
All of the ~ilc[aref1]s done so far have been ``fast.''
Note that we now have two array objects, one in the global variable
~c[a] and one in the global variable ~c[b]. ~c[B] was obtained by assigning to
~c[a]. That assignment does not affect the alist ~c[a] because this is an
applicative language. Thus, ~c[(aref1 'demo (@ a) 1)] must ~st[still] be
~c[uninitialized]. And if you execute that expression in ACL2 you will
see that indeed it is. However, a rather ugly comment is printed,
namely that this array access is ``slow.'' The reason it is slow is
that the raw lisp array associated with the name ~c[demo] is the array
we are calling ~c[b]. To access the elements of ~c[a], ~ilc[aref1] must now do a
linear search. Any reference to ~c[a] as an array is now
``unconventional;'' in a conventional language like Ada or Common
Lisp it would simply be impossible to refer to the value of the
array before the assignment that produced our ~c[b].
Now let us define a function that counts how many times a given
object, ~c[x], occurs in an array. For simplicity, we will pass in the
name and highest index of the array:
~bv[]
ACL2 !>(defun cnt (name a i x)
(declare (xargs :guard
(and (array1p name a)
(integerp i)
(>= i -1)
(< i (car (dimensions name a))))
:mode :logic
:measure (nfix (+ 1 i))))
(cond ((zp (1+ i)) 0) ; return 0 if i is at most -1
((equal x (aref1 name a i))
(1+ (cnt name a (1- i) x)))
(t (cnt name a (1- i) x))))
~ev[]
To determine how many times ~c[zero] appears in ~c[(@ b)] we can execute:
~bv[]
ACL2 !>(cnt 'demo (@ b) 4 'zero)
~ev[]
The answer is ~c[1]. How many times does ~c[uninitialized] appear in
~c[(@ b)]?
~bv[]
ACL2 !>(cnt 'demo (@ b) 4 'uninitialized)
~ev[]
The answer is ~c[3], because positions ~c[2], ~c[3] and ~c[4] of the array contain
that default value.
Now imagine that we want to assign ~c['two] to index ~c[2] and then count
how many times the 2nd element of the array occurs in the array.
This specification is actually ambiguous. In assigning to ~c[b] we
produce a new array, which we might call ~c[c]. Do we mean to count the
occurrences in ~c[c] of the 2nd element of ~c[b] or the 2nd element of ~c[c]?
That is, do we count the occurrences of ~c[uninitialized] or the
occurrences of ~c[two]? If we mean the former the correct answer is ~c[2]
(positions ~c[3] and ~c[4] are ~c[uninitialized] in ~c[c]); if we mean the latter,
the correct answer is ~c[1] (there is only one occurrence of ~c[two] in ~c[c]).
Below are ACL2 renderings of the two meanings, which we call
~c[[former~]] and ~c[[latter~]]. (Warning: Our description of these
examples, and of an example ~c[[fast former~]] that follows, assumes
that only one of these three examples is actually executed; for
example, they are not executed in sequence. See ``A Word of
Warning'' below for more about this issue.)
~bv[]
(cnt 'demo (aset1 'demo (@ b) 2 'two) 4 (aref1 'demo (@ b) 2)) ; [former]
(let ((c (aset1 'demo (@ b) 2 'two))) ; [latter]
(cnt 'demo c 4 (aref1 'demo c 2)))
~ev[]
Note that in ~c[[former~]] we create ~c[c] in the second argument of the
call to ~c[cnt] (although we do not give it a name) and then refer to ~c[b]
in the fourth argument. This is unconventional because the second
reference to ~c[b] in ~c[[former~]] is no longer the semantic value of ~c[demo].
While ACL2 computes the correct answer, namely ~c[2], the execution of
the ~ilc[aref1] expression in ~c[[former~]] is done slowly.
A conventional rendering with the same meaning is
~bv[]
(let ((x (aref1 'demo (@ b) 2))) ; [fast former]
(cnt 'demo (aset1 'demo (@ b) 2 'two) 4 x))
~ev[]
which fetches the 2nd element of ~c[b] before creating ~c[c] by
assignment. It is important to understand that ~c[[former~]] and
~c[[fast former~]] mean exactly the same thing: both count the number
of occurrences of ~c[uninitialized] in ~c[c]. Both are legal ACL2 and
both compute the same answer, ~c[2]. Indeed, we can symbolically
transform ~c[[fast former~]] into ~c[[former~]] merely by substituting
the binding of ~c[x] for ~c[x] in the body of the ~ilc[let]. But ~c[[fast former~]]
can be evaluated faster than ~c[[former~]] because all of the
references to ~c[demo] use the then-current semantic value of
~c[demo], which is ~c[b] in the first line and ~c[c] throughout the
execution of the ~c[cnt] in the second line. ~c[[Fast former~]] is
the preferred form, both because of its execution speed and its
clarity. If you were writing in a conventional language you would
have to write something like ~c[[fast former~]] because there is no
way to refer to the 2nd element of the old value of ~c[b] after
smashing ~c[b] unless it had been saved first.
We turn now to ~c[[latter~]]. It is both clear and efficient. It
creates ~c[c] by assignment to ~c[b] and then it fetches the 2nd element of
~c[c], ~c[two], and proceeds to count the number of occurrences in ~c[c]. The
answer is ~c[1]. ~c[[Latter~]] is a good example of typical ACL2 array
manipulation: after the assignment to ~c[b] that creates ~c[c], ~c[c] is used
throughout.
It takes a while to get used to this because most of us have grown
accustomed to the peculiar semantics of arrays in conventional
languages. For example, in raw lisp we might have written something
like the following, treating ~c[b] as a ``global variable'':
~bv[]
(cnt 'demo (aset 'demo b 2 'two) 4 (aref 'demo b 2))
~ev[]
which sort of resembles ~c[[former~]] but actually has the semantics of
~c[[latter~]] because the ~c[b] from which ~c[aref] fetches the 2nd element is
not the same ~c[b] used in the ~c[aset]! The array ~c[b] is destroyed by the
~c[aset] and ~c[b] henceforth refers to the array produced by the ~c[aset], as
written more clearly in ~c[[latter~]].
A Word of Warning: Users must exercise care when experimenting with
~c[[former~]], ~c[[latter~]] and ~c[[fast former~]]. Suppose you have
just created ~c[b] with the assignment shown above,
~bv[]
ACL2 !>(assign b (aset1 'demo (@ a) 1 'one))
~ev[]
If you then evaluate ~c[[former~]] in ACL2 it will complain that the
~ilc[aref1] is slow and compute the answer, as discussed. Then suppose
you evaluate ~c[[latter~]] in ACL2. From our discussion you might expect
it to execute fast ~-[] i.e., issue no complaint. But in fact you
will find that it complains repeatedly. The problem is that the
evaluation of ~c[[former~]] changed the semantic value of ~c[demo] so that it
is no longer ~c[b]. To try the experiment correctly you must make ~c[b] be
the semantic value of ~c[demo] again before the next example is
evaluated. One way to do that is to execute
~bv[]
ACL2 !>(assign b (compress1 'demo (@ b)))
~ev[]
before each expression. Because of issues like this it is often
hard to experiment with ACL2 arrays at the top-level. We find it
easier to write functions that use arrays correctly and efficiently
than to so use them interactively.
This last assignment also illustrates a very common use of
~ilc[compress1]. While it was introduced as a means of removing
irrelevant pairs from an array built up by repeated assignments, it
is actually most useful as a way of insuring fast access to the
elements of an array.
Many array processing tasks can be divided into two parts. During
the first part the array is built. During the second part the array
is used extensively but not modified. If your ~il[programming] task can
be so divided, it might be appropriate to construct the array
entirely with list processing, thereby saving the cost of
maintaining the semantic value of the name while few references are
being made. Once the alist has stabilized, it might be worthwhile
to treat it as an array by calling ~ilc[compress1], thereby gaining
constant time access to it.
ACL2's theorem prover uses this technique in connection with its
implementation of the notion of whether a ~il[rune] is ~il[disable]d or not.
Associated with every ~il[rune] is a unique integer ~c[index], called its
``nume.'' When each rule is stored, the corresponding nume is
stored as a component of the rule. ~il[Theories] are lists of ~il[rune]s and
membership in the ``current theory'' indicates that the
corresponding rule is ~il[enable]d. But these lists are very long and
membership is a linear-time operation. So just before a proof
begins we map the list of ~il[rune]s in the current theory into an alist
that pairs the corresponding numes with ~c[t]. Then we compress this
alist into an array. Thus, given a rule we can obtain its nume
(because it is a component) and then determine in constant time
whether it is ~il[enable]d. The array is never modified during the
proof, i.e., ~ilc[aset1] is never used in this example. From the logical
perspective this code looks quite odd: we have replaced a
linear-time membership test with an apparently linear-time ~ilc[assoc]
after going to the trouble of mapping from a list of ~il[rune]s to an
alist of numes. But because the alist of numes is an array, the
``apparently linear-time ~ilc[assoc]'' is more apparent than real; the
operation is constant-time.~/
:cited-by Programming")
(deflabel arrays-example
:doc
; The transcript below was generated essentially after executing the following
; two forms:
; (set-fmt-soft-right-margin 55 state)
; (set-fmt-hard-right-margin 68 state)
":Doc-Section Arrays
an example illustrating ACL2 arrays~/
The example below illustrates the use of ACL2 arrays. It is not, of
course, a substitute for the detailed explanations provided
elsewhere (~pl[arrays], including subtopics).~/
~bv[]
ACL2 !>(defun defarray (name size initial-element)
(compress1 name
(cons (list :HEADER
:DIMENSIONS (list size)
:MAXIMUM-LENGTH (1+ size)
:DEFAULT initial-element
:NAME name)
nil)))
Since DEFARRAY is non-recursive, its admission is trivial. We observe
that the type of DEFARRAY is described by the theorem
(AND (CONSP (DEFARRAY NAME SIZE INITIAL-ELEMENT))
(TRUE-LISTP (DEFARRAY NAME SIZE INITIAL-ELEMENT))).
We used the :type-prescription rule COMPRESS1.
Summary
Form: ( DEFUN DEFARRAY ...)
Rules: ((:TYPE-PRESCRIPTION COMPRESS1))
Warnings: None
Time: 0.02 seconds (prove: 0.00, print: 0.02, other: 0.00)
DEFARRAY
ACL2 !>(assign my-ar (defarray 'a1 5 17))
((:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH 6 :DEFAULT 17 :NAME A1))
ACL2 !>(aref1 'a1 (@ my-ar) 3)
17
ACL2 !>(aref1 'a1 (@ my-ar) 8)
ACL2 Error in TOP-LEVEL: The guard for the function symbol AREF1,
which is
(AND (ARRAY1P NAME L) (INTEGERP N) (>= N 0) (< N (CAR (DIMENSIONS NAME L)))),
is violated by the arguments in the call (AREF1 'A1 '(#) 8).
ACL2 !>(assign my-ar (aset1 'a1 (@ my-ar) 3 'xxx))
((3 . XXX)
(:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH 6 :DEFAULT 17 :NAME A1))
ACL2 !>(aref1 'a1 (@ my-ar) 3)
XXX
ACL2 !>(aset1 'a1 (@ my-ar) 3 'yyy) ; BAD: (@ my-ar) now points to
; an old copy of the array!
((3 . YYY)
(3 . XXX)
(:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH 6 :DEFAULT 17 :NAME A1))
ACL2 !>(aref1 'a1 (@ my-ar) 3) ; Because of \"BAD\" above, the array
; access is done using assoc rather
; than Lisp aref, hence is slower;
; but the answer is still correct,
; reflecting the value in (@ my-ar),
; which was not changed above.
**********************************************************
Slow Array Access! A call of AREF1 on an array named
A1 is being executed slowly. See :DOC slow-array-warning
**********************************************************
XXX
ACL2 !>
~ev[]")
(deflabel slow-array-warning
:doc
":Doc-Section Arrays
a warning or error issued when ~il[arrays] are used inefficiently~/
If you use ACL2 ~il[arrays] you may sometimes see a ~st[slow array] warning.
We explain below what that warning means and some likely ``mistakes''
it may signify.
First, we note that you can control whether or not you get a warning and, if
so, whether or not a break (error from which you can continue; ~pl[break$])
ensues:
~bv[]
(assign slow-array-action :warning) ; warn on slow array access (default)
(assign slow-array-action :break) ; warn as above, and then call break$
(assign slow-array-action nil) ; do not warn or break on slow array access
~ev[]
If you are using ACL2 arrays, then you probably care about performance, in
which case it is probably best to avoid the ~c[nil] setting. Below we assume
the default behavior: a warning, but no break.~/
The discussion in the documentation for ~il[arrays] defines what we
mean by the semantic value of a name. As noted there, behind the
scenes ACL2 maintains the invariant that with some names there is
associated a pair consisting of an ACL2 array ~c[alist], called the
semantic value of the name, and an equivalent raw lisp array.
Access to ACL2 array elements, as in ~c[(aref1 name alist i)], is
executed in constant time when the array alist is the semantic value
of the name, because we can just use the corresponding raw lisp
array to obtain the answer. ~ilc[Aset1] and ~ilc[compress1] modify the raw lisp
array appropriately to maintain the invariant.
If ~ilc[aref1] is called on a name and alist, and the alist is not the
then-current semantic value of the name, the correct result is
computed but it requires linear time because the alist must be
searched. When this happens, ~ilc[aref1] prints a ~st[slow array] warning
message to the comment window. ~ilc[Aset1] behaves similarly because the
array it returns will cause the ~st[slow array] warning every time it is
used.
From the purely logical perspective there is nothing ``wrong'' about
such use of ~il[arrays] and it may be spurious to print a warning
message. But because ~il[arrays] are generally used to achieve
efficiency, the ~st[slow array] warning often means the user's
intentions are not being realized. Sometimes merely performance
expectations are not met; but the message may mean that the
functional behavior of the program is different than intended.
Here are some ``mistakes'' that might cause this behavior. In the
following we suppose the message was printed by ~ilc[aset1] about an array
named ~c[name]. Suppose the alist supplied ~ilc[aset1] is ~c[alist].
(1) ~ilc[Compress1] was never called on ~c[name] and ~c[alist]. That is, perhaps
you created an alist that is an ~ilc[array1p] and then proceeded to access
it with ~ilc[aref1] but never gave ACL2 the chance to create a raw lisp
array for it. After creating an alist that is intended for use as
an array, you must do ~c[(compress1 name alist)] and pass the resulting
~c[alist'] as the array.
(2) ~c[Name] is misspelled. Perhaps the array was compressed under the
name ~c['delta-1] but accessed under ~c['delta1]?
(3) An ~ilc[aset1] was done to modify ~c[alist], producing a new array,
~c[alist'], but you subsequently used ~c[alist] as an array. Inspect all
~c[(aset1 name ...)] occurrences and make sure that the alist modified
is never used subsequently (either in that function or any other).
It is good practice to adopt the following syntactic style. Suppose
the alist you are manipulating is the value of the local variable
~c[alist]. Suppose at some point in a function definition you wish to
modify ~c[alist] with ~ilc[aset1]. Then write
~bv[]
(let ((alist (aset1 name alist i val))) ...)
~ev[]
and make sure that the subsequent function body is entirely within
the scope of the ~ilc[let]. Any uses of ~c[alist] subsequently will refer
to the new alist and it is impossible to refer to the old alist.
Note that if you write
~bv[]
(foo (let ((alist (aset1 name alist i val))) ...) ; arg 1
(bar alist)) ; arg 2
~ev[]
you have broken the rules, because in ~c[arg 1] you have modified
~c[alist] but in ~c[arg 2] you refer to the old value. An appropriate
rewriting is to lift the ~ilc[let] out:
~bv[]
(let ((alist (aset1 name alist alist i val)))
(foo ... ; arg 1
(bar alist))) ; arg 2
~ev[]
Of course, this may not mean the same thing.
(4) A function which takes ~c[alist] as an argument and modifies it with
~ilc[aset1] fails to return the modified version. This is really the same
as (3) above, but focuses on function interfaces. If a function
takes an array ~c[alist] as an argument and the function uses ~ilc[aset1] (or
a subfunction uses ~ilc[aset1], etc.), then the function probably
``ought'' to return the result produced by ~ilc[aset1]. The reasoning
is as follows. If the array is passed into the function, then the
caller is holding the array. After the function modifies it, the
caller's version of the array is obsolete. If the caller is going
to make further use of the array, it must obtain the latest version,
i.e., that produced by the function.")
(defun array1p (name l)
":Doc-Section Arrays
recognize a 1-dimensional array~/
~bv[]
Example Form:
(array1p 'delta1 a)~/
General Form:
(array1p name alist)
~ev[]
where ~c[name] and ~c[alist] are arbitrary objects. This function
returns ~c[t] if ~c[alist] is a 1-dimensional ACL2 array. Otherwise it
returns ~c[nil]. The function operates in constant time if ~c[alist] is the
semantic value of ~c[name]. ~l[arrays]."
(declare (xargs :guard t))
#-acl2-loop-only
(cond ((symbolp name)
(let ((prop (get-acl2-array-property name)))
(cond ((and prop (eq l (car prop)))
(return-from array1p (= 1 (array-rank (cadr prop)))))))))
; Note: This function does not use the header, dimensions, and maximum-length
; functions, but obtains their results through duplication of code. The reason
; is that we want those functions to have array1p or array2p as guards, so they
; can't be introduced before array1p. The reason we want this function in
; their guards, even though it is overly strong, is as follows. Users who use
; aref1 guard their functions with arrayp1 and then start proving theorems.
; The theorems talk about dimensions, etc. If dimensions, etc., are guarded
; with weaker things (like keyword-value-listp) then you find yourself either
; having to open up array1p or forward chain from it. But array1p is fairly
; hideous. So we intend to keep it disabled and regard it as the atomic test
; that it is ok to use array processing functions.
(and (symbolp name)
(alistp l)
(let ((header-keyword-list (cdr (assoc-eq :header l))))
(and (keyword-value-listp header-keyword-list)
(let ((dimensions (cadr (assoc-keyword :dimensions header-keyword-list)))
(maximum-length (cadr (assoc-keyword :maximum-length header-keyword-list))))
(and (true-listp dimensions)
(equal (length dimensions) 1)
(integerp (car dimensions))
(integerp maximum-length)
(< 0 (car dimensions))
(< (car dimensions) maximum-length)
(<= maximum-length *maximum-positive-32-bit-integer*)
(bounded-integer-alistp l (car dimensions))))))))
(defthm array1p-forward
(implies (array1p name l)
(and (symbolp name)
(alistp l)
(keyword-value-listp (cdr (assoc-eq :header l)))
(true-listp (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
(equal (length (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
1)
(integerp (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(integerp (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
(< 0 (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(< (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
(cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
(<= (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l))))
*maximum-positive-32-bit-integer*)
(bounded-integer-alistp
l
(car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))))
:rule-classes :forward-chaining)
(defthm array1p-linear
(implies (array1p name l)
(and (< 0 (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(< (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
(cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
(<= (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l))))
*maximum-positive-32-bit-integer*)))
:rule-classes ((:linear :match-free :all)))
(defun bounded-integer-alistp2 (l i j)
(declare (xargs :guard t))
(cond ((atom l) (null l))
(t (and (consp (car l))
(let ((key (caar l)))
(and (or (eq key :header)
(and (consp key)
(let ((i1 (car key))
(j1 (cdr key)))
(and (integerp i1)
(integerp j1)
(integerp i)
(integerp j)
(>= i1 0)
(< i1 i)
(>= j1 0)
(< j1 j)))))))
(bounded-integer-alistp2 (cdr l) i j)))))
(defun assoc2 (i j l)
(declare (xargs :guard (and (integerp i)
(integerp j))))
(if (atom l)
nil
(if (and (consp (car l))
(consp (caar l))
(eql i (caaar l))
(eql j (cdaar l)))
(car l)
(assoc2 i j (cdr l)))))
(defun array2p (name l)
":Doc-Section Arrays
recognize a 2-dimensional array~/
~bv[]
Example Form:
(array2p 'delta1 a)~/
General Form:
(array2p name alist)
~ev[]
where ~c[name] and ~c[alist] are arbitrary objects. This function returns ~c[t] if
~c[alist] is a 2-dimensional ACL2 array. Otherwise it returns ~c[nil]. The function
operates in constant time if ~c[alist] is the semantic value of ~c[name]. ~l[arrays]."
(declare (xargs :guard t))
#-acl2-loop-only
(cond ((symbolp name)
(let ((prop (get-acl2-array-property name)))
(cond ((and prop (eq l (car prop))
(return-from array2p
(= 2 (array-rank (cadr prop))))))))))
(and (symbolp name)
(alistp l)
(let ((header-keyword-list (cdr (assoc-eq :header l))))
(and (keyword-value-listp header-keyword-list)
(let ((dimensions (cadr (assoc-keyword :dimensions header-keyword-list)))
(maximum-length (cadr (assoc-keyword :maximum-length header-keyword-list))))
(and (true-listp dimensions)
(equal (length dimensions) 2)
(let ((d1 (car dimensions))
(d2 (cadr dimensions)))
(and (integerp d1)
(integerp d2)
(integerp maximum-length)
(< 0 d1)
(< 0 d2)
(< (* d1 d2) maximum-length)
(<= maximum-length
*maximum-positive-32-bit-integer*)
(bounded-integer-alistp2 l d1 d2)))))))))
(defthm array2p-forward
(implies (array2p name l)
(and (symbolp name)
(alistp l)
(keyword-value-listp (cdr (assoc-eq :header l)))
(true-listp (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
(equal (length (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))) 2)
(integerp (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(integerp (cadr (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(integerp (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
(< 0 (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(< 0 (cadr (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(< (* (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
(cadr (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
(<= (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l))))
*maximum-positive-32-bit-integer*)
(bounded-integer-alistp2
l
(car (cadr (assoc-keyword
:dimensions
(cdr (assoc-eq :header l)))))
(cadr (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))))
:rule-classes :forward-chaining)
(defthm array2p-linear
(implies (array2p name l)
(and (< 0 (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(< 0 (cadr (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(< (* (car (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l)))))
(cadr (cadr (assoc-keyword :dimensions (cdr (assoc-eq :header l))))))
(cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l)))))
(<= (cadr (assoc-keyword :maximum-length (cdr (assoc-eq :header l))))
*maximum-positive-32-bit-integer*)))
:rule-classes ((:linear :match-free :all)))
; (in-theory (disable array1p array2p))
(defun header (name l)
(declare (xargs :guard (or (array1p name l) (array2p name l))))
":Doc-Section Arrays
return the header of a 1- or 2-dimensional array~/
~bv[]
Example Form:
(header 'delta1 a)~/
General Form:
(header name alist)
~ev[]
where ~c[name] is arbitrary and ~c[alist] is a 1- or 2-dimensional array.
This function returns the header of the array ~c[alist]. The function
operates in virtually constant time if ~c[alist] is the semantic value
of ~c[name]. ~l[arrays]."
#+acl2-loop-only
(prog2$ name ;to avoid warning in *1* function definition
(assoc-eq :header l))
; In the usual case, this function will take constant time regardless
; of where the header is in the alist. This makes the related
; functions for getting the fields of the header fast, too.
#-acl2-loop-only
(let ((prop (get-acl2-array-property name)))
(cond ((and prop (eq l (car prop)))
(cadddr prop))
(t (assoc-eq :header l)))))
(defun dimensions (name l)
":Doc-Section Arrays
return the ~c[:dimensions] from the ~il[header] of a 1- or 2-dimensional array~/
~bv[]
Example Form:
(dimensions 'delta1 a)~/
General Form:
(dimensions name alist)
~ev[]
where ~c[name] is arbitrary and ~c[alist] is a 1- or 2-dimensional array.
This function returns the dimensions list of the array ~c[alist]. That
list will either be of the form ~c[(dim1)] or ~c[(dim1 dim2)], depending on
whether ~c[alist] is a 1- or 2-dimensional array. ~c[Dim1] and ~c[dim2] will be
integers and each exceed by 1 the maximum legal corresponding index.
Thus, if ~c[dimensions] returns, say, ~c['(100)] for an array ~c[a]
named ~c['delta1], then ~c[(aref1 'delta1 a 99)] is legal but
~c[(aref1 'delta1 a 100)] violates the ~il[guard]s on ~ilc[aref1].
~c[Dimensions] operates in virtually constant time if ~c[alist] is the
semantic value of ~c[name]. ~l[arrays]."
(declare (xargs :guard (or (array1p name l) (array2p name l))))
(cadr (assoc-keyword :dimensions
(cdr (header name l)))))
(defun maximum-length (name l)
":Doc-Section Arrays
return the ~c[:maximum-length] from the ~il[header] of an array~/
~bv[]
Example Form:
(maximum-length 'delta1 a)~/
General Form:
(maximum-length name alist)
~ev[]
where ~c[name] is an arbitrary object and ~c[alist] is a 1- or
2-dimensional array. This function returns the contents of the
~c[:maximum-length] field of the ~il[header] of ~c[alist]. Whenever an ~ilc[aset1] or
~ilc[aset2] would cause the length of the alist to exceed its maximum
length, a ~ilc[compress1] or ~ilc[compress2] is done automatically to remove
irrelevant pairs from the array. ~c[Maximum-length] operates in
virtually constant time if ~c[alist] is the semantic value of ~c[name].
~l[arrays]."
(declare (xargs :guard (or (array1p name l) (array2p name l))))
(cadr (assoc-keyword :maximum-length (cdr (header name l)))))
(defun default (name l)
":Doc-Section Arrays
return the ~c[:default] from the ~il[header] of a 1- or 2-dimensional array~/
~bv[]
Example Form:
(default 'delta1 a)~/
General Form:
(default name alist)
~ev[]
where ~c[name] is an arbitrary object and ~c[alist] is a 1- or
2-dimensional array. This function returns the contents of the
~c[:default] field of the ~il[header] of ~c[alist]. When ~ilc[aref1] or ~ilc[aref2] is used
to obtain a value for an index (or index pair) not bound in ~c[alist],
the default value is returned instead. Thus, the array ~c[alist] may be
thought of as having been initialized with the default value.
~c[default] operates in virtually constant time if ~c[alist] is the semantic
value of ~c[name]. ~l[arrays]."
(declare (xargs :guard (or (array1p name l) (array2p name l))))
(cadr (assoc-keyword :default
(cdr (header name l)))))
; Parallelism wart: once upon a time we locked all array operations. Since
; then, two improvements have been made to ACL2: (1) the
; enabled-array-structure now uses unique names based on the current subgoal
; and (2) the array implementation itself was improved to be "more" thread-safe
; (you can compare the implementation of aset1 and other related functions in
; ACL2 3.6.1 and ACL2 4.0 to see the change). However, we suspect that
; that arrays are not thread-safe, as we have acknowledged in :DOC
; unsupported-waterfall-parallelism-features.
;
; Rager thinks that we stopped locking the array operations because the prover
; incurred significant overhead (if he can recall correctly, it was about a 40%
; increase in time required to certify a semi-expensive book) with locking
; enabled. He thinks that the change to enabled arrays, named (1) above, could
; have eliminated most of this overhead. However, further investigation is
; called for.
; For now, we do not lock any array operations, but we leave the dead code as
; hints to ourselves that we may need to do so. When this wart is addressed,
; this dead code (which can be found by searching for *acl2-par-arrays-lock*)
; should either be uncommented and modified, or it should be removed.
; #+(and acl2-par (not acl2-loop-only))
; (deflock *acl2-par-arrays-lock*)
(defun aref1 (name l n)
":Doc-Section Arrays
access the elements of a 1-dimensional array~/
~bv[]
Example Form:
(aref1 'delta1 a (+ i k))~/
General Form:
(aref1 name alist index)
~ev[]
where ~c[name] is a symbol, ~c[alist] is a 1-dimensional array and ~c[index]
is a legal index into ~c[alist]. This function returns the value
associated with ~c[index] in ~c[alist], or else the default value of the
array. ~l[arrays] for details.
This function executes in virtually constant time if ~c[alist] is in
fact the ``semantic value'' associated with ~c[name] (~pl[arrays]).
When it is not, ~c[aref1] must do a linear search through ~c[alist]. In
that case the correct answer is returned but a ~st[slow array] comment is
printed to the comment window. ~l[slow-array-warning]."
#+acl2-loop-only
(declare (xargs :guard (and (array1p name l)
(integerp n)
(>= n 0)
(< n (car (dimensions name l))))))
#+acl2-loop-only
(let ((x (and (not (eq n :header)) (assoc n l))))
(cond ((null x) (default name l))
(t (cdr x))))
; We are entitled to make the following declaration because of the
; guard.
#-acl2-loop-only
(declare (type (unsigned-byte 31) n))
#-acl2-loop-only
; See comment above (for #+acl2-par) about *acl2-par-arrays-lock*:
; (with-lock
; *acl2-par-arrays-lock*
(let ((prop (get-acl2-array-property name)))
(cond ((eq l (car prop))
(svref (the simple-vector (car (cdr prop)))
n))
(t (slow-array-warning 'aref1 name)
(let ((x (assoc n l))) ; n is a number, hence not :header
(cond ((null x) (default name l))
(t (cdr x))))))))
(defun compress11 (name l i n default)
(declare (xargs :guard (and (array1p name l)
(integerp i)
(integerp n)
(<= i n))
:measure (nfix (- n i))))
(cond ((zp (- n i)) nil)
(t (let ((pair (assoc i l)))
(cond ((or (null pair)
(equal (cdr pair) default))
(compress11 name l (+ i 1) n default))
(t (cons pair
(compress11 name l (+ i 1) n default))))))))
#-acl2-loop-only
(defconstant *invisible-array-mark* 'acl2_invisible::|An Invisible Array Mark|)
(defun array-order (header)
(declare (xargs :guard (and (consp header)
(keyword-value-listp (cdr header)))))
(let ((orderp (assoc-keyword :order (cdr header))))
(cond
((and orderp (or (eq (cadr orderp) nil)
(eq (cadr orderp) :none)))
nil)
((and orderp (eq (cadr orderp) '>))
'>)
(t ; default
'<))))
(defun compress1 (name l)
":Doc-Section Arrays
remove irrelevant pairs from a 1-dimensional array~/
~bv[]
Example Form:
(compress1 'delta1 a)~/
General Form:
(compress1 name alist)
~ev[]
where ~c[name] is a symbol and ~c[alist] is a 1-dimensional array, generally
named ~c[name]. ~l[arrays] for details. Logically speaking, this function
removes irrelevant pairs from ~c[alist], possibly shortening it. The
function returns a new array, ~c[alist'], with the same ~ilc[header]
(including name and dimension) as ~c[alist], that, under ~ilc[aref1], is
everywhere equal to ~c[alist]. That is, ~c[(aref1 name alist' i)] is
~c[(aref1 name alist i)], for all legal indices ~c[i]. ~c[Alist'] may be
shorter than ~c[alist] and the non-irrelevant pairs may occur in a different
order than in ~c[alist].
Practically speaking, this function plays an important role in the efficient
implementation of ~ilc[aref1]. In addition to creating the new array,
~c[alist'], ~c[compress1] makes that array the ``semantic value'' of ~c[name]
and allocates a raw lisp array to ~c[name]. For each legal index, ~c[i],
that raw lisp array contains ~c[(aref1 name alist' i)] in slot ~c[i]. Thus,
subsequent ~ilc[aref1] operations can be executed in virtually constant time
provided they are given ~c[name] and the ~c[alist'] returned by the most
recently executed ~c[compress1] or ~ilc[aset1] on ~c[name]. ~l[arrays].
In general, ~c[compress1] returns an alist whose ~ilc[cdr] is an association
list whose keys are nonnegative integers in ascending order. However, if the
~ilc[header] specifies an ~c[:order] of ~c[>] then the keys will occur in
descending order, and if the ~c[:order] is ~c[:none] or ~c[nil] then the keys
will not be sorted, i.e., ~c[compress1] is logically the identity function
(though it still attaches an array under the hood). Note however that a
~ilc[compress1] call is replaced by a hard error if the header specifies an
~c[:order] of ~c[:none] or ~c[nil] and the array's length exceeds the
~ilc[maximum-length] field of its ~ilc[header]."
; The uses of (the (unsigned-byte 31) ...) below rely on the array1p guard,
; which for example guarantees that the dimension is bounded by
; *maximum-positive-32-bit-integer* and that each array index (i.e., each car)
; is less than the dimension. These declarations probably only assist
; efficiency in GCL, but that may be the Lisp that benefits most from such
; fixnum declarations, anyhow.
#+acl2-loop-only
(declare (xargs :guard (array1p name l)))
#+acl2-loop-only
(case (array-order (header name l))
(< (cons (header name l)
(compress11
name l 0
(car (dimensions name l))
(default name l))))
(> (cons (header name l)
(reverse (compress11
name l 0
(car (dimensions name l))
(default name l)))))
(t
(prog2$
(and (> (length l)
(maximum-length name l))
(hard-error 'compress1
"Attempted to compress a one-dimensional array named ~
~x0 whose header specifies :ORDER ~x1 and whose ~
length, ~x2, exceeds its maximum-length, ~x3."
(list (cons #\0 name)
(cons #\1 nil)
(cons #\2 (length l))
(cons #\3 (maximum-length name l)))))
l)))
#-acl2-loop-only
; See comment above (for #+acl2-par) about *acl2-par-arrays-lock*:
; (with-lock
; *acl2-par-arrays-lock*
(let* ((old (get-acl2-array-property name))
(header (header name l))
(length (car (cadr (assoc-keyword :dimensions (cdr header)))))
(maximum-length (cadr (assoc-keyword :maximum-length (cdr header))))
(default (cadr (assoc-keyword :default (cdr header))))
(order (array-order header))
old-car
ar
in-order)
(when (and (null order)
(> (length l) maximum-length))
(hard-error 'compress1
"Attempted to compress a one-dimensional array named ~x0 ~
whose header specifies :ORDER ~x1 and whose length, ~x2, ~
exceeds its maximum-length, ~x3."
(list (cons #\0 name)
(cons #\1 nil)
(cons #\2 (length l))
(cons #\3 (maximum-length name l)))))
; Get an array that is all filled with the special mark *invisible-array-mark*.
(cond ((and old
(= 1 (array-rank (cadr old)))
(= (length (cadr old)) length))
(setq old-car (car old))
(setf (car old) *invisible-array-mark*)
(setq ar (cadr old))
(do ((i (1- length) (1- i))) ((< i 0))
(declare (type (signed-byte 32) i))
(setf (svref ar i) *invisible-array-mark*)))
(t (setq ar (make-array$ length :initial-element
*invisible-array-mark*))))
; Store the value of each pair under its key (unless it is covered by
; an earlier pair with the same key).
(do ((tl l (cdr tl)))
((null tl))
(let ((index (caar tl)))
(cond ((eq index :header) nil)
((eq *invisible-array-mark* (svref ar index))
(setf (svref ar index)
(cdar tl))))))
; Determine whether l is already is in normal form (header first,
; strictly ascending keys, no default values, no extra header.)
(setq in-order t)
(when order
(cond ((eq (caar l) :header)
(do ((tl (cdr l) (cdr tl)))
(nil)
(cond ((or (eq (caar tl) :header)
(eq (car (cadr tl)) :header))
(setq in-order nil)
(return nil))
((equal (cdr (car tl)) default)
(setq in-order nil)
(return nil))
((null (cdr tl)) (return nil))
((if (eq order '>)
(<= (the (unsigned-byte 31) (caar tl))
(the (unsigned-byte 31) (car (cadr tl))))
(>= (the (unsigned-byte 31) (caar tl))
(the (unsigned-byte 31) (car (cadr tl)))))
(setq in-order nil)
(return nil)))))
(t (setq in-order nil))))
(let ((num 1) x max-ar)
(declare (type (unsigned-byte 31) num))
; In one pass, set x to the value to be returned, put defaults into the array
; where the invisible mark still sits, and calculate the length of x.
(cond (in-order
(do ((i (1- length) (1- i))) ((< i 0))
(declare (type (signed-byte 32) i))
(let ((val (svref ar i)))
(cond ((eq *invisible-array-mark* val)
(setf (svref ar i) default))
(t (setq num (the (unsigned-byte 31) (1+ num)))))))
(setq x l))
((eq order '>)
(do ((i 0 (1+ i))) ((int= i length))
(declare (type (unsigned-byte 31) i))
(let ((val (svref ar i)))
(cond ((eq *invisible-array-mark* val)
(setf (svref ar i) default))
((equal val default) nil)
(t (push (cons i val) x)
(setq num (the (unsigned-byte 31) (1+ num)))))))
(setq x (cons header x)))
(t (do ((i (1- length) (1- i))) ((< i 0))
(declare (type (signed-byte 32) i))
(let ((val (svref ar i)))
(cond ((eq *invisible-array-mark* val)
(setf (svref ar i) default))
((equal val default) nil)
(t (push (cons i val) x)
(setq num (the (unsigned-byte 31) (1+ num)))))))
(setq x (cons header x))))
(cond (old (setq max-ar (caddr old))
(setf (aref (the (array (unsigned-byte 31) (*)) max-ar)
0)
(the (unsigned-byte 31)
(- maximum-length num))))
(t (setq max-ar
(make-array$ 1
:initial-contents
(list (- maximum-length num))
:element-type
'(unsigned-byte 31)))))
(cond (old
(setf (cadr old) ar)
(setf (cadddr old) header)
; We re-use the old value if it is equal to the new value. The example
; regarding compress1 in :doc note-2-7-other shows why we need to do this. In
; case that is not enough of a reason, here is a comment from Version_2.6 code,
; which is once again the code in Version_2.8. (Version_2.7 had a bug from an
; ill-advised attempt to deal with a problem with slow array warnings reported
; in :doc note-2-7-bug-fixes.)
; If the old car is equal to x, then we put the old pointer back into the
; car of the 'acl2-array property rather than the new pointer.
; This has the good effect of preserving the validity of any old
; copies of the array. It is clear the code below is correct, since
; we are putting down an equal structure in place of a newly consed up
; one. But why go out of our way? Why not just (setf (car old) x)?
; In fact, once upon a time, that is what we did. But it bit us when
; we tried to prove theorems in a post-:init world.
; When ACL2 is loaded the Common Lisp global constant
; *type-set-binary-+-table* is defined by (defconst & (compress2 ...)).
; It is set to some list, here called ptr1, built by compress2 (which
; contains code analogous to that we are documenting here in
; compress1). When ptr1 is built it is stored as the car of the
; 'acl2-array property of the array name 'type-set-binary-+-table, because at
; the time ACL2 is loaded, there is no old 'acl2-array property on
; that name. Suppose we then :init, loading the ACL2 source code into
; the current ACL2 world. That will execute the same defconst, in
; the acl2-loop-only setting. Compress2 is called and will build a
; new structure, ptr2 (called x in this code). Upon finishing, it
; will (according to the code here) find that ptr2 is equal to ptr1
; and will put ptr1 into the car of the 'acl2-array property of
; 'type-set-binary-+-table. It will return ptr1. That will become the value
; of the 'const getprop of '*type-set-binary-+-table* in the
; current-acl2-world. When that world is installed, we will note that
; a non-virgin name, *type-set-binary-+-table*, is being defconst'd and so
; we will DO NOTHING, leaving ptr1 as the value of the Common Lisp
; global contant *type-set-binary-+-table*. So, because of the code below,
; all logical copies of this array are represented by ptr1.
; In the old days, compress2 put ptr2 into the car of the 'acl2-array
; property of 'type-set-binary-+-table. It returned ptr2, which thus became
; the value of the 'const getprop of '*type-set-binary-+-table*. When
; that world was installed, we noted that a non-virgin name was being
; defconst'd and we DID NOTHING, leaving ptr1 as the value of the
; global constant *type-set-binary-+-table*. Subsequent references to
; *type-set-binary-+-table* in our type-set code, e.g., as occurred when one
; tried to prove theorems about + after an :init, provoked the
; slow-array-warning.
; The following historical comment no longer applies to
; 'global-enabled-stucture, but it is still relevant to
; 'global-arithmetic-enabled-structure.
; This preservation (eq) of the old array is also crucial to the way
; recompress-global-enabled-structure works. That function extracts
; the :theory-array from the current global-enabled-structure -- said
; theory-array having been produced by a past call of compress1 and
; hence guaranteed to be sorted etc. It calls compress1 on it, which
; side-effects the underlying von Neumann array but returns the very
; same (eq) structure. We then discard that structure, having only
; wanted the side effect! Before we exploited this, we had to cons up
; a new global-enabled-structure and rebind 'global-enabled-stucture
; in the world. This had the bad effect of sometimes putting more
; than one binding of that variable.
(setf (car old)
(cond ((equal old-car x) old-car)
(t x)))
(car old))
(t (set-acl2-array-property name (list x ar max-ar header))
x)))))
(defthm array1p-cons
(implies (and (< n
(caadr (assoc-keyword :dimensions
(cdr (assoc-eq :header l)))))
(not (< n 0))
(integerp n)
(array1p name l))
(array1p name (cons (cons n val) l)))
:hints (("Goal" :in-theory (enable array1p))))
(defun aset1 (name l n val)
":Doc-Section Arrays
set the elements of a 1-dimensional array~/
~bv[]
Example Form:
(aset1 'delta1 a (+ i k) 27)~/
General Form:
(aset1 name alist index val)
~ev[]
where ~c[name] is a symbol, ~c[alist] is a 1-dimensional array named ~c[name],
~c[index] is a legal index into ~c[alist], and ~c[val] is an arbitrary object.
~l[arrays] for details. Roughly speaking this function
``modifies'' ~c[alist] so that the value associated with ~c[index] is ~c[val].
More precisely, it returns a new array, ~c[alist'], of the same name and
dimension as ~c[alist] that, under ~ilc[aref1], is everywhere equal to ~c[alist]
except at ~c[index] where the result is ~c[val]. That is,
~c[(aref1 name alist' i)] is ~c[(aref1 name alist i)] for all legal
indices ~c[i] except ~c[index], where ~c[(aref1 name alist' i)] is ~c[val].
In order to ``modify'' ~c[alist], ~c[aset1] ~ilc[cons]es a new pair onto the
front. If the length of the resulting alist exceeds the
~c[:]~ilc[maximum-length] entry in the array ~il[header], ~c[aset1] compresses the
array as with ~ilc[compress1].
It is generally expected that the ``semantic value'' of ~c[name] will be
~c[alist] (~pl[arrays]). This function operates in virtually
constant time whether this condition is true or not (unless the
~ilc[compress1] operation is required). But the value returned by this
function cannot be used efficiently by subsequent ~c[aset1] operations
unless ~c[alist] is the semantic value of ~c[name] when ~c[aset1] is executed.
Thus, if the condition is not true, ~c[aset1] prints a ~st[slow array]
warning to the comment window. ~l[slow-array-warning]."
#+acl2-loop-only
(declare (xargs :guard (and (array1p name l)
(integerp n)
(>= n 0)
(< n (car (dimensions name l))))))
#+acl2-loop-only
(let ((l (cons (cons n val) l)))
(cond ((> (length l)
(maximum-length name l))
(compress1 name l))
(t l)))
#-acl2-loop-only
(declare (type (unsigned-byte 31) n))
#-acl2-loop-only
; See comment above (for #+acl2-par) about *acl2-par-arrays-lock*:
; (with-lock
; *acl2-par-arrays-lock*
(let ((prop (get-acl2-array-property name)))
(cond ((eq l (car prop))
(let* ((ar (cadr prop))
(to-go (aref (the (array (unsigned-byte 31) (*))
(caddr prop))
0)))
(declare (type (unsigned-byte 31) to-go)
(simple-vector ar))
(cond ((eql (the (unsigned-byte 31) to-go) 0)
(setf (car prop) *invisible-array-mark*)
(setf (aref ar n) val)
(let* ((header (cadddr prop))
(order (array-order header))
(length (car (cadr (assoc-keyword
:dimensions
(cdr header)))))
(maximum-length
(cadr (assoc-keyword
:maximum-length (cdr header))))
(default
(cadr (assoc-keyword
:default (cdr header))))
(x nil)
(num 1))
(declare (type (unsigned-byte 31) num length))
(declare (type (unsigned-byte 31) maximum-length))
(cond ((null order)
; Cause same error as in the logic.
(return-from aset1
(compress1 name (cons (cons n val)
l))))
((eq order '>)
(do ((i 0 (1+ i)))
((int= i length))
(declare (type (unsigned-byte 31) i))
(let ((val (svref ar (the (unsigned-byte 31) i))))
(cond ((equal val default) nil)
(t (push (cons i val) x)
(setq num (the (unsigned-byte 31)
(1+ num))))))))
(t
(do ((i (1- length) (1- i)))
((< i 0))
(declare (type (signed-byte 32) i))
(let ((val (svref ar (the (signed-byte 32) i))))
(cond ((equal val default) nil)
(t (push (cons i val) x)
(setq num (the (unsigned-byte 31)
(1+ num)))))))))
(setq x (cons header x))
(setf (aref (the (array (unsigned-byte 31) (*))
(caddr prop)) 0)
(the (unsigned-byte 31) (- maximum-length num)))
(setf (car prop) x)
x))
(t (let ((x (cons (cons n val) l)))
(setf (car prop) *invisible-array-mark*)
(setf (svref (the simple-vector ar) n) val)
(setf (aref (the (array (unsigned-byte 31) (*))
(caddr prop))
0)
(the (unsigned-byte 31) (1- to-go)))
(setf (car prop) x)
x)))))
(t (let ((l (cons (cons n val) l)))
(slow-array-warning 'aset1 name)
(cond ((> (length l)
(maximum-length name l))
(compress1 name l))
(t l)))))))
(defun aref2 (name l i j)
":Doc-Section Arrays
access the elements of a 2-dimensional array~/
~bv[]
Example Form:
(aref2 'delta1 a i j)~/
General Form:
(aref2 name alist i j)
~ev[]
where ~c[name] is a symbol, ~c[alist] is a 2-dimensional array and ~c[i] and ~c[j]
are legal indices into ~c[alist]. This function returns the value
associated with ~c[(i . j)] in ~c[alist], or else the default value of the
array. ~l[arrays] for details.
This function executes in virtually constant time if ~c[alist] is in
fact the ``semantic value'' associated with ~c[name] (~pl[arrays]).
When it is not, ~c[aref2] must do a linear search through ~c[alist]. In
that case the correct answer is returned but a ~st[slow array] comment is
printed to the comment window. ~l[slow-array-warning]."
#+acl2-loop-only
(declare (xargs :guard (and (array2p name l)
(integerp i)
(>= i 0)
(< i (car (dimensions name l)))
(integerp j)
(>= j 0)
(< j (cadr (dimensions name l))))))
#+acl2-loop-only
(let ((x (assoc2 i j l)))
(cond ((null x) (default name l))
(t (cdr x))))
#-acl2-loop-only
(declare (type (unsigned-byte 31) i j))
#-acl2-loop-only
(let ((prop (get-acl2-array-property name)))
(cond ((eq l (car prop))
(aref (the (array * (* *)) (car (cdr prop)))
i j))
(t (slow-array-warning 'aref2 name)
(let ((x (assoc2 i j l)))
(cond ((null x) (default name l))
(t (cdr x))))))))
(defun compress211 (name l i x j default)
(declare (xargs :guard (and (array2p name l)
(integerp x)
(integerp i)
(integerp j)
(<= x j))
:measure (nfix (- j x))))
(cond ((zp (- j x))
nil)
(t (let ((pair (assoc2 i x l)))
(cond ((or (null pair)
(equal (cdr pair) default))
(compress211 name l i (+ 1 x) j default))
(t (cons pair
(compress211 name l i (+ 1 x) j default))))))))
(defun compress21 (name l n i j default)
(declare (xargs :guard (and (array2p name l)
(integerp n)
(integerp i)
(integerp j)
(<= n i)
(<= 0 j))
:measure (nfix (- i n))))
(cond ((zp (- i n)) nil)
(t (append (compress211 name l n 0 j default)
(compress21 name l (+ n 1) i j default)))))
(defun compress2 (name l)
":Doc-Section Arrays
remove irrelevant pairs from a 2-dimensional array~/
~bv[]
Example Form:
(compress2 'delta1 a)~/
General Form:
(compress2 name alist)
~ev[]
where ~c[name] is a symbol and ~c[alist] is a 2-dimensional array, generally
named ~c[name]. ~l[arrays] for details. Logically speaking, this function
removes irrelevant pairs from ~c[alist], possibly shortening it. The
function returns a new array, ~c[alist'], with the same ~ilc[header]
(including name and dimension) as ~c[alist], that, under ~ilc[aref2], is
everywhere equal to ~c[alist]. That is, ~c[(aref2 name alist' i j)] is
~c[(aref2 name alist i j)], for all legal indices ~c[i] and ~c[j].
~c[Alist'] may be shorter than ~c[alist] and the non-irrelevant pairs may
occur in a different order in ~c[alist'] than in ~c[alist].
Practically speaking, this function plays an important role in the
efficient implementation of ~ilc[aref2]. In addition to creating the new
array, ~c[alist'], ~c[compress2] makes that array the ``semantic value'' of
~c[name] and allocates a raw lisp array to ~c[name]. For all legal indices,
~c[i] and ~c[j], that raw lisp array contains ~c[(aref2 name alist' i j)] in
slot ~c[i],~c[j]. Thus, subsequent ~ilc[aref2] operations can be executed in
virtually constant time provided they are given ~c[name] and the ~c[alist']
returned by the most recently executed ~c[compress2] or ~ilc[aset2] on ~c[name].
~l[arrays]."
#+acl2-loop-only
; The uses of (the (unsigned-byte 31) ...) below rely on the array2p
; guard, which for example guarantees that each dimension is bounded
; by *maximum-positive-32-bit-integer* and that array indices are
; therefore less than *maximum-positive-32-bit-integer*. These
; declarations probably only assist efficiency in GCL, but that may be
; the Lisp that benefits most from such fixnum declarations, anyhow.
(declare (xargs :guard (array2p name l)))
#+acl2-loop-only
(cons (header name l)
(compress21 name l 0
(car (dimensions name l))
(cadr (dimensions name l))
(default name l)))
#-acl2-loop-only
(let* ((old (get-acl2-array-property name))
(header (header name l))
(dimension1 (car (cadr (assoc-keyword :dimensions (cdr header)))))
(dimension2 (cadr (cadr (assoc-keyword :dimensions (cdr header)))))
(maximum-length (cadr (assoc-keyword :maximum-length (cdr header))))
(default (cadr (assoc-keyword :default (cdr header))))
old-car
ar
in-order)
; Get an array that is filled with the special mark *invisible-array-mark*.
(cond ((and old
(= 2 (array-rank (cadr old)))
(and (= dimension1 (array-dimension (cadr old) 0))
(= dimension2 (array-dimension (cadr old) 1))))
(setq old-car (car old))
(setf (car old) *invisible-array-mark*)
(setq ar (cadr old))
(let ((ar ar))
(declare (type (array * (* *)) ar))
(do ((i (1- dimension1) (1- i))) ((< i 0))
(declare (type fixnum i))
(do ((j (1- dimension2) (1- j))) ((< j 0))
(declare (type fixnum j))
(setf (aref ar i j) *invisible-array-mark*)))))
(t (setq ar
(make-array$ (list dimension1 dimension2)
:initial-element
*invisible-array-mark*))))
(let ((ar ar))
(declare (type (array * (* *)) ar))
; Store the value of each pair under its key (unless it is covered by
; an earlier pair with the same key).
(do ((tl l (cdr tl)))
((null tl))
(let ((index (caar tl)))
(cond ((eq index :header) nil)
((eq *invisible-array-mark*
(aref ar
(the fixnum (car index))
(the fixnum (cdr index))))
(setf (aref ar
(the fixnum (car index))
(the fixnum (cdr index)))
(cdar tl))))))
; Determine whether l is already in normal form (header first,
; strictly ascending keys, no default values, n extra header.)
(setq in-order t)
(cond ((eq (caar l) :header)
(do ((tl (cdr l) (cdr tl)))
(nil)
(cond ((or (eq (caar tl) :header)
(eq (car (cadr tl)) :header))
(setq in-order nil)
(return nil))
((equal (cdr (car tl)) default)
(setq in-order nil)
(return nil))
((null (cdr tl)) (return nil))
((or (> (the (unsigned-byte 31) (caaar tl))
(the (unsigned-byte 31) (caaadr tl)))
(and (= (the (unsigned-byte 31) (caaar tl))
(the (unsigned-byte 31) (caaadr tl)))
(> (the (unsigned-byte 31) (cdaar tl))
(the (unsigned-byte 31) (cdaadr tl)))))
(setq in-order nil)
(return nil)))))
(t (setq in-order nil)))
(let ((x nil) (num 1) max-ar)
(declare (type (unsigned-byte 31) num))
; In one pass, set x to the value to be returned, put defaults into the array
; where the invisible mark still sits, and calculate the length of x.
(cond (in-order
(do ((i (1- dimension1) (1- i)))
((< i 0))
(declare (type fixnum i))
(do ((j (1- dimension2) (1- j)))
((< j 0))
(declare (type fixnum j))
(let ((val (aref ar i j)))
(cond ((eq *invisible-array-mark* val)
(setf (aref ar i j) default))
(t
(setq num (the (unsigned-byte 31)
(1+ num))))))))
(setq x l))
(t (do ((i (1- dimension1) (1- i)))
((< i 0))
(declare (type fixnum i))
(do ((j (1- dimension2) (1- j)))
((< j 0))
(declare (type fixnum j))
(let ((val (aref ar i j)))
(cond ((eq *invisible-array-mark* val)
(setf (aref ar i j) default))
((equal val default) nil)
(t (push (cons (cons i j) val) x)
(setq num (the (unsigned-byte 31)
(1+ num))))))))
(setq x (cons header x))))
(cond (old (setq max-ar (caddr old))
(setf (aref (the (array (unsigned-byte 31) (*)) max-ar)
0)
(the (unsigned-byte 31)
(- maximum-length num))))
(t (setq max-ar
(make-array$ 1
:initial-contents
(list (- maximum-length num))
:element-type
'(unsigned-byte 31)))))
(cond (old
(setf (cadr old) ar)
(setf (cadddr old) header)
(setf (car old)
(cond ((equal old-car x) old-car)
(t x)))
(car old))
(t
(set-acl2-array-property name (list x ar max-ar header))
x))))))
(defthm array2p-cons
(implies (and (< j (cadr (dimensions name l)))
(not (< j 0))
(integerp j)
(< i (car (dimensions name l)))
(not (< i 0))
(integerp i)
(array2p name l))
(array2p name (cons (cons (cons i j) val) l)))
:hints (("Goal" :in-theory (enable array2p))))
(defun aset2 (name l i j val)
":Doc-Section Arrays
set the elements of a 2-dimensional array~/
~bv[]
Example Form:
(aset2 'delta1 a i j 27)~/
General Form:
(aset2 name alist i j val)
~ev[]
where ~c[name] is a symbol, ~c[alist] is a 2-dimensional array named ~c[name],
~c[i] and ~c[j] are legal indices into ~c[alist], and ~c[val] is an arbitrary
object. ~l[arrays] for details. Roughly speaking this
function ``modifies'' ~c[alist] so that the value associated with
~c[(i . j)] is ~c[val]. More precisely, it returns a new array,
~c[alist'], of the same name and dimension as ~c[alist] that, under
~ilc[aref2], is everywhere equal to ~c[alist] except at ~c[(i . j)] where
the result is ~c[val]. That is, ~c[(aref2 name alist' x y)] is
~c[(aref2 name alist x y)] for all legal indices ~c[x] ~c[y] except
~c[i] and ~c[j] where ~c[(aref2 name alist' i j)] is ~c[val].
In order to ``modify'' ~c[alist], ~c[aset2] ~ilc[cons]es a new pair onto the
front. If the length of the resulting ~c[alist] exceeds the
~c[:]~ilc[maximum-length] entry in the array ~il[header], ~c[aset2] compresses the
array as with ~ilc[compress2].
It is generally expected that the ``semantic value'' of ~c[name] will be
~c[alist] (~pl[arrays]). This function operates in virtually
constant time whether this condition is true or not (unless the
~ilc[compress2] operation is required). But the value returned by this
function cannot be used efficiently by subsequent ~c[aset2] operations
unless ~c[alist] is the semantic value of ~c[name] when ~c[aset2] is executed.
Thus, if the condition is not true, ~c[aset2] prints a ~st[slow array]
warning to the comment window. ~l[slow-array-warning]."
#+acl2-loop-only
(declare (xargs :guard (and (array2p name l)
(integerp i)
(>= i 0)
(< i (car (dimensions name l)))
(integerp j)
(>= j 0)
(< j (cadr (dimensions name l))))))
#+acl2-loop-only
(let ((l (cons (cons (cons i j) val) l)))
(cond ((> (length l)
(maximum-length name l))
(compress2 name l))
(t l)))
#-acl2-loop-only
(declare (type (unsigned-byte 31) i j))
#-acl2-loop-only
(let ((prop (get-acl2-array-property name)))
(cond
((eq l (car prop))
(let* ((ar (car (cdr prop)))
(to-go (aref (the (array (unsigned-byte 31) (*))
(caddr prop))
0)))
(declare (type (unsigned-byte 31) to-go))
(declare (type (array * (* *)) ar))
(cond
((eql (the (unsigned-byte 31) to-go) 0)
(setf (car prop) *invisible-array-mark*)
(setf (aref ar i j) val)
(let* ((header (cadddr prop))
(d1 (car (cadr (assoc-keyword :dimensions (cdr header)))))
(d2 (cadr (cadr (assoc-keyword :dimensions (cdr header)))))
(maximum-length
(cadr (assoc-keyword
:maximum-length (cdr header))))
(default (cadr (assoc-keyword :default (cdr header))))
(x nil)
(num 1))
(declare (type (unsigned-byte 31) num d1 d2 maximum-length))
(do ((i (1- d1) (1- i)))
((< i 0))
(declare (type fixnum i))
(do ((j (1- d2) (1- j)))
((< j 0))
(declare (type fixnum j))
(let ((val (aref ar
(the fixnum i)
(the fixnum j))))
(cond ((equal val default) nil)
(t (push (cons (cons i j) val) x)
(setq num (the (unsigned-byte 31)
(1+ num))))))))
(setq x (cons header x))
(setf (aref (the (array (unsigned-byte 31) (*))
(caddr prop))
0)
(the (unsigned-byte 31) (- maximum-length num)))
(setf (car prop) x)
x))
(t (let ((x (cons (cons (cons i j) val) l)))
(setf (car prop) *invisible-array-mark*)
(setf (aref ar i j) val)
(setf (aref (the (array (unsigned-byte 31) (*))
(caddr prop))
0)
(the (unsigned-byte 31) (1- to-go)))
(setf (car prop) x)
x)))))
(t (let ((l (cons (cons (cons i j) val) l)))
(slow-array-warning 'aset2 name)
(cond ((> (length l)
(maximum-length name l))
(compress2 name l))
(t l)))))))
(defun flush-compress (name)
":Doc-Section Arrays
flush the under-the-hood array for the given name~/
~bv[]
Example Form:
(flush-compress 'my-array)~/
General Form:
(flush-compress name)
~ev[]
where ~c[name] is a symbol.
Recall that ~c[(compress1 nm alist)] associates an under-the-hood raw Lisp
one-dimensional array of name ~c[nm] with the given association list,
~c[alist], while ~c[(compress2 nm alist)] is the analogous function for
two-dimensional arrays; ~pl[compress1] and ~pl[compress2]. The only purpose
of ~c[flush-compress], which always returns ~c[nil], is to remove the
association of any under-the-hood array with the given name, thus eliminating
slow array accesses (~pl[slow-array-warning]). It is not necessary if the
return values of ~ilc[compress1] and ~ilc[compress2] are always used as the
``current'' copy of the named array, and thus ~c[flush-compress] should
rarely, if ever, be needed in user applications.
Nevertheless, we provide the following contrived example to show how
~c[flush-compress] can be used to good effect. Comments have been added to
this log to provide explanation.
~bv[]
ACL2 !>(assign a (compress1 'demo
'((:header :dimensions (5)
:maximum-length 15
:default uninitialized
:name demo)
(0 . zero)
(1 . one))))
((:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH
15 :DEFAULT UNINITIALIZED :NAME DEMO)
(0 . ZERO)
(1 . ONE))
ACL2 !>(aref1 'demo (@ a) 0)
ZERO
; As expected, the above evaluation did not cause a slow array warning. Now
; we associate a different under-the-hood array with the name 'demo.
ACL2 !>(compress1 'demo
'((:header :dimensions (5)
:maximum-length 15
:default uninitialized
:name demo)
(0 . zero)))
((:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH
15 :DEFAULT UNINITIALIZED :NAME DEMO)
(0 . ZERO))
; The following array access produces a slow array warning because (@ a) is
; no longer associated under-the-hood with the array name 'demo.
ACL2 !>(aref1 'demo (@ a) 0)
**********************************************************
Slow Array Access! A call of AREF1 on an array named
DEMO is being executed slowly. See :DOC slow-array-warning
**********************************************************
ZERO
; Now we associate under-the-hood, with array name 'demo, an alist equal to
; (@ a).
ACL2 !>(compress1 'demo
'((:header :dimensions (5)
:maximum-length 15
:default uninitialized
:name demo)
(0 . zero)
(1 . one)))
((:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH
15 :DEFAULT UNINITIALIZED :NAME DEMO)
(0 . ZERO)
(1 . ONE))
; The following array access is still slow, because the under-the-hood array
; is merely associated with a copy of (@ a), not with the actual object
; (@ a).
ACL2 !>(aref1 'demo (@ a) 0)
**********************************************************
Slow Array Access! A call of AREF1 on an array named
DEMO is being executed slowly. See :DOC slow-array-warning
**********************************************************
ZERO
; So we might try to fix the problem by recompressing. But this doesn't
; work. It would work, by the way, if we re-assign a:
; (assign a (compress1 'demo (@ a))). That is why we usually will not need
; flush-compress.
ACL2 !>(compress1 'demo (@ a))
((:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH
15 :DEFAULT UNINITIALIZED :NAME DEMO)
(0 . ZERO)
(1 . ONE))
ACL2 !>(aref1 'demo (@ a) 0)
**********************************************************
Slow Array Access! A call of AREF1 on an array named
DEMO is being executed slowly. See :DOC slow-array-warning
**********************************************************
ZERO
; Finally, we eliminate the warning by calling flush-compress before we call
; compress1. The call of flush-compress removes any under-the-hood
; association of an array with the name 'demo. Then the subsequent call of
; compress1 associates the object (@ a) with that name. (Technical point:
; compress1 always associates the indicated name with the value that it
; returns. in this case, what compress1 returns is (@ a), because (@ a) is
; already, logically speaking, a compressed array1p (starts with a :header
; and the natural number keys are ordered).
ACL2 !>(flush-compress 'demo)
NIL
ACL2 !>(compress1 'demo (@ a))
((:HEADER :DIMENSIONS (5)
:MAXIMUM-LENGTH
15 :DEFAULT UNINITIALIZED :NAME DEMO)
(0 . ZERO)
(1 . ONE))
ACL2 !>(aref1 'demo (@ a) 0)
ZERO
ACL2 !>
~ev[]"
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore name))
#+acl2-loop-only
nil
#-acl2-loop-only
(set-acl2-array-property name nil))
; MULTIPLE VALUE returns, done our way, not Common Lisp's way.
; We implement an efficient mechanism for returning a multiple value,
; with an applicative semantics. Formally, the macro mv is just the
; same as ``list''; one can use it to return a list of arbitrary
; objects. However, the translator for ACL2 checks that mv is in fact
; only used to return values to mv-let, a special form of let which
; picks out the members of a list but does not hold on to the cdrs of
; the list. Because mv-let does not hold on to cdrs, we are able to
; implement mv so that the list is never actually consed up. Instead,
; the elements of the list are passed to mv-let in global locations.
; *number-of-return-values* may be increased (but not reduced) to be
; as high as required to increase the allowed number of ACL2 return
; values. However, if it is increased, the entire ACL2 system must be
; recompiled. Currently, the first 10 locations are handled specially
; in releases of AKCL past 206.
#-(or acl2-loop-only acl2-mv-as-values)
(progn
(defparameter *return-values*
(let (ans)
(do ((i *number-of-return-values* (1- i))) ((= i 0))
(push (intern (format nil "*return-value-~a*" i))
ans))
ans))
(defmacro declare-return-values ()
(cons 'progn (declare-return-values1)))
(defun declare-return-values1 ()
(mapcar #'(lambda (v) `(defvar ,v))
*return-values*))
(eval-when
#-cltl2
(load eval compile)
#+cltl2
(:load-toplevel :execute :compile-toplevel)
(declare-return-values))
(defun in-akcl-with-mv-set-and-ref ()
(member :akcl-set-mv *features*))
(defconstant *akcl-mv-ref-and-set-inclusive-upper-bound* 9)
(defmacro special-location (i)
(cond ((or (not (integerp i))
(< i 1))
(acl2::interface-er
"Macro calls of special-location must have an explicit ~
positive integer argument, which is not the case with ~x0." i))
((> i *number-of-return-values*)
(acl2::interface-er "Not enough built-in return values."))
(t (nth (1- i) *return-values*))))
(defmacro set-mv (i v)
(cond ((or (not (integerp i))
(< i 1))
(interface-er
"The first argument to a macro call of set-mv must be ~
an explicit positive integer, but that is not the case ~
with ~A." i))
#+akcl
((and (in-akcl-with-mv-set-and-ref)
(<= i *akcl-mv-ref-and-set-inclusive-upper-bound*))
`(system::set-mv ,i ,v))
(t `(setf (special-location ,i) ,v))))
(defmacro mv-ref (i)
(cond ((or (not (integerp i))
(< i 1))
(interface-er
"The argument to macro calls of mv-ref must be an ~
explicit positive integer, but that is not the case with ~x0." i))
#+akcl
((and (in-akcl-with-mv-set-and-ref)
(<= i *akcl-mv-ref-and-set-inclusive-upper-bound*))
`(system::mv-ref ,i))
(t `(special-location ,i))))
(defun mv-refs-fn (i)
(let (ans)
(do ((k i (1- k)))
((= k 0))
(push `(mv-ref ,k)
ans))
ans))
(defmacro mv-refs (i)
(cond
((and (natp i) (< i *number-of-return-values*)) ; optimization
(cons 'list (mv-refs-fn i)))
(t
`(case ,i
,@(let (ans)
(do ((j *number-of-return-values* (1- j)))
((= j 0))
(push
`(,j (list ,@(mv-refs-fn j)))
ans))
ans)
(otherwise (interface-er "Not enough return values."))))))
)
(defun cdrn (x i)
(declare (xargs :guard (and (integerp i)
(<= 0 i))))
(cond ((zp i) x)
(t (cdrn (list 'cdr x) (- i 1)))))
(defun mv-nth (n l)
":Doc-Section ACL2::ACL2-built-ins
the mv-nth element (zero-based) of a list~/
~c[(Mv-nth n l)] is the ~c[n]th element of ~c[l], zero-based. If ~c[n] is
greater than or equal to the length of ~c[l], then ~c[mv-nth] returns
~c[nil].~/
~c[(Mv-nth n l)] has a ~il[guard] that ~c[n] is a non-negative integer.
~c[Mv-nth] is equivalent to the Common Lisp function ~ilc[nth] (although
without the guard condition that the list is a ~ilc[true-listp]), but is used
by ACL2 to access the nth value returned by a multiply valued expression.
For example, the following are logically equivalent:
~bv[]
(mv-let (erp val state)
(read-object ch state)
(value (list erp val)))
~ev[]
and
~bv[]
(let ((erp (mv-nth 0 (read-object ch state)))
(val (mv-nth 1 (read-object ch state)))
(state (mv-nth 2 (read-object ch state))))
(value (list erp val)))
~ev[]
To see the ACL2 definition of ~c[mv-nth], ~pl[pf].
If ~c[EXPR] is an expression that is multiply valued, then the form
~c[(mv-nth n EXPR)] is illegal both in definitions and in forms submitted
directly to the ACL2 loop. Indeed, ~c[EXPR] cannot be passed as an argument
to any function (~c[mv-nth] or otherwise) in such an evaluation context. The
reason is that ACL2 code compiled for execution does not actually create a
list for multiple value return; for example, the ~c[read-object] call above
logically returns a list of length 3, but when evaluated, it instead stores
its three returned values without constructing a list. In such cases you can
use ~c[mv-nth] to access the corresponding list by using ~c[mv-list], writing
~c[(mv-nth n (mv-list k EXPR))] for suitable ~c[k], where ~c[mv-list]
converts a multiple value result into the corresponding list;
~pl[mv-list].~/"
(declare (xargs :guard (and (integerp n)
(>= n 0))))
(if (atom l)
nil
(if (zp n)
(car l)
(mv-nth (- n 1) (cdr l)))))
(defun make-mv-nths (args call i)
(declare (xargs :guard (and (true-listp args)
(integerp i))))
(cond ((endp args) nil)
(t (cons (list (car args) (list 'mv-nth i call))
(make-mv-nths (cdr args) call (+ i 1))))))
#-(or acl2-loop-only acl2-mv-as-values)
(defun mv-bindings (lst)
; Gensym a var for every element of lst except the last and pair
; that var with its element in a doublet. Return the list of doublets.
(cond ((null (cdr lst)) nil)
(t (cons (list (gensym) (car lst))
(mv-bindings (cdr lst))))))
#-(or acl2-loop-only acl2-mv-as-values)
(defun mv-set-mvs (bindings i)
(cond ((null bindings) nil)
(t (cons `(set-mv ,i ,(caar bindings))
(mv-set-mvs (cdr bindings) (1+ i))))))
(defmacro mv (&rest l)
":Doc-Section ACL2::ACL2-built-ins
returning a multiple value~/
~c[Mv] is the mechanism provided by ACL2 for returning two or more values.
Logically, ~c[(mv x1 x2 ... xn)] is the same as ~c[(list x1 x2 ... xn)], a
list of the indicated values. However, ACL2 avoids the cost of building this
list structure, with the cost that ~c[mv] may only be used in a certain style
in definitions: if a function ever returns using ~c[mv] (either directly, or
by calling another function that returns a multiple value), then this
function must always return the same number of values.
For more explanation of the multiple value mechanism,
~pl[mv-let]. Also ~pl[mv-list] for a way to convert a multiple value into an
ordinary list.~/
ACL2 does not support the Common Lisp construct ~c[values], whose logical
meaning seems difficult to characterize. ~c[Mv] is the ACL2 analogue of that
construct.~/"
(declare (xargs :guard (>= (length l) 2)))
#+acl2-loop-only
(cons 'list l)
#+(and (not acl2-loop-only) acl2-mv-as-values)
(return-from mv (cons 'values l))
#+(and (not acl2-loop-only) (not acl2-mv-as-values))
; In an earlier version of the mv macro, we had a terrible bug.
; (mv a b ... z) expanded to
; (LET ((#:G1 a))
; (SET-MV 1 b)
; ...
; (SET-MV k z)
; (SETQ *MOST-RECENT-MULTIPLICITY* 3)
; #:G1)
; Note that if the evaluation of z uses a multiple value then it overwrites the
; earlier SET-MV. Now this expansion is safe if there are only two values
; because the only SET-MV is done after the second value is computed. If there
; are three or more value forms, then this expansion is also safe if all but
; the first two are atomic. For example, (mv & & (killer)) is unsafe because
; (killer) may overwrite the SET-MV, but (mv & & STATE) is safe because the
; evaluation of an atomic form is guaranteed not to overwrite SET-MV settings.
; In general, all forms after the second must be atomic for the above expansion
; to be used.
; Suppose we are using GCL. In some cases we can avoid boxing fixnums that are
; the first value returned, by making the following two optimizations. First,
; we insert a declaration when we see (mv (the type expr) ...) where type is
; contained in the set of fixnums. Our second optimization is for the case
; of (mv v ...) where v is an atom, when we avoid let-binding v. To see why
; this second optimization is helpful, consider the following definition.
; (defun foo (x y)
; (declare (type (signed-byte 30) x))
; (the-mv 2
; (signed-byte 30)
; (mv x (cons y y))))
; If we submit this definition to ACL2, the proclaim-form mechanism arranges
; for the following declaim form to be evaluated.
; (DECLAIM (FTYPE (FUNCTION ((SIGNED-BYTE 30) T)
; (VALUES (SIGNED-BYTE 30)))
; FOO))
; Now let us exit the ACL2 loop and then, in raw Lisp, call disassemble on the
; above defun. Without our second optimization there is boxing: a call of
; CMPmake_fixnum in the output of disassemble. That happens because (mv x
; (cons y y)) macroexpands to something like this:
; (LET ((#:G5579 X)) (SET-MV 1 (CONS Y Y)) #:G5579)
; With the second optimization, however, we get this macroexpansion instead:
; (LET () (SET-MV 1 (CONS Y Y)) X)
; GCL can see that the fixnum declaration for x applies at the occurrence
; above, but fails (as of this writing, using GCL 2.6.8) to recognize that the
; above gensym is a fixnum.
(cond ((atom-listp (cddr l))
; We use the old expansion because it is safe and more efficient.
(let* ((v (if (atom (car l))
(car l)
(gensym)))
(bindings (if (atom (car l))
nil
`((,v ,(car l))))))
`(let ,bindings
; See comment above regarding boxing fixnums.
,@(and (consp (car l))
(let ((output (macroexpand-till (car l) 'the)))
(cond ((and (consp output)
(eq 'the (car output)))
`((declare (type ,(cadr output) ,v))))
(t nil))))
,@(let (ans)
(do ((tl (cdr l) (cdr tl))
(i 1 (1+ i)))
((null tl))
(push `(set-mv ,i ,(car tl))
ans))
(nreverse ans))
,v)))
(t
; We expand (mv a b ... y z) to
; (LET ((#:G1 a)
; (#:G2 b)
; ...
; (#:Gk y))
; (SET-MV k z)
; (SET-MV 1 #:G2)
; ...
; (SET-MV k-1 #:Gk)
; #:G1)
(let* ((cdr-bindings (mv-bindings (cdr l)))
(v (if (atom (car l))
(car l)
(gensym)))
(bindings (if (atom (car l))
cdr-bindings
(cons (list v (car l))
cdr-bindings))))
`(let ,bindings
; See comment above regarding boxing fixnums.
,@(and (consp (car l))
(let ((output (macroexpand-till (car l) 'the)))
(cond ((and (consp output)
(eq 'the (car output)))
`((declare (type ,(cadr output) ,v))))
(t nil))))
(set-mv ,(1- (length l)) ,(car (last l)))
,@(mv-set-mvs cdr-bindings 1)
,v)))))
(defmacro mv? (&rest l)
; Why not simply extend mv and mv-let to handle single values? The reason is
; that there seem to be problems with defining (mv x) to be (list x) and other
; problems with defining (mv x) to be x.
; To see potential problems with defining (mv x) = (list x), consider this
; form:
; (mv-let (x)
; (f y)
; (g x y))
; We presumably want it to expand as follows.
; (let ((x (f y)))
; (g x y))
; But suppose (f y) is defined to be (mv (h y)). Then the above mv-let would
; instead have to expand to something like this:
; (let ((x (mv-nth 0 (f y)))) ; or, car instead of (mv-nth 0 ...)
; (g x y))
; So in order to extend mv and mv-let to handle single values, we'd need to
; look carefully at the rather subtle mv and mv-nth code. It seems quite
; possible that some show-stopping reason would emerge why this approach can't
; work out, or if it does then it might be easy to make mistakes in the
; implementation. Note that we'd need to consider both the cases of
; #+acl2-mv-as-values and #acl2-mv-as-values.
; In a way it seems more natural anyhow that (mv x) is just x, since we don't
; wrap single-valued returns into a list. But that would ruin our simple story
; that mv is logically just list, instead giving us:
; (mv x) = x
; (mv x1 x2 ...) = (list x1 x2 ...)
; Thus it seems safest, and potentially less confusing to users, to introduce
; mv? and mv?-let to be used in cases that single-valued returns are to be
; allowed (presumably in generated code).
":Doc-Section ACL2::ACL2-built-ins
return one or more values~/
~c[Mv?] is designed to work with ~c[mv?-let], generalizing how ~ilc[mv] works
with ~ilc[mv-let] by allowing the binding of a single variable. For example,
the following form is legal.
~bv[]
(mv?-let (y)
(mv? (f x))
(declare (type integer y))
(g x y z))
~ev[]
The expression above is equivalent to the following expression, because
~c[(mv? form)] expands to ~c[form] for any expression, ~c[form].
~bv[]
(let ((y (f x)))
(declare (type integer y))
(g x y z))
~ev[]
Logically, ~c[(mv? x)] is the same as ~c[x], while ~c[(mv? v1 v2 ...)] is the
same as ~c[(list v1 v2 ...)]. Also ~pl[mv] and ~pl[mv?-let].~/~/"
(declare (xargs :guard l))
(cond ((null (cdr l))
(car l))
(t `(mv ,@l))))
(defmacro mv-let (&rest rst)
; Warning: If the final logical form of a translated mv-let is
; changed, be sure to reconsider translated-acl2-unwind-protectp.
":Doc-Section ACL2::ACL2-built-ins
calling multi-valued ACL2 functions~/
~bv[]
Example Form:
(mv-let (x y z) ; local variables
(mv 1 2 3) ; multi-valued expression
(declare (ignore y)) ; optional declarations
(cons x z)) ; body
~ev[]
The form above binds the three ``local variables,'' ~c[x], ~c[y], and ~c[z],
to the three results returned by the multi-valued expression and
then evaluates the body. The result is ~c['(1 . 3)]. The second local,
~c[y], is ~il[declare]d ~c[ignore]d. The multi-valued expression can be any ACL2
expression that returns ~c[k] results, where ~c[k] is the number of local
variables listed. Often however it is simply the application of a
~c[k]-valued function. ~c[Mv-let] is the standard way to invoke a
multi-valued function when the caller must manipulate the vector of
results returned.~/
~bv[]
General Form:
(mv-let (var1 ... vark)
term
body)
or
(mv-let (var1 ... vark)
term
(declare ...) ... (declare ...)
body)
~ev[]
where the ~c[vari] are distinct variables, ~c[term] is a term that returns
~c[k] results and mentions only variables bound in the environment containing
the ~c[mv-let] expression, and ~c[body] is a term mentioning only the
~c[vari] and variables bound in the environment containing the ~c[mv-let].
Each ~c[vari] must occur in ~c[body] unless it is ~il[declare]d ~c[ignore]d
or ~c[ignorable] in one of the optional ~ilc[declare] forms, unless this
requirement is turned off; ~pl[set-ignore-ok]. The value of the ~c[mv-let]
term is the result of evaluating ~c[body] in an environment in which the
~c[vari] are bound, in order, to the ~c[k] results obtained by evaluating
~c[term] in the environment containing the ~c[mv-let].
Here is an extended example that illustrates both the definition of
a multi-valued function and the use of ~c[mv-let] to call it. Consider
a simple binary tree whose interior nodes are ~ilc[cons]es and whose
leaves are non-~ilc[cons]es. Suppose we often need to know the number, ~c[n],
of interior nodes of such a tree; the list, ~c[syms], of symbols that
occur as leaves; and the list, ~c[ints], of integers that occur as
leaves. (Observe that there may be leaves that are neither symbols
nor integers.) Using a multi-valued function we can collect all
three results in one pass.
Here is the first of two definitions of the desired function. This
definition is ``primitive recursive'' in that it has only one
argument and that argument is reduced in size on every recursion.
~bv[]
(defun count-and-collect (x)
; We return three results, (mv n syms ints) as described above.
(cond ((atom x)
; X is a leaf. Thus, there are 0 interior nodes, and depending on
; whether x is a symbol, an integer, or something else, we return
; the list containing x in as the appropriate result.
(cond ((symbolp x) (mv 0 (list x) nil))
((integerp x)(mv 0 nil (list x)))
(t (mv 0 nil nil))))
(t
; X is an interior node. First we process the car, binding n1, syms1, and
; ints1 to the answers.
(mv-let (n1 syms1 ints1)
(count-and-collect (car x))
; Next we process the cdr, binding n2, syms2, and ints2.
(mv-let (n2 syms2 ints2)
(count-and-collect (car x))
; Finally, we compute the answer for x from those obtained for its car
; and cdr, remembering to increment the node count by one for x itself.
(mv (1+ (+ n1 n2))
(append syms1 syms2)
(append ints1 ints2)))))))
~ev[]
This use of a multiple value to ``do several things at once'' is
very common in ACL2. However, the function above is inefficient
because it ~il[append]s ~c[syms1] to ~c[syms2] and ~c[ints1] to ~c[ints2], copying the
list structures of ~c[syms1] and ~c[ints1] in the process. By adding
``accumulators'' to the function, we can make the code more
efficient.
~bv[]
(defun count-and-collect1 (x n syms ints)
(cond ((atom x)
(cond ((symbolp x) (mv n (cons x syms) ints))
((integerp x) (mv n syms (cons x ints)))
(t (mv n syms ints))))
(t (mv-let (n2 syms2 ints2)
(count-and-collect1 (cdr x) (1+ n) syms ints)
(count-and-collect1 (car x) n2 syms2 ints2)))))
~ev[]
We claim that ~c[(count-and-collect x)] returns the same triple of
results as ~c[(count-and-collect1 x 0 nil nil)]. The reader is urged to
study this claim until convinced that it is true and that the latter
method of computing the results is more efficient. One might try
proving the theorem
~bv[]
(defthm count-and-collect-theorem
(equal (count-and-collect1 x 0 nil nil) (count-and-collect x))).
~ev[]
Hint: the inductive proof requires attacking a more general
theorem.
ACL2 does not support the Common Lisp construct
~c[multiple-value-bind], whose logical meaning seems difficult to
characterize. ~c[Mv-let] is the ACL2 analogue of that construct.
Also ~pl[mv] and ~pl[mv-list].~/"
(declare (xargs :guard (and (>= (length rst) 3)
(true-listp (car rst))
(>= (length (car rst)) 2))))
#+acl2-loop-only
(list* 'let
(make-mv-nths (car rst)
(list 'mv-list (length (car rst)) (cadr rst))
0)
(cddr rst))
#+(and (not acl2-loop-only) acl2-mv-as-values)
(return-from mv-let (cons 'multiple-value-bind rst))
#+(and (not acl2-loop-only) (not acl2-mv-as-values))
(cond ((> (length (car rst)) (+ 1 *number-of-return-values*))
(interface-er
"Need more *return-values*. Increase ~
*number-of-return-values* and recompile ACL2."))
(t
`(let ((,(car (car rst)) ,(cadr rst))
(,(cadr (car rst)) (mv-ref 1))
,@(let (ans)
(do ((tl (cddr (car rst)) (cdr tl))
(i 2 (1+ i)))
((null tl))
(push (list (car tl) `(mv-ref ,i))
ans))
(nreverse ans)))
,@ (cddr rst)))))
(defmacro mv?-let (vars form &rest rst)
; See the comment in mv? for reasons why we do not simply extend mv-let to
; handle single values.
":Doc-Section ACL2::ACL2-built-ins
calling possibly multi-valued ACL2 functions~/
~c[Mv?-let] is a macro that extends the macro ~ilc[mv-let] by allowing a
single variable to be bound. Thus, the syntax is the same as that of
~ilc[mv-let] except that ~c[mv?-let] is permitted to bind a single variable
to a form that produces a single value. The macros ~c[mv?-let] and ~ilc[mv?]
are provided to facilitate the writing of macros that traffic in expressions
that could return one or more (multiple) values.
For example, the form
~bv[]
(mv?-let (y)
(f x)
(declare (type integer y))
(g x y z))
~ev[]
is equivalent to the following form.
~bv[]
(let ((y (f x)))
(declare (type integer y))
(g x y z))
~ev[]~/
Calls of ~c[mv?-let] and of ~ilc[mv-let] are equivalent when the first
argument contains at least two variables; ~pl[mv-let] for documentation. In
the case of binding a single variable, the general form is
~bv[]
(mv?-let (var)
term
(declare ...) ... (declare ...)
body)
~ev[]
and this is equivalent to the following form (~pl[let]).
~bv[]
(let ((var term))
(declare ...) ... (declare ...)
body)
~ev[]
Also ~pl[mv?].~/"
(declare (xargs :guard (and (true-listp vars)
vars)))
(cond ((null (cdr vars))
`(let ((,(car vars) ,form))
,@rst))
(t `(mv-let ,vars ,form ,@rst))))
#+acl2-loop-only
(defun mv-list (input-arity x)
":Doc-Section ACL2::ACL2-built-ins
converting multiple-valued result to a single-valued list~/
~bv[]
Example Forms:
; Returns the list (3 4):
(mv-list 2 (mv 3 4))
; Returns a list containing the three values returned by var-fn-count:
(mv-list 3 (var-fn-count '(cons (binary-+ x y) z) nil))~/
General form:
(mv-list n term)
~ev[]
Logically, ~c[(mv-list n term)] is just ~c[term]; that is, in the logic
~c[mv-list] simply returns its second argument. However, the evaluation of a
call of ~c[mv-list] on explicit values always results in a single value,
which is a (null-terminated) list. For evaluation, the term ~c[n] above (the
first argument to an ~c[mv-list] call) must ``essentially'' (see below) be an
integer not less than 2, where that integer is the number of values returned
by the evaluation of ~c[term] (the second argument to that ~c[mv-list] call).
We say ``essentially'' above because it suffices that the translation of
~c[n] to a term (~pl[trans]) be of the form ~c[(quote k)], where ~c[k] is an
integer greater than 1. So for example, if ~c[term] above returns three
values, then ~c[n] can be the expression ~c[3], or ~c[(quote 3)], or even
~c[(mac 3)] if ~c[mac] is a macro defined by ~c[(defmacro mac (x) x)]. But
~c[n] cannot be ~c[(+ 1 2)], because even though that expression evaluates to
~c[3], nevertheless it translates to ~c[(binary-+ '1 '2)], not to
~c[(quote 3)].
~c[Mv-list] is the ACL2 analogue of the Common Lisp construct
~c[multiple-value-list].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t
:mode :logic)
(ignore input-arity))
x)
#+(and (not acl2-loop-only) acl2-mv-as-values)
(defmacro mv-list (input-arity x)
(declare (ignore input-arity))
`(multiple-value-list ,x))
#+(and (not acl2-loop-only) (not acl2-mv-as-values))
(defmacro mv-list (input-arity x)
`(cons ,x (mv-refs (1- ,input-arity))))
(deflabel state
:doc
":Doc-Section ACL2::Programming
the von Neumannesque ACL2 state object~/
Note: If you are interested in programming with state,
~pl[programming-with-state] after reading the information below.~/
The ACL2 state object is used extensively in programming the ACL2
system, and has been used in other ACL2 programs as well. However,
most users, especially those interested in specification and
verification (as opposed to programming ~i[per se]), need not be
aware of the role of the state object in ACL2, and will not write
functions that use it explicitly. We say more about this point at
the end of this documentation topic.
The ACL2 state object is an example of a single-threaded object or
~il[stobj]. ACL2 allows the user to define new single-threaded objects.
Generally, ACL2 may need to access the ACL2 state but should not
(cannot) change it except via a certain set of approved functions
such as ~ilc[defun] and ~ilc[defthm]. If you need a state-like object
to which you have complete rights, you may want a ~il[stobj].
Key to the idea of our ~c[state] is the notion of single-threadedness.
For an explanation, ~pl[stobj]. The upshot of it is that ~c[state]
is a variable symbol with severe restrictions on its use, so that it
can be passed into only certain functions in certain slots, and must be
returned by those functions that ``modify'' it. Henceforth, we do not
discuss single-threaded objects in general (which the user can introduce
with ~ilc[defstobj] and ~ilc[defabsstobj]) but one in particular, namely
ACL2's ~c[state] object.
The ~i[global table] is perhaps the most visible portion of the state
object. Using the interface functions ~c[@] and ~c[assign], a user
may bind global variables to the results of function evaluations
(much as an Nqthm user exploits the Nqthm utility ~c[r-loop]).
~l[@], and ~pl[assign].
ACL2 supports several facilities of a truly von Neumannesque state
machine character, including file ~il[io] and global variables.
Logically speaking, the state is a true list of the 14 components
described below. There is a ``current'' state object at the
top-level of the ACL2 ~il[command] loop. This object is understood to be
the value of what would otherwise be the free variable ~c[state]
appearing in top-level input. When any ~il[command] returns a state
object as one of its values, that object becomes the new current
state. But ACL2 provides von Neumann style speed for state
operations by maintaining only one physical (as opposed to logical)
state object. Operations on the state are in fact destructive.
This implementation does not violate the applicative semantics
because we enforce certain draconian syntactic rules regarding the
use of state objects. For example, one cannot ``hold on'' to an old
state, access the components of a state arbitrarily, or ``modify'' a
state object without passing it on to subsequent state-sensitive
functions.
Every routine that uses the state facilities (e.g. does ~il[io], or calls
a routine that does ~il[io]), must be passed a ``state object.'' And a
routine must return a state object if the routine modifies the state
in any way. Rigid syntactic rules governing the use of state
objects are enforced by the function ~c[translate], through which all
ACL2 user input first passes. State objects can only be ``held'' in
the formal parameter ~c[state], never in any other formal parameter and
never in any structure (excepting a multiple-value return list
field which is always a state object). State objects can only be
accessed with the primitives we specifically permit. Thus, for
example, one cannot ask, in code to be executed, for the length of
~c[state] or the ~ilc[car] of ~c[state]. In the statement and proof of theorems,
there are no syntactic rules prohibiting arbitrary treatment of
state objects.
Logically speaking, a state object is a true list whose members
are as follows:~bq[]
~c[Open-input-channels], an alist with keys that are symbols in
package ~c[\"ACL2-INPUT-CHANNEL\"]. The value (~ilc[cdr]) of each pair has
the form ~c[((:header type file-name open-time) . elements)], where
~c[type] is one of ~c[:character], ~c[:byte], or ~c[:object] and ~c[elements] is a
list of things of the corresponding ~c[type], i.e. characters,
integers of type ~c[(mod 255)], or lisp objects in our theory.
~c[File-name] is a string. ~c[Open-time] is an integer. ~l[io].
~c[Open-output-channels], an alist with keys that are symbols in
package ~c[\"ACL2-OUTPUT-CHANNEL\"]. The value of a pair has the form
~c[((:header type file-name open-time) . current-contents)].
~l[io].
~c[Global-table], an alist associating symbols (to be used as ``global
variables'') with values. ~l[@], and ~pl[assign].
~c[T-stack], a list of arbitrary objects accessed and changed by the
functions ~c[aref-t-stack] and ~c[aset-t-stack].
~c[32-bit-integer-stack], a list of arbitrary 32-bit-integers accessed
and changed by the functions ~c[aref-32-bit-integer-stack] and
~c[aset-32-bit-integer-stack].
~c[Big-clock-entry], an integer, that is used logically to bound the
amount of effort spent to evaluate a quoted form.
~c[Idates], a list of dates and times, used to implement the function
~c[print-current-idate], which prints the date and time.
~c[Acl2-oracle], a list of objects, used for example to implement the
functions that let ACL2 report how much time was used, but inaccessible to
the user. Also ~pl[with-prover-time-limit].
~c[File-clock], an integer that is increased on every file opening and
closing, and on each call of ~ilc[sys-call], and is used to maintain the
consistency of the ~ilc[io] primitives.
~c[Readable-files], an alist whose keys have the form
~c[(string type time)], where ~ilc[string] is a file name and ~c[time] is
an integer. The value associated with such a key is a list of
characters, bytes, or objects, according to ~c[type]. The ~c[time] field
is used in the following way: when it comes time to open a file for
input, we will only look for a file of the specified name and ~c[type]
whose time field is that of ~c[file-clock]. This permits us to have
a ``probe-file'' aspect to ~c[open-file]: one can ask for a file,
find it does not exist, but come back later and find that it does
now exist.
~c[Written-files], an alist whose keys have the form
~c[(string type time1 time2)], where ~ilc[string] is a file name,
~c[type] is one of ~c[:character], ~c[:byte] or ~c[:object], and
~c[time1] and ~c[time2] are integers. ~c[Time1] and ~c[time2]
correspond to the ~c[file-clock] time at which the channel for the
file was opened and closed. This field is write-only; the only
operation that affects this field is ~c[close-output-channel], which
~ilc[cons]es a new entry on the front.
~c[Read-files], a list of the form ~c[(string type time1 time2)], where
~ilc[string] is a file name and ~c[time1] and ~c[time2] were the times at which
the file was opened for reading and closed. This field is write
only.
~c[Writeable-files], an alist whose keys have the form
~c[(string type time)]. To open a file for output, we require that
the name, type, and time be on this list.
~c[List-all-package-names-lst], a list of ~c[true-listps]. Roughly
speaking, the ~ilc[car] of this list is the list of all package names
known to this Common Lisp right now and the ~ilc[cdr] of this list is
the value of this ~c[state] variable after you look at its ~ilc[car].
The function, ~c[list-all-package-names], which takes the state as an
argument, returns the ~ilc[car] and ~ilc[cdr]s the list (returning a new state
too). This essentially gives ACL2 access to what is provided by
CLTL's ~c[list-all-packages]. ~ilc[Defpkg] uses this feature to ensure that
the about-to-be-created package is new in this lisp. Thus, for
example, in ~c[akcl] it is impossible to create the package
~c[\"COMPILER\"] with ~ilc[defpkg] because it is on the list, while in Lucid
that package name is not initially on the list.
~c[User-stobj-alist], an alist which associates user-defined single-threaded
objects (~pl[stobj]) with their values.
~eq[]
We recommend avoiding the use of the state object when writing ACL2
code intended to be used as a formal model of some system, for
several reasons. First, the state object is complicated and
contains many components that are oriented toward implementation and
are likely to be irrelevant to the model in question. Second, there
is currently not much support for reasoning about ACL2 functions
that manipulate the state object, beyond their logical definitions.
Third, the documentation about state is not as complete as one might wish.
User-defined single-threaded objects offer the speed of ~c[state] while
giving the user complete access to all the fields. ~l[stobj].
Again, if you are interested in programming with state
~pl[programming-with-state].~/
:cited-by Other")
(defdoc programming-with-state
":Doc-Section state
programming using the von Neumannesque ACL2 ~il[state] object~/
This ~il[documentation] section introduces some common techniques for
programming using the ACL2 state object. A prerequisite is thus a basic
understanding of that object; ~pl[state]. We hope this section is useful,
and we invite suggestions for improvements and additions.
A supplement to this section is the ACL2 source code, which uses most (and
probably all) of the techniques discussed here. That code is thus a source
of many examples, which can serve as ``templates'' to guide one's own
programming with state.
Recall that ``ACL2'' stands for ``A Computational Logic for Applicative
Common Lisp''. In particular, the language is applicative: there are no
global variables or side effects. For many purposes this does not feel
restrictive; for example, an ACL2 user who is programming in raw Lisp may
well be more comfortable coding a factorial function applicatively, using
recursion, rather than using iteration with repeated assignment to the same
variable.
However, there are situations that call for reading or modifying the system
state, such as performing input and output, signalling errors, saving
information from one computation for use in a later one, or reading and
updating system-level or environmental data. This section provides an
introductory guide for writing functions that traffic in state. We emphasize
that this guide is intended as an introduction; more complete documentation
may often be found by following links to documentation of individual
utilities, and again, more examples may be found by searching the ACL2 source
code for uses of the functions and macros mentioned below. The rest of this
section is organized as follows.
~bf[]
~sc[Enabling programming with state]
~sc[State globals and the ACL2 logical world]
~sc[A remark on guards]
~sc[Errors and error triples]
~sc[Sequential programming]
~sc[Binding variables using error triples]
~sc[Binding state global variables]
~sc[Input and output]
~sc[Timings]
~sc[Environment and system]
~sc[Remarks on events and LD]
~sc[Advanced topics]
~ef[]~/
~sc[Enabling programming with state]
In order to submit a definition that takes ~ilc[state] as a formal parameter,
you must either declare ~c[state] as a ~c[:]~ilc[stobj] (~pl[xargs]) or first
evaluate the following form at the top level: ~c[(set-state-ok t)].
Consider for example the following trivial definition.
~bv[]
(defun foo (state)
(mv 3 state))
~ev[]
If you submit the above definition in a fresh ACL2 session, you will get this
error message.
~bv[]
ACL2 Error in ( DEFUN FOO ...): The variable symbol STATE should not
be used as a formal parameter of a defined function unless you are
aware of its unusual status and the restrictions enforced on its use.
See :DOC set-state-ok.
~ev[]
If first you evaluate ~c[(set-state-ok t)], you can admit the above
definition. Alternatively, you can declare ~c[state] as a ~c[:]~ilc[stobj],
as follows.
~bv[]
(defun foo (state)
(declare (xargs :stobjs state))
(mv 3 state))
~ev[]
A difference in the two approaches is that for the latter, a ~il[guard] proof
obligation is generated by default. See the section below entitled ``A
remark on guards''.
~sc[State globals and the ACL2 logical world]
Recall (~pl[state]) that one of the fields of the ACL2 state object is the
global-table, which logically is an alist associating symbols, known as
``state globals'' or ``state global variables'', with values. But no such
alist actually exists in the implementation. Instead, ACL2 provides
utilities for reading state globals ~-[] ~pl[@] and ~pl[f-get-global] ~-[]
and utilities for writing them ~-[] ~pl[assign] and ~pl[f-put-global]. The
following log shows how they work; further explanation follows below.
~bv[]
ACL2 !>(assign my-var (+ 3 4))
7
ACL2 !>(@ my-var)
7
ACL2 !>(f-put-global 'my-var (+ 1 5) state)
<state>
ACL2 !>(f-get-global 'my-var state)
6
ACL2 !>
~ev[]
Note that the first result is indented by one space. This is ACL2's way to
indicate that the ~ilc[assign] expression returned an ``error triple'' and
that no error was signalled. We discuss error triples in more detail below;
also ~pl[error-triples].
As illustrated above, the output signatures of the utilities for assigning to
state globals differ from each other as follows: ~ilc[f-put-global] returns
~c[state], but ~ilc[assign] returns an error triple ~c[(mv nil val state)]
where ~c[val] is the value assigned to the state global. The output
signatures of the utilities for reading, ~c[@] and ~c[f-get-global], are
identical. In fact, the form ~c[(f-get-global 'my-var state)] is the
single-step macroexpansion of the form ~c[(@ my-var)], as can be confirmed
using ~ilc[trans1].
~bv[]
ACL2 !>:trans1 (@ my-var)
(F-GET-GLOBAL 'MY-VAR STATE)
ACL2 !>
~ev[]
State globals are useful for conveying persistent state information.
Consider for example the utility ~ilc[set-inhibit-output-lst]. The form
~c[(set-inhibit-output-lst '(prove proof-tree))] is approximately equivalent
to (assign inhibit-output-lst '(prove proof-tree)). We say ``approximately''
because ~c[set-inhibit-output-lst] additionally does some error checking to
insure that all the tokens in the new list are legal. When deciding whether
to print output, the ACL2 system reads the value of state global variable
~c[inhibit-output-lst].
A particularly useful state global is ~c[current-acl2-world], whose value is
the ACL2 logical ~il[world]. Because the ACL2 world is commonly accessed in
applications that use the ACL2 state, ACL2 provides a function that returns
the world: ~c[(w state) = (f-get-global 'current-acl2-world state)]. While
it is common to read the world, only functions ~c[set-w] and ~c[set-w!] are
available to write the world, but these are untouchable and these should
generally be avoided except by system implementors (pl[remove-untouchable]).
~sc[A remark on guards]
For a function definition (~pl[defun]), if ~c[state] is specified as a
~il[stobj] as with the form ~c[(declare (xargs :stobjs state))], then the
~il[guard] for that function is considered to include the condition
~c[(state-p state)]. By default, ~il[guard] verification will then be
performed.
We can illustrate this point by modifying the example above as follows, to
read the value of state global ~c[gag-mode].
~bv[]
(defun foo (state)
(declare (xargs :stobjs state))
(f-get-global 'gag-mode state))
~ev[]
If you try this in a fresh ACL2 session, the proof will fail with the
following key checkpoint, which says that the state global ~c[gag-mode] is
bound in the global-table of the state.
~bv[]
(IMPLIES (STATE-P1 STATE)
(ASSOC-EQUAL 'GAG-MODE (NTH 2 STATE)))
~ev[]
How can we deal with this proof failure? One way is simply to ignore the
issue by defining the function in ~c[:]~ilc[program] mode, as follows.
~bv[]
(defun foo (state)
(declare (xargs :stobjs state
:mode :program))
(f-get-global 'gag-mode state))
~ev[]
Perhaps a better way is to strengthen the guard to assert that the indicated
state global is bound, as follows.
~bv[]
(defun foo (state)
(declare (xargs :guard (boundp-global 'gag-mode state)
:stobjs state))
(f-get-global 'gag-mode state))
~ev[]
Also ~pl[guard-miscellany] for a discussion of how guards are generated from
~ilc[xargs] fields of ~il[declare] forms, specifically, for keywords
~c[:guard] and ~c[:stobjs].
~sc[Errors and error triples]
When evaluation returns three values, where the first two are ordinary
objects and the third is the ACL2 state, the result may be called an ``error
triple''. (Whether it is treated as an error triple depends on the
programmer.) Error triples are often denoted ~c[(mv erp val state)], and
common ACL2 programming idioms treat ~c[erp] as a flag indicating whether an
error is being signalled and ~c[val] as the ``value'' computed. Also
~pl[error-triples].
Even ACL2 users who are not programmers encounter error triples, because
these are the values returned by evaluation of ACL2 ~il[events]. Consider
the following log, where the only user input is the ~c[defun] form
following the ~il[prompt].
~bv[]
ACL2 !>(defun foo (x) x)
Since FOO is non-recursive, its admission is trivial. We observe that
the type of FOO is described by the theorem (EQUAL (FOO X) X).
Summary
Form: ( DEFUN FOO ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
FOO
ACL2 !>
~ev[]
All output above results from explicit calls of output functions, except for
the next-to-last line, which contains ~c[FOO]. Notice the single-space
indentation preceding ~c[FOO]. That space indicates that in fact, the value
returned by evaluation of the ~c[defun] form is the error triple whose error
flag is ~c[nil] and whose computed value is ~c[FOO]. By default, ACL2 prints
any error triple ~c[(mv nil val state)] by inserting a space before printing
~c[val]. You can change the default by setting state global
~ilc[ld-post-eval-print] to ~c[t]; notice how the same result is printed
below.
~bv[]
ACL2 !>:u
0:x(EXIT-BOOT-STRAP-MODE)
ACL2 !>(set-ld-post-eval-print t state)
(NIL T <state>)
ACL2 !>(defun foo (x) x)
Since FOO is non-recursive, its admission is trivial. We observe that
the type of FOO is described by the theorem (EQUAL (FOO X) X).
Summary
Form: ( DEFUN FOO ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
(NIL FOO <state>)
ACL2 !>
~ev[]
The way error triples are printed by ~c[ld] is controlled not only by state
global ~c[ld-post-eval-print], but also by state global ~c[ld-error-triples].
These are examples of ``ld specials''; ~pl[ld], ~pl[ld-post-eval-print], and
~pl[ld-error-triples].
It is so common to produce an error triple whose first (error flag) component
is ~c[nil] that ACL2 provides a handy macro, ~c[value], for this purpose.
Thus, ~c[(value <expression>)] is equivalent to
~c[(mv nil <expression> state)]. Also ~pl[value-triple] for a similar
construct that is a legal event form.
We turn now to the topic of errors. The macro ~ilc[ER] ``causes'' an error,
but there are really two quite different kinds of errors: ``soft'' and
``hard'' errors. We use the term ``soft error'' to refer to a form that
returns an error triple ~c[(mv erp val state)] for which ~c[erp] is
non-~c[nil]. Soft errors do not interrupt the normal flow of evaluation: the
error triple is returned to the caller which interprets the ~c[erp] flag and
~c[val] as directed by the programmer. Macros discussed below make it
convenient to think about soft errors as short-circuiting the computation.
Hard errors, on the other hand, do actually rip control away from the current
evaluation and return it to the top-level loop. Logically speaking,
expressions that cause hard errors return ~c[nil] in the error case, but the
~c[nil] is never seen in actual evaluation because control does not return to
the caller.
Note that the function ~ilc[abort!], which you can invoke by typing
~c[:]~ilc[a!], always returns to the top level. Note that ACL2 can
prove that ~c[(abort!)] returns ~c[nil] but that this cannot be confirmed
by computation.
~bv[]
ACL2 !>(thm (equal (abort!) nil))
Q.E.D.
Summary
Form: ( THM ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL)
(:TYPE-PRESCRIPTION ABORT!))
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
Proof succeeded.
ACL2 !>(equal (abort!) nil)
Abort to ACL2 top-level
...
ACL2 !>
~ev[]
(What actually happens with a hard error, including non-default cases, is a
bit subtle; most readers will probably want to skip this paragraph. The
read-eval-print loop implemented by ~ilc[ld] is implemented by a call of the
ACL2 evaluator function, ~c[trans-eval], on each input form. If a hard
error occurs during evaluation of an input form, its ~c[trans-eval] call will
return with a soft error. ~ilc[Ld], in turn handles that soft error
appropriately; ~pl[ld-error-action].)
The most common way to signal errors is the macro ~ilc[er], which prints a
formatted error message and returns a soft or hard error as specified by the
call. Note however that soft errors are signalled using ~c[:]~ilc[program]
mode functions.
Since the output signatures of soft and hard errors are different ~-[] hard
errors ``return'' a single value while soft errors return a triple ~-[]
mixing them in an expression requires embedding the hard error form in (an
irrelevant) triple, as illustrated below. All branches of the expression
must produce an error triple if any branch does.
~bv[]
ACL2 !>(defun chk-find-or-abort (e x state)
(declare (xargs :mode :program))
(if (endp x)
(value ; Note use of VALUE!
(er hard 'chk-find-or-abort
\"Did not find ~~x0!\"
e))
(if (not (integerp (car x)))
(er soft 'chk-find-or-abort
\"Non-integer, ~~x0, in list!\"
(car x))
(if (eql (car x) e)
(value x)
(chk-find-or-abort e (cdr x) state)))))
Summary
Form: ( DEFUN CHK-FIND-OR-ABORT ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
CHK-FIND-OR-ABORT
ACL2 !>(chk-find-or-abort 3 '(1 2 3 4 5) state)
(3 4 5)
ACL2 !>(chk-find-or-abort 3 '(1 A 3 4 5) state)
ACL2 Error in CHK-FIND-OR-ABORT: Non-integer, A, in list!
ACL2 !>(chk-find-or-abort 3 '(1 2 4 5) state)
HARD ACL2 ERROR in CHK-FIND-OR-ABORT: Did not find 3!
...
ACL2 !>
~ev[]
~l[er] for further discussion of errors. For some other individual topics
related to errors ~pl[assert$], ~pl[break-on-error], ~pl[error1],
~pl[hard-error], ~pl[illegal], and ~pl[ld-error-triples].
In the next section we discuss soft errors further, in the context of
programming.
~sc[Sequential programming]
This section describes handy ways to modify state in steps, using macros that
implement a sequence of ~ilc[let] or ~ilc[mv-let] bindings. For example,
suppose you want to assign the values 1 and 2 to two state globals
~c[one-var] and ~c[two-var], respectively. Because of ACL2's syntactic
restrictions on ~ilc[state], it is not legal simply to write
~c[(f-put-global 'two-var 2 (f-put-global 'one-var 1 state))]. However,
~ilc[let] comes to the rescue as follows.
~bv[]
(let ((state (f-put-global 'one-var 1 state)))
(let ((state (f-put-global 'two-var 2 state)))
state))
~ev[]
It is so common to bind state successively in such a manner that ACL2
provides a macro, ~ilc[pprogn], for this purpose. Thus, an equivalent
solution to the problem above is
~bv[]
(pprogn (f-put-global 'one-var 1 state)
(f-put-global 'two-var 2 state)
state)
~ev[]
or, more simply, as follows.
~bv[]
(pprogn (f-put-global 'one-var 1 state)
(f-put-global 'two-var 2 state))
~ev[]
~l[pprogn]. Note that the last form is allowed to return multiple values;
the only requirement on the last form is that its value include ~c[state].
It is also common to update the state using a sequence of forms such that
each returns an error triple, where the intention is for evaluation to
short-circuit immediately if a soft error is encountered. Suppose
~c[<expr1>] and ~c[<expr2>] are expressions that return error triples, where
the ~c[state] components of the error triples might be updated, and one
wishes to evaluate ~c[<expr1>] and then ~c[<expr2>], returning the (multiple)
values returned by ~c[<expr2>] unless the error triple returned by
~c[<expr1>] is a soft error, in which case that error triple is returned.
One can of course do so as follows.
~bv[]
(mv-let (erp val state)
<expr1>
(cond (erp (mv erp val state))
(t <expr2>)))
~ev[]
But ACL2 provides a handy macro, ~ilc[er-progn], for this purpose. The
following code is equivalent to the code just above.
~bv[]
(er-progn <expr1> <expr2>)
~ev[]
~l[er-progn] for more details. Note that unlike ~ilc[pprogn], the return
~il[signature] for the last expression must be the same as that of the
others: an error triple.
Let's consider how to use ~c[pprogn] and ~c[er-progn] together. In the
following example ~c[f1] and ~c[f2] both return ~c[state], while each of
~c[g1] and ~c[g2] returns an error triple. The following code modifies state
by executing these in the order ~c[f1], ~c[g1], ~c[f2], and finally ~c[g2],
returning ~c[(mv nil val state)] where ~c[val] is the value component of the
error triple returned by ~c[g2] ~-[] except we return a soft error if ~c[g1]
or ~c[g2] returns a soft error.
~bv[]
(pprogn (f1 x state)
(er-progn (g1 x state)
(pprogn (f2 x state)
(g2 x state))))
~ev[]
Finally, consider the ~il[events] ~ilc[progn] and ~ilc[progn!]. These have
similar behavior to that of ~ilc[er-progn]. However, ~ilc[progn] and
~ilc[progn!] may only be used in event contexts, for example at the top level
or immediately underneath a call of ~ilc[encapsulate] or ~ilc[progn], while
~ilc[er-progn] has no such restriction. So when writing code, use
~c[er-progn] rather than ~ilc[progn] or ~ilc[progn!]. In particular, the
body of a ~ilc[defun] must not have any calls of ~c[progn] (or of ~c[progn!]
either), and the same restriction holds for any code to be executed, such as
the body of a ~ilc[make-event] form.
~sc[Binding variables using error triples]
In this section we discuss the macro ~c[er-let*], which is a variant of the
special form, ~ilc[let*], that is useful when programming with state.
The macro ~c[er-let*] is useful when binding variables to the value
components of error triples. It is actually quite similar to ~c[er-progn],
described above, except that ~c[er-let*] binds variables. First consider the
following example.
~bv[]
(er-let* ((x1 (f1 state))
(x2 (f2 x1 state)))
(value (cons x1 x2)))
~ev[]
The code just above is essentially equivalent to writing the following.
~bv[]
(mv-let (erp x1 state)
(f1 state)
(cond (erp (mv erp x1 state))
(t (mv-let (erp x2 state)
(f2 x1 state)
(cond (erp (mv erp x2 state))
(t (value (cons x1 x2))))))))
~ev[]
As suggested by the example above, ~c[er-let*] has the same syntax as
~c[let*], except that declarations are not supported. (But note that
~c[ignore] declarations are not needed; all variables that are bound are also
used, at least in the error case. Consider replacing ~c[(cons x1 x2)] by
~c[nil] in the example displayed immediately above, and note that ~c[x1] and
~c[x2] are still used.) However, unlike ~c[let*], ~c[er-let*] requires that
for each binding ~c[(var expr)], the expression ~c[expr] must evaluate to an
error triple and, moreover, it requires that the second argument (the
``body'') of ~c[er-let*] must evaluate to an error triple. If one of the
variable expressions (e.g., the ~c[f1] and ~c[f2] calls above) signals an
error, its error triple is returned as the value of the ~c[er-let*].
Of course, soft errors can be ``caught'' by using ~ilc[mv-let] instead of
~c[er-let*] and simply ignoring the error flag or, more generally, by
returning a non-erroneous error triple even if the error flag was on.
~sc[Binding state global variables]
In this section we introduce a utility, ~ilc[state-global-let*], that is an
analogue of ~c[let*] for state global variables. Consider the following
example.
~bv[]
(state-global-let*
((inhibit-output-lst (add-to-set-eq 'summary (@ inhibit-output-lst))))
(thm (equal x x)))
~ev[]
This form binds state global variable ~c[inhibit-output-lst] to the result of
adding the symbol, ~c[summary], to the current value of that state global.
Thus (~pl[set-inhibit-output-lst]), the usual summary is not printed when
evaluating this call of ~ilc[thm].
~l[state-global-let*] for more complete ~il[documentation].
~sc[Input and output]
In ACL2, most input and output involves the ACL2 state. ~l[io].
~sc[Timings]
For how to obtain the time elapsed since the start of the ACL2 session,
~pl[read-run-time].
For a utility for saving times into the ACL2 state and for printing those
saved times, see the community book ~c[misc/save-time.lisp].
To time an evaluation (though this really isn't about state), ~pl[time$].
~sc[Environment and system]
Next, we mention briefly some ways in which ACL2 interacts with its
environment using the ACL2 state.
For how to read and write environment variables, ~pl[getenv$] and
~pl[setenv$].
For how to run a command in the host operating system, ~pl[sys-call].
~sc[Remarks on events and LD]
In general, undefined or surprising behavior may occur when using ACL2
~il[events] or calling ~il[ld] in your programs. In some cases ACL2 enforces
restrictions against these uses. We strongly discourage using ~ilc[ld] in
programs, as it has been designed to be called only at the top level of a
read-eval-print loop.
There is also a restriction on contexts in which ~ilc[make-event] may be
called: it may only be called in a context where an event is expected, such
as the top level, in a book, or as an argument of ~ilc[encapsulate] or
~ilc[progn]. The reason is that ACL2 does very subtle and careful tracking
of ~ilc[make-event] expansions; and it is only able to do this in event
contexts, where it is able to carry out such tracking accurately.
~sc[Advanced topics]
ACL2 provides the function ~c[trans-eval] to evaluate an arbitrary form
(after translating it to a ~il[term], i.e., into internal form). For more
information, we refer to reader to comments in the definition of
~c[trans-eval] in the ACL2 source code. There are also many examples of its
use in the ACL2 sources.
For a function that provides the true absolute filename, with soft links
resolved, ~pl[canonical-pathname].
For a function that returns a check-sum on the characters in a channel,
~pl[check-sum].
To obtain a random number, ~pl[random$].
If you are programming in raw-mode (~pl[set-raw-mode]) or in raw Lisp, use
the variable ~c[*the-live-state*] in place of the variable ~c[state].
We invite suggestions for additional advanced topics.~/")
(defdoc error-triples
":Doc-Section state
a common ACL2 programming idiom~/
When evaluation returns three values, where the first two are ordinary
(non-~il[stobj]) objects and the third is the ACL2 ~il[state], the result may
be called an ``error triple''. If an error triple is ~c[(mv erp val state)],
we think of ~c[erp] as an error flag and ~c[val] as the returned value.
By default, if the result of evaluating a top-level form is an error triple
~c[(mv erp val state)], then that result is not printed if ~c[erp] is
non-~c[nil] or if ~c[val] is the keyword ~c[:INVISIBLE], and otherwise
~c[val] is printed with a preceding space. For example:
~bv[]
ACL2 !>(+ 3 4) ; ordinary value
7
ACL2 !>(mv nil (+ 3 4) state) ; error triple, error component of nil
7
ACL2 !>(mv t (+ 3 4) state) ; error triple, non-nil error component
ACL2 !>(mv nil :invisible state) ; special case for :INVISIBLE
ACL2 !>
~ev[]
~l[programming-with-state] for a discussion of error triples and how to
program with them. Also ~pl[ld-error-triples] and ~pl[ld] for a discussion
of the value ~c[:COMMAND-CONVENTIONS] for keyword
~c[:LD-POST-EVAL-PRINT].~/~/")
(defun update-nth (key val l)
":Doc-Section ACL2::ACL2-built-ins
modify a list by putting the given value at the given position~/
~c[(Update-nth key val l)] returns a list that is the same as the
list ~c[l], except that the value at the ~c[0]-based position ~c[key]
(a natural number) is ~c[val].~/
If ~c[key] is an integer at least as large as the length of ~c[l], then
~c[l] will be padded with the appropriate number of ~c[nil] elements,
as illustrated by the following example.
~bv[]
ACL2 !>(update-nth 8 'z '(a b c d e))
(A B C D E NIL NIL NIL Z)
~ev[]
We have the following theorem.
~bv[]
(implies (and (true-listp l)
(integerp key)
(<= 0 key))
(equal (length (update-nth key val l))
(if (< key (length l))
(length l)
(+ 1 key))))
~ev[]
The ~il[guard] of ~c[update-nth] requires that its first (position)
argument is a natural number and its last (list) argument is a true
list.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (true-listp l))
(type (integer 0 *) key))
(cond ((zp key)
(cons val (cdr l)))
(t (cons (car l)
(update-nth (1- key) val (cdr l))))))
; Rockwell Addition:
(defun update-nth-array (j key val l)
(declare (xargs :guard (and (integerp j)
(integerp key)
(<= 0 j)
(<= 0 key)
(true-listp l)
(true-listp (nth j l)))))
(update-nth j (update-nth key val (nth j l)) l))
; The following defmacro forms may speed up 32-bit-integerp a little.
(defmacro maximum-positive-32-bit-integer ()
*maximum-positive-32-bit-integer*)
(defmacro maximum-positive-32-bit-integer-minus-1 ()
(+ (- *maximum-positive-32-bit-integer*) -1))
(defun 32-bit-integerp (x)
(declare (xargs :guard t))
(and (integerp x)
(<= x (maximum-positive-32-bit-integer))
(>= x (maximum-positive-32-bit-integer-minus-1))))
(defthm 32-bit-integerp-forward-to-integerp
(implies (32-bit-integerp x)
(integerp x))
:rule-classes :forward-chaining)
(defun acl2-number-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of numbers~/
The predicate ~c[acl2-number-listp] tests whether its argument is a true list
of numbers.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (acl2-numberp (car l))
(acl2-number-listp (cdr l))))))
(defthm acl2-number-listp-forward-to-true-listp
(implies (acl2-number-listp x)
(true-listp x))
:rule-classes :forward-chaining)
(defun rational-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of rational numbers~/
The predicate ~c[rational-listp] tests whether its argument is a true
list of rational numbers.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (rationalp (car l))
(rational-listp (cdr l))))))
(defthm rational-listp-forward-to-acl2-number-listp
(implies (rational-listp x)
(acl2-number-listp x))
:rule-classes :forward-chaining)
;; RAG - This function is analogous to rational-listp.
#+:non-standard-analysis
(defun real-listp (l)
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (realp (car l))
(real-listp (cdr l))))))
(defdoc real-listp
":Doc-Section ACL2::Real
ACL2(r) recognizer for a true list of real numbers~/
The predicate ~c[real-listp] tests whether its argument is a true
list of real numbers. This predicate is only defined in ACL2(r)
(~pl[real]).~/~/")
;; RAG - Standard forward chaining theorem about <type>-listp.
#+:non-standard-analysis
(defthm real-listp-forward-to-acl2-number-listp
(implies (real-listp x)
(acl2-number-listp x))
:rule-classes :forward-chaining)
(defun integer-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of integers~/
The predicate ~c[integer-listp] tests whether its argument is a true
list of integers.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (integerp (car l))
(integer-listp (cdr l))))))
(defthm integer-listp-forward-to-rational-listp
(implies (integer-listp x)
(rational-listp x))
:rule-classes :forward-chaining)
(defun nat-listp (l)
":Doc-Section ACL2::ACL2-built-ins
recognizer for a true list of natural numbers~/
The predicate ~c[nat-listp] tests whether its argument is a true
list of natural numbers.
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (natp (car l))
(nat-listp (cdr l))))))
(defthm nat-listp-forward-to-integer-listp
(implies (nat-listp x)
(integer-listp x))
:rule-classes :forward-chaining)
;; RAG - Analogous to the forward rule from integers to rationals.
#+:non-standard-analysis
(defthm rational-listp-forward-to-real-listp
(implies (rational-listp x)
(real-listp x))
:rule-classes :forward-chaining)
(defun 32-bit-integer-listp (l)
(declare (xargs :guard t))
(cond ((atom l) (equal l nil))
(t (and (32-bit-integerp (car l))
(32-bit-integer-listp (cdr l))))))
(defthm 32-bit-integer-listp-forward-to-integer-listp
(implies (32-bit-integer-listp x)
(integer-listp x))
:rule-classes :forward-chaining)
; Observe that even though we are defining the primitive accessors and
; updaters for states, we do not use the formal parameter STATE as an
; argument. This is discussed in STATE-STATE below.
(defun open-input-channels (st)
(declare (xargs :guard (true-listp st)))
(nth 0 st))
(defun update-open-input-channels (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 0 x st))
(defun open-output-channels (st)
(declare (xargs :guard (true-listp st)))
(nth 1 st))
(defun update-open-output-channels (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 1 x st))
(defun global-table (st)
(declare (xargs :guard (true-listp st)))
(nth 2 st))
(defun update-global-table (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 2 x st))
(defun t-stack (st)
(declare (xargs :guard (true-listp st)))
(nth 3 st))
(defun update-t-stack (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 3 x st))
(defun 32-bit-integer-stack (st)
(declare (xargs :guard (true-listp st)))
(nth 4 st))
(defun update-32-bit-integer-stack (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 4 x st))
(defun big-clock-entry (st)
(declare (xargs :guard (true-listp st)))
(nth 5 st))
(defun update-big-clock-entry (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 5 x st))
(defun idates (st)
(declare (xargs :guard (true-listp st)))
(nth 6 st))
(defun update-idates (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 6 x st))
(defun acl2-oracle (st)
(declare (xargs :guard (true-listp st)))
(nth 7 st))
(defun update-acl2-oracle (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 7 x st))
(defun file-clock (st)
(declare (xargs :guard (true-listp st)))
(nth 8 st))
(defun update-file-clock (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 8 x st))
(defun readable-files (st)
(declare (xargs :guard (true-listp st)))
(nth 9 st))
(defun written-files (st)
(declare (xargs :guard (true-listp st)))
(nth 10 st))
(defun update-written-files (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 10 x st))
(defun read-files (st)
(declare (xargs :guard (true-listp st)))
(nth 11 st))
(defun update-read-files (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 11 x st))
(defun writeable-files (st)
(declare (xargs :guard (true-listp st)))
(nth 12 st))
(defun list-all-package-names-lst (st)
(declare (xargs :guard (true-listp st)))
(nth 13 st))
(defun update-list-all-package-names-lst (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 13 x st))
; We use the name ``user-stobj-alist1'' below so that we can reserve the
; name ``user-stobj-alist'' for the same function but which is known to
; take STATE as its argument. See the discussion of STATE-STATE.
(defun user-stobj-alist1 (st)
(declare (xargs :guard (true-listp st)))
(nth 14 st))
(defun update-user-stobj-alist1 (x st)
(declare (xargs :guard (true-listp st)))
(update-nth 14 x st))
#-acl2-mv-as-values
(defconst *initial-raw-arity-alist*
; The list below is used for printing raw mode results. It should include any
; functions that we know have arity 1 (in the sense of mv) but are not in
; *common-lisp-symbols-from-main-lisp-package*.
; The symbol :last means that the number of values returned by the call is the
; number of values returned by the last argument.
'((er-progn . :last)
(eval-when . :last) ; needed?
(let . :last)
(let* . :last)
(make-event . 3)
(mv-let . :last)
(prog2$ . :last)
(progn . :last)
(the . :last) ; needed?
(time . :last)
(trace . 1)
(untrace . 1)
(set-raw-mode-on . 3)
(set-raw-mode-off . 3)
(mv-list . 1)
(return-last . :last)))
(defconst *initial-checkpoint-processors*
; This constant is used in the implementation of proof-trees.
; We have removed preprocess-clause and simplify-clause because they are
; clearly not checkpoint processors; settled-down-clause, because it shouldn't
; come up anyhow; and :forcing-round, which should not be included unless
; special provision is made for forcing rounds that do not start with this
; marker. Note that :induct is not a real processor, but rather will be a
; marker pointing to the start of the inductive proof of a pushed goal (in
; particular, to the induction scheme).
'(eliminate-destructors-clause
fertilize-clause
generalize-clause
eliminate-irrelevance-clause
push-clause
:induct))
(defconst *primitive-program-fns-with-raw-code*
; This is the list of :program mode functions generated by
; fns-different-wrt-acl2-loop-only in acl2-check.lisp. We have added comments
; to give a sense of why these functions have #-acl2-loop-only code.
; Functions in this list should be executed only in raw Lisp, hence perhaps not
; in safe-mode. See the case of 'program-only-er in ev-fncall-msg.
; This list is used in defining state global 'program-fns-with-raw-code. If
; errors are caused by attempting to call some of these functions in safe-mode,
; consider adding such functions to the list *oneify-primitives*.
'(relieve-hyp-synp ; *deep-gstack*
apply-abbrevs-to-lambda-stack1 ; *nth-update-tracingp*
nth-update-rewriter ; *nth-update-tracingp*
ev-w-lst ; *the-live-state*
simplify-clause1 ; dmr-flush
ev-rec-acl2-unwind-protect ; *acl2-unwind-protect-stack*
allocate-fixnum-range ; *the-live-state*
trace$-fn-general ; trace
ev-fncall! ; apply
open-trace-file-fn ; *trace-output*
set-trace-evisc-tuple ; *trace-evisc-tuple*
ev-fncall-w ; *the-live-state*
ev-rec ; wormhole-eval
setup-simplify-clause-pot-lst1 ; dmr-flush
save-exec-fn ; save-exec-raw, etc.
cw-gstack-fn ; *deep-gstack*
recompress-global-enabled-structure ; get-acl2-array-property
ev-w ; *the-live-state*
verbose-pstack ; *verbose-pstk*
user-stobj-alist-safe ; chk-user-stobj-alist
comp-fn ; compile-uncompiled-defuns
fmt-ppr ; print-infix
get-memo ; *nu-memos*
acl2-raw-eval ; eval
pstack-fn ; *pstk-stack*
dmr-start-fn ; dmr-start-fn-raw
memo-exit ; *nu-memos*
memo-key1 ; *nu-memos*
ev-fncall-meta ; *metafunction-context*
ld-loop ; *ld-level*
print-summary ; dmr-flush
ev ; *ev-shortcut-okp*
ev-lst ; *ev-shortcut-okp*
allegro-allocate-slowly-fn ; sys:gsgc-parameter
certify-book-fn ; si::sgc-on
translate11-flet-alist1 ; special-form-or-op-p
include-book-fn1
include-book-fn
set-w ; retract-world1, extend-world1, ...
prove-loop ; *deep-gstack*
chk-virgin ; chk-virgin2
w-of-any-state ; live-state-p
lambda-abstract ; *lambda-abstractp*
ld-fn-body ; reset-parallelism-variables, *first-entry-to-ld-fn-body-flg*
untranslate ; *the-live-state*
longest-common-tail-length-rec ; eq
compile-function ; compile
untranslate-lst ; *the-live-state*
ev-synp ; *metafunction-context*
add-polys ; *add-polys-counter*
dmr-stop-fn ; dmr-stop-fn-raw
ld-print-results ; print-infix
apply-abbrevs-to-lambda-stack ; *nth-update-tracingp*
flpr ; print-flat-infix
close-trace-file-fn ; *trace-output*
ev-fncall-rec ; raw-ev-fncall
ev-fncall ; live-state-p
ld-fn0 ; *acl2-unwind-protect-stack*, etc.
ld-fn ; unwind-protect
write-expansion-file ; compile-uncompiled-*1*-defuns
latch-stobjs1 ; eq
chk-package-reincarnation-import-restrictions ; [-restrictions2 version]
untrace$-fn1 ; eval
bdd-top ; (GCL only) si::sgc-on
defstobj-field-fns-raw-defs ; call to memoize-flush when #+hons
expansion-alist-pkg-names
times-mod-m31 ; gcl has raw code
iprint-ar-aref1
prove ; #+write-arithmetic-goals
make-event-fn
oops-warning
checkpoint-world
ubt-prehistory-fn
get-declaim-list
pathname-unix-to-os
hcomp-build-from-portcullis
defconst-val
push-warning-frame
pop-warning-frame
push-warning
initialize-accumulated-warnings
ev-rec-return-last
chk-return-last-entry
fchecksum-atom
step-limit-error1
waterfall1-lst@par ; for #+acl2-par
waterfall1-wrapper@par-before ; for #+acl2-par
waterfall1-wrapper@par-after ; for #+acl2-par
increment-waterfall-parallelism-counter ; for #+acl2-par
flush-waterfall-parallelism-hashtables ; for #+acl2-par
clear-current-waterfall-parallelism-ht ; for #+acl2-par
setup-waterfall-parallelism-ht-for-name ; for #+acl2-par
set-waterfall-parallelism-fn ; for #+acl2-par combined with +hons
fix-stobj-array-type
set-gc-threshold$-fn
certify-book-finish-complete
chk-absstobj-invariants
get-stobj-creator
))
(defconst *primitive-logic-fns-with-raw-code*
; This is the list of :logic mode functions generated by
; fns-different-wrt-acl2-loop-only. We have commented on those functions whose
; #-acl2-loop-only code has side effects. (Side effects are presumably the
; only issue, since functionally the #-acl2-loop-only code had better implement
; the logic code!) We use lower-case when we can live with the
; #+acl2-loop-only code and upper case when we can't.
'(mod-expt ; (GCL only) si::powm
header
search-fn
state-p1 ; LIVE-STATE-P
aref2 ; aref, slow-array-warning
aref1 ; aref, slow-array-warning
fgetprop ; EQ, GET, ...
getenv$ ; GETENV$-RAW
wormhole-eval ; *WORMHOLE-STATUS-ALIST*
wormhole1 ; *WORMHOLEP*, ...
get-wormhole-status ; *WORMHOLE-STATUS-ALIST*
aset2 ; [seems like we can live with logic code]
sgetprop ; SGETPROP1
setenv$ ; SI::SETENV ...
getprops ; EQ, GET, ...
compress1 ; [seems like we can live with logic code]
time-limit5-reached-p ; THROW
fmt-to-comment-window ; *THE-LIVE-STATE*
len ; len1
cpu-core-count ; CORE-COUNT-RAW
nonnegative-integer-quotient ; floor
check-print-base ; PRIN1-TO-STRING
retract-world ; RETRACT-WORLD1
aset1 ; [seems like we can live with logic code]
array1p ; get [seems like we can live with logic code]
boole$ ; boole
array2p ; [seems like we can live with logic code]
strip-cdrs ; strip-cdrs1
compress2 ; [seems like we can live with logic code]
strip-cars ; strip-cars1
plist-worldp ; *the-live-state* (huge performance penalty?)
wormhole-p ; *WORMHOLEP*
may-need-slashes-fn ;*suspiciously-first-numeric-array* ...
fmt-to-comment-window! ; *THE-LIVE-STATE*
has-propsp ; EQ, GET, ...
hard-error ; *HARD-ERROR-RETURNS-NILP*, FUNCALL, ...
abort! p! ; THROW
flush-compress ; SETF [may be critical for correctness]
alphorder ; [bad atoms]
extend-world ; EXTEND-WORLD1
default-total-parallelism-work-limit ; for #+acl2-par (raw Lisp error)
; The following have arguments of state-state, and hence some may not be of
; concern since presumably users cannot define these redundantly anyhow. But
; we go ahead and include them, just to be safe.
user-stobj-alist read-acl2-oracle read-acl2-oracle@par
update-user-stobj-alist decrement-big-clock put-global close-input-channel
makunbound-global open-input-channel open-input-channel-p1 boundp-global1
global-table-cars1 extend-t-stack list-all-package-names
close-output-channel write-byte$ shrink-t-stack aset-32-bit-integer-stack
get-global 32-bit-integer-stack-length1 extend-32-bit-integer-stack
aset-t-stack aref-t-stack read-char$ aref-32-bit-integer-stack
open-output-channel open-output-channel-p1 princ$ read-object
big-clock-negative-p peek-char$ shrink-32-bit-integer-stack read-run-time
read-byte$ read-idate t-stack-length1 print-object$-ser
get-output-stream-string$-fn
mv-list return-last
; The following were discovered after we included functions defined in
; #+acl2-loop-only whose definitions are missing (or defined with
; defun-one-output) in #-acl-loop-only.
ZPF IDENTITY ENDP NTHCDR LAST REVAPPEND NULL BUTLAST STRING NOT
MOD PLUSP ATOM LISTP ZP FLOOR CEILING TRUNCATE ROUND REM REMOVE
REMOVE-DUPLICATES LOGBITP ASH LOGCOUNT SIGNUM INTEGER-LENGTH EXPT
SUBSTITUTE ZEROP MINUSP ODDP EVENP = /= MAX MIN CONJUGATE
LOGANDC1 LOGANDC2 LOGNAND LOGNOR LOGNOT LOGORC1 LOGORC2 LOGTEST
ABS STRING-EQUAL STRING< STRING> STRING<= STRING>=
STRING-UPCASE STRING-DOWNCASE KEYWORDP EQ EQL CHAR SUBST SUBLIS
ACONS NTH SUBSEQ LENGTH REVERSE ZIP STANDARD-CHAR-P
ALPHA-CHAR-P UPPER-CASE-P LOWER-CASE-P CHAR< CHAR> CHAR<= CHAR>=
CHAR-EQUAL CHAR-UPCASE CHAR-DOWNCASE
AND-LIST OR-LIST ; relevant for #+acl2-par
; Might as well add additional ones below:
random$
throw-nonexec-error
gc$-fn
set-compiler-enabled
good-bye-fn ; exit-lisp
remove-eq remove-equal
take
file-write-date$
print-call-history
set-debugger-enable-fn ; lisp::*break-enable* and *debugger-hook*
break$ ; break
prin1$ prin1-with-slashes
member-equal assoc-equal subsetp-equal no-duplicatesp-equal
rassoc-equal remove-equal position-equal
maybe-finish-output$
; Found for hons after fixing note-fns-in-form just before release v4-2.
FAST-ALIST-LEN HONS-COPY-PERSISTENT HONS-SUMMARY HONS-CLEAR HONS-WASH
HONS-SHRINK-ALIST HONS-EQUAL-LITE CLEAR-HASH-TABLES NUMBER-SUBTREES
FAST-ALIST-SUMMARY HONS-ACONS! CLEAR-MEMOIZE-TABLES HONS-COPY HONS-ACONS
CLEAR-MEMOIZE-TABLE FAST-ALIST-FREE HONS-EQUAL HONS-RESIZE-FN HONS-GET HONS
HONS-SHRINK-ALIST! MEMOIZE-SUMMARY CLEAR-MEMOIZE-STATISTICS
make-fast-alist
serialize-read-fn serialize-write-fn
read-object-suppress
assign-lock
throw-or-attach-call
oracle-apply oracle-apply-raw
time-tracker-fn
gc-verbose-fn
set-absstobj-debug-fn
sys-call-status ; *last-sys-call-status*
sys-call ; system-call
sys-call+ ; system-call+
canonical-pathname ; under dependent clause-processor
; mfc functions
mfc-ancestors ; *metafunction-context*
mfc-clause ; *metafunction-context*
mfc-rdepth ; *metafunction-context*
mfc-type-alist ; *metafunction-context*
mfc-unify-subst ; *metafunction-context*
mfc-world ; *metafunction-context*
mfc-ap-fn ; under dependent clause-processor
mfc-relieve-hyp-fn ; under dependent clause-processor
mfc-relieve-hyp-ttree ; under dependent clause-processor
mfc-rw+-fn ; under dependent clause-processor
mfc-rw+-ttree ; under dependent clause-processor
mfc-rw-fn ; under dependent clause-processor
mfc-rw-ttree ; under dependent clause-processor
mfc-ts-fn ; under dependent clause-processor
mfc-ts-ttree ; under dependent clause-processor
magic-ev-fncall ; under dependent clause-processor
never-memoize-fn
; The following are introduced into the logic by an encapsulate, but have raw
; Lisp definitions.
big-n zp-big-n decrement-big-n
; The following are introduced into the logic with encapsulates, but have their
; raw Lisp definitions provided by defproxy.
ancestors-check
oncep-tp
print-clause-id-okp
too-many-ifs-post-rewrite
too-many-ifs-pre-rewrite
))
(defconst *primitive-macros-with-raw-code*
; This list is generated by fns-different-wrt-acl2-loop-only.
'(theory-invariant
set-let*-abstractionp defaxiom
set-bogus-mutual-recursion-ok
set-ruler-extenders
delete-include-book-dir certify-book progn!
f-put-global push-untouchable
set-backchain-limit set-default-hints!
set-rw-cache-state! set-override-hints-macro
deftheory pstk verify-guards defchoose
set-default-backchain-limit set-state-ok
set-ignore-ok set-non-linearp set-tau-auto-mode with-output
set-compile-fns add-include-book-dir
clear-pstk add-custom-keyword-hint
initial-gstack
acl2-unwind-protect set-well-founded-relation
catch-time-limit5 catch-time-limit5@par
defuns add-default-hints!
local encapsulate remove-default-hints!
include-book pprogn set-enforce-redundancy
set-ignore-doc-string-error
logic er deflabel mv-let program value-triple
set-body comp set-bogus-defun-hints-ok
dmr-stop defpkg set-measure-function
set-inhibit-warnings! defthm mv
f-big-clock-negative-p reset-prehistory
mutual-recursion set-rewrite-stack-limit set-prover-step-limit
add-match-free-override
set-match-free-default
the-mv table in-arithmetic-theory regenerate-tau-database
set-case-split-limitations
set-irrelevant-formals-ok remove-untouchable
in-theory with-output-forced dmr-start
rewrite-entry skip-proofs f-boundp-global
make-event set-verify-guards-eagerness
wormhole verify-termination-boot-strap start-proof-tree
f-decrement-big-clock defabsstobj defstobj defund defttag
defdoc push-gframe defthmd f-get-global
set-nu-rewriter-mode
; Most of the following were discovered after we included macros defined in
; #+acl2-loop-only whose definitions are missing in #-acl-loop-only.
CAAR CADR CDAR CDDR CAAAR CAADR CADAR CADDR CDAAR CDADR CDDAR CDDDR
CAAAAR CAAADR CAADAR CAADDR CADAAR CADADR CADDAR CADDDR CDAAAR
CDAADR CDADAR CDADDR CDDAAR CDDADR CDDDAR CDDDDR REST MAKE-LIST
LIST OR AND * LOGIOR LOGXOR LOGAND SEARCH LOGEQV CONCATENATE LET*
DEFUN THE > <= >= + - / 1+ 1- PROGN DEFMACRO COND CASE LIST*
APPEND DEFCONST IN-PACKAGE INTERN FIRST SECOND THIRD FOURTH FIFTH
SIXTH SEVENTH EIGHTH NINTH TENTH DIGIT-CHAR-P
UNMEMOIZE MEMOIZE ; for #+hons
DEFUNS-STD DEFTHM-STD DEFUN-STD ; for #+:non-standard-analysis
POR PAND PLET PARGS ; for #+acl2-par
SPEC-MV-LET ; for #+acl2-par
; The following were included after Version_3.4 as ACL2 continued to evolve.
trace!
with-live-state
with-output-object-channel-sharing
with-hcomp-bindings
with-hcomp-ht-bindings
redef+
redef-
bind-acl2-time-limit
defattach defproxy
count
member assoc subsetp no-duplicatesp rassoc remove remove-duplicates
position
catch-step-limit
step-limit-error
waterfall-print-clause-id@par ; for #+acl2-par
deflock ; for #+acl2-par
f-put-global@par ; for #+acl2-par
set-waterfall-parallelism
with-prover-step-limit
waterfall1-wrapper@par ; for #+acl2-par
with-waterfall-parallelism-timings ; for #+acl2-par
with-parallelism-hazard-warnings ; for #+acl2-par
warn-about-parallelism-hazard ; for #+acl2-par
with-ensured-parallelism-finishing ; for #+acl2-par
state-global-let* ; raw Lisp version for efficiency
with-reckless-readtable
with-lock
catch-throw-to-local-top-level
with-fast-alist-raw with-stolen-alist-raw fast-alist-free-on-exit-raw
stobj-let
add-ld-keyword-alias! set-ld-keyword-aliases!
))
(defmacro with-live-state (form)
; Occasionally macros will generate uses of STATE, which is fine in the ACL2
; loop but can cause compiler warnings in raw Lisp. For example, in v3-4 with
; CCL one found:
; ? [RAW LISP] (trace$)
; ;Compiler warnings :
; ; In an anonymous lambda form: Undeclared free variable STATE
; NIL
; NIL
; ACL2_INVISIBLE::|The Live State Itself|
; ? [RAW LISP]
; The present macro is provided in order to avoid this problem: in raw Lisp
; (with-live-state form) binds state to *the-live-state*. This way, we avoid
; the above compiler warning.
; Unfortunately, our initial solution was unsound. The following book
; certifies in Versions 3.5 and 4.3, and probably all versions inbetween.
; (in-package "ACL2")
;
; (defun foo (state)
; (declare (xargs :stobjs state))
; (with-live-state state))
;
; (defthm thm1
; (equal (caddr (foo (build-state)))
; nil)
; :rule-classes nil)
;
; (defthm thm2
; (consp (caddr (build-state)))
; :rule-classes nil)
;
; (defthm contradiction
; nil
; :hints (("Goal"
; :use (thm1 thm2)
; :in-theory (disable build-state (build-state))))
; :rule-classes nil)
; The problem was that state was bound to *the-live-state* for evaluation
; during a proof, where lexically state had a different binding that should
; have ruled. This macro's conde included the check (eq (symbol-value 'state)
; *the-live-state*), which unfortunately was no check at all: it was already
; true because symbol-value returns the global value, and is not affected by a
; superior lexical binding of state.
; Our initial solution defined this macro to be the identity within the usual
; ACL2 loop, as determined by (> *ld-level* 0). But compile-file is called
; when certifying a book, so state remained free in that place, generating a
; compiler warning or (on occasion with CCL) an error.
; So we have decided to keep the existing implementation, in which this macro
; always binds state to *the-live-state* in raw Lisp, but to make this macro
; untouchable. Thus, users can call it freely in raw Lisp or raw-mode, where
; they simply need to understand its spec. But they will never be able to
; exploit it to prove nil (without a trust tag or entering raw Lisp).
; We could avoid making this macro untouchable if we had a way to query the
; lexical environment to see if state is lexically bound. If so, the macro
; call would expand to the identity; if not, it would bind state to
; *the-live-state*. But we found no way in Common Lisp to do that.
":Doc-Section ACL2::ACL2-built-ins
allow a reference to ~c[state] in raw Lisp~/
The macro ~c[with-live-state] is an advanced feature that very few users will
need (basically, only system hackers). Indeed, it is untouchable;
~pl[remove-untouchable] for how to enable calling ~c[with-live-state] in the
ACL2 loop.~/
~bv[]
Example Form:
(with-live-state (assign y 3))
General form:
(with-live-state form)
~ev[]
where form is an arbitrary form with a free reference to the variable
~ilc[state].
Logically, ~c[(with-live-state FORM)] macroexpands to ~c[FORM]. However, in
raw Lisp it expands to:
~bv[]
(let ((state *the-live-state*))
FORM)
~ev[]
If a form that mentions the variable ~ilc[state] might be executed in raw
Lisp ~-[] that is, either outside the ACL2 loop or in raw
mode (~pl[set-raw-mode]) ~-[] then the surrounding the form with
~c[with-live-state] as shown above can avoid potential warnings or (much less
likely) errors. Note however that if ~c[state] is lexically bound to a state
other than the usual ``live'' state, surprising behavior may occur when
evaluating a call of ~c[with-live-state] in raw Lisp or raw mode (either
directly by evaluation or at compile time), because ~c[with-live-state] will
override that lexical binding of ~ilc[state] by a lexical binding of
~c[state] to the usual ``live'' state.~/"
#+acl2-loop-only
form
#-acl2-loop-only
`(let ((state *the-live-state*))
,form))
(defun init-iprint-ar (hard-bound enabledp)
; We return an iprint-ar with the given hard-bound.
; As stated in the Essay on Iprinting, we maintain the invariants that the
; dimension of state global 'iprint-ar exceeds the hard bound and that the
; maximum-length of the 'iprint-ar is always at least four times its dimension.
; Therefore, we need to avoid :order nil so that compress can shrink the
; array.
; We write the array ar as we do below so that (equal (compress1 'iprint-ar ar)
; ar) is T. That probably is not important, but it may come in handy at some
; point to know that compress1 is the identity on this array.
; WARNING: Consider carefully comments in rollover-iprint-ar and
; disable-iprint-ar before changing :ORDER.
(declare (xargs :guard (natp hard-bound)))
(let* ((dim (1+ hard-bound)))
`((:HEADER :DIMENSIONS (,dim)
:MAXIMUM-LENGTH ,(* 4 dim)
:DEFAULT nil
:NAME iprint-ar
:ORDER :none)
(0 . ,(if enabledp 0 (list 0))))))
; The default bounds for iprinting are deliberately rather high, in order to
; minimize the chance that novice users attempt to read stale #@i# values.
; We assume that for those who use ACL2 with large objects, for whom iprinting
; causes a space problem because of these large bounds, will know to reset the
; bounds using set-iprint.
(defconst *iprint-soft-bound-default* 1000)
(defconst *iprint-hard-bound-default* 10000)
(defdoc parallelism
":Doc-Section Parallelism
experimental extension for parallel execution and proofs~/
This documentation topic relates to an experimental extension of ACL2,
ACL2(p), created initially by David L. Rager. ~l[compiling-acl2p] for how to
build an executable image that supports parallel execution. Also see
community books directory ~c[books/parallel/] for examples. For a completely
different sort of parallelism, at the system level,
~pl[provisional-certification].~/
IMPORTANT NOTE. We hope and expect that every evaluation result is correctly
computed by ACL2(p), and that every formula proved using ACL2(p) is a theorem
of the ACL2 logic (and in fact is provable using ACL2). However, we do not
guarantee these properties. Since ACL2(p) is intended to be an aid in
efficient evaluation and proof development, we focus less on ironclad
soundness and more on providing an efficient and working implementation.
Nevertheless, if you encounter a case where ACL2(p) computes an incorrect
result, or produces a proof where ACL2 fails to do so (and this failure is
not discussed in ~il[unsupported-waterfall-parallelism-features]), please
notify the implementors.
The ACL2 source code provides experimental parallel execution and proof
capabilities. For example, one of ACL2's strengths lies in its ability to
simulate industrial models efficiently, and it can also decrease the time
required for proofs about such models both by making use of parallel
evaluation and by dispatching proof subgoals in parallel.
While we aim to support Clozure Common Lisp (CCL), Steel Bank Common
Lisp (SBCL), and Lispworks, SBCL and Lispworks both currently sometimes
experience problems when evaluating the ACL2 proof process (the
``waterfall'') in parallel. Therefore, CCL is the recommend Lisp for anyone
that wants to use parallelism and isn't working on fixing those
problems.~/")
(defdoc parallel-programming
":Doc-Section ACL2::Parallelism
parallel programming in ACL2(p)~/
Here we document support for parallel programming in ACL2(p), an experimental
extension of ACL2; also ~pl[parallelism].~/
One of ACL2's strengths lies in its ability to execute industrial models
efficiently. The ACL2 source code provides an experimental parallel
execution capability that can increase the speed of explicit evaluation,
including simulator runs using such models, and it can also decrease the time
required for proofs that make heavy use of the evaluation of ground terms.
The parallelism primitives are ~ilc[plet], ~ilc[pargs], ~ilc[pand],
~ilc[por], and ~ilc[spec-mv-let]. ~ilc[Pand] and ~ilc[por] terminate early
when an argument is found to evaluate to ~c[nil] or non-~c[nil],
respectively, thus potentially improving on the efficiency of lazy
evaluation. ~ilc[Spec-mv-let] is a modification of ~ilc[mv-let] that
supports speculative and parallel execution.
Of the above five parallelism primitives, all but ~ilc[spec-mv-let] allow for
limiting parallel execution (spawning of so-called ``threads'') depending on
resource availability. Specifically, the primitives allow specification of a
size condition to control the ~il[granularity] under which threads are
allowed to spawn. You can use such ~il[granularity] declarations in
recursively-defined functions to implement data-dependent parallelism in
their execution.
We recommend that in order to learn to use the parallelism primitives, you
begin by reading examples: ~pl[parallelism-tutorial]. That section will
direct you to further documentation topics.
In addition to providing parallel programming primitives, ACL2(p) also
provides the ability to execute the main ACL2 proof process in parallel.
~l[set-waterfall-parallelism] for further details.~/")
(defdoc parallel-proof
; Parallelism blemish: write a few introductory words to "advertise" parallel
; proof in ACL2(p), perhaps by way of a very simple example.
":Doc-Section ACL2::Parallelism
parallel proof in ACL2(p)~/
Here we document support for parallel proof in ACL2(p), an experimental
extension of ACL2; also ~pl[parallelism], and for parallel programming in
particular, ~pl[parallel-programming].~/~/")
(defun default-total-parallelism-work-limit ()
; The number of pieces of work in the system, *total-work-count* and
; *total-future-count* (depending upon whether one is using the
; plet/pargs/pand/por system or the spec-mv-let system [which is based upon
; futures]), must be less than the ACL2 global total-parallelism-work-limit in
; order to enable creation of new pieces of work or futures. (However, if
; total-parallelism-work-limit were set to 50, we could go from 49 to 69 pieces
; of work when encountering a pand; just not from 50 to 52.)
; Why limit the amount of work in the system? :Doc parallelism-how-to
; (subtopic "Another Granularity Issue Related to Thread Limitations") provides
; an example showing how cdr recursion can rapidly create threads. That
; example shows that if there is no limit on the amount of work we may create,
; then eventually, many successive cdrs starting at the top will correspond to
; waiting threads. If we do not limit the amount of work that can be created,
; this can exhaust the supply of Lisp threads available to process the elements
; of the list.
":Doc-Section Parallel-proof
for ACL2(p): returns the default value for global ~c[total-parallelism-work-limit]~/
~l[set-total-parallelism-work-limit].~/~/"
(declare (xargs :guard t))
(let ((val
; Warning: It is possible, in principle to create (+ val
; *max-idle-thread-count*) threads. You'll receive either a hard Lisp error,
; segfault, or complete machine crash if your Lisp cannot create that many
; threads.
; We picked a new value of 400 on September 2011 to support Robert Krug's proof
; that took ~9000 seconds in serial mode. Initially, when
; default-total-parallelism-work-limit returned 50, the parallelized proof only
; saw an improvement to ~2200 seconds, but after changing the return value to
; 400, the parallelized proof now takes ~1300 seconds.
; After doing even more tests, we determined that a limit of 400 is still too
; low (another one of Robert's proofs showed us this). So, now that we have
; the use-case for setting this to the largest number that we think the
; underlying runtime system will support, we do exactly that. As of Jan 26,
; 2012, we think a safe enough limit is 4,000. So, we use that number. As
; multi-threading becomes more prevalent and the underlying runtime systems
; increase their support for massive numbers of threads, we may wish to
; continue to increase this number. Note, however, that since we would also
; like to support older systems, perhaps increasing this number is infeasible,
; since the default should support all systems.
; On April 6, 2012, Rager reworked the way that we use spec-mv-let in the
; waterfall. As such, the limit on the total amount of parallelism work
; allowed in the system now has a different consequence (in terms of the number
; of threads required to process futures). As such, the limit was increased
; from 4,000 to 8,000 on April 11, 2012.
8000))
#+(and acl2-par (not acl2-loop-only))
(let ((bound (* 4 *core-count*)))
(when (< val bound)
; Since this check is cheap and not performed while we're doing proofs, we
; leave it. That being said, we do not realistically expect to receive this
; error for a very long time, because it will be a very long time until the
; number of CPU cores is within a factor of 4 of 10,000. David Rager actually
; found this check useful once upon a time (back when the limit was 50),
; because he was testing ACL2(p) on one of the IBM 64-core machines and forgot
; that this limit needed to be increased.
(error "The value returned by function ~
default-total-parallelism-work-limit needs to be at ~%least ~
~s, i.e., at least four times the *core-count*. ~%Please ~
redefine function default-total-parallelism-work-limit so ~
that it ~%is not ~s."
bound
val)))
val))
(defconst *fmt-soft-right-margin-default* 65)
(defconst *fmt-hard-right-margin-default* 77)
(defconst *initial-global-table*
; Warning: Keep this list in alphabetic order as per ordered-symbol-alistp. It
; must satisfy the predicate ordered-symbol-alistp if build-state is to build a
; state-p.
; When you add a new state global to this table, consider whether to modify
; *protected-system-state-globals*.
; Note that check-state-globals-initialized insists that all state globals that
; are bound by the build are bound in this alist or in
; *initial-ld-special-bindings*.
`((abbrev-evisc-tuple . :default)
(accumulated-ttree . nil) ; just what succeeded; tracking the rest is hard
(acl2-raw-mode-p . nil)
(acl2-sources-dir . nil) ; set by initialize-state-globals
(acl2-version .
; Keep this value in sync with the value assigned to
; acl2::*copy-of-acl2-version* in file acl2.lisp.
; The reason MCL needs special treatment is that (char-code #\Newline) = 13 in
; MCL, not 10. See also :DOC version.
; ACL2 Version 6.3
; We put the version number on the line above just to remind ourselves to bump
; the value of state global 'acl2-version, which gets printed out with the
; check-sum info.
; Leave this here. It is read when loading acl2.lisp. This constant should be
; a string containing at least one `.'. The function save-acl2-in-akcl in
; akcl-init.lisp suggests that the user see :doc notexxx, where xxx is the
; substring appearing after the first `.'.
; We have occasion to write fixed version numbers in this code, that is,
; version numbers that are not supposed to be touched when we do ``version
; bump.'' The problem is that version bump tends to replace the standard
; version string with an incremented one, so we need a way to make references
; to versions in some non-standard form. In Lisp comments we tend to write
; these with an underscore instead of a space before the number. Thus, `ACL2
; Version_2.5' is a fixed reference to that version. In :DOC strings we tend
; to write ACL2 Version 2.5. Note the two spaces. This is cool because HTML
; etc removes the redundant spaces so the output of this string is perfect.
; Unfortunately, if you use the double space convention in Lisp comments the
; double space is collapsed by ctrl-meta-q when comments are formatted. They
; are also collapsed by `fill-format-string', so one has to be careful when
; reformatting :DOC comments.
,(concatenate 'string
"ACL2 Version 6.3"
#+non-standard-analysis
"(r)"
#+(and mcl (not ccl))
"(mcl)"))
(acl2p-checkpoints-for-summary . nil)
(axiomsp . nil)
(bddnotes . nil)
(certify-book-info .
; Certify-book-info is non-nil when certifying a book, in which case it is a
; certify-book-info record.
nil)
(check-sum-weirdness . nil)
(checkpoint-forced-goals . nil) ; default in :doc
(checkpoint-processors . ; avoid unbound var error with collect-checkpoints
,*initial-checkpoint-processors*)
(checkpoint-summary-limit . (nil . 3))
(compiled-file-extension . nil) ; set by initialize-state-globals
(compiler-enabled . nil) ; Lisp-specific; set by initialize-state-globals
(connected-book-directory . nil) ; set-cbd couldn't have put this!
(current-acl2-world . nil)
(current-package . "ACL2")
(debug-pspv .
; This variable is used with #+acl2-par for printing information when certain
; modifications are made to the pspv in the waterfall. David Rager informs us
; in December 2011 that he hasn't used this variable in some time, but that it
; still works as far as he knows. It should be harmless to remove it if there
; is a reason to do so, but of course there would be fallout from doing so
; (e.g., argument lists of various functions that take a debug-pspv argument
; would need to change).
nil)
(debugger-enable . nil) ; keep in sync with :doc set-debugger-enable
(defaxioms-okp-cert . t) ; t when not inside certify-book
(deferred-ttag-notes . :not-deferred)
(deferred-ttag-notes-saved . nil)
(dmrp . nil)
(doc-char-subst-table . nil)
(doc-fmt-alist . nil)
(evisc-hitp-without-iprint . nil)
(eviscerate-hide-terms . nil)
(fmt-hard-right-margin . ,*fmt-hard-right-margin-default*)
(fmt-soft-right-margin . ,*fmt-soft-right-margin-default*)
(gag-mode . nil) ; set in lp
(gag-mode-evisc-tuple . nil)
(gag-state . nil)
(gag-state-saved . nil) ; saved when gag-state is set to nil
(get-internal-time-as-realtime . nil) ; seems harmless to change
(global-enabled-structure . nil) ; initialized in enter-boot-strap-mode
(gstackp . nil)
(guard-checking-on . t)
(host-lisp . nil)
(illegal-to-certify-message . nil)
(in-local-flg . nil)
(in-prove-flg . nil)
(in-verify-flg . nil)
(infixp . nil) ; See the Essay on Infix below
(inhibit-output-lst . (summary)) ; Without this setting, initialize-acl2
; will print a summary for each event.
; Exit-boot-strap-mode sets this list
; to nil.
(inhibit-output-lst-stack . nil)
(inhibited-summary-types . nil)
(inside-skip-proofs . nil)
(iprint-ar . ,(init-iprint-ar *iprint-hard-bound-default* nil))
(iprint-hard-bound . ,*iprint-hard-bound-default*)
(iprint-soft-bound . ,*iprint-soft-bound-default*)
(keep-tmp-files . nil)
(last-make-event-expansion . nil)
(last-prover-steps . nil)
(last-step-limit . -1) ; any number should be OK
(ld-level . 0)
(ld-okp . :default) ; see :DOC calling-ld-in-bad-contexts
(ld-redefinition-action . nil)
(ld-skip-proofsp . nil)
(logic-fns-with-raw-code . ,*primitive-logic-fns-with-raw-code*)
(macros-with-raw-code . ,*primitive-macros-with-raw-code*)
(main-timer . 0)
(make-event-debug . nil)
(make-event-debug-depth . 0)
(match-free-error . nil) ; if t, modify :doc for set-match-free-error
(modifying-include-book-dir-alist . nil)
(more-doc-max-lines . 45)
(more-doc-min-lines . 35)
(more-doc-state . nil)
(parallel-execution-enabled . nil)
(parallelism-hazards-action . nil) ; nil or :error, else treated as :warn
(pc-erp . nil)
(pc-output . nil)
(pc-print-macroexpansion-flg . nil)
(pc-print-prompt-and-instr-flg . t)
(pc-prompt . "->: ")
(pc-prompt-depth-prefix . "#")
(pc-ss-alist . nil)
(pc-val . nil)
(ppr-flat-right-margin . 40)
(print-base . 10)
(print-case . :upcase)
(print-circle . nil)
(print-circle-files . t) ; set to nil for #+gcl in LP
(print-clause-ids . nil)
(print-doc-start-column . 15)
(print-escape . t)
(print-length . nil)
(print-level . nil)
(print-lines . nil)
(print-pretty . nil) ; default in Common Lisp is implementation dependent
(print-radix . nil)
(print-readably . nil)
(print-right-margin . nil)
(program-fns-with-raw-code . ,*primitive-program-fns-with-raw-code*)
(prompt-function . default-print-prompt)
(prompt-memo . nil)
(proof-tree . nil)
(proof-tree-buffer-width . ,*fmt-soft-right-margin-default*)
(proof-tree-ctx . nil)
(proof-tree-indent . "| ")
(proof-tree-start-printed . nil)
(proofs-co . acl2-output-channel::standard-character-output-0)
(raw-arity-alist . nil)
(raw-include-book-dir-alist . :ignore)
(raw-proof-format . nil)
(redo-flat-fail . nil)
(redo-flat-succ . nil)
(redundant-with-raw-code-okp . nil)
(retrace-p . nil)
(safe-mode . nil)
(save-expansion-file . nil)
(saved-output-p . nil)
(saved-output-reversed . nil)
(saved-output-token-lst . nil)
(serialize-character . nil)
(serialize-character-system . nil) ; set for #+hons in LP
(show-custom-keyword-hint-expansion . nil)
(skip-notify-on-defttag . nil)
(skip-proofs-by-system . nil)
(skip-proofs-okp-cert . t) ; t when not inside certify-book
(slow-array-action . :break) ; set to :warning in exit-boot-strap-mode
(splitter-output . t)
(standard-co . acl2-output-channel::standard-character-output-0)
(standard-oi . acl2-output-channel::standard-object-input-0)
(step-limit-record . nil)
(system-books-dir . nil) ; set in enter-boot-strap-mode and perhaps lp
(temp-touchable-fns . nil)
(temp-touchable-vars . nil)
(term-evisc-tuple . :default)
(timer-alist . nil)
(tmp-dir . nil) ; set by lp; user-settable but not much advertised.
(total-parallelism-work-limit ; for #+acl2-par
. ,(default-total-parallelism-work-limit))
(total-parallelism-work-limit-error . t) ; for #+acl2-par
(trace-co . acl2-output-channel::standard-character-output-0)
(trace-level . 0)
(trace-specs . nil)
(triple-print-prefix . " ")
(ttags-allowed . :all)
(undone-worlds-kill-ring . (nil nil nil))
; By making the above list of nils be of length n you can arrange for ACL2 to
; save n worlds for undoing undos. If n is 0, no undoing of undos is possible.
; If n is 1, the last undo can be undone.
(user-home-dir . nil) ; set first time entering lp
(verbose-theory-warning . t)
(walkabout-alist . nil)
(waterfall-parallelism . nil) ; for #+acl2-par
(waterfall-parallelism-timing-threshold
. 10000) ; #+acl2-par -- microsec limit for resource-and-timing-based mode
(waterfall-printing . :full) ; for #+acl2-par
(waterfall-printing-when-finished . nil) ; for #+acl2-par
(window-interface-postlude
. "#>\\>#<\\<e(acl2-window-postlude ?~sw ~xt ~xp)#>\\>")
(window-interface-prelude
. "~%#<\\<e(acl2-window-prelude ?~sw ~xc)#>\\>#<\\<~sw")
(window-interfacep . nil)
(wormhole-name . nil)
(wormhole-status . nil)
(write-acl2x . nil)
(write-for-read . nil)
(writes-okp . t)))
#+acl2-loop-only ; not during compilation
(value ; avoid value-triple, as state-global-let* is not yet defined in pass 1
(or (ordered-symbol-alistp *initial-global-table*)
(illegal 'top-level
"*initial-global-table* is not an ordered-symbol-alistp!"
nil)))
; Essay on Infix
; ACL2 has a hook for providing a different syntax. We call this different
; syntax "infix" but it could be anything. If the state global variable
; infixp is nil, ACL2 only supports CLTL syntax. If infixp is non-nil
; then infix syntax may be used, depending on the context and the value of
; infixp.
; First, what is the "infix" syntax supported? The answer is "a really stupid
; one." In the built-in infix syntax, a well-formed expression is a dollar
; sign followed by a CLTL s-expression. E.g., if infixp is t one must
; write $ (car (cdr '(a b c))) instead of just (car (cdr '(a b c))). If
; infixp is t, the prover prints formulas by preceding them with a dollar
; sign. This stupid syntax allows the ACL2 developers to test the infix
; hooks without having to invent and implement an new syntax. Such testing
; has helped us identify places where, for example, we printed or read in
; one syntax when the other was expected by the user.
; However, we anticipate that users will redefine the infix primitives so as to
; implement interesting alternative syntax. This note explains the primitives
; which must be redefined. But first we discuss the values of the state
; global variable infixp.
; In addition to nil, infixp can be :in, :out or t (meaning both). As noted,
; if infixp is nil, we use Common Lisp s-expression syntax. If infixp is
; non-nil the syntax used depends on both infixp and on the context. On
; printing, we use infix if infixp is t or :out. On reading from the terminal,
; we expect infix if infixp is :in or t. When reading from files (as in
; include-book) with infixp non-nil, we peek at the file and if it begins with
; (IN-PACKAGE "...
; optionally preceded by Lisp-style comments and whitespace, we use lisp
; syntax, otherwise infix. The check is made with the raw Lisp function
; lisp-book-syntaxp.
; By allowing the :in and :out settings we allow users to type one and see the
; other. We think this might help some users learn the other syntax.
; The following variable and functions, mostly defined in raw Lisp should be
; redefined to implement an alternative infix syntax.
;
; (defparameter *parse* ...)
; (defun parse-infix-from-terminal (eof) ...)
; (defun print-infix (x termp width rpc col file eviscp) ...)
; (defun print-flat-infix (x termp file eviscp) ...)
; (defun flatsize-infix (x termp j max state eviscp) ...)
; We document each of these when we define them for the silly $ syntax.
(defun all-boundp (alist1 alist2)
(declare (xargs :guard (and (eqlable-alistp alist1)
(eqlable-alistp alist2))))
(cond ((endp alist1) t)
((assoc (caar alist1) alist2)
(all-boundp (cdr alist1) alist2))
(t nil)))
(defun known-package-alistp (x)
; Keep this in sync with make-package-entry.
(declare (xargs :guard t))
(cond ((atom x) (null x))
(t (and (true-listp (car x)) ; "final cdr" of book-path is a true-listp
(stringp (car (car x))) ; name
(symbol-listp (cadr (car x))) ; imports
(known-package-alistp (cdr x))))))
(defthm known-package-alistp-forward-to-true-list-listp-and-alistp
(implies (known-package-alistp x)
(and (true-list-listp x)
(alistp x)))
:rule-classes :forward-chaining)
(defun timer-alistp (x)
; A timer-alistp is an alist binding symbols to lists of rationals.
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
((and (consp (car x))
(symbolp (caar x))
(rational-listp (cdar x)))
(timer-alistp (cdr x)))
(t nil)))
(defthm timer-alistp-forward-to-true-list-listp-and-symbol-alistp
(implies (timer-alistp x)
(and (true-list-listp x)
(symbol-alistp x)))
:rule-classes :forward-chaining)
(defun typed-io-listp (l typ)
(declare (xargs :guard t))
(cond ((atom l) (equal l nil))
(t (and (case typ
(:character (characterp (car l)))
(:byte (and (integerp (car l))
(<= 0 (car l))
(< (car l) 256)))
(:object t)
(otherwise nil))
(typed-io-listp (cdr l) typ)))))
(defthm typed-io-listp-forward-to-true-listp
(implies (typed-io-listp x typ)
(true-listp x))
:rule-classes :forward-chaining)
(defconst *file-types* '(:character :byte :object))
(defun open-channel1 (l)
(declare (xargs :guard t))
(and (true-listp l)
(consp l)
(let ((header (car l)))
(and
(true-listp header)
(equal (length header) 4)
(eq (car header) :header)
(member-eq (cadr header) *file-types*)
(stringp (caddr header))
(integerp (cadddr header))
(typed-io-listp (cdr l) (cadr header))))))
(defthm open-channel1-forward-to-true-listp-and-consp
(implies (open-channel1 x)
(and (true-listp x)
(consp x)))
:rule-classes :forward-chaining)
(defun open-channel-listp (l)
; The following guard seems reasonable (and is certainly necessary, or at least
; some guard is) since open-channels-p will tell us that we're looking at an
; ordered-symbol-alistp.
(declare (xargs :guard (alistp l)))
(if (endp l)
t
(and (open-channel1 (cdr (car l)))
(open-channel-listp (cdr l)))))
(defun open-channels-p (x)
(declare (xargs :guard t))
(and (ordered-symbol-alistp x)
(open-channel-listp x)))
(defthm open-channels-p-forward
(implies (open-channels-p x)
(and (ordered-symbol-alistp x)
(true-list-listp x)))
:rule-classes :forward-chaining)
(defun file-clock-p (x)
(declare (xargs :guard t))
(natp x))
(defthm file-clock-p-forward-to-integerp
(implies (file-clock-p x)
(natp x))
:rule-classes :forward-chaining)
(defun readable-file (x)
(declare (xargs :guard t))
(and (true-listp x)
(consp x)
(let ((key (car x)))
(and (true-listp key)
(equal (length key) 3)
(stringp (car key))
(member (cadr key) *file-types*)
(integerp (caddr key))
(typed-io-listp (cdr x) (cadr key))))))
(defthm readable-file-forward-to-true-listp-and-consp
(implies (readable-file x)
(and (true-listp x)
(consp x)))
:rule-classes :forward-chaining)
(defun readable-files-listp (x)
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (readable-file (car x))
(readable-files-listp (cdr x))))))
(defthm readable-files-listp-forward-to-true-list-listp-and-alistp
(implies (readable-files-listp x)
(and (true-list-listp x)
(alistp x)))
:rule-classes :forward-chaining)
(defun readable-files-p (x)
(declare (xargs :guard t))
(readable-files-listp x))
(defthm readable-files-p-forward-to-readable-files-listp
(implies (readable-files-p x)
(readable-files-listp x))
:rule-classes :forward-chaining)
(defun written-file (x)
(declare (xargs :guard t))
(and (true-listp x)
(consp x)
(let ((key (car x)))
(and (true-listp key)
(equal (length key) 4)
(stringp (car key))
(integerp (caddr key))
(integerp (cadddr key))
(member (cadr key) *file-types*)
(typed-io-listp (cdr x) (cadr key))))))
(defthm written-file-forward-to-true-listp-and-consp
(implies (written-file x)
(and (true-listp x)
(consp x)))
:rule-classes :forward-chaining)
(defun written-file-listp (x)
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (written-file (car x))
(written-file-listp (cdr x))))))
(defthm written-file-listp-forward-to-true-list-listp-and-alistp
(implies (written-file-listp x)
(and (true-list-listp x)
(alistp x)))
:rule-classes :forward-chaining)
(defun written-files-p (x)
(declare (xargs :guard t))
(written-file-listp x))
(defthm written-files-p-forward-to-written-file-listp
(implies (written-files-p x)
(written-file-listp x))
:rule-classes :forward-chaining)
(defun read-file-listp1 (x)
(declare (xargs :guard t))
(and (true-listp x)
(equal (length x) 4)
(stringp (car x))
(member (cadr x) *file-types*)
(integerp (caddr x))
(integerp (cadddr x))))
(defthm read-file-listp1-forward-to-true-listp-and-consp
(implies (read-file-listp1 x)
(and (true-listp x)
(consp x)))
:rule-classes :forward-chaining)
(defun read-file-listp (x)
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (read-file-listp1 (car x))
(read-file-listp (cdr x))))))
(defthm read-file-listp-forward-to-true-list-listp
(implies (read-file-listp x)
(true-list-listp x))
:rule-classes :forward-chaining)
(defun read-files-p (x)
(declare (xargs :guard t))
(read-file-listp x))
(defthm read-files-p-forward-to-read-file-listp
(implies (read-files-p x)
(read-file-listp x))
:rule-classes :forward-chaining)
(defun writable-file-listp1 (x)
(declare (xargs :guard t))
(and (true-listp x)
(equal (length x) 3)
(stringp (car x))
(member (cadr x) *file-types*)
(integerp (caddr x))))
(defthm writable-file-listp1-forward-to-true-listp-and-consp
(implies (writable-file-listp1 x)
(and (true-listp x)
(consp x)))
:rule-classes :forward-chaining)
(defun writable-file-listp (x)
(declare (xargs :guard t))
(cond ((atom x) (equal x nil))
(t (and (writable-file-listp1 (car x))
(writable-file-listp (cdr x))))))
(defthm writable-file-listp-forward-to-true-list-listp
(implies (writable-file-listp x)
(true-list-listp x))
:rule-classes :forward-chaining)
(defun writeable-files-p (x)
(declare (xargs :guard t))
(writable-file-listp x))
(defthm writeable-files-p-forward-to-writable-file-listp
(implies (writeable-files-p x)
(writable-file-listp x))
:rule-classes :forward-chaining)
(defun state-p1 (x)
(declare (xargs :guard t))
#-acl2-loop-only
(cond ((live-state-p x)
(return-from state-p1 t)))
(and (true-listp x)
(equal (length x) 15)
(open-channels-p (open-input-channels x))
(open-channels-p (open-output-channels x))
(ordered-symbol-alistp (global-table x))
(all-boundp *initial-global-table*
(global-table x))
(plist-worldp (cdr (assoc 'current-acl2-world (global-table x))))
(symbol-alistp
(getprop 'acl2-defaults-table 'table-alist nil
'current-acl2-world
(cdr (assoc 'current-acl2-world (global-table x)))))
(timer-alistp (cdr (assoc 'timer-alist (global-table x))))
(known-package-alistp
(getprop 'known-package-alist 'global-value nil
'current-acl2-world
(cdr (assoc 'current-acl2-world (global-table x)))))
(true-listp (t-stack x))
(32-bit-integer-listp (32-bit-integer-stack x))
(integerp (big-clock-entry x))
(integer-listp (idates x))
(true-listp (acl2-oracle x))
(file-clock-p (file-clock x))
(readable-files-p (readable-files x))
(written-files-p (written-files x))
(read-files-p (read-files x))
(writeable-files-p (writeable-files x))
(true-list-listp (list-all-package-names-lst x))
(symbol-alistp (user-stobj-alist1 x))))
(defthm state-p1-forward
(implies (state-p1 x)
(and
(true-listp x)
(equal (length x) 15)
(open-channels-p (nth 0 x))
(open-channels-p (nth 1 x))
(ordered-symbol-alistp (nth 2 x))
(all-boundp *initial-global-table*
(nth 2 x))
(plist-worldp (cdr (assoc 'current-acl2-world (nth 2 x))))
(symbol-alistp
(getprop 'acl2-defaults-table 'table-alist nil
'current-acl2-world
(cdr (assoc 'current-acl2-world (nth 2 x)))))
(timer-alistp (cdr (assoc 'timer-alist (nth 2 x))))
(known-package-alistp
(getprop 'known-package-alist 'global-value nil
'current-acl2-world
(cdr (assoc 'current-acl2-world (nth 2 x)))))
(true-listp (nth 3 x))
(32-bit-integer-listp (nth 4 x))
(integerp (nth 5 x))
(integer-listp (nth 6 x))
(true-listp (nth 7 x))
(file-clock-p (nth 8 x))
(readable-files-p (nth 9 x))
(written-files-p (nth 10 x))
(read-files-p (nth 11 x))
(writeable-files-p (nth 12 x))
(true-list-listp (nth 13 x))
(symbol-alistp (nth 14 x))))
:rule-classes :forward-chaining
;; The hints can speed us up from over 40 seconds to less than 2.
:hints (("Goal" :in-theory
(disable nth length open-channels-p ordered-symbol-alistp
all-boundp plist-worldp assoc timer-alistp
known-package-alistp true-listp
32-bit-integer-listp integer-listp rational-listp
file-clock-p readable-files-p written-files-p
read-files-p writeable-files-p true-list-listp
symbol-alistp))))
(defun state-p (state-state)
(declare (xargs :guard t))
(state-p1 state-state))
; Let us use state-p1 in our theorem-proving.
(in-theory (disable state-p1))
; The following could conceivably be useful before rewriting a literal
; containing state-p.
(defthm state-p-implies-and-forward-to-state-p1
(implies (state-p state-state)
(state-p1 state-state))
:rule-classes (:forward-chaining :rewrite))
; On STATE-STATE
; No one should imagine calling any of the state accessors or updaters
; in executable code. These fields are all ``magic'' in some sense,
; in that they don't actually exist -- or, to put it more accurately,
; we do not represent them concretely as the ACL2 objects we alleged
; them to be in the axioms. In some cases, we might have gone to the
; trouble of supporting these things, at considerable cost, e.g.
; keeping a giant list of all characters printed this year or code to
; recover the logical value of written-files (which shows the times at
; which channels to files were opened and closed) from the actual file
; system. In other cases, such as big-clock-entry, the cost of
; support would have been intuitively equivalent to infinite: no ACL2.
; The user should be grateful that he can even indirectly access these
; fields at all in executable code, and should expect to study the
; means of access with excruciating pain and care. Although the
; fields of states may be THOUGHT of as ordinary logical objects (e.g.
; in theorems), the severe restriction on runtime access to them is
; the PRICE ONE PAYS for (a) high efficiency and (b) real-time
; effects.
; How do we prevent the user from applying, say, written-files, to the
; live state? Well, that is pretty subtle. We simply make the formal
; parameter to written-files be ST rather than STATE. Translate
; enforces the rule that a function may receive STATE only in a slot
; whose STOBJS-IN flag is STATE. And, with only one exception, the
; STOBJS-IN setting is always calculated by noting which formal is
; called STATE. So by giving written-files ST and never resetting its
; STOBJS-IN, we prevent it from being fed the live state (or any
; state) in code (such as defuns and top-level commands) where we are
; checking the use of state. (In theorems, anything goes.) As noted,
; this is the price one pays.
; So what is the exception to the rule that (the STATE flag in)
; STOBJS-IN is determined by STATE's position? The exception is
; managed by super-defun-wart and is intimately tied up with the use
; of STATE-STATE. The problem is that even though we don't permit
; written-files to be called by the user, we wish to support some
; functions (like close-output-channel) which do take state as an
; argument, which may be called by the user and which -- logically
; speaking -- are defined in terms of written-files.
; So consider close-output-channel. We would like to make its second
; parameter be STATE. But it must pass that parameter down to
; written-files in the logical code that defines close-output-channel.
; If that happened, we would get a translate error upon trying to
; define close-output-channel, because we would be passing STATE into
; a place (namely ST) where no state was allowed. So we use
; STATE-STATE instead. But while that lets close-output-channel be
; defined, it doesn't let the user apply it to state. However, after
; the definitional principle has translated the body and during the
; course of its storage of the many properties of the newly defined
; function, it calls super-defun-wart which asks "is this one of the
; special functions I was warned about?" If so, it sets STOBJS-IN and
; STOBJS-OUT for the function properly. A fixed number of functions
; are so built into super-defun-wart, which knows the location of the
; state-like argument and value for each of them. Once
; super-defun-wart has done its job, state must be supplied to
; close-output-channel, where expected.
; "But," you ask, "if state is supplied doesn't it find its way down
; to written-files and then cause trouble because written files isn't
; expecting the live state?" Yes, it would cause trouble if it ever
; got there, but it doesn't. Because for each of the functions that
; use STATE-STATE and are known to super-defun-wart, we provide raw
; lisp code to do the real work. That is, there are two definitions
; of close-output-channel. One, the logical one, is read in
; #+acl2-loop-only mode and presents the prissy logical definition in
; terms of written-files. This definition gets processed during our
; system initialization and generates the usual properties about a
; defined function that allow us to do theorem proving about the
; function. The other, in #-acl2-loop-only, is raw Lisp that knows
; how to close a channel when its given one in the live state.
; So the convention is that those functions (all defined in
; axioms.lisp) which (a) the user is permitted to call with real
; states but which (b) can only be logically defined in terms of calls
; to the primitive state accessors and updaters are (i) defined with
; STATE-STATE as a formal parameter, (ii) have their property list
; smashed appropriately for STOBJS-IN and STOBJS-OUT right after
; their admission, to reflect their true state character, and (iii)
; are operationally defined with raw lisp at some level between the
; defun and the use of the primitive state accessors and updaters.
; We need the following theorem to make sure that we cannot introduce
; via build-state something that fails to be a state.
(defmacro build-state
(&key open-input-channels open-output-channels global-table t-stack
32-bit-integer-stack (big-clock '4000000) idates acl2-oracle
(file-clock '1) readable-files written-files
read-files writeable-files list-all-package-names-lst
user-stobj-alist)
(list 'build-state1
(list 'quote open-input-channels)
(list 'quote open-output-channels)
(list 'quote (or global-table
*initial-global-table*))
(list 'quote t-stack)
(list 'quote 32-bit-integer-stack)
(list 'quote big-clock)
(list 'quote idates)
(list 'quote acl2-oracle)
(list 'quote file-clock)
(list 'quote readable-files)
(list 'quote written-files)
(list 'quote read-files)
(list 'quote writeable-files)
(list 'quote list-all-package-names-lst)
(list 'quote user-stobj-alist)))
(defconst *default-state*
(list nil nil
*initial-global-table*
nil nil 4000000 nil nil 1 nil nil nil nil nil nil))
(defun build-state1 (open-input-channels
open-output-channels global-table t-stack 32-bit-integer-stack big-clock
idates acl2-oracle file-clock readable-files written-files
read-files writeable-files list-all-package-names-lst user-stobj-alist)
(declare (xargs :guard (state-p1 (list open-input-channels
open-output-channels global-table t-stack 32-bit-integer-stack big-clock
idates acl2-oracle file-clock readable-files written-files
read-files writeable-files list-all-package-names-lst
user-stobj-alist))))
; The purpose of this function is to provide a means for constructing
; a state other than the live state.
(let ((s
(list open-input-channels open-output-channels global-table
t-stack 32-bit-integer-stack big-clock idates acl2-oracle
file-clock readable-files written-files
read-files writeable-files list-all-package-names-lst
user-stobj-alist)))
(cond ((state-p1 s)
s)
(t *default-state*))))
; Although the two following functions are only identity functions
; from the logical point of view, in the von Neumann machinery
; implementation they are potentially dangerous and should not
; be used anywhere besides trans-eval.
(defun coerce-state-to-object (x)
(declare (xargs :guard t))
x)
(defun coerce-object-to-state (x)
(declare (xargs :guard t))
x)
(verify-termination-boot-strap create-state)
; GLOBALS
#-acl2-loop-only
(defun-one-output strip-numeric-postfix (sym)
(coerce
(reverse (do ((x (reverse (coerce (symbol-name sym) 'list)) (cdr x)))
((or (null x)
(eq (car x) #\-))
(cdr x))))
'string))
(defun global-table-cars1 (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from
global-table-cars1
(let (ans)
(dolist (package-entry
(global-val 'known-package-alist (w *the-live-state*)))
(do-symbols (sym (find-package
(concatenate 'string
*global-package-prefix*
(package-entry-name
package-entry))))
(cond ((boundp sym)
(push (intern (symbol-name sym)
(package-entry-name
package-entry))
ans)))))
(sort ans (function symbol-<))))))
(strip-cars (global-table state-state)))
(defun global-table-cars (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (state-p1 state-state)))
(global-table-cars1 state-state))
(defun boundp-global1 (x state-state)
(declare (xargs :guard (and (symbolp x)
(state-p1 state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from boundp-global1 (boundp (global-symbol x)))))
(cond ((assoc x (global-table state-state)) t)
(t nil)))
(defun boundp-global (x state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (symbolp x)
(state-p1 state-state))))
(boundp-global1 x state-state))
(defmacro f-boundp-global (x st)
#-acl2-loop-only
(cond ((and (consp x)
(eq 'quote (car x))
(symbolp (cadr x))
(null (cddr x)))
(let ((s (gensym)))
`(let ((,s ,st))
(declare (special ,(global-symbol (cadr x))))
(cond ((eq ,s *the-live-state*)
(boundp ',(global-symbol (cadr x))))
(t (boundp-global ,x ,s))))))
(t `(boundp-global ,x ,st)))
#+acl2-loop-only
(list 'boundp-global x st))
(defun makunbound-global (x state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; This function is not very fast because it calls global-symbol. A
; faster version could easily be created.
(declare (xargs :guard (and (symbolp x)
(state-p1 state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(cond
((boundp-global1 x state-state)
; If the variable is not bound, then the makunbound below doesn't do
; anything and we don't have to save undo information. (Furthermore,
; there is nothing to save.)
(push-wormhole-undo-formi 'put-global x
(get-global x state-state))))))
(makunbound (global-symbol x))
(return-from makunbound-global *the-live-state*)))
(update-global-table (delete-assoc-eq
x
(global-table state-state))
state-state))
#+acl2-loop-only
(defun get-global (x state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; Keep this in sync with the #+acl2-loop-only definition of get-global (which
; uses qfuncall).
(declare (xargs :guard (and (symbolp x)
(state-p1 state-state)
(boundp-global1 x state-state))))
(cdr (assoc x (global-table state-state))))
(defun put-global (key value state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (symbolp key)
(state-p1 state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(cond ((boundp-global1 key state-state)
(push-wormhole-undo-formi 'put-global key
(get-global key state-state)))
(t
(push-wormhole-undo-formi 'makunbound-global key nil)))))
(setf (symbol-value (global-symbol key)) value)
(return-from put-global state-state)))
(update-global-table
(add-pair key value
(global-table state-state))
state-state))
(defmacro f-put-global (key value st)
":Doc-Section ACL2::ACL2-built-ins
assign to a global variable in ~ilc[state]~/
~bv[]
Examples:
(f-put-global 'x (expt 2 10) state)
(f-put-global 'a (aset1 'ascii-map-array (@ a) 66 'Upper-case-B) state)~/
General Form:
(f-put-global (quote symbol) term state)
~ev[]
where ~c[symbol] is any symbol (with certain enforced exclusions to
avoid overwriting ACL2 system ``globals'') and ~c[term] is any ACL2
term that could be evaluated at the top-level. ~c[F-put-global] evaluates
the term, stores the result as the value of the given symbol in the
~c[global-table] of ~ilc[state], and returns the new ~c[state]. (Note: the
actual implementation of the storage of this value is much more
efficient than this discussion of the logic might suggest.)
The macro ~ilc[assign] is closely related to ~c[f-put-global]:
~c[(assign var val)] macroexpands to ~c[(f-put-global 'var val state)].
The macros ~ilc[@] and ~ilc[f-get-global] give convenient access to the value
of such globals. The ~c[:]~ilc[ubt] operation has no effect on the
~c[global-table] of ~ilc[state]. Thus, you may use these globals to hang
onto useful data structures even though you may undo back past where you
computed and saved them.~/"
#-acl2-loop-only
(cond ((and (consp key)
(eq 'quote (car key))
(symbolp (cadr key))
(null (cddr key)))
(let ((v (gensym))
(s (gensym)))
`(let ((,v ,value)
(,s ,st))
(cond ((live-state-p ,s)
(cond
(*wormholep*
(cond
((boundp-global1 ,key ,s)
(push-wormhole-undo-formi 'put-global ,key
(get-global ,key ,s)))
(t
(push-wormhole-undo-formi 'makunbound-global
,key
nil)))))
(let ()
(declare (special ,(global-symbol (cadr key))))
,@(when (eq (cadr key) 'acl2-raw-mode-p)
`((observe-raw-mode-setting ,v ,s)))
(setq ,(global-symbol (cadr key))
,v)
,s))
(t (put-global ,key ,v ,s))))))
(t `(put-global ,key ,value ,st)))
#+acl2-loop-only
(list 'put-global key value st))
#+acl2-par
(defmacro f-put-global@par (key value st)
; WARNING: Every use of this macro deserves an explanation that addresses the
; following concern! This macro is used to modify the live ACL2 state, without
; passing state back! This is particularly dangerous if we are calling
; f-put-global@par in two threads that are executing concurrently, since the
; second use will override the first.
(declare (ignorable key value st))
#+acl2-loop-only
nil
#-acl2-loop-only
`(progn (f-put-global ,key ,value ,st)
nil))
; We now define state-global-let*, which lets us "bind" state
; globals.
(defconst *initial-ld-special-bindings*
; This alist is used by initialize-acl2 to set the initial values of the LD
; specials. It is assumed by reset-ld-specials that the first three are the
; channels.
`((standard-oi . ,*standard-oi*)
(standard-co . ,*standard-co*)
(proofs-co . ,*standard-co*)
(ld-skip-proofsp . nil)
(ld-redefinition-action . nil)
(ld-prompt . t)
(ld-missing-input-ok . nil)
(ld-pre-eval-filter . :all)
(ld-pre-eval-print . nil)
(ld-post-eval-print . :command-conventions)
(ld-evisc-tuple . nil)
(ld-error-triples . t)
(ld-error-action . :continue)
(ld-query-control-alist . nil)
(ld-verbose . "~sv. Level ~Fl. Cbd ~xc.~|System books ~
directory ~xb.~|Type :help for help.~%Type (good-bye) to ~
quit completely out of ACL2.~|~%")))
(defun always-boundp-global (x)
(declare (xargs :guard (symbolp x)))
(or (assoc-eq x
*initial-global-table*)
(assoc-eq x
*initial-ld-special-bindings*)))
(defun state-global-let*-bindings-p (lst)
; This function returns t iff lst is a true-list and each element is
; a doublet of the form (symbolp anything) or a triplet of the form (symbolp
; anything symbolp).
(declare (xargs :guard t))
(cond ((atom lst) (eq lst nil))
(t (and (consp (car lst))
(symbolp (caar lst))
(consp (cdar lst))
(or (null (cddar lst))
(and (consp (cddar lst))
(symbolp (car (cddar lst)))
(null (cdr (cddar lst)))))
(state-global-let*-bindings-p (cdr lst))))))
(defun state-global-let*-get-globals (bindings)
; This function is used to generate code for the macroexpansion of
; state-global-let*. Roughly speaking, it returns a list, lst, of f-get-global
; forms that fetch the values of the variables we are about to smash. The
; expansion of state-global-let* will start with (LET ((temp (LIST ,@lst)))
; ...) and we will use the value of temp to restore the globals after the
; execution of the body.
; Now there is a subtlety. Some of the vars we are to "bind" might NOT be
; already bound in state. So we don't want to call f-get-global on them until
; we know they are bound, and for those that are not, "restoring" their old
; values means making them unbound again. So a careful specification of the
; value of temp (i.e., the value of (LIST ,@lst) where lst is what we are
; producing here) is that it is a list in 1:1 correspondence with the vars
; bound in bindings such that the element corresponding to the var x is nil if
; x is unbound in the pre-body state and is otherwise a singleton list
; containing the value of x in the pre-body state.
(declare (xargs :guard (state-global-let*-bindings-p bindings)))
(cond ((endp bindings) nil)
(t (cons
(if (always-boundp-global (caar bindings))
`(list (f-get-global ',(caar bindings) state))
`(if (f-boundp-global ',(caar bindings) state)
(list (f-get-global ',(caar bindings) state))
nil))
(state-global-let*-get-globals (cdr bindings))))))
(defun state-global-let*-put-globals (bindings)
; This function is used to generate code for the macroexpansion of
; state-global-let*. It generates a list of f-put-globals that will set the
; bound variables in bindings to their desired local values, except that
; ``setters'' are used instead where provided (see the discussion of setters in
; state-global-let*). We insist that those initialization forms not mention
; the temporary variable state-global-let* uses to hang onto the restoration
; values.
(declare (xargs :guard (state-global-let*-bindings-p bindings)))
(cond ((endp bindings) nil)
(t (cons (let ((val-form `(check-vars-not-free
(state-global-let*-cleanup-lst)
,(cadar bindings))))
(cond ((cddr (car bindings))
`(if (f-boundp-global ',(caar bindings) state)
(,(caddr (car bindings)) ; setter
,val-form
state)
(prog2$
(er hard 'state-global-let*
"It is illegal to bind an unbound variable ~
in state-global-let*, in this case, ~x0, ~
when a setter function is supplied."
',(caar bindings))
state)))
(t
`(f-put-global ',(caar bindings)
,val-form
state))))
(state-global-let*-put-globals (cdr bindings))))))
(defun state-global-let*-cleanup (bindings index)
; This function is used to generate code for the macroexpansion of
; state-global-let*. We generate a list of forms that when executed will
; restore the "bound" variables to their original values, using the list of
; restoration values. Recall that each restoration value is either a nil,
; indicating the variable was unbound, or a singleton listing the original
; value. We are generating that code. Index is the number of CDRs to be taken
; of the restoration values list that begins with the value for the first
; variable in bindings. It is initially 0, to represent the temporary variable
; used by state-global-let*, and is incremented by 1 on each call so that the
; restoration values list is symbolically CDRd ever time we recurse here.
; Note: Once upon a time we used a recursive function to do the cleanup. It
; essentially swept through the names of the state globals as it swept through
; the list of their initial values and did an f-put-global on each (here
; ignoring the unbound variable problem). That was dangerous because it
; violated the rules that f-put-global was only called on a quoted var. Those
; rules allow translate to enforce untouchables. To get away with it, we had
; to exempt that function from translate's restrictions on f-put-global. We
; thought we could regain security by then putting that function name on
; untouchables. But since calls to that function were laid down in macros, it
; can't be untouchable if the user is to use the macros. So we did it this
; way, which makes each f-put-global explicit and needs no special treatment.
; Finally, note that we use setters in place of f-put-global, when they are
; provided; see the discussion of setters in state-global-let*.
(declare (xargs :guard (and (state-global-let*-bindings-p bindings)
(natp index))))
(let ((cdr-expr 'state-global-let*-cleanup-lst))
(cond ((endp bindings) nil)
(t (cons (cond
((cddr (car bindings))
`(,(caddr (car bindings))
(car (nth ,index ,cdr-expr))
state))
((always-boundp-global (caar bindings))
`(f-put-global ',(caar bindings)
(car (nth ,index ,cdr-expr))
state))
(t
`(if (nth ,index ,cdr-expr)
(f-put-global ',(caar bindings)
(car (nth ,index ,cdr-expr))
state)
(makunbound-global ',(caar bindings) state))))
(state-global-let*-cleanup (cdr bindings)
(1+ index)))))))
#+(and acl2-par (not acl2-loop-only))
(defparameter *possible-parallelism-hazards*
; If *possible-parallelism-hazards* is non-nil and state global
; 'parallelism-hazards-action is non-nil, then any operation known to cause
; problems in a parallel environment will print a warning (and maybe cause an
; error). For example, we know that calling state-global-let* in any
; environment where parallel execution is enabled could cause problems. See
; the use of with-parallelism-hazard-warnings inside waterfall and the use of
; warn-about-parallelism-hazard inside state-global-let* for how we warn the
; user of such potential pitfalls.
; Note that the ACL2 developer is not anticipated to set and clear this
; variable with a call like "setf" -- this should probably be done by using
; with-parallelism-hazard-warnings.
; Here is a simple example that demonstrates their use:
; (set-state-ok t)
; (skip-proofs
; (defun foo (state)
; (declare (xargs :guard t))
; (state-global-let*
; ((x 3))
; (value (f-get-global 'x state)))))
; (skip-proofs
; (defun bar (state)
; (declare (xargs :guard t))
; (with-parallelism-hazard-warnings
; (foo state))))
; (set-waterfall-parallelism :full)
; (bar state) ; prints the warning
; See also the comment in warn-about-parallelism-hazard for a detailed
; specification of how this all works.
nil)
(defmacro with-parallelism-hazard-warnings (body)
; See the comment in warn-about-parallelism-hazard.
#+(and acl2-par (not acl2-loop-only))
`(let ((*possible-parallelism-hazards* t))
,body)
#-(and acl2-par (not acl2-loop-only))
body)
(defmacro warn-about-parallelism-hazard (call body)
; This macro can cause a warning or error if raw Lisp global
; *possible-parallelism-hazards* is bound to t or :error, respectively. Such
; binding takes place with a call of with-parallelism-hazard-warnings. This
; macro is essentially a no-op when not in the scope of such a call, since
; *possible-parallelism-hazards* is nil by default.
; It is the programmer's responsibility to wrap this macro around any code (or
; callers that lead to such code) that can result in any "bad" behavior due to
; executing that code in a multi-threaded setting. For example, we call this
; macro in state-global-let*, which we know can be unsafe to execute in
; parallel with other state-modifying code. And that's a good thing, since for
; example state-global-let* is called by wormhole printing, which is invoked by
; the code (io? prove t ...) in waterfall-msg when parallelism is enabled.
; Recall the first paragraph above. Thus, state-global-let* does not cause any
; such warning or error by default, which is why in a #+acl2-par build, there
; is a call of with-parallelism-hazard-warnings in waterfall.
#-(and acl2-par (not acl2-loop-only))
(declare (ignore call))
#+(and acl2-par (not acl2-loop-only))
`(progn
(when (and *possible-parallelism-hazards*
(f-get-global 'waterfall-parallelism state)
(f-get-global 'parallelism-hazards-action *the-live-state*))
; If a user sends an "offending call" as requested in the email below, consider
; adding a parallelism wart in the definition of the function being called,
; documenting that a user has actually encountered an execution of ACL2(p) that
; ran a function that we have indentified as not thread-safe (via
; warn-about-parallelism-hazard) inside a context that we have identified as
; eligible for parallel execution (via with-parallelism-hazard-warnings). (Or
; better yet, make a fix.) See the comments at the top of this function for
; more explanation.
(format t
"~%WARNING: A macro or function has been called that is not~%~
thread-safe. Please email this message, including the~%~
offending call and call history just below, to the ACL2 ~%~
implementors.~%")
(let ((*print-length* 10)
(*print-level* 10))
(pprint ',call)
(print-call-history))
(format t
"~%~%To disable the above warning, issue the form:~%~%~
~s~%~%"
'(f-put-global 'parallelism-hazards-action nil state))
(when (eq (f-get-global 'parallelism-hazards-action *the-live-state*)
:error)
(error "Encountered above parallelism hazard")))
,body)
#-(and acl2-par (not acl2-loop-only))
body)
(defmacro with-ensured-parallelism-finishing (form)
#+(or acl2-loop-only (not acl2-par))
form
#-(or acl2-loop-only (not acl2-par))
`(our-multiple-value-prog1
,form
(loop while (futures-still-in-flight)
as i from 1
do
(progn (when (eql (mod i 10) 5)
(cw "Waiting for all proof threads to finish~%"))
(sleep 0.1)))))
(defmacro state-global-let* (bindings body)
; NOTE: In April 2010 we discussed the possibility that we could simplify the
; raw-Lisp code for state-global-let* to avoid acl2-unwind-protect, in favor of
; let*-binding the state globals under the hood so that clean-up is done
; automatically by Lisp; after all, state globals are special variables. We
; see no reason why this can't work, but we prefer not to mess with this very
; stable code unless/until there is a reason. (Note that we however do not
; have in mind any potential change to the logic code for state-global-let*.)
; See state-free-global-let* for such a variant that is appropriate to use when
; state is not available.
":Doc-Section ACL2::ACL2-built-ins
bind ~il[state] global variables~/
~l[programming-with-state] for requisite background on programming with the
ACL2 ~il[state].
~bv[]
Example Forms:
(state-global-let*
((inhibit-output-lst *valid-output-names*))
(thm (equal x x)))
(state-global-let*
((fmt-hard-right-margin 1000 set-fmt-hard-right-margin)
(fmt-soft-right-margin 1000 set-fmt-soft-right-margin))
(mini-proveall))~/
General Form:
(state-global-let* ((var1 form1) ; or (var1 form1 set-var1)
...
(vark formk) ; or (vark formk set-vark)
)
body)
~ev[]
where: each ~c[vari] is a variable; each ~c[formi] is an expression whose
value is a single ordinary object (i.e. not multiple values, and not
~il[state] or any other ~il[stobj]); ~c[set-vari], if supplied, is a function
with ~il[signature] ~c[((set-vari * state) => state)]; and ~c[body] is an
expression that evaluates to an error triple (~pl[error-triples]). Each
~c[formi] is evaluated in order, starting with ~c[form1], and with each such
binding the state global variable ~c[vari] is bound to the value of
~c[formi], sequentially in the style of ~ilc[let*]. More precisely, then
meaning of this form is to set (in order) the global values of the indicated
~il[state] global variables ~c[vari] to the values of ~c[formi] using
~ilc[f-put-global], execute ~c[body], restore the ~c[vari] to their previous
values (but see the discussion of setters below), and return the triple
produced by body (with its state as modified by the restoration). The
restoration is guaranteed even in the face of aborts. The ``bound''
variables may initially be unbound in state and restoration means to make
them unbound again.
Still referring to the General Form above, let ~c[old-vali] be the value of
state global variable ~c[vari] at the time ~c[vari] is about to be assigned
the value of ~c[formi]. If ~c[set-vari] is not supplied, then as suggested
above, the following form is evaluated at the conclusion of the evaluation of
the ~c[state-global-let*] form, whether or not an error has occurred:
~c[(f-put-global 'vari 'old-vali state)]. However, if ~c[set-vari] is
supplied, then instead the form evaluated will be
~c[(set-vari 'old-vali state)]. This capability is particularly useful if
~c[vari] is untouchable (~pl[push-untouchable]), since the above call of
~ilc[f-put-global] is illegal.
Note that the scope of the bindings of a ~c[state-global-let*] form is the
body of that form. This may seem obvious, but to drive the point home, let's
consider the following example (~pl[set-print-base] and
~pl[set-print-radix]).
~bv[]
ACL2 !>(state-global-let* ((print-base 16 set-print-base)
(print-radix t set-print-radix))
(mv nil 10 state))
10
ACL2 !>
~ev[]
Why wasn't the result printed as ~c[#xA]? The reason is that the result was
printed after evaluation of the entire form had completed. If you want to
see ~c[#xA], do the printing in the scope of the bindings, for example as
follows.
~bv[]
ACL2 !>(state-global-let* ((print-base 16 set-print-base)
(print-radix t set-print-radix))
(pprogn (fms \"~~x0~~%\"
(list (cons #\0 10))
*standard-co* state nil)
(mv nil 10 state)))
#xA
10
ACL2 !>
~ev[]~/"
(declare (xargs :guard (and (state-global-let*-bindings-p bindings)
(no-duplicatesp-equal (strip-cars bindings)))))
`(warn-about-parallelism-hazard
; We call warn-about-parallelism-hazard, because use of this macro in a
; parallel environment is potentially dangerous. It might work, because maybe
; no variables are rebound that are changed inside the waterfall, but we, the
; developers, want to know about any such rebinding.
'(state-global-let* ,bindings ,body)
(let ((state-global-let*-cleanup-lst
(list ,@(state-global-let*-get-globals bindings))))
,@(and (null bindings)
'((declare (ignore state-global-let*-cleanup-lst))))
(acl2-unwind-protect
"state-global-let*"
(pprogn ,@(state-global-let*-put-globals bindings)
(check-vars-not-free (state-global-let*-cleanup-lst) ,body))
(pprogn
,@(state-global-let*-cleanup bindings 0)
state)
(pprogn
,@(state-global-let*-cleanup bindings 0)
state)))))
#-acl2-loop-only
(defmacro state-free-global-let* (bindings body)
; This raw Lisp macro is a variant of state-global-let* that should be used
; only when state is *not* lexically available, or at least not a formal
; parameter of the enclosing function or not something we care about tracking
; (because we are in raw Lisp). It is used to bind state globals that may have
; raw-Lisp side effects. If state were available this sort of binding could be
; inappropriate, since one could observe a change in state globals under the
; state-free-global-let* that was not justified by the logic.
; State-free-global-let* provides a nice alternative to state-global-let* when
; we want to avoid involving the acl2-unwind-protect mechanism, for example
; during parallel evaluation.
; Comment for #+acl2-par: When using state-free-global-let* inside functions
; that might execute in parallel (for example, functions that occur inside the
; waterfall), consider modifying macro mt-future to cause child threads to
; inherit these variables' values from their parent threads. See how we
; handled safe-mode and gc-on in macro mt-future for examples of how to cause
; such inheritance to occur.
(cond
((null bindings) body)
(t (let (bs syms)
(dolist (binding bindings)
(let ((sym (global-symbol (car binding))))
(push (list sym (cadr binding))
bs)
(push sym syms)))
`(let* ,(nreverse bs)
(declare (special ,@(nreverse syms)))
,body)))))
; With state-global-let* defined, we may now define a few more primitives and
; finish some unfinished business.
; We start by introducing functions that support type declarations. We had to
; delay these because we use local in our proof, and local uses
; state-global-let*. Bootstrapping is tough. We could presumably do this
; earlier in the file and defer guard verification (which is why we need
; local), but since types are involved with guards, that seems dicey -- so we
; just wait till here.
(defun integer-range-p (lower upper x)
; Notice the strict inequality for upper. This function was introduced in
; Version_2.7 in support of signed-byte-p and unsigned-byte-p, whose
; definitions were kept similar to those that had been in the ihs library for
; some time.
(declare (xargs :guard (and (integerp lower) (integerp upper))))
(and (integerp x)
(<= lower x)
(< x upper)))
(local (defthm natp-expt
(implies (and (integerp base)
(integerp n)
(<= 0 n))
(integerp (expt base n)))
:rule-classes :type-prescription))
; For the definitions of signed-byte-p and unsigned-byte-p, we were tempted to
; put (integerp n) and (< 0 n) [or for unsigned-byte-p, (<= 0 n)] in the
; guards. However, instead we follow the approach already used for some time
; in community book books/ihs/logops-definitions.lisp, namely to include these
; as conjuncts in the bodies of the definitions, an approach that seems at
; least as reasonable.
(defun signed-byte-p (bits x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for signed integers that fit in a specified bit width~/
~c[(Signed-byte-p bits x)] is ~c[T] when ~c[bits] is a positive integer and
~c[x] is a signed integer whose 2's complement representation fits in a
bit-width of ~c[bits], i.e., ~c[-2^(bits-1) <= x < 2^(bits-1)].~/
Note that a ~il[type-spec] of ~c[(signed-byte i)] for a variable ~c[x] in a
function's ~ilc[declare] form translates to a ~il[guard] condition of
~c[(signed-byte-p i x)].
The ~il[guard] for ~c[signed-byte-p] is ~c[T].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(and (integerp bits)
(< 0 bits)
(integer-range-p (- (expt 2 (1- bits)))
(expt 2 (1- bits))
x)))
(defun unsigned-byte-p (bits x)
":Doc-Section ACL2::ACL2-built-ins
recognizer for natural numbers that fit in a specified bit width~/
~c[(Unsigned-byte-p bits x)] is ~c[T] when ~c[bits] is a positive integer and
~c[x] is a nonnegative integer that fits into a bit-width of ~c[bits], i.e.,
~c[0 <= x < 2^bits].~/
Note that a ~il[type-spec] of ~c[(unsigned-byte i)] for a variable ~c[x] in a
function's ~ilc[declare] form translates to a ~il[guard] condition of
~c[(unsigned-byte-p i x)].
The ~il[guard] for ~c[unsigned-byte-p] is ~c[T].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(and (integerp bits)
(<= 0 bits)
(integer-range-p 0
(expt 2 bits)
x)))
; The following rules help built-in-clausep to succeed when guards are
; generated from type declarations.
(defthm integer-range-p-forward
(implies (and (integer-range-p lower (1+ upper-1) x)
(integerp upper-1))
(and (integerp x)
(<= lower x)
(<= x upper-1)))
:rule-classes :forward-chaining)
(defthm signed-byte-p-forward-to-integerp
(implies (signed-byte-p n x)
(integerp x))
:rule-classes :forward-chaining)
(defthm unsigned-byte-p-forward-to-nonnegative-integerp
(implies (unsigned-byte-p n x)
(and (integerp x)
(<= 0 x)))
:rule-classes :forward-chaining)
; The logic-only definition of zpf needs to come after expt and integer-range-p.
(defmacro the-fixnum (n)
(list 'the '(signed-byte 30) n))
#-acl2-loop-only
(defun-one-output zpf (x)
(declare (type (unsigned-byte 29) x))
(eql (the-fixnum x) 0))
#+acl2-loop-only
(defun zpf (x)
(declare (type (unsigned-byte 29) x))
":Doc-Section ACL2::ACL2-built-ins
testing a nonnegative fixnum against 0~/
~c[Zpf] is exactly the same as ~ilc[zp], except that ~c[zpf] is intended for,
and faster for, fixnum arguments. Its guard is specified with a type
declaration, ~c[(type (unsigned-byte 29) x)]. (~l[declare] and
~pl[type-spec].) Also ~pl[zp].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(if (integerp x)
(<= x 0)
t))
; We continue by proving the guards on substitute, all-vars1 and all-vars.
(local
(defthm character-listp-substitute-ac
(implies (and (characterp new)
(character-listp x)
(character-listp acc))
(character-listp (substitute-ac new old x acc)))))
(verify-guards substitute)
(local
(encapsulate
()
; We wish to prove symbol-listp-all-vars1, below, so that we can verify the
; guards on all-vars1. But it is in a mutually recursive clique. Our strategy
; is simple: (1) define the flagged version of the clique, (2) prove that it is
; equal to the given pair of official functions, (3) prove that it has the
; desired property and (4) then obtain the desired property of the official
; function by instantiation of the theorem proved in step 3, using the theorem
; proved in step 2 to rewrite the flagged flagged calls in that instance to the
; official ones.
; Note: It would probably be better to make all-vars1/all-vars1-lst local,
; since it's really not of any interest outside the guard verification of
; all-vars1. However, since we are passing through this file more than once,
; that does not seem to be an option.
(local
(defun all-vars1/all-vars1-lst (flg lst ans)
(if (eq flg 'all-vars1)
(cond ((variablep lst) (add-to-set-eq lst ans))
((fquotep lst) ans)
(t (all-vars1/all-vars1-lst 'all-vars-lst1 (cdr lst) ans)))
(cond ((endp lst) ans)
(t (all-vars1/all-vars1-lst 'all-vars-lst1 (cdr lst)
(all-vars1/all-vars1-lst 'all-vars1 (car lst) ans)))))))
(local
(defthm step-1-lemma
(equal (all-vars1/all-vars1-lst flg lst ans)
(if (equal flg 'all-vars1) (all-vars1 lst ans) (all-vars1-lst lst ans)))))
(local
(defthm step-2-lemma
(implies (and (symbol-listp ans)
(if (equal flg 'all-vars1)
(pseudo-termp lst)
(pseudo-term-listp lst)))
(symbol-listp (all-vars1/all-vars1-lst flg lst ans)))))
(defthm symbol-listp-all-vars1
(implies (and (symbol-listp ans)
(pseudo-termp lst))
(symbol-listp (all-vars1 lst ans)))
:hints (("Goal" :use (:instance step-2-lemma (flg 'all-vars1)))))))
(verify-guards all-vars1)
(verify-guards all-vars)
(local (defthm symbol-listp-implies-true-listp
(implies (symbol-listp x)
(true-listp x))))
(verify-guards check-vars-not-free-test)
; Next, we verify the guards of getprops, which we delayed for the same
; reasons.
(encapsulate
()
(defthm string<-l-asymmetric
(implies (and (eqlable-listp x1)
(eqlable-listp x2)
(integerp i)
(string<-l x1 x2 i))
(not (string<-l x2 x1 i)))
:hints (("Goal" :in-theory (disable member))))
(defthm symbol-<-asymmetric
(implies (and (symbolp sym1)
(symbolp sym2)
(symbol-< sym1 sym2))
(not (symbol-< sym2 sym1)))
:hints (("Goal" :in-theory
(set-difference-theories
(enable string< symbol-<)
'(string<-l)))))
(defthm string<-l-transitive
(implies (and (string<-l x y i)
(string<-l y z j)
(integerp i)
(integerp j)
(integerp k)
(character-listp x)
(character-listp y)
(character-listp z))
(string<-l x z k))
:rule-classes ((:rewrite :match-free :all))
:hints (("Goal" :induct t
:in-theory (disable member))))
(in-theory (disable string<-l))
(defthm symbol-<-transitive
(implies (and (symbol-< x y)
(symbol-< y z)
(symbolp x)
(symbolp y)
(symbolp z))
(symbol-< x z))
:rule-classes ((:rewrite :match-free :all))
:hints (("Goal" :in-theory (enable symbol-< string<))))
(local
(defthm equal-char-code-rewrite
(implies (and (characterp x)
(characterp y))
(implies (equal (char-code x) (char-code y))
(equal (equal x y) t)))
:hints (("Goal" :use equal-char-code))))
(defthm string<-l-trichotomy
(implies (and (not (string<-l x y i))
(integerp i)
(integerp j)
(character-listp x)
(character-listp y))
(iff (string<-l y x j)
(not (equal x y))))
:rule-classes ((:rewrite :match-free :all))
:hints (("Goal" :in-theory
(set-difference-theories
(enable string<-l)
'(member))
:induct t)))
(local
(defthm equal-coerce
(implies (and (stringp x)
(stringp y))
(equal (equal (coerce x 'list)
(coerce y 'list))
(equal x y)))
:hints (("Goal" :use
((:instance coerce-inverse-2 (x x))
(:instance coerce-inverse-2 (x y)))
:in-theory (disable coerce-inverse-2)))))
(local
(defthm symbol-equality-rewrite
(implies (and (symbolp s1)
(symbolp s2)
(equal (symbol-name s1)
(symbol-name s2))
(equal (symbol-package-name s1)
(symbol-package-name s2)))
(equal (equal s1 s2) t))
:hints (("Goal" :use symbol-equality))))
(defthm symbol-<-trichotomy
(implies (and (symbolp x)
(symbolp y)
(not (symbol-< x y)))
(iff (symbol-< y x)
(not (equal x y))))
:hints (("Goal" :in-theory (enable symbol-< string<))))
(defthm ordered-symbol-alistp-delete-assoc-eq
(implies (ordered-symbol-alistp l)
(ordered-symbol-alistp (delete-assoc-eq key l))))
(defthm symbol-<-irreflexive
(implies (symbolp x)
(not (symbol-< x x)))
:hints (("Goal" :use
((:instance symbol-<-asymmetric
(sym1 x) (sym2 x)))
:in-theory (disable symbol-<-asymmetric))))
(defthm ordered-symbol-alistp-add-pair
(implies (and (ordered-symbol-alistp gs)
(symbolp w5))
(ordered-symbol-alistp (add-pair w5 w6 gs))))
(defthm ordered-symbol-alistp-getprops
(implies (and (plist-worldp w)
(symbolp world-name)
(symbolp key))
(ordered-symbol-alistp (getprops key world-name w)))
:hints (("Goal" :in-theory (enable symbol-<))))
(local (defthm ordered-symbol-alistp-implies-symbol-alistp
(implies (ordered-symbol-alistp x)
(symbol-alistp x))))
(local (defthm symbol-alistp-implies-alistp
(implies (symbol-alistp x)
(alistp x))))
(verify-guards getprops)
)
; Functions such as logand require significant arithmetic to prove. Therefore
; part of the proofs for their "warming" will be deferred.
; Bishop Brock has contributed the lemma justify-integer-floor-recursion that
; follows. Although he has proved this lemma as part of a larger proof effort,
; we are not yet in a hurry to isolate its proof just now.
(local
(skip-proofs
(defthm justify-integer-floor-recursion
; To use this, be sure to disable acl2-count and floor. If you leave
; acl2-count enabled, then prove a version of this appropriate to that setting.
(implies
(and (integerp i)
(integerp j)
(not (equal i 0))
(not (equal i -1))
(> j 1))
(< (acl2-count (floor i j)) (acl2-count i)))
:rule-classes :linear)))
#+acl2-loop-only
(defmacro logand (&rest args)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical `and' of zero or more integers~/
When integers are viewed in their two's complement representation,
~c[logand] returns their bitwise logical `and'. In ACL2 ~c[logand] is a
macro that expands into calls of the binary function ~c[binary-logand],
except that ~c[(logand)] expands to ~c[-1] and ~c[(logand x)] expands to ~c[x].~/
The ~il[guard] for ~c[binary-logand] requires its arguments to be integers.
~c[Logand] is defined in Common Lisp. See any Common Lisp
documentation for more information.~/"
(cond
((null args)
-1)
((null (cdr args))
(car args))
(t (xxxjoin 'binary-logand args))))
#+acl2-loop-only
(defmacro logeqv (&rest args)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical equivalence of zero or more integers~/
When integers are viewed in their two's complement representation,
~c[logeqv] returns their bitwise logical equivalence. In ACL2 ~c[logeqv] is a
macro that expands into calls of the binary function ~c[binary-logeqv],
except that ~c[(logeqv)] expands to ~c[-1] and ~c[(logeqv x)] expands to ~c[x].~/
The ~il[guard] for ~c[binary-logeqv] requires its arguments to be integers.
~c[Logeqv] is defined in Common Lisp. See any Common Lisp
documentation for more information.~/"
(cond
((null args)
-1)
((null (cdr args))
(car args))
(t (xxxjoin 'binary-logeqv args))))
#+acl2-loop-only
(defmacro logior (&rest args)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical inclusive or of zero or more integers~/
When integers are viewed in their two's complement representation,
~c[logior] returns their bitwise logical inclusive or. In ACL2 ~c[logior] is a
macro that expands into calls of the binary function ~c[binary-logior],
except that ~c[(logior)] expands to ~c[0] and ~c[(logior x)] expands to ~c[x].~/
The ~il[guard] for ~c[binary-logior] requires its arguments to be integers.
~c[Logior] is defined in Common Lisp. See any Common Lisp
documentation for more information.~/"
(cond
((null args)
0)
((null (cdr args))
(car args))
(t (xxxjoin 'binary-logior args))))
#+acl2-loop-only
(defmacro logxor (&rest args)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical exclusive or of zero or more integers~/
When integers are viewed in their two's complement representation,
~c[logxor] returns their bitwise logical exclusive or. In ACL2 ~c[logxor] is a
macro that expands into calls of the binary function ~c[binary-logxor],
except that ~c[(logxor)] expands to ~c[0] and ~c[(logxor x)] expands to ~c[x].~/
The ~il[guard] for ~c[binary-logxor] requires its arguments to be integers.
~c[Logxor] is defined in Common Lisp. See any Common Lisp
documentation for more information.~/"
(cond
((null args)
0)
((null (cdr args))
(car args))
(t (xxxjoin 'binary-logxor args))))
#+acl2-loop-only
(defun integer-length (i)
; Bishop Brock contributed the following definition. We believe it to be
; equivalent to one on p. 361 of CLtL2:
; (log2 (if (< x 0) (- x) (1+ x))).
":Doc-Section ACL2::ACL2-built-ins
number of bits in two's complement integer representation~/
For non-negative integers, ~c[(integer-length i)] is the minimum number
of bits needed to represent the integer. Any integer can be
represented as a signed two's complement field with a minimum of
~c[(+ (integer-length i) 1)] bits.~/
The ~il[guard] for ~c[integer-length] requires its argument to be an
integer. ~c[Integer-length] is defined in Common Lisp. See any
Common Lisp documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (integerp i)
:hints (("Goal" :in-theory (disable acl2-count floor)))))
(if (zip i)
0
(if (= i -1)
0
(+ 1 (integer-length (floor i 2))))))
(defun binary-logand (i j)
(declare (xargs :guard (and (integerp i)
(integerp j))
:hints (("Goal" :in-theory (disable acl2-count floor)))))
(cond ((zip i) 0)
((zip j) 0)
((eql i -1) j)
((eql j -1) i)
(t (let ((x (* 2 (logand (floor i 2) (floor j 2)))))
(+ x (cond ((evenp i) 0)
((evenp j) 0)
(t 1)))))))
#+acl2-loop-only
(defun lognand (i j)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical `nand' of two integers~/
When integers are viewed in their two's complement representation,
~c[lognand] returns their bitwise logical `nand'.~/
The ~il[guard] for ~c[lognand] requires its arguments to be integers.
~c[Lognand] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp j))))
(lognot (logand i j)))
(defun binary-logior (i j)
(declare (xargs :guard (and (integerp i)
(integerp j))))
(lognot (logand (lognot i) (lognot j))))
#+acl2-loop-only
(defun logorc1 (i j)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical inclusive or of two ints, complementing the first~/
When integers are viewed in their two's complement representation,
~c[logorc1] returns the bitwise logical inclusive or of the second
with the bitwise logical `not' of the first.~/
The ~il[guard] for ~c[logorc1] requires its arguments to be integers.
~c[Logorc1] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp j))))
(logior (lognot i) j))
#+acl2-loop-only
(defun logorc2 (i j)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical inclusive or of two ints, complementing the second~/
When integers are viewed in their two's complement representation,
~c[logorc2] returns the bitwise logical inclusive or of the first
with the bitwise logical `not' of the second.~/
The ~il[guard] for ~c[logorc2] requires its arguments to be integers.
~c[Logorc2] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp j))))
(logior i (lognot j)))
#+acl2-loop-only
(defun logandc1 (i j)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical `and' of two ints, complementing the first~/
When integers are viewed in their two's complement representation,
~c[logandc1] returns the bitwise logical `and' of the second with the
bitwise logical `not' of the first.~/
The ~il[guard] for ~c[logandc1] requires its arguments to be integers.
~c[Logandc1] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp j))))
(logand (lognot i) j))
#+acl2-loop-only
(defun logandc2 (i j)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical `and' of two ints, complementing the second~/
When integers are viewed in their two's complement representation,
~c[logandc2] returns the bitwise logical `and' of the first with the
bitwise logical `not' of the second.~/
The ~il[guard] for ~c[logandc2] requires its arguments to be integers.
~c[Logandc2] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp j))))
(logand i (lognot j)))
(defun binary-logeqv (i j)
(declare (xargs :guard (and (integerp i)
(integerp j))))
(logand (logorc1 i j)
(logorc1 j i)))
(defun binary-logxor (i j)
(declare (xargs :guard (and (integerp i)
(integerp j))))
(lognot (logeqv i j)))
#+acl2-loop-only
(defun lognor (i j)
":Doc-Section ACL2::ACL2-built-ins
bitwise logical `nor' of two integers~/
When integers are viewed in their two's complement representation,
~c[lognor] returns the bitwise logical `nor' of the first with the
second.~/
The ~il[guard] for ~c[lognor] requires its arguments to be integers.
~c[Lognor] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp i)
(integerp j))))
(lognot (logior i j)))
#+acl2-loop-only
(defun logtest (x y)
; p. 360 of CLtL2
":Doc-Section ACL2::ACL2-built-ins
test if two integers share a `1' bit~/
When integers ~c[x] and ~c[y] are viewed in their two's complement
representation, ~c[(logtest x y)] is true if and only if there is
some position for which both ~c[x] and ~c[y] have a `1' bit in that
position.~/
The ~il[guard] for ~c[logtest] requires its arguments to be integers.
~c[Logtest] is defined in Common Lisp. See any Common Lisp
documentation for more information.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp x) (integerp y))))
(not (zerop (logand x y))))
; Warning: Keep the following defconst forms in sync with *boole-array*.
(defconst *BOOLE-1* 0)
(defconst *BOOLE-2* 1)
(defconst *BOOLE-AND* 2)
(defconst *BOOLE-ANDC1* 3)
(defconst *BOOLE-ANDC2* 4)
(defconst *BOOLE-C1* 5)
(defconst *BOOLE-C2* 6)
(defconst *BOOLE-CLR* 7)
(defconst *BOOLE-EQV* 8)
(defconst *BOOLE-IOR* 9)
(defconst *BOOLE-NAND* 10)
(defconst *BOOLE-NOR* 11)
(defconst *BOOLE-ORC1* 12)
(defconst *BOOLE-ORC2* 13)
(defconst *BOOLE-SET* 14)
(defconst *BOOLE-XOR* 15)
(defun boole$ (op i1 i2)
":Doc-Section ACL2::ACL2-built-ins
perform a bit-wise logical operation on 2 two's complement integers~/
When integers ~c[x] and ~c[y] are viewed in their two's complement
representation, ~c[(boole$ op x y)] returns the result of applying the
bit-wise logical operation specified by ~c[op]. The following table is
adapted from documentation for analogous Common Lisp function ~c[boole] in
the Common Lisp HyperSpec
(~url[http://www.lisp.org/HyperSpec/Body/fun_boole.html#boole]). Note that
the values of ~c[op] for ~c[boole$] are ACL2 constants, rather than
corresponding values of ~c[op] for the Common Lisp function ~c[boole].
~bv[]
op result
----------- ---------
*boole-1* x
*boole-2* y
*boole-andc1* and complement of x with y
*boole-andc2* and x with complement of y
*boole-and* and
*boole-c1* complement of x
*boole-c2* complement of y
*boole-clr* the constant 0 (all zero bits)
*boole-eqv* equivalence (exclusive nor)
*boole-ior* inclusive or
*boole-nand* not-and
*boole-nor* not-or
*boole-orc1* or complement of x with y
*boole-orc2* or x with complement of y
*boole-set* the constant -1 (all one bits)
*boole-xor* exclusive or
~ev[]~/
The guard of ~c[boole$] specifies that ~c[op] is the value of one of the
constants above and that ~c[x] and ~c[y] are integers.
See any Common Lisp documentation for analogous information about
Common Lisp function ~c[boole].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (type (integer 0 15) op)
(type integer i1 i2))
#-acl2-loop-only
(boole (aref *boole-array* op) i1 i2)
#+acl2-loop-only
(cond
((eql op *BOOLE-1*) i1)
((eql op *BOOLE-2*) i2)
((eql op *BOOLE-AND*) (logand i1 i2))
((eql op *BOOLE-ANDC1*) (logandc1 i1 i2))
((eql op *BOOLE-ANDC2*) (logandc2 i1 i2))
((eql op *BOOLE-C1*) (lognot i1))
((eql op *BOOLE-C2*) (lognot i2))
((eql op *BOOLE-CLR*) 0)
((eql op *BOOLE-EQV*) (logeqv i1 i2))
((eql op *BOOLE-IOR*) (logior i1 i2))
((eql op *BOOLE-NAND*) (lognand i1 i2))
((eql op *BOOLE-NOR*) (lognor i1 i2))
((eql op *BOOLE-ORC1*) (logorc1 i1 i2))
((eql op *BOOLE-ORC2*) (logorc2 i1 i2))
((eql op *BOOLE-SET*) 1)
((eql op *BOOLE-XOR*) (logxor i1 i2))
(t 0) ; added so that we get an integer type for integer i1 and i2
))
; PRINTING and READING
(deflabel io
:doc
":Doc-Section IO
input/output facilities in ACL2~/
~bv[]
Example:
(mv-let
(channel state)
(open-input-channel \"foo.lisp\" :object state)
(mv-let (eofp obj state)
(read-object channel state)
(.
.
(let ((state (close-input-channel channel state)))
(mv final-ans state))..)))
~ev[]
Also ~pl[file-reading-example].
For advanced ways to control printing, ~pl[print-control].
For a discussion of formatted printing, ~pl[fmt].
To control ACL2 abbreviation (``evisceration'') of objects before printing
them, ~pl[set-evisc-tuple], ~pl[without-evisc], and ~pl[set-iprint].
To redirect output to a file, ~pl[output-to-file].~/
ACL2 supports input and output facilities equivalent to a subset of those
found in Common Lisp. ACL2 does not support random access to files or
bidirectional streams. In Common Lisp, input and output are to or from
objects of type ~c[stream]. In ACL2, input and output are to or from objects
called ``channels,'' which are actually symbols. Although a channel is a
symbol, one may think of it intuitively as corresponding to a Common Lisp
stream. Channels are in one of two ACL2 packages, ~c[\"ACL2-INPUT-CHANNEL\"]
and ~c[\"ACL2-OUTPUT-CHANNEL\"]. When one ``opens'' a file one gets back a
channel whose ~ilc[symbol-name] is the file name passed to ``open,''
postfixed with ~c[-n], where ~c[n] is a counter that is incremented every
time an open or close occurs.
There are three channels which are open from the beginning and which cannot
be closed:
~bv[]
acl2-input-channel::standard-character-input-0
acl2-input-channel::standard-object-input-0
acl2-input-channel::standard-character-output-0
~ev[]
All three of these are really Common Lisp's ~c[*standard-input*] or
~c[*standard-output*], appropriately.
For convenience, three global variables are bound to these rather tedious
channel names:
~bv[]
*standard-ci*
*standard-oi*
*standard-co*
~ev[]
Common Lisp permits one to open a stream for several different kinds of
~c[io], e.g. character or byte. ACL2 permits an additional type called
``object''. In ACL2 an ``io-type'' is a keyword, either ~c[:character],
~c[:byte], or ~c[:object]. When one opens a file, one specifies a type,
which determines the kind of io operations that can be done on the channel
returned. The types ~c[:character] and ~c[:byte] are familiar. Type
~c[:object] is an abstraction not found in Common Lisp. An ~c[:object] file
is a file of Lisp objects. One uses ~c[read-object] to read from ~c[:object]
files and ~c[print-object$] (or ~c[print-object$-ser]) to print to
~c[:object] files. (The reading and printing are really done with the Common
Lisp ~c[read] and ~c[print] functions. For those familiar with ~c[read], we
note that the ~c[recursive-p] argument is ~c[nil].) The function
~c[read-object-suppress] is logically the same as ~c[read-object] except that
~c[read-object-suppress] throws away the second returned value, i.e. the
value that would normally be read, simply returning ~c[(mv eof state)]; under
the hood, ~c[read-object-suppress] avoids errors, for example those caused by
encountering symbols in packages unknown to ACL2.
File-names are strings. ACL2 does not support the Common Lisp type
~ilc[pathname]. However, for the ~c[file-name] argument of the
output-related functions listed below, ACL2 supports a special value,
~c[:STRING]. For this value, the channel connects (by way of a Common Lisp
output string stream) to a string rather than to a file: as characters are
written to the channel they can be retrieved by using
~c[get-output-stream-string$].
Here are the names, formals and output descriptions of the ACL2 io functions.
~bv[]
Input Functions:
(open-input-channel (file-name io-type state) (mv channel state))
(open-input-channel-p (channel io-type state) boolean)
(close-input-channel (channel state) state)
(read-char$ (channel state) (mv char/nil state)) ; nil for EOF
(peek-char$ (channel state) boolean)
(read-byte$ (channel state) (mv byte/nil state)) ; nil for EOF
(read-object (channel state) (mv eof-read-flg obj-read state))
(read-object-suppress (channel state) (mv eof-read-flg state))
Output Functions:
(open-output-channel (file-name io-type state) (mv channel state))
(open-output-channel! (file-name io-type state) (mv channel state))
(open-output-channel-p (channel io-type state) boolean)
(close-output-channel (channel state) state)
(princ$ (obj channel state) state)
(write-byte$ (byte channel state) state)
(print-object$ (obj channel state) state)
(print-object$-ser (obj serialize-character channel state) state)
(fms (string alist channel state evisc-tuple) state)
(fms! (string alist channel state evisc-tuple) state)
(fmt (string alist channel state evisc-tuple) (mv col state))
(fmt! (string alist channel state evisc-tuple) (mv col state))
(fmt1 (string alist col channel state evisc-tuple) (mv col state))
(fmt1! (string alist col channel state evisc-tuple) (mv col state))
(cw (string arg0 arg1 ... argn) nil)
(get-output-stream-string$ (channel state
&optional (close-p 't)
(ctx ''get-output-stream-string$))
(mv erp string state))
~ev[]
The ``formatting'' functions are particularly useful; ~pl[fmt] and ~pl[cw].
In particular, ~ilc[cw] prints to a ``comment window'' and does not involve
the ACL2 ~ilc[state], so many may find it easier to use than ~ilc[fmt] and
its variants. The functions ~ilc[fms!], ~ilc[fmt!], and ~ilc[fmt1!] are the
same as their respective functions without the ``~c[!],'' except that the
``~c[!]'' functions are guaranteed to print forms that can be read back
in (at a slight readability cost).
When one enters ACL2 with ~c[(lp)], input and output are taken from
~ilc[*standard-oi*] to ~ilc[*standard-co*]. Because these are synonyms for
~c[*standard-input*] and ~c[*standard-output*], one can drive ACL2 io off of
arbitrary Common Lisp streams, bound to ~c[*standard-input*] and
~c[*standard-output*] before entry to ACL2.
The macro ~c[get-output-stream-string$] returns the string accumulated into
the given channel. By default, a call of this macro closes the supplied
output channel. However, a third argument is optional (default ~c[t]), and
if it evaluates to ~c[nil] then the channel remains open. The fourth
argument is an optional context, which generally evaluates to a symbol, for
error reporting. The following example illustrates.
~bv[]
ACL2 !>
(mv-let
(channel state)
(open-output-channel :string :object state)
(pprogn (print-object$-ser 17 nil channel state)
(print-object$-ser '(a b (c d)) nil channel state)
(er-let*
((str1 (get-output-stream-string$
channel state
nil))) ; keep the channel open
(pprogn (print-object$-ser 23 nil channel state)
(print-object$-ser '((e f)) nil channel state)
(er-let* ; close the channel
((str2 (get-output-stream-string$ channel state)))
(value (cons str1 str2)))))))
(\"
17
(A B (C D))\" . \"
23
((E F))\")
ACL2 !>
~ev[]
Also ~pl[printing-to-strings] for a discussion of formatted printing
functions such as ~c[fmt-to-string] that do not take a channel or ~ilc[state]
argument and return a string.
By default, symbols are printed in upper case when vertical bars are not
required, as specified by Common Lisp. ~l[set-print-case] for how to get
ACL2 to print symbols in lower case.
By default, numbers are printed in radix 10 (base 10). ~l[set-print-base]
for how to get ACL2 to print numbers in radix 2, 8, or 16.
To see the ~il[guard] of an IO function, or indeed any function, ~pl[args] or
call the function ~c[guard]; but some built-in functions (including some IO
functions) will print the result using the variable ~c[STATE-STATE]. While
that is logically correct, if you want to execute the guard then you should
replace that variable by ~c[STATE] and also replace each built-in function
symbol of the form ~c[xxx-p1] by corresponding function symbol ~c[xxx-p].
Consider the following example.
~bv[]
ACL2 !>:args princ$
Function PRINC$
Formals: (X CHANNEL STATE-STATE)
Signature: (PRINC$ * * STATE)
=> STATE
Guard: (AND (OR (ACL2-NUMBERP X)
(CHARACTERP X)
(STRINGP X)
(SYMBOLP X))
(STATE-P1 STATE-STATE)
(SYMBOLP CHANNEL)
(OPEN-OUTPUT-CHANNEL-P1 CHANNEL
:CHARACTER STATE-STATE))
Guards Verified: T
Defun-Mode: :logic
Type: (CONSP (PRINC$ X CHANNEL STATE-STATE))
Documentation available via :DOC
PRINC$
ACL2 !>(untranslate (guard 'princ$ nil (w state)) t (w state))
(AND (OR (ACL2-NUMBERP X)
(CHARACTERP X)
(STRINGP X)
(SYMBOLP X))
(STATE-P1 STATE-STATE)
(SYMBOLP CHANNEL)
(OPEN-OUTPUT-CHANNEL-P1 CHANNEL
:CHARACTER STATE-STATE))
ACL2 !>
~ev[]
If you want to execute the guard for ~ilc[princ$], then according to the
suggestion above, you should consider the guard for
~c[(princ$ x channel state)] to be as follows.
~bv[]
(AND (OR (ACL2-NUMBERP X)
(CHARACTERP X)
(STRINGP X)
(SYMBOLP X))
(STATE-P STATE)
(SYMBOLP CHANNEL)
(OPEN-OUTPUT-CHANNEL-P CHANNEL :CHARACTER STATE))
~ev[]
For example, we can check the guard for a given value and channel as follows.
~bv[]
ACL2 !>(let ((x 3) (channel *standard-co*))
(AND (OR (ACL2-NUMBERP X)
(CHARACTERP X)
(STRINGP X)
(SYMBOLP X))
(STATE-P STATE)
(SYMBOLP CHANNEL)
(OPEN-OUTPUT-CHANNEL-P CHANNEL :CHARACTER STATE)))
T
ACL2 !>
~ev[]
Comment for advanced users: Function ~ilc[open-output-channel!] is identical
as a function to ~c[open-output-channel], except that the former may be
called even during ~ilc[make-event] expansion and ~ilc[clause-processor]
~il[hints], but requires that there is an active trust tag (~pl[defttag]).
Finally, we note that the community book ~c[books/misc/file-io.lisp] contains
useful file io functions whose definitions illustrate some of the features
described above.~/")
(defdoc output-to-file
":Doc-Section IO
redirecting output to a file~/
For a general discussion of ACL2 input/output and of the ACL2 read-eval-print
loop, ~pl[io] and ~pl[ld] (respectively). Here we use an example to
illustrate how to use some of the options provided by ~c[ld] to redirect ACL2
output to a file, other than the printing of the prompt (which continues to
go to the terminal).
There are two ~c[ld] specials that control output from the ~c[ld] command:
~ilc[proofs-co] for proof output and ~ilc[standard-co] for other output. The
following example shows how to use these to redirect output to a file
~c[\"tmp.out\"]. The following command opens a character output channel to
to the file ~c[\"tmp.out\"] and redirects proof output to that channel, i.e.,
to file ~c[\"tmp.out\"].
~bv[]
(mv-let (chan state)
(open-output-channel \"tmp.out\" :character state)
(set-proofs-co chan state))
~ev[]
Next, we redirect standard output to that same channel.
~bv[]
(set-standard-co (proofs-co state) state)
~ev[]
Now we can load an input file, in this case file ~c[\"tmp.lisp\"], and output
will be redirected to file ~c[\"tmp.out\"]. (The use of
~c[:ld-pre-eval-print t] is optional; ~pl[ld].)
~bv[]
(ld \"tmp.lisp\" :ld-pre-eval-print t)
~ev[]
Having completed our load operation, we restore both proof output and
standard output to the terminal, as follows.
~bv[]
(set-standard-co *standard-co* state)
(close-output-channel (proofs-co state) state)
(set-proofs-co *standard-co* state)
~ev[]
The following variant of the above example shows how to redirect output as
above except without changing the global settings of the two ~ilc[ld]
specials, ~ilc[proofs-co] and ~ilc[standard-co]. This approach uses
a notion of ``global variables'' stored in the ACL2 ~il[state]; ~pl[assign]
and ~pl[@].
~bv[]
(mv-let (chan state)
(open-output-channel \"tmp.out\" :character state)
(assign tmp-channel chan))
(ld \"tmp.lisp\" :ld-pre-eval-print t
:proofs-co (@ tmp-channel)
:standard-co (@ tmp-channel))
(close-output-channel (@ tmp-channel) state)
~ev[]~/~/")
(defdoc *standard-co*
":Doc-Section IO
the ACL2 analogue of CLTL's ~c[*standard-output*]~/
The value of the ACL2 constant ~c[*standard-co*] is an open character
output channel that is synonymous to Common Lisp's
~c[*standard-output*].~/
ACL2 character output to ~c[*standard-co*] will go to the stream named
by Common Lisp's ~c[*standard-output*]. That is, by changing the
setting of ~c[*standard-output*] in raw Common Lisp you can change the
actual destination of ACL2 output on the channel named by
~c[*standard-co*]. Observe that this happens without changing the
logical value of ~c[*standard-co*] (which is some channel symbol).
Changing the setting of ~c[*standard-output*] in raw Common Lisp
essentially just changes the map that relates ACL2 to the physical
world of terminals, files, etc.
To see the value of this observation, consider the following.
Suppose you write an ACL2 function which does character output to
the constant channel ~c[*standard-co*]. During testing you see that the
output actually goes to your terminal. Can you use the function to
output to a file? Yes, if you are willing to do a little work in
raw Common Lisp: open a stream to the file in question, set
~c[*standard-output*] to that stream, call your ACL2 function, and then
close the stream and restore ~c[*standard-output*] to its nominal value.
Similar observations can be made about the two ACL2 input channels,
~ilc[*standard-oi*] and ~ilc[*standard-ci*], which are analogues of
~c[*standard-input*].
Another reason you might have for wanting to change the actual
streams associated with ~ilc[*standard-oi*] and ~c[*standard-co*] is to drive
the ACL2 top-level loop, ~ilc[ld], on alternative input and output
streams. This end can be accomplished easily within ACL2 by either
calling ~ilc[ld] on the desired channels or file names or by resetting the
ACL2 ~ilc[state] global variables ~c[']~ilc[standard-oi] and ~c[']~ilc[standard-co] which are
used by ~ilc[ld]. ~l[standard-oi] and ~pl[standard-co].")
(defdoc *standard-oi*
":Doc-Section IO
an ACL2 object-based analogue of CLTL's ~c[*standard-input*]~/
The value of the ACL2 constant ~c[*standard-oi*] is an open object input
channel that is synonymous to Common Lisp's ~c[*standard-input*].~/
ACL2 object input from ~c[*standard-oi*] is actually obtained by reading
from the stream named by Common Lisp's ~c[*standard-input*]. That is,
by changing the setting of ~c[*standard-input*] in raw Common Lisp you
can change the source from which ACL2 reads on the channel
~c[*standard-oi*]. ~l[*standard-co*].")
(defdoc *standard-ci*
":Doc-Section IO
an ACL2 character-based analogue of CLTL's ~c[*standard-input*]~/
The value of the ACL2 constant ~c[*standard-ci*] is an open character
input channel that is synonymous to Common Lisp's
~c[*standard-input*].~/
ACL2 character input from ~c[*standard-ci*] is actually obtained by
reading ~il[characters] from the stream named by Common Lisp's
~c[*standard-input*]. That is, by changing the setting of
~c[*standard-input*] in raw Common Lisp you can change the source from
which ACL2 reads on the channel ~c[*standard-ci*].
~l[*standard-co*].")
(defdoc print-control
":Doc-Section IO
advanced controls of ACL2 printing~/
~l[IO] for a summary of printing in ACL2. Here we document some advanced
ways to control what is printed by ACL2's primary printing routines.
~l[set-print-base], ~pl[set-print-radix], and ~pl[set-print-case] for
discussions of the most common ways to control what is printed. Indeed,
these are the only ways to control the behavior of ~ilc[princ$] and
~c[prin1$].
The rest of this topic is for advanced users of ACL2. We refer to Common
Lisp behavior, as described in any good Common Lisp documentation.
~st[Print-control variables]. ~ilc[Set-print-base], ~ilc[set-print-radix],
and ~ilc[set-print-case] assign to corresponding so-called ``~il[state]
global variables'' ~c['print-base], ~c['print-radix], and ~c['print-case],
which can be accessed using the expressions ~c[(@ print-base)],
~c[(@ print-radix)], and ~c[(@ print-case)], respectively; ~pl[assign]. Here
is a table showing all print-control variables, their setters, and their
defaults.
~bv[]
print-base set-print-base 10
print-case set-print-case :upcase
print-circle set-print-circle nil
[but see remark on print-circle-files, below]
print-escape set-print-escape t
print-length set-print-length nil
print-level set-print-level nil
print-lines set-print-lines nil
print-pretty set-print-pretty nil
print-radix set-print-radix nil
print-readably set-print-readably nil
print-right-margin set-print-right-margin nil
~ev[]
Each ACL2 print-control variable ~c[print-xxx] can correspond in function to
Common Lisp variable ~c[*PRINT-XXX*]. Specifically, the evaluation of forms
~c[(set-print-base t)], ~c[(set-print-radix t)], and ~c[(set-print-case t)]
affects ACL2 printing functions in much the same way that setting to ~c[t]
Common Lisp variables ~c[*PRINT-BASE*], ~c[*PRINT-RADIX*], and
~c[*PRINT-CASE*], respectively, affects Common Lisp printing. The same is
true for ~c[print-escape], except that this does not affect ~ilc[princ$] or
~c[prin1$], which correspond to Common Lisp functions ~c[princ] and
~c[prin1]: ~c[princ] treats ~c[*PRINT-ESCAPE*] as ~c[nil] while ~c[prin1]
treats ~c[*PRINT-ESCAPE*] as ~c[t]. Moreover, all print-control variables
not mentioned in this paragraph are set to their defaults in ~ilc[princ$] and
~c[prin1$], as indicated by ACL2 constant ~c[*print-control-defaults*],
except that ~c[print-readably] is set to ~c[nil] in ~c[princ$].
~ilc[Fmt] and its related functions are sensitive to state globals
~c['print-base], ~c['print-radix], ~c['print-case], ~c['print-escape], and
~c['print-readably], in analogy with Common Lisp functions that don't fix
~c[*PRINT-ESCAPE*] or ~c[*PRINT-READABLY*]. But the ~ilc[fmt] functions do
not respect settings of other print-control variables; for example, they act
as though ~c['print-circle] is ~c[nil]. Since ACL2 output is produced using
the same underlying print routines as the ~ilc[fmt] functions, it also is
insensitive to all print-control variables except for the five above. To
control the print-level and print-length used for producing ACL2 output,
~pl[set-evisc-tuple].
~il[Print-object$] is sensitive to all of the print-control variables.
Remark on ~c[print-circle-files]: ACL2 typically binds ~c['print-circle] to
~c[t] before writing ~il[certificate] files, or auxiliary files that are
compiled when ~ilc[make-event] forms are present in a book, or files in
support of ~c[:]~ilc[comp] commands. This binding allows for structure
sharing that can keep these files from growing large. However, this behavior
is defeated in GCL (Gnu Common Lisp), because of the small number of indices
~c[n] available by default (1024) for the ~c[#n=] reader macro. For the
files described above, what actually happens is that ~c['print-circle] is
bound to the value of ~c['print-circle-files], which by default is ~c[t]
unless the underlying Lisp is GCL, in which case it is set to ~c[nil].
~l[assign] for how to set ~il[state] globals such as ~c['print-circle-files].
For example, if you build GCL with a larger number of ~c[#n=] indices
available, you may wish to restore the ~c[print-circle] behavior for
~il[certificate] files by following these instructions from Camm Maguire:
~bq[]
This can trivially be revised to any larger constant by editing the
following line of read.d and recompiling:
~c[#ifndef SHARP_EQ_CONTEXT_SIZE]~nl[]
~c[#define SHARP_EQ_CONTEXT_SIZE 500]~nl[]
#endif~eq[]
End of Remark.
Evaluate ~c[(reset-print-control)] to restore all print-control variables to
their original settings, as stored in constant ~c[*print-control-defaults*].
(Remark for those using ACL2 built on Gnu Common Lisp (GCL) versions that are
non-ANSI, which as of October 2008 is all GCL versions recommended for ACL2:
Note that Common Lisp variables ~c[*PRINT-LINES*], ~c[*PRINT-MISER-WIDTH*],
~c[*PRINT-READABLY*], ~c[*PRINT-PPRINT-DISPATCH*], and
~c[*PRINT-RIGHT-MARGIN*] do not have any effect for such GCL versions.)~/~/")
(defdoc character-encoding
; Without the setting of custom:*default-file-encoding* for clisp in
; acl2.lisp, the build breaks with the following string (note the accented "i"
; in Martin, below):
; Francisco J. MartÃn Mateos
; With that setting, we do not need an explicit :external-format argument for
; the call of with-open-file in acl2-check.lisp that opens a stream for
; "acl2-characters".
; Because of the comment above, save an Emacs buffer connected to this file
; after setting the necessary buffer-local variable as follows.
; (setq save-buffer-coding-system 'iso-8859-1)
":Doc-Section IO
how bytes are parsed into characters~/
When the Common Lisp reader comes across bytes in a file or at the terminal,
they are parsed into characters. The simplest case is when each byte that is
read is a standard character (~pl[standard-char-p]). It is actually quite
common that each byte that is read corresponds to a single character. The
parsing of bytes into characters is based on a ~em[character encoding], that
is, a mapping that associates one or more bytes with each legal character.
In order to help guarantee the portability of files (including ~il[books]),
ACL2 installs a common character encoding for reading files, often known as
iso-8859-1 or latin-1. For some host Lisps this character encoding is also
used for reading from the terminal; but, sadly, this may not hold for all
host Lisps, and may not even be possible for some of them.
The use of the above encoding could in principle cause problems if one's
editor produces files using an encoding other than iso-8859-1, at least if
one uses non-standard characters. In particular, the default Emacs buffer
encoding may be utf-8. If your file has non-standard characters, then in
Emacs you can evaluate the form
~bv[]
(setq save-buffer-coding-system 'iso-8859-1)
~ev[]
before saving the buffer into a file. This will happen automatically for
users who load distributed file ~c[emacs/emacs-acl2.el] into their Emacs
sessions.
For an example of character encodings in action, see the community book
~c[books/misc/character-encoding-test.lisp].~/~/")
(defun set-forms-from-bindings (bindings)
(declare (xargs :guard (and (symbol-alistp bindings)
(true-list-listp bindings))))
(cond ((endp bindings)
nil)
(t (cons `(,(intern$
(concatenate 'string "SET-" (symbol-name (caar bindings)))
"ACL2")
,(cadar bindings)
state)
(set-forms-from-bindings (cdr bindings))))))
(defconst *print-control-defaults*
`((print-base ',(cdr (assoc-eq 'print-base *initial-global-table*))
set-print-base)
(print-case ',(cdr (assoc-eq 'print-case *initial-global-table*))
set-print-case)
(print-circle ',(cdr (assoc-eq 'print-circle *initial-global-table*))
set-print-circle)
(print-escape ',(cdr (assoc-eq 'print-escape *initial-global-table*))
set-print-escape)
(print-length ',(cdr (assoc-eq 'print-length *initial-global-table*))
set-print-length)
(print-level ',(cdr (assoc-eq 'print-level *initial-global-table*))
set-print-level)
(print-lines ',(cdr (assoc-eq 'print-lines *initial-global-table*))
set-print-lines)
(print-pretty ',(cdr (assoc-eq 'print-pretty *initial-global-table*))
set-print-pretty)
(print-radix ',(cdr (assoc-eq 'print-radix *initial-global-table*))
set-print-radix)
(print-readably ',(cdr (assoc-eq 'print-readably *initial-global-table*))
set-print-readably)
(print-right-margin ',(cdr (assoc-eq 'print-right-margin
*initial-global-table*))
set-print-right-margin)))
(defun alist-difference-eq (alist1 alist2)
; We return the elements of alist1 whose keys don't exist in the domain of
; alist2.
(declare (xargs :guard (and (alistp alist1)
(alistp alist2)
(or (symbol-alistp alist1)
(symbol-alistp alist2)))))
(if (endp alist1)
nil
(if (assoc-eq (caar alist1) alist2)
(alist-difference-eq (cdr alist1) alist2)
(cons (car alist1)
(alist-difference-eq (cdr alist1) alist2)))))
(defmacro with-print-defaults (bindings form)
`(state-global-let* ,(append bindings
(cons '(serialize-character
(f-get-global 'serialize-character-system
state))
(alist-difference-eq *print-control-defaults*
bindings)))
,form))
(defmacro reset-print-control ()
(cons 'pprogn
(set-forms-from-bindings *print-control-defaults*)))
(defun digit-to-char (n)
":Doc-Section ACL2::ACL2-built-ins
map a digit to a character~/
~bv[]
Example:
ACL2 !>(digit-to-char 8)
#\\8
~ev[]
For an integer ~c[n] from 0 to 15, ~c[(digit-to-char n)] is the character
corresponding to ~c[n] in hex notation, using uppercase letters for digits
exceeding 9. If ~c[n] is in the appropriate range, that result is of course
also the binary, octal, and decimal digit.~/
The ~il[guard] for ~c[digit-to-char] requires its argument to be an
integer between 0 and 15, inclusive.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp n)
(<= 0 n)
(<= n 15))))
(case n
(1 #\1)
(2 #\2)
(3 #\3)
(4 #\4)
(5 #\5)
(6 #\6)
(7 #\7)
(8 #\8)
(9 #\9)
(10 #\A)
(11 #\B)
(12 #\C)
(13 #\D)
(14 #\E)
(15 #\F)
(otherwise #\0)))
(defun print-base-p (print-base)
; Warning: Keep this in sync with check-print-base.
(declare (xargs :guard t))
(member print-base '(2 8 10 16)))
(defun explode-nonnegative-integer (n print-base ans)
":Doc-Section ACL2::ACL2-built-ins
the list of ~il[characters] in the radix-r form of a number~/
~bv[]
Examples:
ACL2 !>(explode-nonnegative-integer 925 10 nil)
(#\9 #\2 #\5)
ACL2 !>(explode-nonnegative-integer 325 16 nil)
(#\3 #\9 #\D)
~ev[]
For a non-negative integer ~c[n], ~c[(explode-nonnegative-integer n r nil)]
is the list of ~il[characters] in the radix-~c[r] (base-~c[r]) representation
of ~c[n].~/
The ~il[guard] for ~c[explode-nonnegative-integer] requires the first
argument to be a nonnegative integer and second argument to be a valid radix
for ACL2 (2, 8, 10, or 16).
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (integerp n)
(>= n 0)
(print-base-p print-base))
:mode :program))
(cond ((or (zp n)
(not (print-base-p print-base)))
(cond ((null ans)
; We could use endp instead of null above, but what's the point? Ans could be
; other than a true-listp for reasons other than that it's a non-nil atom, so
; why treat this case specially?
'(#\0))
(t ans)))
(t (explode-nonnegative-integer
(floor n print-base)
print-base
(cons (digit-to-char (mod n print-base))
ans)))))
(verify-termination-boot-strap
explode-nonnegative-integer
(declare (xargs :mode :logic
:verify-guards nil
:hints (("Goal" :in-theory (disable acl2-count floor))))))
(defthm true-listp-explode-nonnegative-integer
; This was made non-local in order to support the verify-termination-boot-strap
; for chars-for-tilde-@-clause-id-phrase/periods in file
; boot-strap-pass-2.lisp.
(implies (true-listp ans)
(true-listp (explode-nonnegative-integer n print-base ans)))
:rule-classes :type-prescription)
(local
(skip-proofs
(defthm mod-n-linear
(implies (and (not (< n 0))
(integerp n)
(print-base-p print-base))
(and (not (< (mod n print-base) 0))
(not (< (1- print-base) (mod n print-base)))))
:rule-classes :linear)))
(local
(defthm integerp-mod
(implies (and (integerp n) (< 0 n) (print-base-p print-base))
(integerp (mod n print-base)))
:rule-classes :type-prescription))
(verify-guards explode-nonnegative-integer
:hints (("Goal" :in-theory (disable mod))))
(defun explode-atom (x print-base)
; This function prints as though the print-radix is nil. For a version that
; uses the print-radix, see explode-atom+.
(declare (xargs :guard (and (or (acl2-numberp x)
(characterp x)
(stringp x)
(symbolp x))
(print-base-p print-base))
:mode :program))
(cond ((rationalp x)
(cond ((integerp x)
(cond
((< x 0)
(cons #\- (explode-nonnegative-integer
(- x) print-base nil)))
(t (explode-nonnegative-integer x print-base nil))))
(t (append
(explode-atom (numerator x) print-base)
(cons #\/ (explode-nonnegative-integer
(denominator x)
print-base
nil))))))
((complex-rationalp x)
(list* #\# #\C #\(
(append (explode-atom (realpart x) print-base)
(cons #\Space
(append (explode-atom (imagpart x) print-base)
'(#\)))))))
((characterp x) (list x))
((stringp x) (coerce x 'list))
#+:non-standard-analysis
((acl2-numberp x)
; This case should never arise!
(coerce "SOME IRRATIONAL OR COMPLEX IRRATIONAL NUMBER" 'list))
(t (coerce (symbol-name x) 'list))))
(verify-termination-boot-strap ; and guards
explode-atom
(declare (xargs :mode :logic)))
(defun explode-atom+ (x print-base print-radix)
(declare (xargs :guard (and (or (acl2-numberp x)
(characterp x)
(stringp x)
(symbolp x))
(print-base-p print-base))
:mode :program))
(cond ((null print-radix)
(explode-atom x print-base))
((rationalp x)
(cond ((eql print-base 10)
(cond ((integerp x)
(append (explode-atom x 10)
'(#\.)))
(t (append '(#\# #\1 #\0 #\r)
(explode-atom x 10)))))
(t `(#\#
,(case print-base
(2 #\b)
(8 #\o)
(otherwise #\x))
,@(explode-atom x print-base)))))
((complex-rationalp x)
(list* #\# #\C #\(
(append (explode-atom+ (realpart x) print-base print-radix)
(cons #\Space
(append (explode-atom+ (imagpart x)
print-base
print-radix)
'(#\)))))))
(t (explode-atom x print-base))))
(verify-termination-boot-strap ; and guards
explode-atom+
(declare (xargs :mode :logic)))
(defthm true-list-listp-forward-to-true-listp-assoc-equal
; This theorem (formerly two theorems
; true-list-listp-forward-to-true-listp-assoc-eq and
; true-list-listp-forward-to-true-listp-assoc-equal) may have been partly
; responsible for a 2.5% real-time regression slowdown (3.2% user time) after
; implementing equality variants, after Version_4.2. In particular, as a
; :type-prescription rule contributed to a significant slowdown in example4 of
; examples.lisp in community book
; books/workshops/2000/moore-manolios/partial-functions/tjvm.lisp. So we are
; disabling the type-prescription rule by default, later below, but adding the
; :forward-chaining rule (which is necessary for admitting event file-measure
; in community book books/unicode/file-measure.lisp).
(implies (true-list-listp l)
(true-listp (assoc-equal key l)))
:rule-classes (:type-prescription
(:forward-chaining :trigger-terms ((assoc-equal key l)))))
(defthm true-listp-cadr-assoc-eq-for-open-channels-p
; As with rule consp-assoc-equal this rule is now potentially expensive because
; of equality variants. We disable it later, below.
(implies (open-channels-p alist)
(true-listp (cadr (assoc-eq key alist))))
:rule-classes ((:forward-chaining
:trigger-terms ((cadr (assoc-eq key alist))))))
; It is important to disable nth in order for the rule state-p1-forward to
; work.
(local (in-theory (disable nth open-channels-p)))
(defun open-input-channel-p1 (channel typ state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state)
(member-eq typ *file-types*))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from open-input-channel-p1
(and (get channel *open-input-channel-key*)
(eq (get channel
*open-input-channel-type-key*)
typ)))))
(let ((pair (assoc-eq channel (open-input-channels state-state))))
(and pair
(eq (cadr (car (cdr pair))) typ))))
(defun open-output-channel-p1 (channel typ state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state)
(member-eq typ *file-types*))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from open-output-channel-p1
(and (get channel *open-output-channel-key*)
(eq (get channel *open-output-channel-type-key*)
typ)))))
(let ((pair (assoc-eq channel (open-output-channels state-state))))
(and pair
(eq (cadr (car (cdr pair))) typ))))
(defun open-input-channel-p (channel typ state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state)
(member-eq typ *file-types*))))
(open-input-channel-p1 channel typ state-state))
(defun open-output-channel-p (channel typ state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state)
(member-eq typ *file-types*))))
(open-output-channel-p1 channel typ state-state))
(defun open-output-channel-any-p1 (channel state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state))))
(or (open-output-channel-p1 channel :character state-state)
(open-output-channel-p1 channel :byte state-state)
(open-output-channel-p1 channel :object state-state)))
(defun open-output-channel-any-p (channel state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state))))
(open-output-channel-any-p1 channel state-state))
(defun open-input-channel-any-p1 (channel state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state))))
(or (open-input-channel-p1 channel :character state-state)
(open-input-channel-p1 channel :byte state-state)
(open-input-channel-p1 channel :object state-state)))
(defun open-input-channel-any-p (channel state-state)
(declare (xargs :guard (and (symbolp channel)
(state-p1 state-state))))
(open-input-channel-any-p1 channel state-state))
(defmacro print-case ()
'(f-get-global 'print-case state))
; (defmacro acl2-print-case (&optional (st 'state))
; (declare (ignore st))
; `(er soft 'acl2-print-case
; "Macro ~x0 has been replaced by macro ~x1."
; 'acl2-print-case 'print-case))
(defmacro acl2-print-case (&optional (st 'state))
`(print-case ,st))
(defun set-print-case (case state)
":Doc-Section IO
control whether symbols are printed in upper case or in lower case~/
By default, symbols are printed in upper case when vertical bars are
not required, as specified by Common Lisp. As with Common Lisp,
ACL2 supports printing in a \"downcase\" mode, where symbols are
printed in lower case. Many printing functions (some details below)
print characters in lower case for a symbol when the ACL2 ~il[state]
global variable ~c[print-case] has value ~c[:downcase] and vertical bars
are not necessary for printing that symbol. (Thus, this state global
functions in complete analogy to the Common Lisp global ~c[*print-case*].)
The value ~c[print-case] is returned by ~c[(print-case)], and may be set
using the function ~c[set-print-case] as follows.
~bv[]
(set-print-case :upcase state) ; Default printing
(set-print-case :downcase state) ; Print symbols in lower case when
; vertical bars are not required
~ev[]
The ACL2 user can expect that the ~c[:downcase] setting will have an effect
for formatted output (~pl[fmt] and ~pl[fms]) when the directives are ~c[~~p],
~c[~~P], ~c[~~q], or ~c[~~Q], for built-in functions ~c[princ$] and
~c[prin1$], and the ~c[ppr] family of functions, and ~em[not] for built-in
function ~c[print-object$]. For other printing functions, the effect of
~c[:downcase] is unspecified.~/
Also ~pl[print-control] for other user-settable print controls.~/"
(declare (xargs :guard (and (or (eq case :upcase) (eq case :downcase))
(state-p state))))
(prog2$ (or (eq case :upcase)
(eq case :downcase)
(illegal 'set-print-case
"The value ~x0 is illegal as an ACL2 print-case, which ~
must be :UPCASE or :DOWNCASE."
(list (cons #\0 case))))
(f-put-global 'print-case case state)))
(defmacro set-acl2-print-case (case)
(declare (ignore case))
'(er soft 'set-acl2-print-case
"Macro ~x0 has been replaced by function ~x1."
'set-acl2-print-case 'set-print-case))
(defmacro print-base (&optional (st 'state))
`(f-get-global 'print-base ,st))
(defmacro acl2-print-base (&optional (st 'state))
`(print-base ,st))
(defmacro print-radix (&optional (st 'state))
`(f-get-global 'print-radix ,st))
(defmacro acl2-print-radix (&optional (st 'state))
`(print-radix ,st))
(defun check-print-base (print-base ctx)
; Warning: Keep this in sync with print-base-p, and keep the format warning
; below in sync with princ$.
(declare (xargs :guard t))
(if (print-base-p print-base)
nil
(hard-error ctx
"The value ~x0 is illegal as a print-base, which must be 2, ~
8, 10, or 16"
(list (cons #\0 print-base))))
#+(and (not acl2-loop-only) allegro)
(when (> print-base 10)
(format
t
"NOTE: Printing of numbers in Allegro CL may be a bit slow. Allegro ~%~
CL's function PRINC prints alphabetic digits in lower case, unlike ~%~
other Lisps we have seen. While Allegro CL is compliant with the ~%~
Common Lisp spec in this regard, we have represented printing in the ~%~
logic in a manner consistent with those other Lisps, and hence ~%~
Allegro CL's PRINC violates our axioms. Therefore, ACL2 built on ~%~
Allegro CL prints radix-16 numbers without using the underlying ~%~
lisp's PRINC function.~%"))
#+(and (not acl2-loop-only) (not allegro))
(when (int= print-base 16)
(let ((*print-base* 16)
(*print-radix* nil))
(or (equal (prin1-to-string 10) "A")
; If we get here, simply include the underlying Lisp as we handle allegro in
; the raw Lisp code for princ$.
(illegal 'check-print-base
"ERROR: This Common Lisp does not print in radix 16 using ~
upper-case alphabetic hex digits: for example, it prints ~
~x0 instead of ~x1. Such printing is consistent with the ~
Common Lisp spec but is not reflected in ACL2's axioms ~
about printing (function digit-to-char, in support of ~
functions princ$ and prin1$), which in turn reflect the ~
behavior of the majority of Common Lisp implementations of ~
which we are aware. If the underlying Common Lisp's ~
implementors can make a patch available to remedy this ~
situation, please let the ACL2 implementors know and we ~
will incorporate a patch for that Common Lisp. In the ~
meantime, we do not see any way that this situation can ~
cause any unsoundness, so here is a workaround that you ~
can use at your own (minimal) risk. In raw Lisp, execute ~
the following form:~|~%~x2~|"
(list (cons #\0 (prin1-to-string 10))
(cons #\1 "A")
(cons #\2 '(defun check-print-base (print-base ctx)
(declare (ignore print-base ctx))
nil))))))
nil)
#-acl2-loop-only nil)
(defun set-print-base (base state)
":Doc-Section IO
control radix in which numbers are printed~/
By default, integers and ratios are printed in base 10. ACL2 also supports
printing in radix 2, 8, or 16 by calling set-print-base with the desired
radix (base).
~bv[]
(set-print-base 10 state) ; Default printing
(set-print-base 16 state) ; Print integers and ratios in hex
~ev[]~/
Here is a sample log.
~bv[]
ACL2 !>(list 25 25/3)
(25 25/3)
ACL2 !>(set-print-base 16 state)
<state>
ACL2 !>(list 25 25/3)
(19 19/3)
ACL2 !>
~ev[]
~l[set-print-radix] for how to print the radix, for example, printing the
decimal number 25 in print-base 16 as ``~c[#x25]'' rather than ``~c[25]''.
Also ~pl[print-control] for other user-settable print controls.
Note: ACL2 ~il[events] and some other top-level commands (for example,
~ilc[thm], ~ilc[verify], and history commands such as ~c[:]~c[pe] and
~c[:]~c[pbt]) set the print base to 10 during their evaluation. So
~ilc[set-print-base] has no effect while these forms are being
processed.~/"
(declare (xargs :guard (and (print-base-p base)
(state-p state))))
(prog2$ (check-print-base base 'set-print-base)
(f-put-global 'print-base base state)))
(defmacro set-acl2-print-base (base)
(declare (ignore base))
'(er soft 'set-acl2-print-base
"Macro ~x0 has been replaced by function ~x1."
'set-acl2-print-base 'set-print-base))
(defun set-print-circle (x state)
(declare (xargs :guard (state-p state)))
(f-put-global 'print-circle x state))
(defun set-print-escape (x state)
(declare (xargs :guard (state-p state)))
(f-put-global 'print-escape x state))
(defun set-print-pretty (x state)
(declare (xargs :guard (state-p state)))
(f-put-global 'print-pretty x state))
(defun set-print-radix (x state)
":Doc-Section IO
control printing of the radix for numbers~/
~l[set-print-base] for background on how the print base affects the printing
of numbers. ~c[set-print-radix] affects whether a radix indicated when a
number is printed. The radix is not indicated by default, or after
evaluating ~c[(set-print-radix nil state)]. But if ~c[set-print-radix] is
called with a first argument that evaluates to a non~c[nil] value ~-[] for
example, ~c[(set-print-radix t state)] ~-[] then the radix is shown when
printing. (This behavior is consistent with the handling of Common Lisp
global ~c[*print-radix*].) The following log illustrates how this works.
~bv[]
ACL2 !>(list 25 25/3)
(25 25/3)
ACL2 !>(set-print-base 16 state)
<state>
ACL2 !>(list 25 25/3)
(19 19/3)
ACL2 !>(set-print-radix t state)
<state>
ACL2 !>(list 25 25/3)
(#x19 #x19/3)
ACL2 !>(set-print-base 10 state)
<state>
ACL2 !>(list 25 25/3)
(25. #10r25/3)
ACL2 !>(set-print-radix nil state)
<state>
ACL2 !>(list 25 25/3)
(25 25/3)
ACL2 !>
~ev[]
~/~/"
(declare (xargs :guard (state-p state)))
(f-put-global 'print-radix x state))
(defun set-print-readably (x state)
(declare (xargs :guard (state-p state)))
(f-put-global 'print-readably x state))
(defun check-null-or-natp (n fn)
(declare (xargs :guard t))
(or (null n)
(natp n)
(hard-error fn
"The argument of ~x0 must be ~x1 or a positive integer, but ~
~x2 is neither."
(list (cons #\0 fn)
(cons #\1 nil)
(cons #\2 n)))))
(defun set-print-length (n state)
(declare (xargs :guard (and (or (null n) (natp n))
(state-p state))))
(prog2$ (check-null-or-natp n 'set-print-length)
(f-put-global 'print-length n state)))
(defun set-print-level (n state)
(declare (xargs :guard (and (or (null n) (natp n))
(state-p state))))
(prog2$ (check-null-or-natp n 'set-print-level)
(f-put-global 'print-level n state)))
(defun set-print-lines (n state)
(declare (xargs :guard (and (or (null n) (natp n))
(state-p state))))
(prog2$ (check-null-or-natp n 'set-print-lines)
(f-put-global 'print-lines n state)))
(defun set-print-right-margin (n state)
(declare (xargs :guard (and (or (null n) (natp n))
(state-p state))))
(prog2$ (check-null-or-natp n 'set-print-right-margin)
(f-put-global 'print-right-margin n state)))
#-acl2-loop-only
(defmacro get-input-stream-from-channel (channel)
(list 'get
channel
(list 'quote *open-input-channel-key*)
(list 'quote *non-existent-stream*)))
#-acl2-loop-only
(defmacro get-output-stream-from-channel (channel)
(list 'get
channel
(list 'quote *open-output-channel-key*)
(list 'quote *non-existent-stream*)))
#-acl2-loop-only
(defmacro with-print-controls (default bindings &rest body)
; Warning; If you bind *print-base* to value pb (in bindings), then you should
; strongly consider binding *print-radix* to t if pb exceeds 10 and to nil
; otherwise.
(when (not (member-eq default '(:defaults :current)))
(error "The first argument of with-print-controls must be :DEFAULT ~
or :CURRENT."))
(let ((raw-print-vars-alist
'((*print-base* print-base . (f-get-global 'print-base state))
(*print-case* print-case . (f-get-global 'print-case state))
(*print-circle* print-circle . (f-get-global 'print-circle state))
(*print-escape* print-escape . (f-get-global 'print-escape state))
(*print-length* print-length . (f-get-global 'print-length state))
(*print-level* print-level . (f-get-global 'print-level state))
#+cltl2
(*print-lines* print-lines . (f-get-global 'print-lines state))
#+cltl2
(*print-miser-width* nil . nil)
(*print-pretty* print-pretty . (f-get-global 'print-pretty state))
(*print-radix* print-radix . (f-get-global 'print-radix state))
(*print-readably* print-readably . (f-get-global 'print-readably
state))
; At one time we did something with *print-pprint-dispatch* for #+cltl2. But
; as of May 2013, ANSI GCL does not comprehend this variable. So we skip it
; here. In fact we skip it for all host Lisps, assuming that users who mess
; with *print-pprint-dispatch* in raw Lisp take responsibility for knowing what
; they're doing!
; #+cltl2
; (*print-pprint-dispatch* nil . nil)
#+cltl2
(*print-right-margin*
print-right-margin . (f-get-global 'print-right-margin state)))))
(when (not (and (alistp bindings)
(let ((vars (strip-cars bindings)))
(and (subsetp-eq vars (strip-cars raw-print-vars-alist))
(no-duplicatesp vars)))))
(error "With-print-controls has illegal bindings:~% ~s"
bindings))
`(let ((state *the-live-state*))
(let ((*read-base* 10) ; just to be safe
(*readtable* *acl2-readtable*)
#+cltl2 (*read-eval* nil) ; to print without using #.
(*package* (find-package-fast (current-package state)))
,@bindings)
(let ,(loop for triple in raw-print-vars-alist
when (not (assoc-eq (car triple) bindings))
collect
(let ((lisp-var (car triple))
(acl2-var (cadr triple)))
(list lisp-var
(cond ((and acl2-var
(eq default :defaults))
(cadr (assoc-eq acl2-var
*print-control-defaults*)))
(t (cddr triple))))))
,@body)))))
; ?? (v. 1.8) I'm not going to look at many, or any, of the skip-proofs
; events on this pass.
(skip-proofs
(defun princ$ (x channel state-state)
":Doc-Section ACL2::ACL2-built-ins
print an atom~/
Use ~c[princ$] to do basic printing of atoms (i.e., other than ~c[cons]
pairs). In particular, ~c[princ$] prints a string without the surrounding
double-quotes and without escaping double-quote characters within the string.
Note that ~c[princ$] is sensitive to the print-base, print-radix, and
print-case; ~pl[set-print-base], ~pl[set-print-radix], and
~pl[set-print-case]. ~c[Princ$] returns ~ilc[state].
~bv[]
Examples:
ACL2 !>(princ$ \"Howdy ho\" (standard-co state) state)
Howdy ho<state>
ACL2 !>(pprogn (princ$ \"Howdy ho\" (standard-co state) state)
(newline (standard-co state) state))
Howdy ho
<state>
ACL2 !>(princ$ \"ab\\\"cd\" *standard-co* state)
ab\"cd<state>
ACL2 !>
ACL2 !>(princ$ 17 *standard-co* state)
17<state>
ACL2 !>(set-print-base 16 state)
<state>
ACL2 !>(princ$ 17 *standard-co* state)
11<state>
ACL2 !>(set-print-radix t state)
<state>
ACL2 !>(princ$ 17 *standard-co* state)
#x11<state>
ACL2 !>(princ$ 'xyz *standard-co* state)
XYZ<state>
ACL2 !>(set-print-case :downcase state)
<state>
ACL2 !>(princ$ 'xyz *standard-co* state)
xyz<state>
ACL2 !>
~ev[]~/
The ~il[guard] for ~c[(princ$ x channel state)] is essentially as follows; ~pl[io]
for an explanation of guards of certain built-in functions that take
~il[state], such as ~c[princ$].
~bv[]
(and (or (acl2-numberp x)
(characterp x)
(stringp x)
(symbolp x))
(state-p1 state-state)
(symbolp channel)
(open-output-channel-p1 channel :character state-state))
~ev[]
~l[fmt] for more sophisticated printing routines, and ~pl[IO] for general
information about input and output.~/
:cited-by IO"
; Wart: We use state-state instead of state because of a bootstrap problem.
; The ACL2 princ$ does not handle conses because we are unsure what
; the specification of the real Common Lisp princ is concerning the
; insertion of spaces and newlines into the resulting text.
(declare (xargs :guard (and (or (acl2-numberp x)
(characterp x)
(stringp x)
(symbolp x))
(state-p1 state-state)
(symbolp channel)
(open-output-channel-p1
channel :character state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond ((and *wormholep*
(not (eq channel *standard-co*)))
; If the live state is protected, then we allow output only to the
; *standard-co* channel. This is a little unexpected. The intuitive
; arrangement would be to allow output only to a channel whose actual
; stream was pouring into the wormhole window. Unfortunately, we do not
; know a good way to determine the ultimate stream to which a synonym
; stream is directed and hence cannot implement the intuitive
; arrangement. Instead we must assume that if *the-live-state-
; protected* is non-nil, then the standard channels have all been
; directed to acceptable streams and that doing i/o on them will not
; affect the streams to which they are normally directed.
(wormhole-er 'princ$ (list x channel))))
(let ((stream (get-output-stream-from-channel channel)))
(cond
((stringp x)
; We get a potentially significant efficiency boost by using write-string when
; x is a string. A few experiments suggest that write-string may be slightly
; more efficient than write-sequence (which isn't available in non-ANSI GCL
; anyhow), which in turn may be much more efficient than princ. It appears
; that the various print-controls don't affect the printing of strings, except
; for *print-escape* and *print-readably*; and the binding of *print-escape* to
; nil by princ seems to give the behavior of write-string, which is specified
; simply to print the characters of the string.
(write-string x stream))
(t
(with-print-controls
; We use :defaults here, binding only *print-escape* and *print-readably* (to
; avoid |..| on symbols), to ensure that raw Lisp agrees with the logical
; definition.
:defaults
((*print-escape* nil)
(*print-readably* nil) ; unnecessary if we keep current default
(*print-base* (f-get-global 'print-base state))
(*print-radix* (f-get-global 'print-radix state))
(*print-case* (f-get-global 'print-case state)))
#+allegro
; See the format call in check-print-base for why we take this extra effort for
; Allegro (in short, to print digit characters in upper case).
(princ (cond ((and (rationalp x)
(> *print-base* 10))
(coerce (explode-atom+ x
*print-base*
*print-radix*)
'string))
(t x))
stream)
#-allegro
(princ x stream))))
(cond ((eql x #\Newline)
(force-output stream)))
(return-from princ$ *the-live-state*))))
(let ((entry (cdr (assoc-eq channel (open-output-channels state-state)))))
(update-open-output-channels
(add-pair channel
(cons (car entry)
(revappend
(if (and (symbolp x)
; The form (cdr (assoc-eq ...)) below is closely related to a call of
; print-case where state is replaced by state-state. However, the problem
; explained in the essay "On STATE-STATE" hits us here. That is, print-case
; generates a call of get-global, which, by the time this form is processed in
; the logic during boot-strap, expects state as an argument. We do not have
; state available here. We could modify print-case to take an optional
; argument and supply state-state for that argument, but that would not work
; either because get-global expects state.
(eq (cdr (assoc-eq 'print-case
(global-table state-state)))
:downcase))
(coerce (string-downcase (symbol-name x))
'list)
(explode-atom+ x
(cdr (assoc-eq 'print-base
(global-table
state-state)))
(cdr (assoc-eq 'print-radix
(global-table
state-state)))))
(cdr entry)))
(open-output-channels state-state))
state-state)))
)
(defun write-byte$ (x channel state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (integerp x)
(>= x 0)
(< x 256)
(state-p1 state-state)
(symbolp channel)
(open-output-channel-p1 channel
:byte state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond ((and *wormholep*
(not (eq channel *standard-co*)))
(wormhole-er 'write-byte$ (list x channel))))
(let ((stream (get-output-stream-from-channel channel)))
(write-byte x stream)
(return-from write-byte$ *the-live-state*))))
(let ((entry (cdr (assoc-eq channel (open-output-channels state-state)))))
(update-open-output-channels
(add-pair channel
(cons (car entry)
(cons x
(cdr entry)))
(open-output-channels state-state))
state-state)))
#-acl2-loop-only
(defvar *print-circle-stream* nil)
(defmacro er (severity context str &rest str-args)
; Keep in sync with er@par.
(declare (xargs :guard (and (true-listp str-args)
(member-symbol-name (symbol-name severity)
'(hard hard? hard! hard?!
soft very-soft))
(<= (length str-args) 10))))
; Note: We used to require (stringp str) but then we started writing such forms
; as (er soft ctx msg x y z), where msg was bound to the error message str
; (because the same string was used many times).
; The special form (er hard "..." &...) expands into a call of illegal on "..."
; and an alist built from &.... Since illegal has a guard of nil, the attempt
; to prove the correctness of a fn producing a hard error will require proving
; that the error can never occur. At runtime, illegal causes a CLTL error.
; The form (er soft ctx "..." &...) expands into a call of error1 on ctx, "..."
; and an alist built from &.... At runtime error1 builds an error object and
; returns it. Thus, soft errors are not errors at all in the CLTL sense and
; any function calling one which might cause an error ought to handle it.
; Just to make it easier to debug our code, we have arranged for the er macro
; to actually produce a prog2 form in which the second arg is as described
; above but the preceding one is an fmt statement which will actually print the
; error str and alist. Thus, we can see when soft errors occur, whether or not
; the calling program handles them appropriately.
; We do not advertise the hard! or very-soft severities, at least not yet. The
; implementation uses the former to force a hard error even in contexts where
; we would normally return nil.
":Doc-Section ACL2::ACL2-built-ins
print an error message and ``cause an error''~/
~l[fmt] for a general discussion of formatted printing in ACL2. All calls of
~c[er] print formatted strings, just as is done by ~ilc[fmt].
~bv[]
Example Forms:
(er hard 'top-level \"Illegal inputs, ~~x0 and ~~x1.\" a b)
(er hard? 'top-level \"Illegal inputs, ~~x0 and ~~x1.\" a b)
(er soft 'top-level \"Illegal inputs, ~~x0 and ~~x1.\" a b)
~ev[]
The examples above all print an error message to standard output saying that
~c[a] and ~c[b] are illegal inputs. However, the first two abort evaluation
after printing an error message (while logically returning ~c[nil], though in
ordinary evaluation the return value is never seen); while the third returns
~c[(mv t nil state)] after printing an error message. The result in the
third case can be interpreted as an ``error'' when programming with the ACL2
~ilc[state], something most ACL2 users will probably not want to do unless
they are building systems of some sort; ~pl[programming-with-state]. If
state is not available in the current context then you will probably want to
use ~c[(er hard ...)] or ~c[(er hard? ...)] to cause an error; for example,
if you are returning two values, you may write ~c[(mv (er hard ...) nil)].
The difference between the ~c[hard] and ~c[hard?] forms is one of guards.
Use ~c[hard] if you want the call to generate a (clearly impossible) guard
proof obligation of (essentially) ~c[NIL]. But use ~c[hard?] if you want to
be able to call this function in guard-verified code, since the call
generates a (trivially satisfied) guard proof obligation of ~c[T].
~c[Er] is a macro, and the above three examples expand to calls of ACL2
functions, as shown below. ~l[illegal], ~pl[hard-error], and ~pl[error1].
The first two have guards of (essentially) ~c[NIL] and ~c[T], respectively,
while ~ilc[error1] is in ~c[:]~ilc[program] mode.~/
~bv[]
General forms:
(er hard ctx fmt-string arg1 arg2 ... argk)
==> {macroexpands, in essence, to:}
(ILLEGAL CTX FMT-STRING
(LIST (CONS #\\0 ARG1) (CONS #\\1 ARG2) ... (CONS #\\k ARGk)))
(er hard? ctx fmt-string arg1 arg2 ... argk)
==> {macroexpands, in essence, to:}
(HARD-ERROR CTX FMT-STRING
(LIST (CONS #\\0 ARG1) (CONS #\\1 ARG2) ... (CONS #\\k ARGk)))
(er soft ctx fmt-string arg1 arg2 ... argk)
==> {macroexpands, in essence, to:}
(ERROR1 CTX FMT-STRING
(LIST (CONS #\\0 ARG1) (CONS #\\1 ARG2) ... (CONS #\\k ARGk)))
~ev[]~/"
(let ((alist (make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
str-args))
(severity-name (symbol-name severity)))
(cond ((equal severity-name "SOFT")
(list 'error1 context str alist 'state))
((equal severity-name "VERY-SOFT")
(list 'error1-safe context str alist 'state))
((equal severity-name "HARD?")
(list 'hard-error context str alist))
((equal severity-name "HARD")
(list 'illegal context str alist))
((equal severity-name "HARD!")
#+acl2-loop-only (list 'illegal context str alist)
#-acl2-loop-only `(let ((*hard-error-returns-nilp* nil))
(illegal ,context ,str ,alist)))
((equal severity-name "HARD?!")
#+acl2-loop-only (list 'hard-error context str alist)
#-acl2-loop-only `(let ((*hard-error-returns-nilp* nil))
(hard-error ,context ,str ,alist)))
(t
; The final case should never happen.
(illegal 'top-level
"Illegal severity, ~x0; macroexpansion of ER failed!"
(list (cons #\0 severity)))))))
#+acl2-par
(defmacro er@par (severity context str &rest str-args)
; Keep in sync with er.
(declare (xargs :guard (and (true-listp str-args)
(member-symbol-name (symbol-name severity)
'(hard hard? hard! soft
very-soft))
(<= (length str-args) 10))))
(let ((alist (make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
str-args))
(severity-name (symbol-name severity)))
(cond ((equal severity-name "SOFT")
(list 'error1@par context str alist 'state))
(t
; The final case should never happen.
(illegal 'top-level
"Illegal severity, ~x0; macroexpansion of ER@PAR failed!"
(list (cons #\0 severity)))))))
(defun get-serialize-character (state)
(declare (xargs :guard (and (state-p state)
(boundp-global 'serialize-character state))))
(f-get-global 'serialize-character state))
(defun w (state)
(declare (xargs :guard (state-p state)
; We have moved the definition of w up to here, so that we can call it from
; hons-enabledp, which is called from set-serialize-character, which we prefer
; to define before print-object$. We have verified its guards successfully
; later in this file, where w was previously defined. So rather fight that
; battle here, we verify guards at the location of its original definition.
:verify-guards nil))
(f-get-global 'current-acl2-world state))
(defun hons-enabledp (state)
(declare (xargs :verify-guards nil ; wait for w
:guard (state-p state)))
(global-val 'hons-enabled (w state)))
(defun set-serialize-character (c state)
(declare (xargs :verify-guards nil ; wait for hons-enabledp
:guard (and (state-p state)
(or (null c)
(and (hons-enabledp state)
(member c '(#\Y #\Z)))))))
(cond
((or (null c)
(and (hons-enabledp state)
(member c '(#\Y #\Z))))
(f-put-global 'serialize-character c state))
(t ; presumably guard-checking is off
(prog2$
(cond ((not (hons-enabledp state)) ; and note that c is not nil
(er hard 'set-serialize-character
"It is currently only legal to call ~x0 with a non-nil first ~
argument in a hons-enabled version of ACL2. If this ~
presents a problem, feel free to contact the ACL2 ~
implementors."
'set-serialize-character))
(t
(er hard 'set-serialize-character
"The first argument of a call of ~x0 must be ~v1. The ~
argument ~x2 is thus illegal."
'set-serialize-character '(nil #\Y #\Z) c)))
state))))
(defun print-object$-ser (x serialize-character channel state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; This function is a version of print-object$ that allows specification of the
; serialize-character, which can be nil (the normal case for #-hons), #\Y, or
; #\Z (the normal case for #+hons). However, we currently treat this as nil in
; the #-hons version.
; See print-object$ for additional comments.
(declare (ignorable serialize-character) ; only used when #+hons
(xargs :guard (and (state-p1 state-state)
(member serialize-character '(nil #\Y #\Z))
(symbolp channel)
(open-output-channel-p1 channel
:object state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
; There is no standard object output channel and hence this channel is
; directed to some unknown user-specified sink and we can't touch it.
(wormhole-er 'print-object$ (list x channel))))
(let ((stream (get-output-stream-from-channel channel)))
(declare (special acl2_global_acl2::current-package))
; Note: If you change the following bindings, consider changing the
; corresponding bindings in print-object$.
(with-print-controls
:current
((*print-circle* (and *print-circle-stream*
(f-get-global 'print-circle state-state))))
(terpri stream)
(or #+hons
(cond (serialize-character
(write-char #\# stream)
(write-char serialize-character stream)
(ser-encode-to-stream x stream)
t))
(prin1 x stream))
(force-output stream)))
(return-from print-object$-ser *the-live-state*)))
(let ((entry (cdr (assoc-eq channel (open-output-channels state-state)))))
(update-open-output-channels
(add-pair channel
(cons (car entry)
(cons x
(cdr entry)))
(open-output-channels state-state))
state-state)))
(defthm all-boundp-preserves-assoc-equal
(implies (and (all-boundp tbl1 tbl2)
(assoc-equal x tbl1))
(assoc-equal x tbl2))
:rule-classes nil)
(local
(defthm all-boundp-initial-global-table
(implies (and (state-p1 state)
(assoc-eq x *initial-global-table*))
(assoc x (nth 2 state)))
:hints (("Goal" :use
((:instance all-boundp-preserves-assoc-equal
(tbl1 *initial-global-table*)
(tbl2 (nth 2 state))))
:in-theory (disable all-boundp)))))
(defun print-object$ (x channel state)
; WARNING: In the HONS version, be sure to use with-output-object-channel-sharing
; rather than calling open-output-channel directly, so that
; *print-circle-stream* is initialized.
; We believe that if in a single Common Lisp session, one prints an object and
; then reads it back in with print-object$ and read-object, one will get back
; an equal object under the assumptions that (a) the package structure has not
; changed between the print and the read and (b) that *package* has the same
; binding. On a toothbrush, all calls of defpackage will occur before any
; read-objecting or print-object$ing, so the package structure will be the
; same. It is up to the user to set current-package back to what it was at
; print time if he hopes to read back in the same object.
; Warning: For soundness, we need to avoid using iprinting when writing to
; certificate files. We do all such writing with print-object$, so we rely on
; print-object$ not to use iprinting.
(declare (xargs :guard (and (state-p state)
; We might want to modify state-p (actually, state-p1) so that the following
; conjunct is not needed.
(member (get-serialize-character state)
'(nil #\Y #\Z))
(symbolp channel)
(open-output-channel-p channel
:object state))))
(print-object$-ser x (get-serialize-character state) channel state))
; We start the file-clock at one to avoid any possible confusion with
; the wired in standard-input/output channels, whose names end with
; "-0".
#-acl2-loop-only
(defparameter *file-clock* 1)
(skip-proofs
(defun make-input-channel (file-name clock)
(declare (xargs :guard (and (rationalp clock)
(standard-char-listp (explode-atom clock 10))
(stringp file-name)
(standard-char-listp (coerce file-name 'list)))))
(intern (coerce
(append (coerce file-name 'list)
(cons '#\-
(explode-atom clock 10)))
'string)
"ACL2-INPUT-CHANNEL"))
)
(skip-proofs
(defun make-output-channel (file-name clock)
(declare (xargs :guard (and (rationalp clock)
(standard-char-listp (explode-atom clock 10))
(or (eq file-name :string)
(and (stringp file-name)
(standard-char-listp
(coerce file-name 'list)))))))
(intern (coerce (cond ((eq file-name :string)
(explode-atom clock 10))
(t (append (coerce file-name 'list)
(cons '#\-
(explode-atom clock 10)))))
'string)
"ACL2-OUTPUT-CHANNEL"))
)
; We here set up the property list of the three channels that are open
; at the beginning. The order of the setfs and the superfluous call
; of symbol-name are to arrange, in AKCL, for the stream component to
; be first on the property list.
#-acl2-loop-only
(defun-one-output setup-standard-io ()
(symbol-name 'acl2-input-channel::standard-object-input-0)
(setf (get 'acl2-input-channel::standard-object-input-0
*open-input-channel-type-key*)
:object)
(setf (get 'acl2-input-channel::standard-object-input-0
; Here, and twice below, we use *standard-input* rather than
; (make-synonym-stream '*standard-input*) because Allegro doesn't
; seem to print to such a synonym stream. Perhaps it's relevant
; that (interactive-stream-p (make-synonym-stream '*standard-input*))
; evaluates to nil in Allegro, but
; (interactive-stream-p *standard-input*) evaluates to t.
*open-input-channel-key*)
*standard-input*)
(symbol-name 'acl2-input-channel::standard-character-input-0)
(setf (get 'acl2-input-channel::standard-character-input-0
*open-input-channel-type-key*)
:character)
(setf (get 'acl2-input-channel::standard-character-input-0
*open-input-channel-key*)
*standard-input*)
(symbol-name 'acl2-output-channel::standard-character-output-0)
(setf (get 'acl2-output-channel::standard-character-output-0
*open-output-channel-type-key*)
:character)
(setf (get 'acl2-output-channel::standard-character-output-0
*open-output-channel-key*)
*standard-output*))
#-acl2-loop-only
(eval-when
#-cltl2
(load eval compile)
#+cltl2
(:load-toplevel :execute :compile-toplevel)
(setup-standard-io))
#-acl2-loop-only
(defun-one-output lisp-book-syntaxp1 (s stream)
; See the parent function. This is a tail-recursive finite state acceptor.
; Our state s is one of:
; 0 - scanning spaces, tabs and newlines,
; semi - scanning thru the next newline (we saw a ; on this line)
; n>0 - (positive integer) scanning to the balancing bar hash sign.
; (hash . s) - just saw a hash sign in state s: if next char is
; a vertical bar, we've entered a new comment level.
; The s here is either 0 or n>0, i.e., we were in a
; state where hash bar opens a comment.
; (bar . s) - just saw a vertical bar in state s: if next char is hash
; we've exited a comment level. The s here is always an n>0,
; i.e., we were in a state where bar hash closes a comment.
; charlist - we insist that the n next chars in the file be the n chars
; in charlist; we return t if so and nil if not.
; list-of-charlist - we insist that the next char be one of the keys in
; this alist and that subsequent chars be as in corresponding
; value.
(let ((char1 (read-char stream nil nil)))
(cond
((null char1) nil)
((eq s 'semi)
(cond
((eql char1 #\Newline)
(lisp-book-syntaxp1 0 stream))
(t (lisp-book-syntaxp1 'semi stream))))
((integerp s)
(cond
((= s 0)
(cond
((member char1 '(#\Space #\Tab #\Newline))
(lisp-book-syntaxp1 0 stream))
((eql char1 #\;)
(lisp-book-syntaxp1 'semi stream))
((eql char1 #\#)
(lisp-book-syntaxp1 '(hash . 0) stream))
((eql char1 #\()
(lisp-book-syntaxp1
'((#\I #\N #\- #\P #\A #\C #\K #\A #\G #\E #\Space #\")
(#\L #\I #\S #\P #\:
. ( (#\I #\N #\- #\P #\A #\C #\K #\A #\G #\E #\Space #\")
(#\: #\I #\N #\- #\P #\A #\C #\K #\A #\G #\E #\Space #\")))
(#\A #\C #\L #\2 #\: #\:
#\I #\N #\- #\P #\A #\C #\K #\A #\G #\E #\Space #\")) stream))
(t nil)))
((eql char1 #\#)
(lisp-book-syntaxp1 (cons 'hash s) stream))
((eql char1 #\|)
(lisp-book-syntaxp1 (cons 'bar s) stream))
(t (lisp-book-syntaxp1 s stream))))
((null s) t)
((eq (car s) 'hash)
(cond
((eql char1 #\|)
(lisp-book-syntaxp1 (1+ (cdr s)) stream))
((= (cdr s) 0) #\#)
((eql char1 #\#)
(lisp-book-syntaxp1 s stream))
(t (lisp-book-syntaxp1 (cdr s) stream))))
((eq (car s) 'bar)
(cond
((eql char1 #\#)
(lisp-book-syntaxp1 (1- (cdr s)) stream))
((eql char1 #\|)
(lisp-book-syntaxp1 s stream))
(t (lisp-book-syntaxp1 (cdr s) stream))))
((characterp (car s))
(cond
((eql (char-upcase char1) (car s))
(lisp-book-syntaxp1 (cdr s) stream))
(t nil)))
(t ; (car s) is a list of alternative character states
(let ((temp (assoc (char-upcase char1) s)))
(cond
((null temp) nil)
(t (lisp-book-syntaxp1 (cdr temp) stream))))))))
#-acl2-loop-only
(defun-one-output lisp-book-syntaxp (file)
; We determine whether file is likely to be an ACL2 book in lisp syntax. In
; particular, we determine whether file starts with an optional Lisp comment
; followed by (IN-PACKAGE ".... The comment may be any number of lines;
; (possibly empty) whitespace, semi-colon style comments and nested #|...|#
; comments are recognized as "comments" here. We further allow the IN-PACKAGE
; to be written in any case and we allow the optional package designators:
; LISP:, LISP::, and ACL2::. We insist that there be no space between the
; open-parenthesis and the IN-PACKAGE symbol. Finally, after the IN-PACKAGE,
; we insist that there be exactly one space followed by a string quote followed
; by at least one more character in the file. If these conditions are met we
; return t; otherwise we return nil.
(cond
((null (f-get-global 'infixp *the-live-state*))
t)
(t
(let ((stream (safe-open file :direction :input :if-does-not-exist nil)))
(if stream
(unwind-protect (lisp-book-syntaxp1 0 stream)
(close stream))
nil)))))
#-acl2-loop-only
(defparameter *parser* nil)
; If *parser* is non-nil then it should be set to a string that names a Unix
; command that parses a file. Suppose *parser* is set to "infixparse". Then
; we will use the Unix command
; % infixparse < foo.lisp > foo.lisp.mirror
; to generate from "foo.lisp" a file of s-expressions "foo.lisp.mirror". The
; unix command should return error code 3 if the parse fails. Otherwise, the
; parse is assumed to have worked.
#-acl2-loop-only
(defun-one-output parse-infix-file (infile outfile)
; This function is only used with the silly $ infix syntax. It is the analogue
; of the *parse* Unix command that transforms a $ infix file to its
; s-expression image. Rather than make it be a Unix command and pay the
; complexity and performance cost of firing off another process, we just
; implement it it directly in this image for the $ syntax.
(with-open-file
(file1 infile :direction :input)
(with-open-file
(file2 outfile :direction :output)
(prog ((form nil)
(eof (cons nil nil)))
loop
(setq form (read file1 nil eof))
(cond ((eq form eof) (return nil))
((eq form '$)
(setq form (read file1 nil eof))
(cond ((eq form eof)
(error "Bad $ infix syntax in ~s. Ended with a $."
(namestring file1)))
(t (print form file2))))
(t (error "Bad $ infix syntax in file ~s. Missing $ before ~
s-expr ending at position ~a."
(namestring file1)
(file-position file1))))
(go loop)))))
(skip-proofs
(defun open-input-channel (file-name typ state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; Here, file-name is an ACL2 file name (i.e., with Unix-style syntax).
; It is possible to get an error when opening an output file. We consider that
; a resource error for purposes of the story. Note that starting after
; Version_6.1, an error is unlikely except for non-ANSI GCL because of our use
; of safe-open.
(declare (xargs :guard (and (stringp file-name)
(member-eq typ *file-types*)
(state-p1 state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'open-input-channel (list file-name typ))))
(return-from
open-input-channel
(progn
(setq *file-clock* (1+ *file-clock*))
; We do two different opens here because the default :element-type is
; different in CLTL and CLTL2.
(let ((os-file-name
(pathname-unix-to-os file-name *the-live-state*)))
; Protect against the sort of behavior Bob Boyer has pointed out for GCL, as
; the following kills all processes:
(cond
((and (not (equal os-file-name ""))
(eql (char os-file-name 0) #\|))
(error "It is illegal in ACL2 to open a filename whose ~%~
first character is |, as this may permit dangerous ~%~
behavior. For example, in GCL the following kills ~%~
all processes:~%~%~s~%"
'(open "|kill -9 -1"))))
(let ((stream
(case
typ
((:character :object)
(safe-open os-file-name :direction :input
:if-does-not-exist nil))
(:byte (safe-open os-file-name :direction :input
:element-type '(unsigned-byte 8)
:if-does-not-exist nil))
(otherwise
(interface-er "Illegal input-type ~x0." typ)))))
(cond
((null stream) (mv nil *the-live-state*))
#+akcl
((and (eq typ :object)
(not (lisp-book-syntaxp os-file-name)))
; Note that lisp-book-syntaxp returns t unless state global 'infixp is t. So
; ignore the code below unless you're thinking about the infix case!
(let* ((mirror-file-name
(concatenate 'string
(namestring stream)
".mirror"))
(er-code
(cond
(*parser*
(si::system
(format nil "~s < ~s > ~s"
*parser*
(namestring stream)
mirror-file-name)))
(t (parse-infix-file file-name
mirror-file-name)
0))))
(cond
((not (equal er-code 3))
(let ((channel
(make-input-channel mirror-file-name
*file-clock*))
(mirror-stream
(open mirror-file-name :direction :input)))
(symbol-name channel)
(setf (get channel *open-input-channel-type-key*) typ)
(setf (get channel *open-input-channel-key*)
mirror-stream)
(mv channel *the-live-state*)))
(t (mv nil *the-live-state*)))))
(t (let ((channel
(make-input-channel file-name *file-clock*)))
(symbol-name channel)
(setf (get channel *open-input-channel-type-key*) typ)
(setf (get channel *open-input-channel-key*) stream)
(mv channel *the-live-state*))))))))))
(let ((state-state
(update-file-clock (1+ (file-clock state-state)) state-state)))
(let ((pair (assoc-equal (list file-name typ (file-clock state-state))
(readable-files state-state))))
(cond (pair
(let ((channel
(make-input-channel file-name (file-clock state-state))))
(mv
channel
(update-open-input-channels
(add-pair channel
(cons (list :header typ file-name
(file-clock state-state))
(cdr pair))
(open-input-channels state-state))
state-state))))
(t (mv nil state-state))))))
)
(defthm nth-update-nth
(equal (nth m (update-nth n val l))
(if (equal (nfix m) (nfix n))
val
(nth m l)))
:hints (("Goal" :in-theory (enable nth))))
(defthm true-listp-update-nth
(implies (true-listp l)
(true-listp (update-nth key val l)))
:rule-classes :type-prescription)
(local
(defthm nth-zp
(implies (and (syntaxp (not (equal n ''0)))
(zp n))
(equal (nth n x)
(nth 0 x)))
:hints (("Goal" :expand ((nth n x) (nth 0 x))))))
(defthm nth-update-nth-array
(equal (nth m (update-nth-array n i val l))
(if (equal (nfix m) (nfix n))
(update-nth i val (nth m l))
(nth m l))))
(defun close-input-channel (channel state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard
(and (not (member-eq
channel
'(acl2-input-channel::standard-character-input-0
acl2-input-channel::standard-object-input-0)))
(state-p1 state-state)
(symbolp channel)
(open-input-channel-any-p1 channel state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'close-input-channel (list channel))))
(return-from
close-input-channel
(progn
(setq *file-clock* (1+ *file-clock*))
(let ((stream (get channel *open-input-channel-key*)))
(remprop channel *open-input-channel-key*)
(remprop channel *open-input-channel-type-key*)
(close stream))
*the-live-state*))))
(let ((state-state
(update-file-clock (1+ (file-clock state-state)) state-state)))
(let ((header-entries
(cdr (car (cdr (assoc-eq channel
(open-input-channels state-state)))))))
(let ((state-state
(update-read-files
(cons (list (cadr header-entries) ; file-name
(car header-entries) ; type
(caddr header-entries) ; open-time
(file-clock state-state)) ; close-time
(read-files state-state))
state-state)))
(let ((state-state
(update-open-input-channels
(delete-assoc-eq channel (open-input-channels state-state))
state-state)))
state-state)))))
(skip-proofs
(defun open-output-channel (file-name typ state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; Here, file-name is an ACL2 file name (i.e., with Unix-style syntax).
; It is possible to get an error when opening an output file. We consider that
; a resource error for purposes of the story. Note that starting after
; Version_6.1, an error is unlikely except for non-ANSI GCL because of our use
; of safe-open.
(declare (xargs :guard (and (or (stringp file-name)
(eq file-name :string))
(member-eq typ *file-types*)
(state-p1 state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond ((eq file-name :string))
(*wormholep*
(wormhole-er 'open-output-channel (list file-name typ)))
((and (not (f-get-global 'writes-okp state-state))
; Sol Swords observed that calling open-output-channel! outside the ACL2 loop
; causes an error (which is due to its use of state-global-let*). But it's
; really not necessary to protect against bad file access in raw Lisp, because
; it's impossible! So we eliminate the check on writes-okp if the ld-level is
; 0, i.e., if we are outside the ACL2 loop.
(not (eql 0 (f-get-global 'ld-level state-state))))
(mv (hard-error 'open-output-channel
"It is illegal to call open-output-channel in ~
contexts that can appear in books, such as ~
make-event expansion and clause-processor ~
hint evaluation. The attempt to open an ~
output channel to file ~x0 has thus failed. ~
Consider using open-output-channel! instead, ~
which is legal if there is an active trust ~
tag; see :DOC defttag."
(list (cons #\0 file-name)))
state-state)))
(return-from
open-output-channel
(progn
(setq *file-clock* (1+ *file-clock*))
(let* ((os-file-name
(and (not (eq file-name :string))
(pathname-unix-to-os file-name *the-live-state*)))
(stream
(case typ
((:character :object)
(cond ((eq file-name :string)
(make-string-output-stream))
(t (safe-open os-file-name :direction :output
:if-exists :supersede
; In ACL2(p) using CCL, we have seen an error caused when standard-co was
; connected to a file. Specifically, waterfall-print-clause-id@par was
; printing to standard-co -- i.e., to that file -- and CCL complained because
; the default is for a file stream to be private to the thread that created it.
#+(and acl2-par ccl) :sharing
#+(and acl2-par ccl) :lock))))
(:byte
(cond ((eq file-name :string)
(make-string-output-stream
:element-type '(unsigned-byte 8)))
(t (safe-open os-file-name :direction :output
:if-exists :supersede
:element-type '(unsigned-byte 8)
#+(and acl2-par ccl) :sharing
#+(and acl2-par ccl) :lock))))
(otherwise
(interface-er "Illegal output-type ~x0." typ)))))
(cond
((null stream) (mv nil *the-live-state*))
(t (let ((channel (make-output-channel file-name *file-clock*)))
(symbol-name channel)
(setf (get channel *open-output-channel-type-key*)
typ)
(setf (get channel *open-output-channel-key*) stream)
(mv channel *the-live-state*)))))))))
(let ((state-state
(update-file-clock (1+ (file-clock state-state)) state-state)))
(cond ((member-equal (list file-name typ (file-clock state-state))
(writeable-files state-state))
(let ((channel (make-output-channel file-name
(file-clock state-state))))
(mv
channel
(update-open-output-channels
(add-pair channel
(cons (list :header typ file-name
(file-clock state-state))
nil)
(open-output-channels state-state))
state-state))))
(t (mv nil state-state)))))
)
(skip-proofs
(defun open-output-channel! (file-name typ state)
":Doc-Section io
when trust tags are needed to open output channels~/
Use this function in place of ~c[open-output-channel] if you want to open a
channel for output at times this would otherwise be prohibited, for example
during ~ilc[make-event] expansion and ~ilc[clause-processor] ~il[hints]. If
this functionality doesn't quite seem like what you need, take a look at the
definition of ~c[open-output-channel!] in axioms.lisp, specifically the
binding of ~ilc[state] global variable ~c[writes-okp]. The following
example, taken from community book ~c[books/hons-archive/hons-archive.lisp],
illustrates the latter approach.
~bv[]
(defmacro har-zip! (x filename &key sortp)
\"See :doc hons-archive\"
`(mv-let (erp val state)
(progn!
:state-global-bindings
((temp-touchable-vars t set-temp-touchable-vars))
(state-global-let*
((writes-okp t))
(let ((state (har-zip-fn ,x ,filename ,sortp state)))
(mv nil nil state))))
(declare (ignore erp val))
state))
~ev[]
The book below illustrates the soundness loophole plugged in ACL2 Version_3.2
related to file writes during book certification.~/
~bv[]
; The following example is adapted (with only very slight changes)
; from one written by Peter Dillinger. It illustrates the prohibition
; against writing files enforced by with-output-channel during book
; certification (more specifically, during make-event expansion).
; This book certifies in ACL2 Version_3.1 before the fix discussed in the
; paragraph about it being ``possible to write files during book
; certification'' in :DOC NOTE-3-2. The fix was actually made to ACL2
; function open-output-channel.
; After the fix, in order for certification to succeed one needs to do
; two things. First, in raw lisp:
; (push :after-writes-okp-fix *features*)
; Second, certify with this command:
; (certify-book \"writes-okp\" 0 nil :ttags (:writes-okp))
(in-package \"ACL2\")
(local
(defun write-objects-to-channel (obj-lst chan state)
(declare (xargs :mode :program
:stobjs state
:guard (true-listp obj-lst)))
(if (consp obj-lst)
(pprogn (print-object$ (car obj-lst) chan state)
(write-objects-to-channel (cdr obj-lst) chan state)
state)
state)))
#+after-writes-okp-fix
(defttag :writes-okp)
(local
(defun write-objects-to-file (obj-lst filename state)
(declare (xargs :mode :program
:stobjs state
:guard (and (stringp filename)
(true-listp obj-lst))))
(mv-let (chan state)
#-after-writes-okp-fix
(open-output-channel filename :object state)
#+after-writes-okp-fix
(open-output-channel! filename :object state)
(if chan
(pprogn (write-objects-to-channel obj-lst chan state)
(close-output-channel chan state)
(value :done))
(er soft 'write-object-to-file
\"Could not open for writing: ~~x0\"
filename)))))
(local
(defconst *nil.lisp*
'((in-package \"ACL2\")
(defthm bad nil :rule-classes nil))))
(local
(defconst *nil.cert*
'((IN-PACKAGE \"ACL2\")
\"ACL2 Version 3.1\"
:BEGIN-PORTCULLIS-CMDS
:END-PORTCULLIS-CMDS
NIL
((\"/home/peterd/test/nil.lisp\" \"nil\" \"nil\"
((:SKIPPED-PROOFSP) (:AXIOMSP) (:TTAGS)) . 134094174))
62589544
)))
(local
(make-event (er-progn
(write-objects-to-file *nil.lisp* \"nil.lisp\" state)
(write-objects-to-file *nil.cert* \"nil.cert\" state)
(value '(value-triple :invisible)))))
(local (include-book
\"nil\" :load-compiled-file nil))
(defthm bad nil :rule-classes nil)
~ev[]"
(declare (xargs :guard (and (stringp file-name)
(member-eq typ *file-types*)
(state-p state))))
(cond
((eql 0 (f-get-global 'ld-level state))
; See the comment about this case in open-output-channel.
(open-output-channel file-name typ state))
(t (mv-let (erp chan state)
(state-global-let*
((writes-okp t))
(mv-let (chan state)
(open-output-channel file-name typ state)
(value chan)))
(declare (ignore erp))
(mv chan state)))))
)
(defmacro assert$ (test form)
":Doc-Section ACL2::ACL2-built-ins
cause a hard error if the given test is false~/
~bv[]
General Form:
(assert$ test form)
~ev[]
where ~c[test] returns a single value and ~c[form] is arbitrary.
Semantically, this call of ~c[assert$] is equivalent to ~c[form]. However,
it causes a hard error if the value of ~c[test] is ~c[nil]. That hard error
invokes the function ~ilc[illegal], which has a ~il[guard] that is equal to
~c[nil]; so if you use ~c[assert$] in code for which you verify guards, then
a proof obligation will be that the occurrence of ~c[test] is never
~c[nil].~/~/"
`(prog2$ (or ,test
(er hard 'assert$
"Assertion failed:~%~x0"
'(assert$ ,test ,form)))
,form))
(defun fmt-to-comment-window (str alist col evisc-tuple)
; WARNING: Keep this in sync with fmt-to-comment-window!.
; Logically, this is the constant function returning nil. However, it
; has a side-effect on the "comment window" which is imagined to be a
; separate window on the user's screen that cannot possibly be
; confused with the normal ACL2 display of the files in STATE. Using
; this function it is possible for an ACL2 expression to cause
; characters to appear in the comment window. Nothing whatsoever can
; be proved about these characters. If you want to prove something
; about ACL2 output, it must be directed to the channels and files in
; STATE.
":Doc-Section ACL2::ACL2-built-ins
print to the comment window~/
~l[cw] for an introduction to the comment window and the usual way
to print it.
Function ~c[fmt-to-comment-window] is identical to ~c[fmt1] (~pl[fmt]),
except that the channel is ~ilc[*standard-co*] and the ACL2
~ilc[state] is neither an input nor an output. An analogous function,
~c[fmt-to-comment-window!], prints with ~ilc[fmt!] instead of ~ilc[fmt],
in order to avoid insertion of backslash (\\) characters for margins;
also ~pl[cw!]. Note that even if you change the value of ~ilc[ld] special
~c[standard-co] (~pl[standard-co]), ~c[fmt-to-comment-window] will print to
~ilc[*standard-co*], which is the original value of ~ilc[standard-co].~/
~bv[]
General Form:
(fmt-to-comment-window fmt-string alist col evisc-tuple)
~ev[]
where these arguments are as desribed for ~ilc[fmt1]; ~pl[fmt].~/"
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore str alist col evisc-tuple))
#+acl2-loop-only
nil
; Note: One might wish to bind *wormholep* to nil around this fmt1 expression,
; to avoid provoking an error if this fn is called while *wormholep* is t.
; However, the fact that we're printing to *standard-co* accomplishes the
; same thing. See the comment on synonym streams in princ$.
#-acl2-loop-only
(progn (fmt1 str alist col *standard-co* *the-live-state* evisc-tuple)
nil))
(defun fmt-to-comment-window! (str alist col evisc-tuple)
; WARNING: Keep this in sync with fmt-to-comment-window.
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore str alist col evisc-tuple))
#+acl2-loop-only
nil
#-acl2-loop-only
(progn (fmt1! str alist col *standard-co* *the-live-state*
evisc-tuple)
nil))
(defun pairlis2 (x y)
; Like pairlis$ except is controlled by y rather than x.
(declare (xargs :guard (and (true-listp x)
(true-listp y))))
(cond ((endp y) nil)
(t (cons (cons (car x) (car y))
(pairlis2 (cdr x) (cdr y))))))
(defmacro cw (str &rest args)
; WARNING: Keep this in sync with cw!.
; A typical call of this macro is:
; (cw "The goal is ~p0 and the alist is ~x1.~%"
; (untranslate term t nil)
; unify-subst)
; Logically, this expression is equivalent to nil. However, it has
; the effect of first printing to the comment window the fmt string
; as indicated. It uses fmt-to-comment-window above, and passes it the
; column 0 and evisc-tuple nil, after assembling the appropriate
; alist binding the fmt vars #\0 through #\9. If you want
; (a) more than 10 vars,
; (b) vars other than the digit chars,
; (c) a different column, or
; (d) a different evisc-tuple,
; then call fmt-to-comment-window instead.
; Typically, calls of cw are embedded in prog2$ forms,
; e.g.,
; (prog2$ (cw ...)
; (mv a b c))
; which has the side-effect of printing to the comment window and
; logically returning (mv a b c).
":Doc-Section ACL2::ACL2-built-ins
print to the comment window~/
Example:
~bv[]
(cw \"The goal is ~~p0 and the alist is ~~x1.~~%\"
(untranslate term t nil)
unify-subst)
~ev[]
Logically, this expression is equivalent to ~c[nil]. However, it has
the effect of first printing to the so-called ``comment window'' the
~ilc[fmt] string as indicated. Thus, ~c[cw] is like ~c[fmt] (~pl[fmt]) except
in three important ways. First, it is a macro whose calls expand to calls of
a ~c[:]~ilc[logic] mode function. Second, it neither takes nor returns the
ACL2 ~ilc[state]; logically ~c[cw] simply returns ~c[nil], although it prints
to a ~em[comment window] that just happens to share the terminal screen with
the standard character output ~ilc[*standard-co*]. Third, its ~c[fmt] args
are positional references, so that for example
~bv[]
(cw \"Answers: ~~p0 and ~~p1\" ans1 ans2)
~ev[]
prints in the same manner as:
~bv[]
(fmt \"Answers: ~~p0 and ~~p1\"
(list (cons #\\0 ans1) (cons #\\1 ans2))
*standard-co* state nil)
~ev[]
Typically, calls of ~c[cw] are embedded in ~ilc[prog2$] forms, e.g.,
~bv[]
(prog2$ (cw ...)
(mv a b c))
~ev[]
which has the side-effect of printing to the comment window and
logically returning ~c[(mv a b c)].~/
~bv[]
General Form:
(cw fmt-string arg1 arg2 ... argn)
~ev[]
where n is between 0 and 9 (inclusive).
The macro uses ~ilc[fmt-to-comment-window], passing it the column ~c[0] and
~il[evisc-tuple] ~c[nil], after assembling the appropriate alist binding the
~ilc[fmt] vars #\\0 through #\\9; ~pl[fmt]. If you want
~bf[]
(a) more than 10 vars,
(b) vars other than the digit chars,
(c) a different column, or
(d) a different evisc-tuple,
~ef[]
then call ~ilc[fmt-to-comment-window] instead.
Also ~pl[cw!], which is useful if you want to be able to read the printed
forms back in.
Finally, we discuss another way to create formatted output that also avoids
the need to pass in the ACL2 ~ilc[state]. The idea is to use wormholes;
~pl[wormhole]. Below is a function you can write, along with some calls,
providing an illustration of this approach.
~bv[]
(defun my-fmt-to-comment-window (str alist)
(wormhole 'my-fmt-to-comment-window
'(lambda (whs) whs)
(list str alist)
'(pprogn
(fms (car (@ wormhole-input))
(cadr (@ wormhole-input))
*standard-co*
state
nil)
(value :q))
:ld-verbose nil
:ld-error-action :return ; harmless return on error
:ld-prompt nil))
; A non-erroneous call:
(my-fmt-to-comment-window \"Here is ~~x0 for your inspection~~%\"
(list (cons #\\0 'foo)))
; An error inside the fmt string (unbound fmt var); note that even
; with the error, the wormhole is exited.
(my-fmt-to-comment-window \"Here is ~~x1 for your inspection~~%\"
(list (cons #\\0 'foo)))
; A guard violation in the binding; note that even with the error,
; the wormhole is exited.
(my-fmt-to-comment-window \"Here is ~~x0 for your inspection~~%\"
(list (cons #\\0 (car 'foo))))
~ev[]~/"
`(fmt-to-comment-window ,str
(pairlis2 '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
(list ,@args))
0 nil))
(defmacro cw! (str &rest args)
; WARNING: Keep this in sync with cw.
":Doc-Section ACL2::ACL2-built-ins
print to the comment window~/
This is the same as ~ilc[cw], except that ~ilc[cw] inserts backslash (\\)
characters when forced to print past the right margin, in order to make the
output a bit clearer in that case. Use ~c[cw!] instead if you want to be
able to read the forms back in.~/~/"
`(fmt-to-comment-window! ,str
(pairlis2 '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
(list ,@args))
0 nil))
(defun subseq-list (lst start end)
(declare (xargs :guard (and (true-listp lst)
(integerp start)
(integerp end)
(<= 0 start)
(<= start end))
:mode :program))
(take (- end start)
(nthcdr start lst)))
#+acl2-loop-only
(defun subseq (seq start end)
":Doc-Section ACL2::ACL2-built-ins
subsequence of a string or list~/
For any natural numbers ~c[start] and ~c[end], where ~c[start] ~c[<=]
~c[end] ~c[<=] ~c[(length seq)], ~c[(subseq seq start end)] is the
subsequence of ~c[seq] from index ~c[start] up to, but not including,
index ~c[end]. ~c[End] may be ~c[nil], which which case it is treated
as though it is ~c[(length seq)], i.e., we obtain the subsequence of
~c[seq] from index ~c[start] all the way to the end.~/
The ~il[guard] for ~c[(subseq seq start end)] is that ~c[seq] is a
true list or a string, ~c[start] and ~c[end] are integers (except,
~c[end] may be ~c[nil], in which case it is treated as ~c[(length seq)]
for the rest of this discussion), and ~c[0] ~c[<=] ~c[start] ~c[<=]
~c[end] ~c[<=] ~c[(length seq)].
~c[Subseq] is a Common Lisp function. See any Common Lisp
documentation for more information. Note: In Common Lisp the third
argument of ~c[subseq] is optional, but in ACL2 it is required,
though it may be ~c[nil] as explained above.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (or (true-listp seq)
(stringp seq))
(integerp start)
(<= 0 start)
(or (null end)
(and (integerp end)
(<= end (length seq))))
(<= start (or end (length seq))))
:mode :program))
(if (stringp seq)
(coerce (subseq-list (coerce seq 'list) start (or end (length seq)))
'string)
(subseq-list seq start (or end (length seq)))))
(defun lock-symbol-name-p (lock-symbol)
(declare (xargs :guard t))
(and (symbolp lock-symbol)
(let* ((name (symbol-name lock-symbol))
(len (length name)))
(and (> len 2)
(eql (char name 0) #\*)
(eql (char name (1- len)) #\*)))))
(defun assign-lock (key)
(declare (xargs :guard (lock-symbol-name-p key)))
#-(and (not acl2-loop-only) acl2-par)
(declare (ignore key))
#+(and (not acl2-loop-only) acl2-par)
(cond ((boundp key)
(when (not (lockp (symbol-value key)))
(error "Raw Lisp variable ~s is already bound to a value ~
that~%does not satisfy lockp."
key)))
(t (proclaim (list 'special key))
(setf (symbol-value key)
(make-lock (symbol-name key)))))
t)
(table lock-table nil nil
:guard
(and (lock-symbol-name-p key)
(assign-lock key)))
#+(or acl2-loop-only (not acl2-par))
(defmacro with-lock (bound-symbol &rest forms)
(declare (xargs :guard (lock-symbol-name-p bound-symbol)))
`(translate-and-test
(lambda (x)
(prog2$
x ; x is not otherwise used
(or (consp (assoc-eq ',bound-symbol (table-alist 'lock-table world)))
(msg "The variable ~x0 has not been defined as a lock."
',bound-symbol))))
(progn$ ,@forms)))
(defmacro deflock (lock-symbol)
; Deflock puts lock-symbol into the lock-table, and also defines a macro
; WITH-lock-symbol that is really just progn$. However, if #+acl2-par holds,
; then deflock also defines a
; Deflock defines what some Lisps call a "recursive lock", namely a lock that
; can be grabbed more than once by the same thread, but such that if a thread
; outside the owner tries to grab it, that thread will block. In addition to
; defining a lock, this macro also defines a macro that uses the lock to
; provide mutual-exclusion for a given list of operations. This macro has the
; name with-<modified-lock-name>, where <modified-lock-name> is the given
; lock-symbol without the leading and trailing * characters.
; Note that if lock-symbol is already bound, then deflock will not re-bind
; lock-symbol.
(declare (xargs :guard (lock-symbol-name-p lock-symbol)))
(let* ((name (symbol-name lock-symbol))
(macro-symbol (intern
(concatenate 'string
"WITH-"
(subseq name 1 (1- (length name))))
"ACL2")))
`(progn
(table lock-table ',lock-symbol t)
; The table event above calls make-lock when #+acl2-par, via assign-lock from
; the table guard of lock. However, table events are no-ops in raw Lisp, so we
; include the following form as well.
#+(and acl2-par (not acl2-loop-only))
(defvar ,lock-symbol
(make-lock (symbol-name ',lock-symbol)))
(defmacro ,macro-symbol (&rest args)
(list* 'with-lock ',lock-symbol args)))))
(deflock
; Keep in sync with :DOC topic with-output-lock.
*output-lock*)
(skip-proofs ; as with open-output-channel
(defun get-output-stream-string$-fn (channel state-state)
(declare (xargs :guard (and (state-p1 state-state)
(symbolp channel)
(open-output-channel-any-p1 channel
state-state))))
#-acl2-loop-only
(when (live-state-p state-state)
(let ((stream (get-output-stream-from-channel channel)))
(when *wormholep*
(wormhole-er 'get-output-stream-string$-fn
(list channel)))
(return-from get-output-stream-string$-fn
(cond #-(and gcl (not cltl2))
((not (typep stream 'string-stream))
(mv t nil state-state))
#+(and gcl (not cltl2))
((or (not (typep stream 'stream))
(si::stream-name stream)) ; stream to a file
; As of this writing, we do not have confirmation from the gcl-devel list that
; si::stream-name really does return nil if and only if the stream is to a
; string rather than to a file. But we believe that to be the case.
(mv t nil state-state))
(t (mv nil
(get-output-stream-string stream)
state-state))))))
#+acl2-loop-only
(let* ((entry (cdr (assoc-eq channel (open-output-channels state-state))))
(header (assert$ (consp entry)
(car entry)))
(file-name (assert$ (and (true-listp header)
(eql (length header) 4))
(nth 2 header))))
(cond
((eq file-name :string)
(mv nil
(coerce (reverse (cdr entry)) 'string)
(update-open-output-channels
(add-pair channel
(cons header nil)
(open-output-channels state-state))
state-state)))
(t (mv t nil state-state)))))
)
(defmacro get-output-stream-string$ (channel state-state
&optional
(close-p 't)
(ctx ''get-output-stream-string$))
(declare (xargs :guard ; but *the-live-state* is OK in raw Lisp
(eq state-state 'state))
(ignorable state-state))
`(let ((chan ,channel)
(ctx ,ctx))
(mv-let (erp s state)
(get-output-stream-string$-fn chan state)
(cond (erp (er soft ctx
"Symbol ~x0 is not associated with a string ~
output channel."
chan))
(t ,(cond (close-p
'(pprogn (close-output-channel chan state)
(value s)))
(t '(value s))))))))
(defun close-output-channel (channel state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard
(and (not
(eq channel
'acl2-output-channel::standard-character-output-0))
(state-p1 state-state)
(symbolp channel)
(open-output-channel-any-p1 channel state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(when (eq channel (f-get-global 'standard-co state-state))
; First, we cause a hard error if the channel is the value of state global
; 'standard-co. Comments below say more about this, but for now we point out
; that even though we cause an error, we won't get the error from term
; evaluation during proofs, because state-state will not be the live state.
(mv (cond
((eq channel *standard-co*)
; This case might seem impossible because it would be a guard violation. But
; if a :program mode function call leads to the present call of
; close-output-channel, then the guard need not hold, so we make sure to cause
; an error here.
(mv (er hard! 'close-output-channel
"It is illegal to call close-output-channel on ~
*standard-co*.")))
(t
; In Version_6.1 and probably before, we have seen an infinite loop occur
; when attempting to close standard-co.
(state-free-global-let*
((standard-co *standard-co*))
(er hard! 'close-output-channel
"It is illegal to call close-output-channel on ~
standard-co. Consider instead evaluating the ~
following form:~|~%~X01."
'(let ((ch (standard-co state)))
(er-progn
(set-standard-co *standard-co* state)
(pprogn
(close-output-channel ch state)
(value t))))
nil))))
state-state))
(cond (*wormholep*
(wormhole-er 'close-output-channel (list channel))))
#+allegro
; April 2009: It seems that the last half of this month or so, occasionally
; there have been regression failures during inclusion of books that were
; apparently already certified. Those may all have been with Allegro CL. In
; particular, on 4/29/09 there were two successive regression failes as
; community book books/rtl/rel8/support/lib2.delta1/reps.lisp tried to include
; "bits" in that same directory. We saw a web page claiming an issue in old
; versions of Allegro CL for which finish-output didn't do the job, and
; force-output perhaps did. So we add a call here of force-output for Allegro.
(force-output (get-output-stream-from-channel channel))
(finish-output (get-output-stream-from-channel channel))
; At one time we called sync here, as shown below, for CCL. But Daron Vroon
; reported problems with (ccl:external-call "sync") on a PowerPC platform where
; "_sync" was expected instead. It seems best not to try to include code that
; is this low-level unless it is really necessary, because of the unknown
; diversity of future platforms that might require further maintenance; so
; we are commenting this out.
; #+ccl ; Bob Boyer suggestion
; (when (ccl-at-least-1-3-p)
; (ccl:external-call "sync"))
(return-from
close-output-channel
(progn
(setq *file-clock* (1+ *file-clock*))
(let ((str (get channel *open-output-channel-key*)))
(remprop channel *open-output-channel-key*)
(remprop channel *open-output-channel-type-key*)
(close str))
*the-live-state*))))
(let ((state-state
(update-file-clock (1+ (file-clock state-state)) state-state)))
(let* ((pair (assoc-eq channel (open-output-channels state-state)))
(header-entries (cdr (car (cdr pair)))))
(let ((state-state
(update-written-files
(cons (cons
(list (cadr header-entries) ; file-name
(car header-entries) ; type
(caddr header-entries) ; open-time
(file-clock state-state)) ; close-time
(cdr (cdr pair))) ; stuff written
(written-files state-state))
state-state)))
(let ((state-state
(update-open-output-channels
(delete-assoc-eq channel (open-output-channels state-state))
state-state)))
state-state)))))
(defun maybe-finish-output$ (channel state)
; Allegro 6.0 needs explicit calls of finish-output in order to flush to
; standard output when *print-pretty* is nil. SBCL 1.0 and 1.0.2 have
; exhibited this requirement during a redef query, for example:
; (defun foooooooooooooooooooooooooooo (x) x)
; :redef
; (defun foooooooooooooooooooooooooooo (x) (+ 1 x))
(declare (xargs :guard (and (symbolp channel)
(state-p state)
(open-output-channel-any-p channel state)))
(ignorable channel state))
#+(and (not acl2-loop-only)
(or sbcl allegro))
(finish-output (get-output-stream-from-channel channel))
nil)
#-acl2-loop-only
(defmacro legal-acl2-character-p (x)
; This predicate guarantees that two ACL2 characters with the same char-code
; are identical (eql). In fact, a legal character is an 8-bit character that
; is ``canonical,'' in the sense that it's the character returned by code-char
; on its character code.
(let ((ch (gensym)))
`(let* ((,ch ,x)
(code (char-code ,ch)))
(and (integerp code)
(<= 0 code)
(< code 256)
(eql (the character ,ch)
(the character (code-char code)))))))
(defun read-char$ (channel state-state)
; read-char$ differs from read-char in several ways. It returns an
; mv-list of two values, the second being state. There are no eof
; args. Rather, nil is returned instead of character if there is no
; more input.
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (state-p1 state-state)
(symbolp channel)
(open-input-channel-p1
channel :character state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond ((and *wormholep*
(not (eq channel *standard-ci*)))
(wormhole-er 'read-char$ (list channel))))
(return-from
read-char$
(let ((ch (read-char
(get-input-stream-from-channel channel) nil nil)))
(cond ((and ch (not (legal-acl2-character-p ch)))
(interface-er "Illegal character read: ~x0 with code ~x1."
ch (char-code ch)))
(t (mv ch
*the-live-state*)))))))
(let ((entry (cdr (assoc-eq channel (open-input-channels state-state)))))
(mv (car (cdr entry))
(update-open-input-channels
(add-pair channel
(cons (car entry) (cdr (cdr entry)))
(open-input-channels state-state))
state-state))))
(defun peek-char$ (channel state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (state-p1 state-state)
(symbolp channel)
(open-input-channel-p1
channel :character state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond ((and *wormholep*
(not (eq channel *standard-ci*)))
(wormhole-er 'peek-char$ (list channel))))
(return-from
peek-char$
(let ((ch (peek-char nil (get-input-stream-from-channel channel)
nil nil)))
(cond ((and ch (not (legal-acl2-character-p ch)))
(interface-er
"Illegal character peeked at: ~x0 with code ~x1."
ch (char-code ch)))
(t ch))))))
(let ((entry (cdr (assoc-eq channel (open-input-channels state-state)))))
(car (cdr entry))))
(defun read-byte$ (channel state-state)
; read-byte$ differs from read-byte in several ways. It returns an
; mv-list of two values, the second being state. There are no eof
; args. Rather, nil is returned instead if there is no more input.
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (state-p1 state-state)
(symbolp channel)
(open-input-channel-p1
channel :byte state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'read-byte$ (list channel))))
(return-from
read-byte$
(mv (read-byte (get-input-stream-from-channel channel) nil nil)
*the-live-state*))))
(let ((entry (cdr (assoc-eq channel (open-input-channels state-state)))))
(mv (car (cdr entry))
(update-open-input-channels
(add-pair channel
(cons (car entry) (cdr (cdr entry)))
(open-input-channels state-state))
state-state))))
#-acl2-loop-only
(defun-one-output parse-infix-from-terminal (eof)
; Eof is an arbitrary lisp object. If the terminal input is empty, return eof.
; Otherwise, parse one well-formed expression from terminal input and return the
; corresponding s-expr. If the file is exhausted before the parse finishes or
; if the parse is unsuccessful, cause a hard lisp error.
; In the current hackish implementation, the infix language is just a dollar
; sign followed by the s-expr.
(let (dollar sexpr)
(setq dollar (read *terminal-io* nil eof))
(cond ((eq dollar eof) eof)
((eq dollar '$)
; The following read could cause an error if the user types bad lisp syntax.
(setq sexpr (read *terminal-io* nil eof))
(cond ((eq sexpr eof)
(error "Ill-formed infix input. File ended on a $"))
(t sexpr)))
(t (error
"Ill-formed infix input. You were supposed to type a $ ~
followed by an s-expression and you typed ~s instead."
dollar)))))
#-acl2-loop-only
(defparameter *acl2-read-suppress* nil)
(defun read-object (channel state-state)
; Read-object is somewhat like read. It returns an mv-list of three
; values: the first is a flag that is true iff the read happened at
; eof, the second is the object read (or nil if eof), and the third is
; state.
; Note that read-object establishes a new context for #n= reader macros, as it
; calls read (or hons-read) with a recursive-p argument of nil.
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (state-p1 state-state)
(symbolp channel)
(open-input-channel-p1
channel :object state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond ((and *wormholep*
(not (eq channel *standard-oi*)))
(wormhole-er 'read-object (list channel))))
(return-from
read-object
(let* ((read-object-eof
; Suggestion from Bob Boyer: By using dynamic-extent [see declaration below],
; we make the cons more 'secret' or 'new'. (Added August 2009: the
; dynamic-extent declaration below is commented out, with explanation. We are
; comfortable continuing to use a let-bound local here, since the extra cons
; seems trivial.)
(cons nil nil))
(*package* (find-package
(current-package *the-live-state*)))
(*readtable* *acl2-readtable*)
#+cltl2 (*read-eval* t)
(*read-suppress* *acl2-read-suppress*)
(*read-base* 10)
#+gcl (si:*notify-gbc* ; no gbc messages while typing
(if (or (eq channel *standard-oi*)
(eq channel *standard-ci*))
nil
si:*notify-gbc*))
(infixp (f-get-global 'infixp state-state))
(stream (get-input-stream-from-channel channel))
(obj
(cond
((and (or (eq infixp t) (eq infixp :in))
(eq stream (get-input-stream-from-channel *standard-ci*)))
(let ((obj (parse-infix-from-terminal read-object-eof)))
(cond ((eq obj read-object-eof)
read-object-eof)
(t (chk-bad-lisp-object obj)
obj))))
#+(and mcl (not ccl))
((eq channel *standard-oi*)
(ccl::toplevel-read))
; (Comment for #+hons.) In the case of #+hons, we formerly called a function
; hons-read here when (f-get-global 'hons-read-p *the-live-state*) was true.
; That had the unfortunate behavior of hons-copying every object, which can be
; too expensive for large, unhonsed structures. This problem has been fixed
; with the addition of source files serialize[-raw].lisp, contributed by Jared
; Davis.
(t
(read stream nil read-object-eof nil)))))
; The following dynamic-extent declaration looks fine. But there have been
; spurious ill-formed certificate and checksum problems with Allegro CL for a
; few months (as of Aug. 2009) and I am suspicious that this could be the cause
; (in which case we have hit an Allegro CL compiler bug, if I'm correct about
; this declaration being fine). The efficiency improvement given by this
; declaration seems rather trivial, so I'll comment it out and see what
; happens.
; #+cltl2
; (declare (dynamic-extent read-object-eof))
(cond ((eq obj read-object-eof)
(mv t nil state-state))
(t (or (raw-mode-p state-state)
(chk-bad-lisp-object obj))
(mv nil obj state-state)))))))
(let ((entry (cdr (assoc-eq channel (open-input-channels state-state)))))
(cond ((cdr entry)
(mv nil
(car (cdr entry))
(update-open-input-channels
(add-pair channel
(cons (car entry) (cdr (cdr entry)))
(open-input-channels state-state))
state-state)))
(t (mv t nil state-state)))))
(defun read-object-suppress (channel state)
; Logically this function is the same as read-object except that it throws away
; the second returned value, i.e. the "real" value, simply returning (mv eof
; state). However, under the hood it uses Lisp special *read-suppress* to
; avoid errors in reading the next value, for example errors caused by
; encountering symbols in packages unknown to ACL2.
(declare (xargs :guard (and (state-p state)
(symbolp channel)
(open-input-channel-p channel :object state))))
(let (#-acl2-loop-only (*acl2-read-suppress* t))
(mv-let (eof val state)
(read-object channel state)
(declare (ignore val))
(mv eof state))))
(defconst *suspiciously-first-numeric-chars*
; This constant is inlined in the definition of
; *suspiciously-first-numeric-array*.
'(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 #\+ #\- #\. #\^ #\_))
(defconst *suspiciously-first-hex-chars*
; This constant is inlined in the definition of
; *suspiciously-first-hex-array*.
'(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9
#\A #\B #\C #\D #\E #\F
#\a #\b #\c #\d #\e #\f
#\+ #\- #\. #\^ #\_))
(defconst *base-10-chars*
; This constant is inlined in the definition of
; *base-10-array*.
'(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9))
(defconst *hex-chars*
; This constant is inlined in the definition of
; *hex-array*.
'(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9
#\A #\B #\C #\D #\E #\F
#\a #\b #\c #\d #\e #\f))
(defconst *letter-chars*
; This constant is inlined in the definition of
; *letter-array*.
'(#\A #\B #\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M #\N #\O #\P
#\Q #\R #\S #\T #\U #\V #\W #\X #\Y #\Z
#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m #\n #\o #\p
#\q #\r #\s #\t #\u #\v #\w #\x #\y #\z))
(defconst *slashable-chars*
; This constant is inlined in the definition of *slashable-array*.
'(#\Newline #\Page #\Space #\" #\# #\' #\( #\) #\, #\: #\; #\\ #\`
#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m #\n #\o #\p
#\q #\r #\s #\t #\u #\v #\w #\x #\y #\z #\|))
(defun some-slashable (l)
(declare (xargs :guard (character-listp l)))
(cond ((endp l) nil)
((member (car l) *slashable-chars*)
t)
(t (some-slashable (cdr l)))))
(skip-proofs
(defun prin1-with-slashes1 (l slash-char channel state)
(declare (xargs :guard
(and (character-listp l)
(characterp slash-char)
(state-p state)
(symbolp channel)
(open-output-channel-p channel
:character
state))))
(cond ((endp l) state)
(t (pprogn
(cond ((or (equal (car l) #\\) (equal (car l) slash-char))
(princ$ #\\ channel state))
(t state))
(princ$ (car l) channel state)
(prin1-with-slashes1 (cdr l) slash-char channel state)))))
)
(skip-proofs
(defun prin1-with-slashes (s slash-char channel state)
(declare (xargs :guard (and (stringp s)
(characterp slash-char)
(state-p state)
(symbolp channel)
(open-output-channel-p channel :character state))))
#-acl2-loop-only
(cond ((live-state-p state)
; We don't check *wormholep* here because it is checked in
; princ$ which is called first on each branch below.
(let ((n (length (the string s))))
(declare (type fixnum n))
(do ((i 0 (1+ i))) ((= i n))
(declare (type fixnum i))
(let ((ch (aref (the string s) i)))
(cond ((or (eql ch #\\)
(eql ch slash-char))
(progn (princ$ #\\ channel state)
(princ$ ch channel state)))
(t (princ$ ch channel state))))))
(return-from prin1-with-slashes state)))
(prin1-with-slashes1 (coerce s 'list) slash-char channel state))
)
(defmacro suspiciously-first-numeric-chars (print-base)
`(if (eql ,print-base 16)
*suspiciously-first-hex-chars*
*suspiciously-first-numeric-chars*))
(defmacro numeric-chars (print-base)
`(if (eql ,print-base 16)
*hex-chars*
*base-10-chars*))
(defun may-need-slashes1 (lst flg potnum-chars)
; See may-need-slashes. Here we check that lst (a symbol-name) consists
; entirely of digits, signs (+ or -), ratio markers (/), decimal points (.),
; extension characters (^ or _), except that it can also have letters provided
; there are no two consecutive letters. We could check only for upper-case
; letters, since lower-case letters are already handled (see some-slashable and
; *slashable-array* in may-need-slashes). But we might as well check for all
; letters, just to play it safe.
; Flg is t if the immediately preceding character was a letter, else nil.
(declare (xargs :guard (and (character-listp lst)
(true-listp potnum-chars))))
(cond ((endp lst)
t)
((member (car lst) potnum-chars)
(may-need-slashes1 (cdr lst) nil potnum-chars))
((member (car lst) *letter-chars*)
(cond (flg nil)
(t (may-need-slashes1 (cdr lst) t potnum-chars))))
(t nil)))
#-acl2-loop-only
(defmacro potential-numberp (s0 n0 print-base)
; We assume that s is a non-empty string of length n. We return t if s
; represents a potential number for the given ACL2 print-base. (See
; may-need-slashes-fn for a discussion of potential numbers.)
; Warning: Keep this in sync with the corresponding #+acl2-loop-only code in
; may-need-slashes-fn.
(let ((ar+ (gensym))
(ar (gensym))
(s (gensym))
(n (gensym)))
`(let ((,ar+ (suspiciously-first-numeric-array ,print-base))
(,ar (numeric-array ,print-base))
(,s ,s0)
(,n ,n0))
(declare (type fixnum ,n))
(and
; Either the first character is a digit or: the first character is a sign,
; decimal point, or extension character, and some other character is a digit.
(let ((ch (the fixnum (char-code (aref (the string ,s) 0)))))
(declare (type fixnum ch))
(or (svref ,ar ch)
(and (svref ,ar+ ch)
(do ((i 1 (1+ i))) ((= i ,n) nil)
(declare (type fixnum i))
(when (svref ,ar
(the fixnum
(char-code (aref (the string ,s) i))))
(return t))))))
; The string does not end with a sign.
(not (member (aref (the string ,s) (the fixnum (1- ,n)))
'(#\+ #\-)))
; The strong consists entirely of digits, signs, ratio markers, decimal points,
; extension characters, and number markers (i.e. letters, but no two in a
; row). The logic code for this is may-need-slashes1.
(let ((prev-letter-p nil))
(do ((i 0 (1+ i))) ((= i ,n) t)
(declare (type fixnum i))
(let ((ch (char-code (aref (the string ,s) i))))
(declare (type fixnum ch))
(cond ((or (svref ,ar+ ch)
(int= ch *char-code-slash*))
(setq prev-letter-p nil))
((svref *letter-array* ch)
(cond (prev-letter-p (return nil))
(t (setq prev-letter-p t))))
(t (return nil))))))))))
(local ; needed for may-need-slashes-fn; could consider making this non-local
(defthm character-listp-cdr
(implies (character-listp x)
(character-listp (cdr x)))
:rule-classes :forward-chaining))
(defun may-need-slashes-fn (x print-base)
; We determine if the string x, a symbol name or symbol-package name, should be
; printed using |..|. The main ideas are to escape lower-case characters and
; to avoid the possibility of reading the printed result back in as a number
; instead of a symbol.
; More precisely: This function should return true if x represents a potential
; number, and ideally only if that is the case (in order to avoid needless use
; of |..|). The notion of "potential number" is discussed below. We perhaps
; escape more than necessary if print-base is 2, 4, or 8; the Common Lisp spec
; may not be clear on this, and anyhow it's simplest to be conservative and
; treat those bases as we treat base 10.
; The following four paragraphs from from Section 22.1.2 of CLtL2 ("Common Lisp
; the Language", 2nd Edition, by Guy L. Steele, Jr.) explains why we give
; separate consideration to the symbol-package-name and symbol-name.
; If there is a single package marker, and it occurs at the beginning of the
; token, then the token is interpreted as a keyword, that is, a symbol in
; the keyword package. The part of the token after the package marker must
; not have the syntax of a number.
; If there is a single package marker not at the beginning or end of the
; token, then it divides the token into two parts. The first part specifies
; a package; the second part is the name of an external symbol available in
; that package. Neither of the two parts may have the syntax of a number.
; If there are two adjacent package markers not at the beginning or end of
; the token, then they divide the token into two parts. The first part
; specifies a package; the second part is the name of a symbol within that
; package (possibly an internal symbol). Neither of the two parts may have
; the syntax of a number.
; X3J13 voted in March 1988 (COLON-NUMBER) to clarify that, in the
; situations described in the preceding three paragraphs, the restriction on
; the syntax of the parts should be strengthened: none of the parts may have
; the syntax of even a potential number. Tokens such as :3600, :1/2, and
; editor:3.14159 were already ruled out; this clarification further declares
; that such tokens as :2^ 3, compiler:1.7J, and Christmas:12/25/83 are also
; in error and therefore should not be used in portable
; programs. Implementations may differ in their treatment of such
; package-marked potential numbers.
; The following paragraph from a copy of the ANSI standard provides general
; guidance for printing symbols. We keep things simple by doing our escaping
; using |..|.
; When printing a symbol, the printer inserts enough single escape and/or
; multiple escape characters (backslashes and/or vertical-bars) so that if
; read were called with the same *readtable* and with *read-base* bound to
; the current output base, it would return the same symbol (if it is not
; apparently uninterned) or an uninterned symbol with the same print name
; (otherwise).
;
; For example, if the value of *print-base* were 16 when printing the symbol
; face, it would have to be printed as \FACE or \Face or |FACE|, because the
; token face would be read as a hexadecimal number (decimal value 64206) if
; the value of *read-base* were 16.
;
; Now, ACL2 never sets the read-base to 10, and indeed it only allows setting
; of its own print-base (i.e., state global 'print-base rather than Lisp
; variable *print-base*). Nevertheless we take a conservative interpretation
; of the paragraph immediately above: if the ACL2 print-base is 16, then we
; print a symbol as though it may be read back in base 16, which could happen
; if the user submits the result to raw Lisp.
;
; Back to the same CLtL2 section as above, we find the following syntax for
; numbers.
; Table 22-2: Actual Syntax of Numbers
;
; number ::= integer | ratio | floating-point-number
; integer ::= [sign] {digit}+ [decimal-point]
; ratio ::= [sign] {digit}+ / {digit}+
; floating-point-number ::= [sign] {digit}* decimal-point {digit}+ [exponent]
; | [sign] {digit}+ [decimal-point {digit}*] exponent
; sign ::= + | -
; decimal-point ::= .
; digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
; exponent ::= exponent-marker [sign] {digit}+
; exponent-marker ::= e | s | f | d | l | E | S | F | D | L
; But instead of escaping strings that represent numbers, we escape strings
; that represent potential numbers. Quoting again from that same section of
; CLtL2:
;
; To allow for extensions to the syntax of numbers, a syntax for
; potential numbers is defined in Common Lisp that is more general
; than the actual syntax for numbers. Any token that is not a
; potential number and does not consist entirely of dots will always
; be taken to be a symbol, now and in the future; programs may rely on
; this fact. Any token that is a potential number but does not fit the
; actual number syntax defined below is a reserved token and has an
; implementation-dependent interpretation; an implementation may
; signal an error, quietly treat the token as a symbol, or take some
; other action. Programmers should avoid the use of such reserved
; tokens. (A symbol whose name looks like a reserved token can always
; be written using one or more escape characters.)
;
; ...
;
; A token is a potential number if it satisfies the following requirements:
;
; * It consists entirely of digits, signs (+ or -), ratio markers
; (/), decimal points (.), extension characters (^ or _), and
; number markers. (A number marker is a letter. Whether a letter
; may be treated as a number marker depends on context, but no
; letter that is adjacent to another letter may ever be treated
; as a number marker. Floating-point exponent markers are
; instances of number markers.)
;
; * It contains at least one digit. (Letters may be considered to
; be digits, depending on the value of *read-base*, but only in
; tokens containing no decimal points.)
;
; * It begins with a digit, sign, decimal point, or extension character.
;
; * It does not end with a sign.
; Below are examples.
; (defconst *a*
; '(
; ; Treat symbol package and name separately. Numeric strings need escaping.
; :|3| :|3G| :|33| |ACL2-PC|::|3| ; pkg is numeric except single letters
; ; :|3| :|3G| :|33| ACL2-PC::|3|
;
; ; None of the following strings gives a potential number in base 10: "no letter
; ; that is adjacent to another letter may ever be treated as a number marker".
; ; All these strings represent numbers in base 16.
; |ABC| |3BC| |+3BC| |-3BC|
; ;16 |ABC| |3BC| |+3BC| |-3BC|
; ;10 ABC 3BC +3BC -3BC
;
; ; Allegro gets this wrong, but ACL2 gets it right: potential number!
; |_345|
; ; |_345| ; SBCL 1.0.19, LispWorks 4.4.6, CMU CL 19e, CLISP 2.41, GCL 2.6.7
; ; _345 ; [wrong] Allegro 8.0, CCL 1.2
;
; ; Also not potential numbers, even in base 16: the first because of the decimal
; ; point (for base 16), the second because of the underscore, and the third
; ; because of consecutive letters that are not digits even in base 16.
; |A/B+.C| |3A3GG3|
; ; A/B+.C 3A3GG3
;
; ; Potential number because letters are not consecutive.
; |3A3G3|
; ; |3A3G3|
;
; ; Not potential numbers: must begin with a digit, sign, decimal point, or
; ; extension character, and cannot end with a sign.
; |/12| |12+| |12C-|
; ; /12 12+ 12C-
;
; ; Must contain at least one digit.
; |+A|
; ;16 |+A|
; ;10 +A
; ))
;
; (defconst *b*
;
; ; This example is from CLtL2 with the following explanation given there:
;
; ; As examples, the following tokens are potential numbers, but they are not
; ; actually numbers as defined below, and so are reserved tokens. (They do
; ; indicate some interesting possibilities for future extensions.) So all
; ; should have verticle bars.
;
; '(|1B5000| ; oddly, GCL skips the vertical bars for this first one
; |777777Q| |1.7J| |-3/4+6.7J| |12/25/83| |27^19| |3^4/5| |6//7| |3.1.2.6|
; |^-43^| |3.141_592_653_589_793_238_4| |-3.7+2.6I-6.17J+19.6K|))
;
; (defconst *c*
;
; ; This example is from CLtL2 with the following explanation given there:
;
; ; The following tokens are not potential numbers but are always treated as
; ; symbols:
;
; '(|/| |/5| |+| |1+| |1-| |FOO+| |AB.CD| |_| |^| |^/-|))
;
; (defconst *d*
;
; ; From CLtL2, we see that we need |..| for each of the following in base 16 but
; ; for none of them in base 10.
;
; ; This example is from CLtL2 with the following explanation given there:
;
; ; The following tokens are potential numbers if the value of *read-base* is 16
; ; (an abnormal situation), but they are always treated as symbols if the value
; ; of *read-base* is 10 (the usual value):
;
; '(|BAD-FACE| |25-DEC-83| |A/B| |FAD_CAFE| |F^|))
;
; ; Now try check the answers:
;
; (set-print-base 16)
; (list *a* *b* *c* *d*)
; (set-print-base 10)
; (list *a* *b* *c* *d*)
(declare (type string x))
#+acl2-loop-only
(let* ((l (coerce x 'list))
(print-base
; Treat the base as 10 instead of 16 if there is a decimal point, as per the
; definition of potential number.
(if (and (eql print-base 16) (member #\. l))
10
print-base))
(numeric-chars (numeric-chars print-base))
(suspiciously-first-numeric-chars
(suspiciously-first-numeric-chars print-base)))
(or (null l)
; Keep the following conjunction in sync with potential-numberp.
(and (or (member (car l) numeric-chars)
(and (member (car l) suspiciously-first-numeric-chars)
(intersectp (cdr l) numeric-chars)))
(not (member (car (last l))
'(#\+ #\-)))
(may-need-slashes1 (cdr l) nil
(cons #\/ suspiciously-first-numeric-chars)))
(some-slashable l)))
#-acl2-loop-only
(let ((len (length (the string x))))
(declare (type fixnum len)) ; fixnum by Section 15.1.1.2 of CL Hyperspec
(when (eql print-base 16)
(do ((i 0 (1+ i))) ((= i len) nil)
(declare (type fixnum i))
(let ((ch (aref (the string x) i)))
(declare (type character ch))
(cond ((eql ch #\.)
(setq print-base 10)
(return))))))
(or (int= len 0)
(potential-numberp x len print-base)
(do ((i 0 (1+ i))) ((= i len) nil)
(declare (type fixnum i))
(let ((ch (char-code (aref (the string x) i))))
(declare (type fixnum ch))
(cond ((svref *slashable-array* ch)
(return t))))))))
(defmacro may-need-slashes (x &optional (print-base '10))
; This macro is deprecated; see needs-slashes instead. For backward
; compatibility (e.g., in community book books/misc/hons-help.lisp), the
; print-base is optional. For our own convenience, we allow that argument to
; be t in the normal case, where we take the print-base from the state.
`(may-need-slashes-fn ,x ,print-base))
(defun needs-slashes (x state)
(declare (xargs :guard (and (stringp x)
(state-p state)
(boundp-global 'print-escape state)
(boundp-global 'print-readably state)
(boundp-global 'print-base state))))
(and (or (f-get-global 'print-escape state)
(f-get-global 'print-readably state))
(may-need-slashes-fn x (print-base))))
; T-STACK
#-acl2-loop-only
(progn
(defparameter *t-stack* (make-array$ 5))
(defparameter *t-stack-length* 0)
)
(defun t-stack-length1 (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from t-stack-length1
*t-stack-length*)))
(length (t-stack state-state)))
(defun t-stack-length (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (state-p1 state-state)))
(t-stack-length1 state-state))
(defun make-list-ac (n val ac)
(declare (xargs :guard (and (integerp n)
(>= n 0))))
(cond ((zp n) ac)
(t (make-list-ac (1- n) val (cons val ac)))))
#+acl2-loop-only
(defmacro make-list (size &key initial-element)
":Doc-Section ACL2::ACL2-built-ins
make a list of a given size~/
For a nonnegative integer ~c[size], ~c[(Make-list size)] is a list of
elements of length ~c[size], each of which is initialized to the
~c[:initial-element] (which defaults to ~c[nil]).~/
~c[Make-list] is a macro in ACL2, defined in terms of a tail
recursive function ~c[make-list-ac] whose ~il[guard] requires ~c[size] to
be a nonnegative integer. ~c[Make-list] is a Common Lisp function.
See any Common Lisp documentation for more information.~/"
`(make-list-ac ,size ,initial-element nil))
(defun extend-t-stack (n val state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (type (integer (0) *) n) (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'extend-t-stack (list n val))))
(let ((new-length (+ *t-stack-length* n)))
(cond ((> new-length (length (the simple-vector
*t-stack*)))
(let ((new-length new-length))
(declare (type fixnum new-length))
(let ((new-array (make-array$ (* 2 new-length))))
(declare (simple-vector new-array))
(do ((i (1- *t-stack-length*) (1- i)))
((< i 0))
(declare (type fixnum i))
(setf (svref new-array i)
(svref *t-stack* i)))
(setq *t-stack* new-array)))))
(let ((new-length new-length))
(declare (type fixnum new-length))
(do ((i *t-stack-length* (1+ i)))
((= i new-length))
(declare (type fixnum i))
(setf (svref *t-stack* i) val))
(setq *t-stack-length* new-length)))
(return-from extend-t-stack state-state)))
(update-t-stack
(append (t-stack state-state)
(make-list-ac n val nil))
state-state))
(encapsulate
()
(local
(defthm true-listp-nthcdr
(implies (true-listp lst)
(true-listp (nthcdr n lst)))
:rule-classes :type-prescription))
(verify-termination-boot-strap subseq-list)
(local
(defthm character-listp-first-n-ac
(implies (and (character-listp x)
(character-listp y)
(<= n (length x)))
(character-listp (first-n-ac n x y)))))
(local
(defthm len-nthcdr
(implies (and (integerp n)
(<= 0 n)
(<= n (len x)))
(equal (len (nthcdr n x))
(- (len x) n)))))
(local
(defthm character-listp-nthcdr
(implies (character-listp x)
(character-listp (nthcdr n x)))))
(verify-termination-boot-strap subseq))
; The following constants and the next two functions, pathname-os-to-unix and
; pathname-unix-to-os, support the use of Unix-style filenames in ACL2 as
; described in the Essay on Pathnames in interface-raw.lisp.
; The following constants represent our decision to use Unix-style pathnames
; within ACL2. See the Essay on Pathnames in interface-raw.lisp.
(defconst *directory-separator*
#\/)
(defconst *directory-separator-string*
(string *directory-separator*))
(defmacro os-er (os fnname)
`(illegal ,fnname
"The case where (os (w state)) is ~x0 has not been handled by the ~
ACL2 implementors for the function ~x1. Please inform them of this ~
problem."
(list (cons #\0 ,os)
(cons #\1 ,fnname))))
(defun os (wrld)
(declare (xargs :guard (plist-worldp wrld)))
(global-val 'operating-system wrld))
(local (in-theory (enable boundp-global1)))
(verify-guards w)
(verify-guards hons-enabledp)
(verify-guards set-serialize-character)
(defun mswindows-drive1 (filename)
(declare (xargs :mode :program))
(let ((pos-colon (position #\: filename))
(pos-sep (position *directory-separator* filename)))
(cond (pos-colon (cond ((eql pos-sep (1+ pos-colon))
; In Windows, it appears that the value returned by truename can start with
; (for example) "C:/" or "c:/" depending on whether "c" is capitalized in the
; input to truename. Indeed, quoting
; http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx:
; Volume designators (drive letters) are similarly case-insensitive. For
; example, "D:\" and "d:\" refer to the same volume.
; So we take responsibility for canonicalizing, here.
(string-upcase (subseq filename 0 pos-sep)))
(t (illegal 'mswindows-drive1
"Implementation error: Unable to ~
compute mswindows-drive for ~
cbd:~%~x0~%(Implementor should see ~
function mswindows-drive),"
(list (cons #\0 filename))))))
(t nil))))
(defun mswindows-drive (filename state)
; We get the drive from filename if possible, else from cbd.
(declare (xargs :mode :program))
(or (and (eq (os (w state)) :mswindows)
(or (and filename (mswindows-drive1 filename))
(let ((cbd (f-get-global 'connected-book-directory state)))
(cond (cbd (mswindows-drive1 cbd))
(t (illegal 'mswindows-drive
"Implementation error: Cbd is nil when ~
attempting to set mswindows-drive."
nil))))))
""))
(defun pathname-os-to-unix (str os state)
; This function takes a pathname string in the host OS syntax and converts it
; to Unix syntax.
(declare (xargs :mode :program))
(if (equal str "")
str
(case os
(:unix str)
((:apple :mswindows)
(let ((sep (if (eq os :apple) #\: #\\)))
(let* ((relative-p-apple ; relevant only for apple
(eql (char str 0) sep))
(str0 (substitute
*directory-separator* sep
(cond
((eq os :mswindows)
str)
(relative-p-apple (subseq str 1 (length str)))
(t str)))))
(cond
((and (eq os :apple)
(not relative-p-apple))
(string-append *directory-separator-string* str0))
((and (eq os :mswindows)
(eql (char str0 0) *directory-separator*))
; Warning: Do not append the drive if there is already a drive present. We
; rely on this in LP, where we initialize state global 'system-books-dir
; using unix-full-pathname (which calls pathname-os-to-unix) based on
; environment variable ACL2_SYSTEM_BOOKS, which might already have a drive that
; differs from that of the user.
(string-append (mswindows-drive nil state)
str0))
(t
str0)))))
(otherwise (os-er os 'pathname-os-to-unix)))))
#+(and (not acl2-loop-only) ccl)
(defun ccl-at-least-1-3-p ()
(and (boundp 'ccl::*openmcl-major-version*)
(boundp 'ccl::*openmcl-minor-version*)
(if (eql (symbol-value 'ccl::*openmcl-major-version*) 1)
(> (symbol-value 'ccl::*openmcl-minor-version*) 2)
(> (symbol-value 'ccl::*openmcl-major-version*) 1))))
(defun pathname-unix-to-os (str state)
; This function takes a Unix-style pathname string and converts it to a
; filename in the host OS. In the case of :mswindows, the "Unix-style"
; filename may or may not start with the drive, but the result definitely does.
(declare (xargs :mode :program))
#+(and (not acl2-loop-only) ccl mswindows)
; We believe that CCL 1.2 traffics in Unix-style pathnames, so it would be a
; mistake to convert them to use #\\, because then (for example) probe-file may
; fail. However, we will allow Windows-style pathnames for CCL Versions 1.3
; and beyond, based on the following quote from
; http://trac.clozure.com/ccl/wiki/WindowsNotes (4/30/09):
; Windows pathnames can use either forward-slash or backward-slash characters
; as directory separators. As of the 1.3 release, CCL should handle
; namestrings which use either forward- or backward-slashes; some prereleases
; and release-candidates generally had difficulty with backslashes.
(when (not (ccl-at-least-1-3-p))
(return-from pathname-unix-to-os str))
(if (equal str "")
str
(let ((os (os (w state))))
(case os
(:unix str)
((:apple :mswindows)
(let ((sep (if (eq os :apple) #\: #\\)))
(if (position sep str)
(illegal 'pathname-unix-to-os
"Unable to convert pathname ~p0 for OS ~p1 because ~
character ~p2 occurs in that pathname string at position ~p3."
(list (cons #\0 str)
(cons #\1 os)
(cons #\2 sep)
(cons #\3 (position sep str))))
(let* ((sep-is-first (eql (char str 0) *directory-separator*))
(str0 (substitute sep *directory-separator*
(if (and (eq os :apple)
sep-is-first)
(subseq str 1 (length str))
str))))
(if (eq os :apple)
(if sep-is-first
str0
(string-append ":" str0))
(if sep-is-first
(string-append (mswindows-drive nil state)
str0)
str0))))))
(otherwise (os-er os 'pathname-unix-to-os))))))
(defun shrink-t-stack (n state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (type (integer 0 *) n)
(xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'shrink-t-stack (list n))))
(let ((old *t-stack-length*)
(new (max 0 (- *t-stack-length* n))))
(declare (type fixnum old new))
(setq *t-stack-length* new)
(do ((i new (1+ i))) ((= i old))
(declare (type fixnum i))
(setf (svref *t-stack* i) nil)))
(return-from shrink-t-stack *the-live-state*)))
(update-t-stack
(first-n-ac (max 0 (- (length (t-stack state-state)) n))
(t-stack state-state)
nil)
state-state))
(defun aref-t-stack (i state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(declare (type fixnum i))
(declare (xargs :guard (and (integerp i)
(>= i 0)
(state-p1 state-state)
(< i (t-stack-length1 state-state)))))
(cond #-acl2-loop-only
((live-state-p state-state)
(svref *t-stack* (the fixnum i)))
(t (nth i (t-stack state-state)))))
(defun aset-t-stack (i val state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(declare (type fixnum i))
(declare (xargs :guard (and (integerp i)
(>= i 0)
(state-p1 state-state)
(< i (t-stack-length1 state-state)))))
(cond #-acl2-loop-only
((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'aset-t-stack (list i val))))
(setf (svref *t-stack* (the fixnum i))
val)
state-state)
(t (update-t-stack
(update-nth
i val
(t-stack state-state))
state-state))))
; 32-bit-integer-stack
#-acl2-loop-only
(progn
(defparameter *32-bit-integer-stack*
(make-array$ 5 :element-type '(signed-byte 32)))
(defparameter *32-bit-integer-stack-length* 0)
)
(defun 32-bit-integer-stack-length1 (state-state)
(declare (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from 32-bit-integer-stack-length1
*32-bit-integer-stack-length*)))
(length (32-bit-integer-stack state-state)))
(defun 32-bit-integer-stack-length (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (state-p1 state-state)))
(32-bit-integer-stack-length1 state-state))
(defun extend-32-bit-integer-stack (n val state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (xargs :guard (and (32-bit-integerp val)
(integerp n)
(> n 0)
(state-p1 state-state))))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'extend-32-bit-integer-stack (list n val))))
(let ((new-length (+ *32-bit-integer-stack-length* n)))
(cond ((> new-length (length (the (array (signed-byte 32) (*))
*32-bit-integer-stack*)))
(let ((new-length new-length))
(declare (type fixnum new-length))
(let ((new-array (make-array$
(* 2 new-length)
:element-type
'(signed-byte 32))))
(declare (type (array (signed-byte 32) (*)) new-array))
(do ((i (1- *32-bit-integer-stack-length*) (1- i)))
((< i 0))
(declare (type fixnum i))
(setf (aref (the (array (signed-byte 32) (*))
new-array)
i)
(aref (the (array (signed-byte 32) (*))
*32-bit-integer-stack*)
i)))
(setq *32-bit-integer-stack* new-array)))))
(let ((new-length new-length))
(declare (type fixnum new-length))
(do ((i *32-bit-integer-stack-length* (1+ i)))
((= i new-length))
(declare (type fixnum i))
(setf (aref (the (array (signed-byte 32) (*))
*32-bit-integer-stack*)
i) val))
(setq *32-bit-integer-stack-length* new-length)))
(return-from extend-32-bit-integer-stack
state-state)))
(update-32-bit-integer-stack
(append (32-bit-integer-stack state-state)
(make-list-ac n val nil))
state-state))
(defun shrink-32-bit-integer-stack (n state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
(declare (type (integer 0 *) n)
(xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'shrink-32-bit-integer-stack (list n))))
(let ((old *32-bit-integer-stack-length*)
(new (max 0 (- *32-bit-integer-stack-length* n))))
(declare (type fixnum old new))
(setq *32-bit-integer-stack-length* new)
(do ((i new (1+ i))) ((= i old))
(declare (type fixnum i))
(setf (aref (the (array (signed-byte 32) (*))
*32-bit-integer-stack*)
i)
0)))
(return-from shrink-32-bit-integer-stack
state-state)))
(update-32-bit-integer-stack
(first-n-ac
(max 0 (- (length (32-bit-integer-stack
state-state))
n))
(32-bit-integer-stack state-state)
nil)
state-state))
(defun aref-32-bit-integer-stack (i state-state)
#-acl2-loop-only
(declare (type fixnum i))
(declare (xargs :guard (and (integerp i)
(>= i 0)
(state-p1 state-state)
(< i (32-bit-integer-stack-length1
state-state)))))
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(the (signed-byte 32)
(cond
((live-state-p state-state)
(the (signed-byte 32)
(aref (the (array (signed-byte 32) (*))
*32-bit-integer-stack*)
(the fixnum i))))
(t (nth i (32-bit-integer-stack state-state)))))
#+acl2-loop-only
(nth i (32-bit-integer-stack state-state)))
(defun aset-32-bit-integer-stack (i val state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(declare (type fixnum i))
(declare (type (signed-byte 32) val))
(declare (xargs :guard (and (integerp i)
(>= i 0)
(state-p1 state-state)
(< i (32-bit-integer-stack-length1 state-state))
(32-bit-integerp val))))
(cond #-acl2-loop-only
((live-state-p state-state)
(cond (*wormholep*
(wormhole-er 'aset-32-bit-integer-stack (list i val))))
(setf (aref (the (array (signed-byte 32) (*))
*32-bit-integer-stack*)
(the fixnum i))
(the (signed-byte 32)
val))
state-state)
(t
(update-32-bit-integer-stack
(update-nth
i val
(32-bit-integer-stack state-state))
state-state))))
(defmacro f-big-clock-negative-p (st)
#-acl2-loop-only
(let ((s (gensym)))
`(let ((,s ,st))
(cond ((live-state-p ,s) nil)
(t (big-clock-negative-p ,s)))))
#+acl2-loop-only
(list 'big-clock-negative-p st))
(defmacro f-decrement-big-clock (st)
#-acl2-loop-only
(let ((s (gensym)))
`(let ((,s ,st))
(cond ((live-state-p ,s)
; Because there is no way to get the big-clock-entry for
; *the-live-state* we do not have to prevent the field from changing
; when *wormholep* is true.
*the-live-state*)
(t (decrement-big-clock ,s)))))
#+acl2-loop-only
(list 'decrement-big-clock st))
; ??? (v. 1.8) I think it would be simpler to check for "zero-ness" rather
; than negativity, using zp. For now I won't touch the following or
; related functions.
(defun big-clock-negative-p (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; big-clock-negative-p plays a crucial role in the termination of ev,
; translate1, and rewrite. The justification for big-clock-negative-p
; never returning t when given *the-live-state* be found in a comment
; on ld, where it is explained that a (constructive) existential
; quantifier is used in semantics of a top-level interaction with ld.
; Any ld interaction that completes will have called
; big-clock-decrement at most a finite number of times. The number of
; these calls will provide an appropriate value for the
; big-clock-entry for that interaction.
(declare (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from big-clock-negative-p nil)))
(< (big-clock-entry state-state) 0))
(defun decrement-big-clock (state-state)
; Wart: We use state-state instead of state because of a bootstrap problem.
; decrement-big-clock is the one function which is permitted to
; violate the rule that any function which is passed a state and
; modifies it must return it. A function that is passed state may
; pass one down the result of apply decrement-big-clock to the given
; state. decrement-big-clock is exempted from the requirement because
; there are means internal or external to ACL2 for perceiving the
; current big-clock value.
(declare (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
; Because there is no way to get the big-clock-entry for
; *the-live-state* we do not have to prevent the field from changing
; when *wormholep* is true.
(return-from decrement-big-clock *the-live-state*)))
(update-big-clock-entry
(1- (big-clock-entry state-state))
state-state))
(defun list-all-package-names (state-state)
(declare (xargs :guard (state-p1 state-state)))
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from list-all-package-names
(mv (mapcar (function package-name)
(list-all-packages))
state-state))))
(mv (car (list-all-package-names-lst state-state))
(update-list-all-package-names-lst
(cdr (list-all-package-names-lst state-state))
state-state)))
(defun user-stobj-alist (state-state)
(declare (xargs :guard (state-p1 state-state)))
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from user-stobj-alist *user-stobj-alist*)))
(user-stobj-alist1 state-state))
(defun update-user-stobj-alist (x state-state)
(declare (xargs :guard (and (symbol-alistp x)
(state-p1 state-state))))
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(cond ((live-state-p state-state)
(setq *user-stobj-alist* x)
(return-from update-user-stobj-alist *the-live-state*)))
(update-user-stobj-alist1 x state-state))
(defun power-eval (l b)
(declare (xargs :guard (and (rationalp b)
(rational-listp l))))
(if (endp l)
0
(+ (car l) (* b (power-eval (cdr l) b)))))
#-acl2-loop-only
(defun-one-output idate ()
(power-eval
(let (ans)
(do ((i 1 (1+ i))
(tl (multiple-value-list (get-decoded-time)) (cdr tl)))
((> i 6) (reverse ans))
(push (cond ((= i 6) (- (car tl) 1900))
(t (car tl)))
ans))
(reverse ans))
100))
(defun read-idate (state-state)
(declare (xargs :guard (state-p1 state-state)))
; Wart: We use state-state instead of state because of a bootstrap problem.
#-acl2-loop-only
(cond ((live-state-p state-state)
; Because there is no way for the user to know what the idates of the original
; state were, there is no way to tell whether we changed them. So we permit
; read-idate to work even when *wormholep* is non-nil.
(return-from read-idate (mv (idate) state-state))))
(mv (cond ((null (idates state-state))
0)
(t (car (idates state-state))))
(update-idates (cdr (idates state-state)) state-state)))
#-acl2-loop-only
(defun get-internal-time ()
(if (f-get-global 'get-internal-time-as-realtime *the-live-state*)
(get-internal-real-time)
(get-internal-run-time)))
(defdoc get-internal-time
":Doc-Section Miscellaneous
runtime vs. realtime in ACL2 timings~/
The ACL2 system provides utilities that deal with elapsed time. The most
visible of these is in the time summaries printed when completing evaluation
of ~il[events]. For others, ~pl[with-prover-time-limit], ~pl[read-run-time],
~pl[time-tracker], ~pl[time-tracker-tau], and ~pl[pstack].
By default, these utilities all use an underlying notion of run time provided
by the host Common Lisp implementation: specifically, Common Lisp function
~c[get-internal-run-time]. However, Common Lisp also provides function
~c[get-internal-run-time], which returns the real time (wall clock time).
While the latter is specified to measure elapsed time, the former is left to
the implementation, which might well only measure time spent in the Lisp
process. Consider the following example, which is a bit arcane but basically
sleeps for 2 seconds.
~bv[]
(defttag t) ; to allow sys-call
(make-event
(prog2$ (sys-call \"sleep\" '(\"2\"))
(value '(value-triple nil))))
~ev[]
A typical time summary might be as follows, drastically under-reporting the
elapsed time.
~bv[]
Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
~ev[]
However, you can instruct ACL2 to switch to using elapsed time (run time), in
summaries and elsewhere, by evaluating the following form.
~bv[]
(assign get-internal-time-as-realtime t)
~ev[]
To return to using runtime:
~bv[]
(assign get-internal-time-as-realtime nil)
~ev[]
While the above example is rather silly, the issue becomes significant in
time summaries for proofs that call out to external tools (~pl[sys-call] and
~pl[clause-processor]).
Note that a function ~c[get-internal-time] is defined in raw Lisp but is not
available inside the ACL2 loop. However, the expression
~c[(read-run-time state)] provides an interface to this function that is
available inside the ACL2 loop; ~pl[read-run-time].
We are open to changing the default to elapsed wall-clock time (realtime),
and may do so in future ACL2 releases.~/~/")
(defun read-run-time (state-state)
":Doc-Section ACL2::ACL2-built-ins
read elapsed runtime~/
By default, ~c[(read-run-time state)] returns ~c[(mv runtime state)], where
runtime is the elapsed runtime in seconds since the start of the current ACL2
session and ~c[state] is the resulting ACL2 ~il[state]. But
~c[read-run-time] can be made to return elapsed realtime (wall clock time)
instead; ~pl[get-internal-time].~/
The logical definition probably won't concern many users, but for
completeness, we say a word about it here. That definition uses the function
~c[read-acl2-oracle], which modifies state by popping the value to return
from its acl2-oracle field.~/"
(declare (xargs :guard (state-p1 state-state)))
; Wart: We use state-state instead of state because of a bootstrap problem.
; See also read-acl2-oracle.
#-acl2-loop-only
(cond ((live-state-p state-state)
; Because there is no way for the user to know the acl2-oracle of the original
; state, there is no way to tell whether we changed it. So we permit
; read-run-time to work even when *wormholep* is non-nil.
(return-from read-run-time
(mv (/ (get-internal-time)
internal-time-units-per-second)
state-state))))
(mv (cond ((or (null (acl2-oracle state-state))
(not (rationalp (car (acl2-oracle state-state)))))
0)
(t (car (acl2-oracle state-state))))
(update-acl2-oracle (cdr (acl2-oracle state-state)) state-state)))
#-acl2-loop-only
(defparameter *next-acl2-oracle-value* nil)
(defun read-acl2-oracle (state-state)
; Keep in sync with #+acl2-par read-acl2-oracle@par.
(declare (xargs :guard (state-p1 state-state)))
; Wart: We use state-state instead of state because of a bootstrap problem.
; See also read-run-time.
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from read-acl2-oracle
(let ((val *next-acl2-oracle-value*))
(setq *next-acl2-oracle-value* nil)
(mv nil val state-state)))))
(mv (null (acl2-oracle state-state))
(car (acl2-oracle state-state))
(update-acl2-oracle (cdr (acl2-oracle state-state)) state-state)))
#+acl2-par
(defun read-acl2-oracle@par (state-state)
; Keep in sync with read-acl2-oracle.
; Note that this function may make it possible to evaluate (equal X X) and
; return nil, for a suitable term X. Specifically, it may be the case that the
; term (equal (read-acl2-oracle@par state) (read-acl2-oracle@par state)) can
; evaluate to nil. More likely, something like
; (equal (read-acl2-oracle@par state)
; (prog2$ <form> (read-acl2-oracle@par state)))
; could evaluate to nil, if <form> sets *next-acl2-oracle-value* under the
; hood. However, we are willing to live with such low-likelihood risks in
; ACL2(p).
(declare (xargs :guard (state-p1 state-state)))
#-acl2-loop-only
(cond ((live-state-p state-state)
(return-from read-acl2-oracle@par
(let ((val *next-acl2-oracle-value*))
(setq *next-acl2-oracle-value* nil)
(mv nil val state-state)))))
(mv (null (acl2-oracle state-state))
(car (acl2-oracle state-state))))
#-acl2-par
(defun read-acl2-oracle@par (state-state)
; We have included read-acl2-oracle@par in *super-defun-wart-table*, in support
; of ACL2(p). But in order for ACL2(p) and ACL2 to be logically compatible, a
; defconst should have the same value in #+acl2-par as in #-acl2-par; so
; read-acl2-oracle@par is in *super-defun-wart-table* for #-acl2-par too, not
; just #+acl2-par.
; Because of that, if the function read-acl2-oracle@par were only defined in
; #+acl2-par, then a normal ACL2 user could define read-acl2-oracle@par and
; take advantage of such special treatment, which we can imagine is
; problematic. Rather than think hard about whether we can get away with that,
; we eliminate such a user option by defining this function in #-acl2-par.
(declare (xargs :guard (state-p1 state-state))
(ignore state-state))
(mv (er hard? 'read-acl2-oracle@par
"The function symbol ~x0 is reserved but may not be executed."
'read-acl2-oracle@par)
nil))
(defun getenv$ (str state)
":Doc-Section ACL2::ACL2-built-ins
read an environment variable~/
~c[(Getenv$ str state)], where ~c[str] is a string, reads the value of
environment variable ~c[str], returning a value of ~c[nil] if none is found
or if the read fails. The logical story is that ~c[getenv$] reads its value
from the ~c[oracle] field of the ACL2 ~ilc[state]. The return value is thus
a triple of the form ~c[(mv erp val state)], where ~c[erp] will always be
~c[nil] in practice, and logically, ~c[val] is the top of the acl2-oracle
field of the state and the returned state has the updated (popped)
acl2-oracle.
~bv[]
Example:
(getenv$ \"PWD\" state) ==> (mv nil \"/u/joe/work\" state)
~ev[]
Also ~pl[setenv$].~/~/"
(declare (xargs :stobjs state :guard (stringp str)))
#+acl2-loop-only
(declare (ignore str))
#-acl2-loop-only
(when (live-state-p state)
(return-from getenv$
(value (and (stringp str) (getenv$-raw str)))))
(read-acl2-oracle state))
(defun setenv$ (str val)
":Doc-Section ACL2::ACL2-built-ins
set an environment variable~/
~c[(Setenv$ str val)], where ~c[str] and ~c[val] are strings, sets the
environment variable ~c[str] to have value ~c[val], for subsequent read by
~c[getenv$] (~pl[getenv$]), and returns ~c[nil]. Or, if this operation is
not implemented for the host Common Lisp, an error will occur.
~bv[]
Example:
(setenv$ \"FOO\" \"BAR\")
~ev[]~/
It may be surprising that ~c[setenv$] returns ~c[nil]; indeed, it neither
takes nor returns the ACL2 ~il[state]. The reason is that ~ilc[getenv$]
takes responsibility for trafficking in ~il[state]; it is defined in the
logic using the function ~c[read-acl2-oracle], which (again, in the logic)
does modify state, by popping an entry from its acl2-oracle field.
~il[getenv$].~/"
(declare (xargs :guard (and (stringp str)
(stringp val))))
#+acl2-loop-only
(declare (ignore str val))
#-acl2-loop-only
(when (and (stringp str) (stringp val))
(or #+cmu
(and (boundp ext::*environment-list*)
(let* ((key (intern str :keyword))
(pair (cdr (assoc-eq key ext::*environment-list*))))
(cond (pair (setf (cdr pair) val))
(t (push (cons key val) ext::*environment-list*)))))
; #+sbcl
; The following is the best we could come up with for SBCL, but it
; didn't work.
; (nconc (posix-environ) (list (format nil "~a=~a" str val)))
#+allegro
(setf (sys::getenv str) val)
#+clisp
(setf (ext::getenv str) val)
#+(or gcl allegro lispworks ccl sbcl clisp)
(let ((fn
#+gcl 'si::setenv
#+lispworks 'hcl::setenv
#+ccl 'ccl::setenv))
(and (fboundp fn)
(funcall fn str val)))
(error "Setenv$ is not available for this host Common Lisp. ~%~
If you know a way to provide this functionality for ~%~
this host Common Lisp, please contact the ACL2 ~%~
implementors.")))
nil)
(defun random$ (limit state)
":Doc-Section ACL2::ACL2-built-ins
obtain a random value~/
~bv[]
Example:
(random$ 10 state) ==> (mv 7 <state>)
~ev[]
~c[(Random$ limit state)], where ~c[limit] is a positive integer, returns a
random non-negative integer together with a new ~ilc[state]. Logically, it
simply returns the first element of a list that is a field of the ACL2
~ilc[state], called the ~c[acl2-oracle], together with the new state
resulting from removing that element from that list. (Except, if that
element is not in range as specified above, then 0 is returned.) However,
~c[random$] actually invokes a Common Lisp function to choose the integer
returned. Quoting from the Common Lisp HyperSpec(TM),
~url[http://www.lispworks.com/documentation/HyperSpec/Front]:
``An approximately uniform choice distribution is used... each of the
possible results occurs with (approximate) probability 1/limit.''
Consider enabling rules ~c[natp-random$] and ~c[random$-linear] if you want
to reason about ~c[random$].~/~/"
(declare (type (integer 1 *) limit)
(xargs :stobjs state))
#-acl2-loop-only
(when (live-state-p state)
(return-from random$
(mv (random limit) state)))
(mv-let (erp val state)
(read-acl2-oracle state)
(mv (cond ((and (null erp) (natp val) (< val limit))
val)
(t 0))
state)))
(defthm natp-random$
(natp (car (random$ n state)))
:rule-classes :type-prescription)
(defthm random$-linear
(and (<= 0 (car (random$ n state)))
(implies (posp n)
(< (car (random$ n state)) n)))
:rule-classes :linear)
(in-theory (disable random$
; We keep the following rules disabled because it seems sad to pay the
; potential performance penalty (as they are hung on car) given how rarely they
; are likely to be used.
natp-random$ random$-linear))
; System calls
#-acl2-loop-only
(defvar *last-sys-call-status* 0)
(defun sys-call (command-string args)
":Doc-Section ACL2::ACL2-built-ins
make a system call to the host operating system~/
~bv[]
Example Forms:
(sys-call \"cp\" '(\"foo.lisp\" \"foo-copied.lisp\"))
(prog2$ (sys-call \"cp\" '(\"foo.lisp\" \"foo-copied.lisp\"))
(sys-call-status state))
~ev[]
The first argument of ~c[sys-call] is a command for the host operating
system, and the second argument is a list of strings that are the arguments
for that command. In GCL and perhaps some other lisps, you can put the
arguments with the command; but this is not the case, for example, in Allegro
CL running on Linux.
For a related utility, ~pl[sys-call+].
The use of ~ilc[prog2$] above is optional, but illustrates a typical sort
of use when one wishes to get the return status. ~l[sys-call-status].~/
~bv[]
General Form:
(sys-call cmd args)
~ev[]
This function logically returns ~c[nil]. However, it makes the indicated
call to the host operating system, as described above, using a function
supplied ``under the hood'' by the underlying Lisp system. On occasions
where one wishes to obtain the numeric status returned by the host operating
system (or more precisely, by the Lisp function under the hood that passes
the system call to the host operating system), one may do so;
~pl[sys-call-status]. The status value is the value returned by that Lisp
function, which may well be the same numeric value returned by the host
operating system for the underlying system call.
Note that ~c[sys-call] does not touch the ACL2 ~ilc[state]; however,
~ilc[sys-call-status] updates the ~c[acl2-oracle] field of the ~c[state].
Be careful if you use ~c[sys-call]! It can be used for example to overwrite
files, or worse! We view a use of ~c[sys-call] as a call to the operating
system that is made outside ACL2. The following example from Bob Boyer shows
how to use ~c[sys-call] to execute, in effect, arbitrary Lisp forms. ACL2
provides a ``trust tag'' mechanism that requires execution of a ~ilc[defttag]
form before you can use ~c[sys-call]; ~pl[defttag]. (Note: The setting of
the raw Lisp variable ~c[*features*] below is just to illustrate that any
such mischief is possible. Normally ~c[*features*] is a list with more than
a few elements.)
~bv[]
% cat foo
print *0x85d2064=0x838E920
detach
q
% acl2
... boilerplate deleted
ACL2 !>(sys-call \"gdb -p $PPID -w < foo >& /dev/null \" nil)
NIL
ACL2 !>:q
Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
ACL2>*features*
(:AKCL-SET-MV)
ACL2>
~ev[]
Finally, we make a comment about output redirection, which also applies to
other related features that one may expect of a shell. ~c[Sys-call] does not
directly support output redirection. If you want to run a program, ~c[P],
and redirect its output, one option is to create a wrapper script, ~c[W]
to call instead. Thus ~c[W] might be a shell script containing the line:
~bv[]
P $* >& foo.out
~ev[]
For a different, more direct solution, ~pl[sys-call+]."
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore command-string args))
#-acl2-loop-only
(let ((rslt (system-call command-string args)))
(progn (setq *last-sys-call-status* rslt)
nil))
#+acl2-loop-only
nil)
(defun sys-call-status (state)
":Doc-Section ACL2::ACL2-built-ins
exit status from the preceding system call~/
This function returns two values, ~c[(mv status state)]. The first is the
status resulting from the most recent invocation of function ~c[sys-call];
~pl[sys-call]. The second is the ACL2 ~ilc[state] object, which is also the
input to this function.~/
The function ~ilc[sys-call] makes a system call to the host operating system
using a function supplied ``under the hood'' by the underlying Lisp system.
The status value is the value returned by that Lisp function, which may well
be the numeric value returned by the host operating system for the underlying
system call. For more information, ~pl[sys-call].~/"
(declare (xargs :stobjs state))
#-acl2-loop-only
(when (live-state-p state)
(return-from sys-call-status
(mv *last-sys-call-status* state)))
(mv-let (erp val state)
(read-acl2-oracle state)
(declare (ignore erp))
(mv val state)))
#-acl2-loop-only
(defun read-file-by-lines (file &optional delete-after-reading)
(let ((acc nil)
(eof '(nil))
missing-newline-p)
(with-open-file
(s file :direction :input)
(loop (multiple-value-bind (line temp)
(read-line s nil eof)
(cond ((eq line eof)
(return acc))
(t
(setq missing-newline-p temp)
(setq acc
(if acc
(concatenate 'string acc (string #\Newline) line)
line)))))))
(when delete-after-reading
(delete-file file))
(if missing-newline-p
acc
(concatenate 'string acc (string #\Newline)))))
#-acl2-loop-only
(defun system-call+ (string arguments)
; Warning: Keep this in sync with system-call.
(let* (exit-code ; assigned below
#+(or gcl clisp)
(tmp-file (format nil
"~a/tmp~s"
(or (f-get-global 'tmp-dir *the-live-state*)
"/tmp")
(getpid$)))
no-error
(output-string
(our-ignore-errors
(prog1
#+gcl ; does wildcard expansion
(progn (setq exit-code
(si::system
(let ((result string))
(dolist
(x arguments)
(setq result (concatenate 'string result " " x)))
(concatenate 'string result " > " tmp-file))))
(read-file-by-lines tmp-file t))
#+lispworks ; does wildcard expansion (see comment below)
(with-output-to-string
(s)
(setq exit-code
(system::call-system-showing-output
; It was tempting to use (cons string arguments). This would cause the given
; command, string, to be applied to the given arguments, without involving the
; shell. But then a command such as "ls" would not work; one would have to
; provide a string such as "/bin/ls". So instead of using a list here, we use
; a string, which according to the LispWorks manual will invoke the shell,
; which will find commands (presumably including built-ins and also using the
; user's path).
(let ((result string))
(dolist
(x arguments)
(setq result (concatenate 'string result " " x)))
result)
:output-stream s
:prefix ""
:show-cmd nil
:kill-process-on-abort t))
#+windows ; process is returned above, not exit code
(setq exit-code nil))
#+allegro ; does wildcard expansion
(multiple-value-bind
(stdout-lines stderr-lines exit-status)
(excl.osi::command-output
(let ((result string))
(dolist
(x arguments)
(setq result (concatenate 'string result " " x)))
result))
(declare (ignore stderr-lines))
(setq exit-code exit-status)
(let ((acc nil))
(loop for line in stdout-lines
do
(setq acc
(if acc
(concatenate 'string
acc
(string #\Newline)
line)
line)))
acc))
#+cmu
(with-output-to-string
(s)
(setq exit-code
(let (temp)
(if (ignore-errors
(progn
(setq temp
(ext:process-exit-code
(common-lisp-user::run-program
string arguments
:output s)))
1))
temp
1))))
#+sbcl
(with-output-to-string
(s)
(setq exit-code
(let (temp)
(if (ignore-errors
(progn
(setq temp
(sb-ext:process-exit-code
(sb-ext:run-program string arguments
:output s
:search t)))
1))
temp
1))))
#+clisp
(progn (setq exit-code
(or (ext:run-program string
:arguments arguments
:output tmp-file)
0))
(read-file-by-lines tmp-file t))
#+ccl
(with-output-to-string
(s)
(setq exit-code
(let* ((proc
(ccl::run-program string arguments
:output s
:wait t))
(status (multiple-value-list
(ccl::external-process-status proc))))
(if (not (and (consp status)
(eq (car status) :EXITED)
(consp (cdr status))
(integerp (cadr status))))
1 ; just some non-zero exit code here
(cadr status)))))
#-(or gcl lispworks allegro cmu sbcl clisp ccl)
(declare (ignore string arguments))
#-(or gcl lispworks allegro cmu sbcl clisp ccl)
(error "SYSTEM-CALL is not yet defined in this Lisp.")
(setq no-error t)))))
(values (cond ((integerp exit-code)
exit-code)
((null exit-code)
(if no-error 0 1))
(t (format t
"WARNING: System-call produced non-integer, ~
non-nil exit code:~%~a~%"
exit-code)
0))
(if (stringp output-string)
output-string
""))))
(encapsulate
()
; Before Version_2.9.3, len-update-nth had the form of the local lemma below.
; It turns out that an easy way to prove the improved version below,
; contributed by Jared Davis, is to prove the old version first as a lemma:
(local
(defthm len-update-nth-lemma
(implies (< (nfix n) (len x))
(equal (len (update-nth n val x))
(len x)))))
(defthm len-update-nth
(equal (len (update-nth n val x))
(max (1+ (nfix n))
(len x)))))
(defthm update-acl2-oracle-preserves-state-p1
(implies (and (state-p1 state)
(true-listp x))
(state-p1 (update-acl2-oracle x state)))
:hints (("Goal" :in-theory (enable state-p1))))
(in-theory (disable update-acl2-oracle))
(defun sys-call+ (command-string args state)
":Doc-Section ACL2::ACL2-built-ins
make a system call to the host OS, returning status and output~/
~bv[]
Example Form:
; The following returns (mv nil s state), where s is the standard output
; from the command: ls -l ./
(sys-call+ \"ls\" '(\"-l\" \"./\") state)
General Form:
(sys-call+ cmd args state)
~ev[]
where ~c[cmd] is a command to the host operating system and ~c[args] is a
list of strings. Also ~pl[sys-call]; but there are two differences between
~ilc[sys-call] and ~c[sys-call+]. First, the latter takes an extra argument,
~c[state]. Second, while ~c[sys-call] returns ~c[nil], ~c[sys-call+] returns
three values: a so-called error triple (~pl[error-triples]),
~c[(mv erp val state)]. While execution returns values as described just
below, further below we explain the logical return values. In the following,
please keep in mind that the exact behavior depends on the platform; the
description is only a guide. For example, on some platforms ~c[erp] might
always be ~c[nil], even if in the error case, and ~c[val] might or might not
include error output. (For details, look at the ACL2 source code for
function ~c[system-call+], whose output is converted by replacing an ~c[erp]
of ~c[nil] by 0.)
~bq[]
~c[Erp] is either ~c[nil] or a non-zero integer. Normally, ~c[nil] indicates
that the command ran without error, and otherwise ~c[erp] is the exit
status.
~c[Val] is a string, typically the output generated by the call of ~c[cmd].
~c[State] is an ACL2 ~il[state].~eq[]
While the description above pertains to the values returned by executing
~c[sys-call+], the logical values are as follows. For a discussion of the
~c[acl2-oracle] field of an ACL2 state, ~pl[state].
~bq[]
~c[Erp] is the first element of the ~c[acl2-oracle] of the input state if
that element is a nonzero integer, and otherwise is ~c[nil].
~c[Val] is the second element of the ~c[acl2-oracle] of the input state if it
is a string, else the empty string, ~c[\"\"].
~c[State] is the result of popping the ~c[acl2-oracle] field twice from the
input state.~eq[]
Note that unlike ~ilc[sys-call], a call of ~ilc[sys-call+] has no effect on
subsequent calls of ~ilc[sys-call-status].
As is the case for ~c[sys-call], a trust tag is required to call
~c[sys-call+]. For discussion of this and more, ~pl[sys-call].~/~/"
(declare (xargs :stobjs state))
#+acl2-loop-only
(declare (ignore command-string args))
#+acl2-loop-only
(mv-let (erp1 erp state)
(read-acl2-oracle state)
(declare (ignore erp1))
(mv-let (erp2 val state)
(read-acl2-oracle state)
(declare (ignore erp2))
(mv (and (integerp erp)
(not (eql 0 erp))
erp)
(if (stringp val) val "")
state)))
#-acl2-loop-only
(multiple-value-bind
(status rslt)
(system-call+ command-string args)
(mv (if (eql status 0)
nil
status)
rslt
state)))
; End of system calls
; Time: idate, run-time, and timers.
; Time is a very nonapplicative thing. What is it doing in an
; applicative programming language and verification system? Formally,
; read time and cpu time are simply components of state which are
; lists of numbers about which we say nothing, not even that they are
; ascending. In actual practice, the numbers that we provide
; correspond to the universal time and the cpu time at the moment that
; read-idate and read-run-time are called.
; We provide a mechanism for the user to report real time and to keep
; track of and report cpu time, but we do not let the user do anything
; with times except print them, so as to keep computations entirely
; deterministic for read-book. We prohibit the user from accessing
; the internal timing subroutines and state variables by putting them
; on untouchables. (If we ever implement a file system, then of
; course the nondeterminism of read-book will be shattered because a
; user could check what sort of io was being generated.)
; The user can print the current date in a format we call the idate by
; calling (print-current-idate channel state).
; To keep track of the cpu time used in a way we find congenial, we
; implement a facility called timers. A ``timer'' is a symbolp with
; an associated value in the timer-alistp called the 'timer-alist,
; stored in the global table of state. Typically the value of a timer
; is a list of rationals, treated as a stack. One may have many such
; timers. As of this writing, the ACL2 system itself has three:
; 'prove-time, 'print-time, and 'other-time, and we use a singleton stack
; 'total-time, as a temporary to sum the times on the other stacks.
; To clean the slate, i.e. to get ready to start a new set of timings,
; one could invoke (set-timer 'prove-time '(0) state), (set-timer
; 'print-time '(0) state), etc., and finally (main-timer state). The
; set-timer function set the values of the timers each to a stack
; containing a single 0. The call of main-timer can be thought of as
; starting the clock running. What it actually does is store the
; current cpu-time-used figure in a secret place to be used later.
; Now, after some computing one could invoke (increment-timer
; 'prove-time state), which would attribute all of the cpu time used
; since cleaning the slate to the top-most element on the 'prove-time
; timer. That is, increment-timer takes the time used since the
; ``clock was started'' and adds it to the number on the top of the
; given timer stack. Increment-timer also restarts the clock. One
; could later execute (increment-timer 'print-time state), which would
; attribute all of the cpu time used since the previous call of
; increment-timer to 'print-time. And so forth. At an appropriate
; time, one could then call (print-timer 'print-time channel state) and
; (print-timer 'prove-time time), which would print the top-most
; values of the timers. Finally, one could either pop the timer
; stacks, exposing accumulated time in that category for some superior
; computation, or pop the stacks but add the popped time into the
; newly exposed accumulated time (charging the superior with the time
; used by the inferior), or simply reset the stacks as by set-timer.
; Time is maintained as a rational. We print time in seconds, accurate
; to two decimal places. We just print the number, without leading or
; trailing spaces or even the word ``seconds''.
(local
(defthm rational-listp-cdr
(implies (rational-listp x)
(rational-listp (cdr x)))))
(defthm read-run-time-preserves-state-p1
(implies (state-p1 state)
(state-p1 (nth 1 (read-run-time state))))
:rule-classes ((:forward-chaining
:trigger-terms
((nth 1 (read-run-time state)))))
:hints (("Goal" :in-theory (enable nth))))
(defthm read-acl2-oracle-preserves-state-p1
(implies (state-p1 state)
(state-p1 (nth 2 (read-acl2-oracle state))))
:rule-classes ((:forward-chaining
:trigger-terms
((nth 2 (read-acl2-oracle state)))))
:hints (("Goal" :in-theory (enable nth))))
(in-theory (disable read-acl2-oracle))
(local
(defthm rational-listp-implies-rationalp-car
(implies (and (rational-listp x)
x)
(rationalp (car x)))))
(defthm nth-0-read-run-time-type-prescription
(implies (state-p1 state)
(rationalp (nth 0 (read-run-time state))))
:hints (("Goal" :in-theory (enable nth)))
:rule-classes ((:type-prescription
:typed-term (nth 0 (read-run-time state)))))
(in-theory (disable read-run-time))
; Here we prefer not to develop a base of rules about mv-nth. So, we prove
; that it is the same as nth, and get on with the proofs.
(local
(defthm mv-nth-is-nth
(equal (mv-nth n x)
(nth n x))
:hints (("Goal" :in-theory (enable nth)))))
(defun main-timer (state)
(declare (xargs :guard (state-p state)))
(mv-let (current-time state)
(read-run-time state)
(let ((old-value (cond ((and (f-boundp-global 'main-timer state)
(rationalp (f-get-global 'main-timer state)))
(f-get-global 'main-timer state))
(t 0))))
(let ((state (f-put-global 'main-timer current-time state)))
(mv (- current-time old-value) state)))))
; Put-assoc
(defun put-assoc-eq-exec (name val alist)
(declare (xargs :guard (if (symbolp name)
(alistp alist)
(symbol-alistp alist))))
; The function trans-eval exploits the fact that the order of the keys
; is unchanged.
(cond ((endp alist) (list (cons name val)))
((eq name (caar alist)) (cons (cons name val) (cdr alist)))
(t (cons (car alist) (put-assoc-eq-exec name val (cdr alist))))))
(defun put-assoc-eql-exec (name val alist)
(declare (xargs :guard (if (eqlablep name)
(alistp alist)
(eqlable-alistp alist))))
; The function trans-eval exploits the fact that the order of the keys
; is unchanged.
(cond ((endp alist) (list (cons name val)))
((eql name (caar alist)) (cons (cons name val) (cdr alist)))
(t (cons (car alist) (put-assoc-eql-exec name val (cdr alist))))))
(defun put-assoc-equal (name val alist)
(declare (xargs :guard (alistp alist)))
(cond ((endp alist) (list (cons name val)))
((equal name (caar alist)) (cons (cons name val) (cdr alist)))
(t (cons (car alist) (put-assoc-equal name val (cdr alist))))))
(defmacro put-assoc-eq (name val alist)
`(put-assoc ,name ,val ,alist :test 'eq))
; Added for backward compatibility (add-to-set-eql was present through
; Version_4.2):
(defmacro put-assoc-eql (name val alist)
`(put-assoc ,name ,val ,alist :test 'eql))
(defthm put-assoc-eq-exec-is-put-assoc-equal
(equal (put-assoc-eq-exec name val alist)
(put-assoc-equal name val alist)))
(defthm put-assoc-eql-exec-is-put-assoc-equal
(equal (put-assoc-eql-exec name val alist)
(put-assoc-equal name val alist)))
(defmacro put-assoc (name val alist &key (test ''eql))
":Doc-Section ACL2::ACL2-built-ins
modify an association list by associating a value with a key~/
~bv[]
General Forms:
(put-assoc name val alist)
(put-assoc name val alist :test 'eql) ; same as above (eql as equality test)
(put-assoc name val alist :test 'eq) ; same, but eq is equality test
(put-assoc name val alist :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Put-assoc name val alist)] returns an alist that is the same as the list
~c[alist], except that the first pair in ~c[alist] with a ~ilc[car] of
~c[name] is replaced by ~c[(cons name val)], if there is one. If there is no
such pair, then ~c[(cons name val)] is added at the end. Note that the order
of the keys occurring in ~c[alist] is unchanged (though a new key may be
added).~/
The ~il[guard] for a call of ~c[put-assoc] depends on the test. In all
cases, the last argument must satisfy ~ilc[alistp]. If the test is
~ilc[eql], then either the first argument must be suitable for ~ilc[eql]
(~pl[eqlablep]) or the last argument must satisfy ~ilc[eqlable-alistp]. If
the test is ~ilc[eq], then either the first argument must be a symbol or the
last argument must satisfy ~ilc[symbol-alistp].
~l[equality-variants] for a discussion of the relation between ~c[put-assoc]
and its variants:
~bq[]
~c[(put-assoc-eq name val alist)] is equivalent to
~c[(put-assoc name val alist :test 'eq)];
~c[(put-assoc-equal name val alist)] is equivalent to
~c[(put-assoc name val alist :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[put-assoc-equal].~/"
(declare (xargs :guard (or (equal test ''eq)
(equal test ''eql)
(equal test ''equal))))
(cond
((equal test ''eq)
`(let-mbe ((name ,name) (val ,val) (alist ,alist))
:logic (put-assoc-equal name val alist)
:exec (put-assoc-eq-exec name val alist)))
((equal test ''eql)
`(let-mbe ((name ,name) (val ,val) (alist ,alist))
:logic (put-assoc-equal name val alist)
:exec (put-assoc-eql-exec name val alist)))
(t ; (equal test 'equal)
`(put-assoc-equal ,name ,val ,alist))))
(local
(defthm timer-alist-bound-in-state-p1
(implies (state-p1 s)
(boundp-global1 'timer-alist s))
:hints (("Goal" :in-theory (enable state-p1)))))
(local (in-theory (disable boundp-global1)))
(local
(defthm timer-alist-bound-in-state-p
(implies (state-p s)
(boundp-global1 'timer-alist s))))
(defun set-timer (name val state)
(declare (xargs :guard (and (symbolp name)
(rational-listp val)
(state-p state))))
(f-put-global
'timer-alist
(put-assoc-eq name val (f-get-global 'timer-alist state))
state))
(defun get-timer (name state)
(declare (xargs :guard (and (symbolp name)
(state-p state))))
(cdr (assoc-eq name (f-get-global 'timer-alist state))))
(local
(defthm timer-alistp-implies-rational-listp-assoc-eq
(implies (and (symbolp name)
(timer-alistp alist))
(rational-listp (cdr (assoc-eq name alist))))))
(defun push-timer (name val state)
(declare (xargs :guard (and (symbolp name)
(rationalp val)
(state-p state))))
(set-timer name (cons val (get-timer name state)) state))
; The following four rules were not necessary until we added complex numbers.
; However, the first one is now crucial for acceptance of pop-timer.
(defthm rationalp-+
(implies (and (rationalp x)
(rationalp y))
(rationalp (+ x y))))
; ;??? The rewrite rule above is troubling. I have spent some time thinking
; about how to eliminate it. Here is an essay on the subject.
;
; Rationalp-+, above, is needed in the guard proof for pop-timer, below. Why?
;
; Why do we need to make this a :rewrite rule? Why can't type-set establish
; (rationalp (+ x y)) whenever this rule would have applied? The reason,
; obviously, is that the hypotheses can't be established by type-set and must be
; established by rewrite. Since type-set doesn't call rewrite, we have to
; program enough of type-set in the rewriter to get the rewriter to act like
; type-set. That is what this lemma does (and that is why it is offensive to
; us).
;
; Why can't type-set establish the (rationalp x) and (rationalp y) hypotheses
; above? Here is the :rewrite rule we need:
;
; (defthm rational-listp-implies-rationalp-car
; (implies (and (rational-listp x)
; x)
; (rationalp (car x))))
;
; Note that this lemma is "type-like" in the conclusion but not (very) type-like
; in the hypotheses. I mean, (rational-listp x) is not a "type recognizer"
; (except in a good type system, and we haven't got one of those!). The presence
; of this lemma in axioms.lisp should have alerted us to the possible need
; later for a lemma duplicating type-like reasoning in the rewriter.
;
; Here is a simple example of a theorem we can prove using rationalp-+ that we
; cannot prove (directly) without it. I introduce an undefined function so that
; I can state the theorem in a way that does not allow a car-cdr-elim.
;
; (defstub foo (x) t)
;
; (thm (implies (and (rational-listp (foo x)) (foo x))
; (rationalp (+ 1 (car (foo x)))))
; ; :hints (("Goal" :in-theory (disable rationalp-+)))
; )
;
; If rationalp-+ is enabled, this proof succeeds, because rewrite does our type
; reasoning for us (via rationalp-+) and uses rational-listp-implies-
; rationalp-car to get the hypothesis that (car (foo x)) is rational. If
; rationalp-+ is disabled, the proof fails because type-set doesn't know that
; (car (foo x)) is rational.
;
; In the actual application (in pop-timer below) no rational-listp hypothesis
; is present. Here is the actual goal
;
; (IMPLIES
; (AND (CONSP (CDDR (ASSOC-EQ NAME
; (CDR (ASSOC 'TIMER-ALIST (NTH 2 STATE))))))
; (CONSP (CDR (ASSOC-EQ NAME
; (CDR (ASSOC 'TIMER-ALIST (NTH 2 STATE))))))
; (STATE-P1 STATE)
; (SYMBOLP NAME)
; FLG)
; (RATIONALP (+ (CADR (ASSOC-EQ NAME
; (CDR (ASSOC 'TIMER-ALIST (NTH 2 STATE)))))
; (CADDR (ASSOC-EQ NAME
; (CDR (ASSOC 'TIMER-ALIST
; (NTH 2 STATE))))))))
;
; If we insist on deleting rationalp-+ as a :rewrite rule we are obliged to
; add certain other rules as either :type-prescriptions or :forward-chaining
; rules. Going the :type-prescription route we could add
;
; (defthm rational-listp-implies-rationalp-car
; (implies (and (rational-listp x) x)
; (rationalp (car x)))
; :rule-classes :type-prescription)
;
; to get the first inkling of how to establish that the two arguments above
; are rational. But we must be able to establish the hypotheses of that rule
; within type-set, so we need
;
; (defthm timer-alistp-implies-rational-listp-assoc-eq
; (implies (and (symbolp name)
; (timer-alistp alist))
; (rational-listp (cdr (assoc-eq name alist))))
; :rule-classes :type-prescription)
;
; (defthm rational-listp-cdr
; (implies (rational-listp x)
; (rational-listp (cdr x)))
; :rule-classes :type-prescription)
;
; All three of these rules are currently :rewrite rules, so this would just shift
; rules from the rewriter to type-set. I don't know whether this is a good idea.
; But the methodology is fairly clear, namely: make sure that all concepts used
; in :type-prescription rules are specified with :type-prescription (and/or
; :forward-chaining) rules, not :rewrite rules.
(defthm rationalp-*
(implies (and (rationalp x)
(rationalp y))
(rationalp (* x y))))
(defthm rationalp-unary--
(implies (rationalp x)
(rationalp (- x))))
(defthm rationalp-unary-/
(implies (rationalp x)
(rationalp (/ x))))
; Here we add realp versions of the four rules above, as suggested by Jun
; Sawada. As he points out, these rules can be necessary in order to get
; proofs about real/rationalp that succeed in ACL2 also to succeed in ACL2(r).
#+:non-standard-analysis
(defthm realp-+
(implies (and (realp x)
(realp y))
(realp (+ x y))))
#+:non-standard-analysis
(defthm realp-*
(implies (and (realp x)
(realp y))
(realp (* x y))))
#+:non-standard-analysis
(defthm realp-unary--
(implies (realp x)
(realp (- x))))
#+:non-standard-analysis
(defthm realp-unary-/
(implies (realp x)
(realp (/ x))))
; We seem to need the following in V1.8 because we have eliminated bctra.
(defthm rationalp-implies-acl2-numberp
(implies (rationalp x) (acl2-numberp x)))
(defun pop-timer (name flg state)
; If flg is nil we discard the popped value. If flg is t we
; add the popped value into the exposed value.
(declare (xargs :guard (and (symbolp name)
(state-p state)
(consp (get-timer name state))
(or (null flg)
(consp (cdr (get-timer name state)))))))
(let ((timer (get-timer name state)))
(set-timer name
(if flg
(cons (+ (car timer) (cadr timer)) (cddr timer))
(cdr timer))
state)))
(defun add-timers (name1 name2 state)
(declare (xargs :guard (and (symbolp name1)
(symbolp name2)
(state-p state)
(consp (get-timer name1 state))
(consp (get-timer name2 state)))))
(let ((timer1 (get-timer name1 state))
(timer2 (get-timer name2 state)))
(set-timer name1
(cons (+ (car timer1) (car timer2)) (cdr timer1))
state)))
; Here are lemmas for opening up nth on explicitly given conses.
(defthm nth-0-cons
(equal (nth 0 (cons a l))
a)
:hints (("Goal" :in-theory (enable nth))))
(local
(defthm plus-minus-1-1
(implies (acl2-numberp x)
(equal (+ -1 1 x) x))))
(defthm nth-add1
(implies (and (integerp n)
(>= n 0))
(equal (nth (+ 1 n) (cons a l))
(nth n l)))
:hints (("Goal" :expand (nth (+ 1 n) (cons a l)))))
(defthm main-timer-type-prescription
(implies (state-p1 state)
(and (consp (main-timer state))
(true-listp (main-timer state))))
:rule-classes :type-prescription)
(defthm ordered-symbol-alistp-add-pair-forward
(implies (and (symbolp key)
(ordered-symbol-alistp l))
(ordered-symbol-alistp (add-pair key value l)))
:rule-classes
((:forward-chaining
:trigger-terms
((add-pair key value l)))))
(defthm assoc-add-pair
(implies (and (symbolp sym2)
(ordered-symbol-alistp alist))
(equal (assoc sym1 (add-pair sym2 val alist))
(if (equal sym1 sym2)
(cons sym1 val)
(assoc sym1 alist)))))
(defthm add-pair-preserves-all-boundp
(implies (and (eqlable-alistp alist1)
(ordered-symbol-alistp alist2)
(all-boundp alist1 alist2)
(symbolp sym))
(all-boundp alist1 (add-pair sym val alist2))))
(defthm state-p1-update-main-timer
(implies (state-p1 state)
(state-p1 (update-nth 2
(add-pair 'main-timer val (nth 2 state))
state)))
:hints (("Goal" :in-theory (set-difference-theories
(enable state-p1 global-table)
'(true-listp
ordered-symbol-alistp
assoc
sgetprop
integer-listp
rational-listp
true-list-listp
open-channels-p
all-boundp
plist-worldp
timer-alistp
known-package-alistp
32-bit-integer-listp
file-clock-p
readable-files-p
written-files-p
read-files-p
writeable-files-p))))
:rule-classes ((:forward-chaining
:trigger-terms
((update-nth 2
(add-pair 'main-timer val (nth 2 state))
state)))))
(defun increment-timer (name state)
; A note about the integration of #+acl2-par code:
; Why not use defun@par to define increment-timer@par, using
; serial-first-form-parallel-second-form? If we do that, then we have to wait
; until after defun@par is defined, near the end of this file. But at that
; point, guard verification fails. However, guard verification succeeds here,
; not only during the normal boot-strap when proofs are skipped, but also when
; we do proofs (as with "make proofs"). After a few minutes of investigation,
; we have decided to leave well enough alone.
(declare (xargs :guard (and (symbolp name)
(state-p state)
(consp (get-timer name state)))))
(let ((timer (get-timer name state)))
(mv-let (epsilon state)
(main-timer state)
(set-timer name (cons (+ (car timer) epsilon)
(cdr timer))
state))))
(skip-proofs
(defun print-rational-as-decimal (x channel state)
(declare (xargs :guard (and (rationalp x)
(state-p state)
(equal (print-base) 10)
(open-output-channel-p channel :character state))))
(let ((x00 (round (* 100 (abs x)) 1)))
(pprogn
(cond ((< x 0) (princ$ "-" channel state))
(t state))
(cond ((> x00 99)
(princ$ (floor (/ x00 100) 1) channel state))
(t (princ$ "0" channel state)))
(princ$ "." channel state)
(let ((r (rem x00 100)))
(cond ((< r 10)
(pprogn (princ$ "0" channel state)
(princ$ r channel state)))
(t (princ$ r channel state)))))))
)
(skip-proofs
(defun print-timer (name channel state)
(declare (xargs :guard (and (symbolp name)
(state-p state)
(open-output-channel-p channel :character state)
(consp (get-timer name state)))))
(print-rational-as-decimal (car (get-timer name state)) channel state))
)
(defun known-package-alist (state)
; We avoid using global-val below because this function is called during
; retract-world1 under set-w under enter-boot-strap-mode, before
; primordial-world-globals is called.
(declare (xargs :guard (state-p state)))
(getprop 'known-package-alist
'global-value
nil
'current-acl2-world
(w state)))
; Prin1
(skip-proofs
(defun prin1$ (x channel state)
; prin1$ differs from prin1 in several ways. The second arg is state, not
; a stream. prin1$ returns the modified state, not x.
(declare (xargs :guard (and (or (acl2-numberp x)
(characterp x)
(stringp x)
(symbolp x))
(state-p state)
(open-output-channel-p channel :character state))))
#-acl2-loop-only
(cond ((live-state-p state)
(cond ((and *wormholep*
(not (eq channel *standard-co*)))
(wormhole-er 'prin1$ (list x channel))))
(let ((stream (get-output-stream-from-channel channel)))
(declare (special acl2_global_acl2::current-package))
(with-print-controls
; We use :defaults here, binding only *print-escape* (to put |..| on symbols
; where necessary), to ensure that raw Lisp agrees with the logical definition.
; Actually we need not bind *print-escape* explicitly here, since the default
; for print-escape, taken from *print-control-defaults* (from
; *initial-global-table*), is t. But we bind it anyhow in case we ever change
; its value in *initial-global-table*.
:defaults
((*print-escape* t)
(*print-base* (f-get-global 'print-base state))
(*print-radix* (f-get-global 'print-radix state))
(*print-case* (f-get-global 'print-case state)))
(cond ((acl2-numberp x)
(princ #+allegro
; See the comment about a similar case in princ$.
(cond
((and (acl2-numberp x)
(> *print-base* 10))
(coerce (explode-atom+ x
*print-base*
*print-radix*)
'string))
(t x))
#-allegro
x
stream))
((characterp x)
(princ "#\\" stream)
(princ
(case x
; Keep the following in sync with the function acl2-read-character-string.
(#\Newline "Newline")
(#\Space "Space")
(#\Page "Page")
(#\Tab "Tab")
(#\Rubout "Rubout")
(otherwise x))
stream))
((stringp x)
(princ #\" stream)
(let ((n (length (the string x)))) (declare (type fixnum n))
(block check
(do ((i 0 (1+ i)))
((= i n))
(declare (type fixnum i))
(let ((ch (char-code
(aref (the string x) i))))
(declare (type fixnum ch))
(cond ((or (= ch *char-code-backslash*)
(= ch
*char-code-double-gritch*))
(prin1-with-slashes
x #\" channel state)
(return-from check nil)))))
(princ x stream)))
(princ #\" stream))
((symbolp x)
(cond ((keywordp x) (princ #\: stream))
((or (equal (symbol-package-name x)
(f-get-global 'current-package state))
(member-eq
x
(package-entry-imports
(find-package-entry
(f-get-global 'current-package state)
(known-package-alist state)))))
state)
(t (let ((p (symbol-package-name x)))
(cond ((needs-slashes p state)
(princ "|" stream)
(prin1-with-slashes p #\| channel state)
(princ "|" stream))
((eq *print-case* :downcase)
(princ (string-downcase p) stream))
(t (princ p stream)))
(princ "::" stream))))
(cond ((needs-slashes (symbol-name x) state)
(princ #\| stream)
(prin1-with-slashes (symbol-name x) #\| channel state)
(princ #\| stream))
(t (princ x stream))))
(t (error "Prin1$ called on an illegal object ~a~%~%." x)))
(return-from prin1$ state)))))
(cond ((acl2-numberp x) (princ$ x channel state))
((characterp x)
(pprogn
(princ$ "#\\" channel state)
(princ$ (case x
(#\Newline "Newline")
(#\Space "Space")
(#\Page "Page")
(#\Tab "Tab")
(#\Rubout "Rubout")
(otherwise x))
channel state)))
((stringp x)
(let ((l (coerce x 'list)))
(pprogn (princ$ #\" channel state)
(cond ((or (member #\\ l) (member #\" l))
(prin1-with-slashes x #\" channel state))
(t (princ$ x channel state)))
(princ$ #\" channel state))))
(t
(pprogn
(cond ((keywordp x) (princ$ #\: channel state))
((or (equal (symbol-package-name x)
(f-get-global 'current-package state))
(member-eq
x
(package-entry-imports
(find-package-entry
(f-get-global 'current-package state)
(known-package-alist state)))))
state)
(t (let ((p (symbol-package-name x)))
(pprogn
(cond ((needs-slashes p state)
(pprogn (princ$ #\| channel state)
(prin1-with-slashes p #\| channel state)
(princ$ #\| channel state)))
((eq (print-case) :downcase)
(princ$ (string-downcase p) channel state))
(t (princ$ p channel state)))
(princ$ "::" channel state)))))
(cond ((needs-slashes (symbol-name x) state)
(pprogn
(princ$ #\| channel state)
(prin1-with-slashes (symbol-name x) #\| channel state)
(princ$ #\| channel state)))
(t (princ$ x channel state)))))))
)
; UNTOUCHABLES
; The ``untouchables'' mechanism of ACL2, we believe, gives ACL2 a
; modest form of write-protection which can be used to preserve
; integrity in the presence of arbitrary ACL2 user acts. If a symbol
; s is a member of the global-val of 'untouchable-fns or
; 'untouchable-vars in a world, then translate will cause an error if
; one attempts to define a function or macro (or to directly execute
; code) that would either (for 'untouchable-vars) set or make unbound
; a global variable with name s or (for 'untouchable-fns) call a
; function or macro named s. The general idea is to have a ``sacred''
; variable, e.g. current-acl2-world, or function, e.g., set-w, which
; the user cannot directly use it has been placed on untouchables.
; Instead, to alter that variable or use that function, the user is
; required to invoke other functions that were defined before the
; symbol was made untouchable. Of course, the implementor must take
; great care to make sure that all methods of access to the resource
; are identified and that all but the authorized ones are on
; untouchables. We do not attempt to enforce any sort of read
; protection for state globals; untouchables is entirely oriented
; towards write protection. Read protection could not be perfectly
; enforced in any case since by calling translate one could at least
; find out what was on untouchables.
(local (in-theory (enable boundp-global1)))
(defun current-package (state)
(declare (xargs :guard (state-p state)))
":Doc-Section Miscellaneous
the package used for reading and printing~/
~c[Current-package] is an ~ilc[ld] special (~pl[ld]). The accessor is
~c[(current-package state)] and the updater is
~c[(set-current-package val state)], or more conventionally,
~c[(in-package val)]. The value of ~c[current-package] is actually
the string that names the package. (Common Lisp's ``package''
objects do not exist in ACL2.) The current package must be known to
ACL2, i.e., it must be one of the initial packages or a package
defined with ~ilc[defpkg] by the user.~/
When printing symbols, the package prefix is displayed if it is not
the ~c[current-package] and may be optionally displayed otherwise.
Thus, if ~c[current-package] is ~c[\"ACL2\"] then the symbol ~c['ACL2::SYMB] may
be printed as ~c[SYMB] or ~c[ACL2::SYMB], while ~c['MY-PKG::SYMB] must be
printed as ~c[MY-PKG::SYMB]. But if ~c[current-package] is ~c[\"MY-PKG\"] then
the former symbol must be printed as ~c[ACL2::SYMB] while the latter may
be printed as ~c[SYMB].
In Common Lisp, ~c[current-package] also affects how objects are read
from character streams. Roughly speaking, read and print are
inverses if the ~c[current-package] is fixed, so reading from a stream
produced by printing an object must produce an equal object.
In ACL2, the situation is more complicated because we never read
objects from character streams, we only read them from object
``streams'' (channels). Logically speaking, the objects in such a
channel are fixed regardless of the setting of ~c[current-package].
However, our host file systems do not support the idea of Lisp
object files and instead only support character files. So when you
open an object input channel to a given (character file) we must
somehow convert it to a list of ACL2 objects. This is done by a
~i[deus ex machina] (``a person or thing that appears or is introduced
suddenly and unexpectedly and provides a contrived solution to an
apparently insoluble difficulty,'' Webster's Ninth New Collegiate
Dictionary). Roughly speaking, the ~i[deus ex machina] determines what
sequence of calls to ~c[read-object] will occur in the future and what
the ~c[current-package] will be during each of those calls, and then
produces a channel containing the sequence of objects produced by an
analogous sequence of Common Lisp reads with ~c[*current-package*] bound
appropriately for each.
A simple rule suffices to make sane file ~il[io] possible: before you
read an object from an object channel to a file created by printing
to a character channel, make sure the ~c[current-package] at read-time
is the same as it was at print-time."
(f-get-global 'current-package state))
(defthm state-p1-update-nth-2-world
(implies (and (state-p1 state)
(plist-worldp wrld)
(known-package-alistp
(getprop 'known-package-alist 'global-value nil
'current-acl2-world
wrld))
(symbol-alistp (getprop 'acl2-defaults-table
'table-alist
nil 'current-acl2-world
wrld)))
(state-p1 (update-nth 2
(add-pair 'current-acl2-world
wrld (nth 2 state))
state)))
:hints (("Goal" :in-theory
(set-difference-theories
(enable state-p1)
'(global-val
true-listp
ordered-symbol-alistp
assoc
sgetprop
integer-listp
rational-listp
true-list-listp
open-channels-p
all-boundp
plist-worldp
timer-alistp
known-package-alistp
32-bit-integer-listp
file-clock-p
readable-files-p
written-files-p
read-files-p
writeable-files-p)))))
(defconst *initial-untouchable-fns*
; During development we sometimes want to execute (lp!), :redef+, and then (ld
; "patch.lisp"), where patch.lisp modifies some untouchable state globals or
; calls some untouchable functions or macros. It is therefore handy on
; occasion to replace the current untouchables with nil. This can be done by
; executing the following form:
; (progn
; (setf (cadr (assoc 'global-value (get 'untouchable-fns
; *current-acl2-world-key*)))
; nil)
; (setf (cadr (assoc 'global-value (get 'untouchable-vars
; *current-acl2-world-key*)))
; nil))
'(coerce-state-to-object
coerce-object-to-state
create-state
user-stobj-alist
user-stobj-alist-safe
f-put-ld-specials
; We need to put ev (and the like) on untouchables because otherwise we can
; access untouchables! To see this, execute (defun foo (x) x), then outside
; the ACL2 loop, execute:
; (setf (cadr (assoc 'global-value
; (get 'untouchables *current-acl2-world-key*)))
; (cons 'foo
; (cadr (assoc 'global-value
; (get 'untouchables *current-acl2-world-key*)))))
; Then (unfortunately) you can evaluate (ev '(foo x) '((x . 3)) state nil nil
; t) without error.
ev-fncall ev ev-lst ev-fncall!
ev-fncall-rec ev-rec ev-rec-lst ev-rec-acl2-unwind-protect
ev-w ev-w-lst
install-event
set-w set-w! cloaked-set-w!
; read-idate - used by write-acl2-html, so can't be untouchable?
update-user-stobj-alist
big-n
decrement-big-n
zp-big-n
protected-eval ; must be in context of revert-world-on-error
set-site-evisc-tuple
set-evisc-tuple-lst
set-evisc-tuple-fn1
set-iprint-ar
checkpoint-world
let-beta-reduce
f-put-global@par ; for #+acl2-par (modifies state under the hood)
with-live-state ; see comment in that macro
stobj-evisceration-alist ; returns bad object
trace-evisceration-alist ; returns bad object
oracle-apply-raw
; We briefly included maybe-install-acl2-defaults-table, but that defeated the
; ability to call :puff. It now seems unnecessary to include
; maybe-install-acl2-defaults-table, since its body is something one can call
; directly. (And there seems to be no problem with doing so; otherwise, we
; need to prevent that, not merely to make maybe-install-acl2-defaults-table
; untouchable!)
))
(defconst *initial-untouchable-vars*
'(temp-touchable-vars
temp-touchable-fns
system-books-dir
user-home-dir
acl2-version
certify-book-info
connected-book-directory
; Although in-local-flg should probably be untouchable, currently that is
; problematic because the macro LOCAL expands into a form that touches
; in-local-flg.
; in-local-flg
; Since in-prove-flg need not be untouchable (currently it is only used by
; break-on-error), we omit it from this list. It is used by community book
; misc/bash.lisp.
axiomsp
current-acl2-world
undone-worlds-kill-ring
timer-alist
main-timer
wormhole-name
proof-tree
; proof-tree-ctx - used in community book books/cli-misc/expander.lisp
fmt-soft-right-margin
fmt-hard-right-margin
; We would like to make the following three untouchable, to avoid
; getting a raw Lisp error in this sort of situation:
; (f-put-global 'inhibit-output-lst '(a . b) state)
; (defun foo (x) x)
; But this will take some work so we wait....
; inhibit-output-lst
; inhibit-output-lst-stack
; inhibited-summary-types
in-verify-flg
mswindows-drive ;;; could be conditional on #+mswindows
acl2-raw-mode-p
defaxioms-okp-cert
skip-proofs-okp-cert
ttags-allowed
skip-notify-on-defttag
last-make-event-expansion
make-event-debug-depth
ppr-flat-right-margin
; The following should perhaps be untouchable, as they need to remain in sync.
; But they don't affect soundness, so if a user wants to mess with them, we
; don't really need to stop that. Note that we bind gag-state in
; with-ctx-summarized, via save-event-state-globals, so if we want to make that
; variable untouchable then we need to eliminate the call of
; with-ctx-summarized from the definition of the macro theory-invariant.
; gag-mode
; gag-state
; gag-state-saved
checkpoint-summary-limit
; ld specials and such:
; ld-skip-proofsp ;;; used in macro skip-proofs; treat bogus values as t
ld-redefinition-action
current-package
standard-oi
standard-co
proofs-co
ld-prompt
ld-missing-input-ok
ld-pre-eval-filter
ld-pre-eval-print
ld-post-eval-print
ld-evisc-tuple
ld-error-triples
ld-error-action
ld-query-control-alist
ld-verbose
writes-okp
program-fns-with-raw-code
logic-fns-with-raw-code
macros-with-raw-code
dmrp
trace-level ; can change under the hood without logic explanation
trace-specs
retrace-p
parallel-execution-enabled
total-parallelism-work-limit ; for #+acl2p-par
total-parallelism-work-limit-error ; for #+acl2p-par
waterfall-parallelism ; for #+acl2p-par
waterfall-printing ; for #+acl2p-par
redundant-with-raw-code-okp
; print control variables
print-base ; must satisfy print-base-p
print-case ; :upcase or :downcase (could also support :capitalize)
; print-circle ; generalized boolean
; print-circle-files ; generalized boolean
; print-escape ; generalized boolean
print-length ; nil or non-negative integer
print-level ; nil or non-negative integer
print-lines ; nil or non-negative integer
; print-pretty ; generalized boolean
; print-radix ; generalized boolean
; print-readably ; generalized boolean
print-right-margin ; nil or non-negative integer
iprint-ar
iprint-hard-bound
iprint-soft-bound
; ld-evisc-tuple ; already mentioned above
term-evisc-tuple
abbrev-evisc-tuple
gag-mode-evisc-tuple
serialize-character
serialize-character-system
; others
skip-proofs-by-system
host-lisp
compiler-enabled
compiled-file-extension
modifying-include-book-dir-alist
raw-include-book-dir-alist
deferred-ttag-notes
deferred-ttag-notes-saved
pc-assign
illegal-to-certify-message
acl2-sources-dir
last-prover-steps ; being conservative here; perhaps could omit
))
; There are a variety of state global variables, 'ld-skip-proofsp among them,
; that are "bound" by LD in the sense that their values are protected by
; pushing them upon entrance to LD and popping them upon exit. These globals
; are called the "LD specials". For each LD special there are accessor and
; updater functions. The updaters enforce our invariants on the values of the
; globals. We now define the accessor for the LD special ld-skip-proofsp. We
; delay the introduction of the updater until we have some error handling
; functions.
(defun ld-skip-proofsp (state)
(declare (xargs :guard (state-p state)))
":Doc-Section Miscellaneous
how carefully ACL2 processes your ~il[command]s~/
~bv[]
Examples:
ACL2 !>(set-ld-skip-proofsp t state)
T
ACL2 !s>(set-ld-skip-proofsp nil state)
NIL
ACL2 !>(set-ld-skip-proofsp 'include-book state)
INCLUDE-BOOK
ACL2 !s>
~ev[]~/
A global variable in the ACL2 ~ilc[state], called ~c['ld-skip-proofsp],
determines the thoroughness with which ACL2 processes your ~il[command]s.
This variable may take on one of three values: ~c[t], ~c[nil] or
~c[']~ilc[include-book]. When ~c[ld-skip-proofsp] is non-~c[nil], the system assumes
that which ought to be proved and is thus unsound. The form
~c[(set-ld-skip-proofsp flg state)] is the general-purpose way of
setting ~c[ld-skip-proofsp]. This global variable is an ``~ilc[ld] special,''
which is to say, you may call ~ilc[ld] in such a way as to ``bind'' this
variable for the dynamic extent of the ~ilc[ld].
When ~c[ld-skip-proofsp] is non-~c[nil], the default ~il[prompt] displays the
character ~c[s]. Thus, the ~il[prompt]
~bv[]
ACL2 !s>
~ev[]
means that the default ~il[defun-mode] is ~c[:]~ilc[logic] (otherwise the
character ~c[p], for ~c[:]~ilc[program], would also be printed;
~pl[default-print-prompt]) but ``proofs are being skipped.''
Observe that there are two legal non-~c[nil] values, ~c[t] and
~c[']~ilc[include-book]. When ~c[ld-skip-proofsp] is ~c[t], ACL2 skips all proof
obligations but otherwise performs all other required analysis of
input ~il[events]. When ~c[ld-skip-proofsp] is ~c[']~ilc[include-book], ACL2 skips not
only proof obligations but all analysis except that required to
compute the effect of successfully executed ~il[events]. To explain the
distinction, let us consider one particular event, say a ~ilc[defun].
Very roughly speaking, a ~ilc[defun] event normally involves a check of
the syntactic well-formedness of the submitted definition, the
generation and proof of the termination conditions, and the
computation and storage of various rules such as a ~c[:]~ilc[definition] rule
and some ~c[:]~ilc[type-prescription] rules. By ``normally'' above we mean
when ~c[ld-skip-proofsp] is ~c[nil]. How does a ~ilc[defun] behave when
~c[ld-skip-proofsp] is non-~c[nil]?
If ~c[ld-skip-proofsp] is ~c[t], then ~ilc[defun] performs the syntactic
well-formedness checks and computes and stores the various rules,
but it does not actually carry out the termination proofs. If
~c[ld-skip-proofsp] is ~c[']~ilc[include-book], ~ilc[defun] does not do the syntactic
well-formedness check nor does it carry out the termination proof.
Instead, it merely computes and stores the rules under the
assumption that the checks and proofs would all succeed. Observe
that a setting of ~c[']~ilc[include-book] is ``stronger'' than a setting of ~c[t]
in the sense that ~c[']~ilc[include-book] causes ~ilc[defun] to assume even more
about the admissibility of the event than ~c[t] does.
As one might infer from the choice of name, the ~ilc[include-book] event sets
~c[ld-skip-proofsp] to ~c[']~ilc[include-book] when processing the
~il[events] in a book being loaded. Thus, ~ilc[include-book] does the
miminal work necessary to carry out the effects of every event in the book.
The syntactic checks and proof obligations were, presumably, successfully
carried out when the book was certified.
A non-~c[nil] value for ~c[ld-skip-proofsp] also affects the system's output
messages. Event summaries (the paragraphs that begin ``Summary''
and display the event forms, rules used, etc.) are not printed when
~c[ld-skip-proofsp] is non-~c[nil]. Warnings and observations are printed
when ~c[ld-skip-proofsp] is ~c[t] but are not printed when it is
~c[']~ilc[include-book].
Intuitively, ~c[ld-skip-proofsp] ~c[t] means skip just the proofs and
otherwise do all the work normally required for an event; while
~c[ld-skip-proofsp] ~c[']~ilc[include-book] is ``stronger'' and means do as little
as possible to process ~il[events]. In accordance with this intuition,
~ilc[local] ~il[events] are processed when ~c[ld-skip-proofsp] is ~c[t] but are skipped
when ~c[ld-skip-proofsp] is ~c[']~ilc[include-book].
The ACL2 system itself uses only two settings, ~c[nil] and
~c[']~ilc[include-book], the latter being used only when executing the
~il[events] inside of a book being included. The ~c[ld-skip-proofsp] setting
of ~c[t] is provided as a convenience to the user. For example, suppose one
has a file of ~il[events]. By loading it with ~ilc[ld] with
~c[ld-skip-proofsp] set to ~c[t], the ~il[events] can all be checked for
syntactic correctness and assumed without proof. This is a convenient way to
recover a state lost by a system crash or to experiment with a modification
of an ~il[events] file.
The foregoing discussion is actually based on a lie.
~c[ld-skip-proofsp] is allowed two other values, ~c['initialize-acl2] and
~c['include-book-with-locals]. The first causes behavior similar to ~c[t]
but skips ~ilc[local] ~il[events] and avoids some error checks that would
otherwise prevent ACL2 from properly booting. The second is
identical to ~c[']~ilc[include-book] but also executes ~ilc[local] ~il[events]. These
additional values are not intended for use by the user, but no
barriers to their use have been erected.
We close by reminding the user that ACL2 is potentially unsound if
~c[ld-skip-proofsp] is ever set by the user. We provide access to it
simply to allow experimentation and rapid reconstruction of lost or
modified logical ~il[world]s."
(f-get-global 'ld-skip-proofsp state))
#-acl2-loop-only
(save-def
(defun-one-output bad-lisp-objectp (x)
; This routine does a root and branch exploration of x and guarantees that x is
; composed entirely of complex rationals, rationals, 8-bit characters that are
; "canonical" in the sense that they are the result of applying code-char to
; their character code, strings of such characters, symbols made from such
; strings (and "interned" in a package known to ACL2) and conses of the
; foregoing.
; We return nil or non-nil. If nil, then x is a legal ACL2 object. If we
; return non-nil, then x is a bad object and the answer is a message, msg, such
; that (fmt "~@0" (list (cons #\0 msg)) ...) will explain why.
; All of our ACL2 code other than this routine assumes that we are manipulating
; non-bad objects, except for symbols in the invisible package, e.g. state and
; the invisible array mark. We make these restrictions for portability's sake.
; If a Lisp expression is a theorem on a Symbolics machine we want it to be a
; theorem on a Sun. Thus, we can't permit such constants as #\Circle-Plus. We
; also assume (and check in chk-suitability-of-this-common-lisp) that all of
; the characters mentioned above are distinct.
(cond ((consp x)
(or (bad-lisp-objectp (car x))
(bad-lisp-objectp (cdr x))))
((integerp x)
; CLTL2 says, p. 39, ``X3J13 voted in January 1989 <76> to specify that the
; types of fixnum and bignum do in fact form an exhaustive partition of the
; type integer; more precisely, they voted to specify that the type bignum is
; by definition equivalent to (and integer (not fixnum)). I interpret this to
; mean that implementators (sic) could still experiment with such extensions as
; adding explicit representations of infinity, but such infinities would
; necessarily be of type bignum''
; The axioms of ACL2 would certainly not hold for experimental infinite
; bignums. But we know of no way to test for an infinite integer. So up
; through Version_3.6.1, we repeatedly took the square root to check that we
; get to a fixnum (which would include 0):
; (do ((i 0 (1+ i))
; (y (abs x) (isqrt y)))
; (nil)
; (cond ((typep y 'fixnum) (return nil))
; ((> i 200)
; (return (cons "We suspect that ~x0 is an infinite ~
; integer, which we cannot handle in ACL2."
; (list (cons #\0 x)))))))
; However, the CL HyperSpec glossary,
; http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_i.htm#integer,
; defines integers to be "mathematical integers":
; integer n. an object of type integer, which represents a mathematical
; integer.
; The CL HyperSpec also makes that point in
; http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm#integer:
; System Class INTEGER
; Class Precedence List:
;
; integer, rational, real, number, t
;
; Description:
;
; An integer is a mathematical integer. There is no limit on the
; magnitude of an integer.
; Therefore, we no longer check for bad integers. But if we really need some
; such check, perhaps the following would be at least as robust as the check
; above and much more efficient:
; (typep (logcount x) 'fixnum)
; Note that nonstandard integers integeres (like (H)) are not an issue
; because all Common Lisp integers are "real" integers, hence standard.
nil)
((symbolp x)
(cond
((eq x nil) nil) ; seems like useful special case for true lists
((bad-lisp-objectp (symbol-name x)))
(t (let ((pkg (symbol-package x)))
(cond
((null pkg)
(cons "Uninterned symbols such as the one CLTL displays as ~
~s0 are not allowed in ACL2."
(list (cons #\0 (format nil "~s" x)))))
((not (eq x (intern (symbol-name x) pkg)))
(cons "The symbol ~x0 fails to satisfy the property that it ~
be eq to the result of interning its symbol-name in ~
its symbol package. Such a symbol is illegal in ACL2."
(list (cons #\0 (format nil "~s" x)))))
((or (eq pkg *main-lisp-package*)
(get x *initial-lisp-symbol-mark*))
nil)
((let ((entry
(find-package-entry
(package-name pkg)
(known-package-alist *the-live-state*))))
; We maintain the following Invariant on Symbols in the Common Lisp Package: If
; a symbol arising in ACL2 evaluation or state resides in *main-lisp-package*,
; then either its symbol-package is *main-lisp-package* or else its
; *initial-lisp-symbol-mark* property is "COMMON-LISP". This invariant
; supports the notion that in the ACL2 logic, there are no symbols imported
; into the "COMMON-LISP" package: that is, the symbol-package-name of a symbol
; residing in the "COMMON-LISP" package is necessarily "COMMON-LISP". See the
; axiom common-lisp-package, and see the (raw Lisp) definition of
; symbol-package-name.
; With the above comment in mind, consider the possibility of allowing here the
; sub-case (eq x (intern (symbol-name x) *main-lisp-package*)). Now, the
; implementation of symbol-package-name is based on package-name for symbols
; whose *initial-lisp-symbol-mark* is not set; so if we allow such a sub-case,
; then the computed symbol-package-name would be wrong on symbols such as
; SYSTEM::ALLOCATE (in GCL) or CLOS::CLASS-DIRECT-DEFAULT-INITARGS (in CLISP),
; which are imported into the "COMMON-LISP" package but do not belong to the
; list *common-lisp-symbols-from-main-lisp-package*. One solution may seem to
; be to include code here, in this sub-case, that sets the
; *initial-lisp-symbol-mark* property on such a symbol; but that is not
; acceptable because include-book bypasses bad-lisp-objectp (see
; chk-bad-lisp-object). Our remaining option is to change the implementation
; of symbol-package-name to comprehend symbols like the two above, say by
; looking up the name of the symbol-package in find-non-hidden-package-entry
; and then doing the above eq test when the package name is not found. But
; this lookup could produce undesirable performance degradation for
; symbol-package-name. So instead, we will consider symbols like the two above
; to be bad Lisp objects, with the assumption that it is rare to encounter such
; a symbol, i.e.: a symbol violating the above Invariant on Symbols in the
; Common Lisp Package.
(and
(or (null entry)
(package-entry-hidden-p entry))
(cons
"The symbol CLTL displays as ~s0 is not in any of the ~
packages known to ACL2.~@1"
(list
(cons #\0 (format nil "~s" x))
(cons #\1
(cond
((or (null entry)
(null (package-entry-book-path entry)))
"")
(t
(msg " This package was defined under a ~
locally included book. Thus, some ~
include-book was local in the following ~
sequence of included books, from top-most ~
book down to the book whose portcullis ~
defines this package (with a defpkg ~
event).~|~% ~F0"
(reverse
(unrelativize-book-path
(package-entry-book-path entry)
(f-get-global 'system-books-dir
*the-live-state*))))))))))))
(t nil))))))
((stringp x)
(cond
((not (simple-string-p x))
(cons "The strings of ACL2 must be simple strings, but ~x0 is not ~
simple."
(list (cons #\0 x))))
(t
(do ((i 0 (1+ i)))
((= i (length x)))
(declare (type fixnum i))
(let ((ch (char (the string x) i)))
(cond
((legal-acl2-character-p ch) nil)
(t (let ((code (char-code ch)))
(cond ((not (< code 256))
(return
(cons "The strings of ACL2 may contain only ~
characters whose char-code does not ~
exceed 255. The object CLTL displays ~
as ~s0 has char-code ~x1 and hence is ~
not one of those."
(list (cons #\0 (coerce (list ch)
'string))
(cons #\1 (char-code ch))))))
((eql (the character ch)
(the character (code-char code)))
; We allow the canonical character with code less than 256 in a string, even
; the character #\Null (for example) or any such character that may not be a
; legal-acl2-character-p, because in a string (unlike as a character object)
; the character will be printed in a way that can be read back in, not using a
; print name that may not be standard across all Lisps.
nil)
(t
(return
(cons "ACL2 strings may contain only ~
characters without attributes. The ~
character with char-code ~x0 that CLTL ~
displays as ~s1 is not the same as the ~
character that is the value of ~x2."
(list (cons #\0 code)
(cons #\1 (coerce (list ch)
'string))
(cons #\2 `(code-char
,code)))))))))))))))
((characterp x)
(cond ((legal-acl2-character-p x) nil)
(t
; Keep this code in sync with legal-acl2-character-p.
(cons "The only legal ACL2 characters are those recognized by ~
the function legal-acl2-character-p. The character ~
with ~x0 = ~x1 that CLTL displays as ~s2 is not one of ~
those."
(list (cons #\0 'char-code)
(cons #\1 (char-code x))
(cons #\2 (coerce (list x) 'string)))))))
((typep x 'ratio)
(or (bad-lisp-objectp (numerator x))
(bad-lisp-objectp (denominator x))))
((typep x '(complex rational))
(or (bad-lisp-objectp (realpart x))
(bad-lisp-objectp (imagpart x))))
(t (cons
"ACL2 permits only objects constructed from rationals, complex ~
rationals, legal ACL2 characters, simple strings of these ~
characters, symbols constructed from such strings and interned in ~
the ACL2 packages, and cons trees of such objects. The object ~
CLTL displays as ~s0 is thus illegal in ACL2."
(list (cons #\0 (format nil "~s" x)))))))
)
#-acl2-loop-only
(defun-one-output chk-bad-lisp-object (x)
; We avoid the check when including a book, for efficiency. In one experiment
; on a large book we found a 2.8% time savings by redefining this function
; simply to return nil.
(when (not (or *inside-include-book-fn*
; We avoid the bad-lisp-objectp check during the Convert procedure of
; provisional certification, in part because it is not necessary but, more
; important, to avoid errors due to hidden defpkg events. Without the check on
; cert-op below, we get such an error with the following example from Sol
; Swords.
;;; event.lisp
; (in-package "FOO")
; (defmacro acl2::my-event ()
; '(make-event '(defun asdf () nil)))
;;; top.lisp
; (in-package "ACL2")
; (include-book "event")
; (my-event)
;;; Do these commands:
; ; In one session:
; (defpkg "FOO" *acl2-exports*)
; (certify-book "event" ?)
; ; Then in another session:
; (certify-book "top" ? t :pcert :create)
; ; Then in yet another session:
; (set-debugger-enable :bt) ; optional
; (certify-book "top" ? t :pcert :convert)
(eq (cert-op *the-live-state*) :convert-pcert)))
(let ((msg (bad-lisp-objectp x)))
(cond (msg (interface-er "~@0" msg))
(t nil)))))
(defmacro assign (x y)
":Doc-Section ACL2::ACL2-built-ins
assign to a global variable in ~ilc[state]~/
~bv[]
Examples:
(assign x (expt 2 10))
(assign a (aset1 'ascii-map-array (@ a) 66 'Upper-case-B))~/
General Form:
(assign symbol term)
~ev[]
where ~c[symbol] is any symbol (with certain enforced exclusions to
avoid overwriting ACL2 system ``globals'') and ~c[term] is any ACL2
term that could be evaluated at the top-level. ~c[Assign] evaluates
the term, stores the result as the value of the given symbol in the
~c[global-table] of ~ilc[state], and returns the result. (Note: the
actual implementation of the storage of this value is much more
efficient than this discussion of the logic might suggest.)
~c[Assign] is a macro that effectively expands to the more
complicated but understandable:
~bv[]
(pprogn (f-put-global 'symbol term state)
(mv nil (f-get-global 'symbol state) state)).
~ev[]
The macro ~c[f-put-global] is closely related to ~ilc[assign]:
~c[(assign var val)] macroexpands to ~c[(f-put-global 'var val state)].
The macro ~ilc[@] gives convenient access to the value of such globals.
The ~c[:]~ilc[ubt] operation has no effect on the ~c[global-table] of ~ilc[state].
Thus, you may use these globals to hang onto useful data structures
even though you may undo back past where you computed and saved
them.~/"
(declare (type symbol x))
`(pprogn (f-put-global ',x ,y state)
(mv nil (f-get-global ',x state) state)))
(defmacro @ (x)
":Doc-Section ACL2::ACL2-built-ins
get the value of a global variable in ~ilc[state]~/
~bv[]
Examples:
(+ (@ y) 1)
(assign a (aset1 'ascii-map-array (@ a) 66 'Upper-case-B))~/
General Form:
(@ symbol)
~ev[]
where ~c[symbol] is any symbol to which you have ~ilc[assign]ed a global
value. This macro expands into ~c[(f-get-global 'symbol state)], which
retrieves the stored value of the symbol.
The macro ~c[f-get-global] is closely related to ~ilc[@]: ~c[(@ var)]
macroexpands to ~c[(f-get-global 'var state)].
The macro ~ilc[assign] makes it convenient to set the value of a symbol.
The ~c[:]~ilc[ubt] operation has no effect on the ~c[global-table] of ~ilc[state].
Thus, you may use these globals to hang onto useful data structures
even though you may undo back past where you computed and saved
them.~/"
(declare (type symbol x))
`(f-get-global ',x state))
; We have found it useful, especially for proclaiming of FMT functions, to have
; a version `the2s' of the macro `the', for the multiple value case. Note that
; the value returned in raw lisp by (mv x y ...) is x (unless feature
; acl2-mv-as-values is set), so for example, we can avoid boxing the fixnum x
; by suitable declarations and proclamations.
(defun make-var-lst1 (root sym n acc)
(declare (xargs :guard (and (symbolp sym)
(character-listp root)
(integerp n)
(<= 0 n))
:mode :program))
(cond
((zp n) acc)
(t (make-var-lst1 root sym (1- n)
(cons (intern-in-package-of-symbol
(coerce (append root
(explode-nonnegative-integer
(1- n) 10 nil))
'string)
sym)
acc)))))
(encapsulate
()
(local
(defthm character-listp-explode-nonnegative-integer
(implies (character-listp ans)
(character-listp (explode-nonnegative-integer n 10 ans)))))
(verify-termination-boot-strap make-var-lst1))
(defun make-var-lst (sym n)
(declare (xargs :guard (and (symbolp sym)
(integerp n)
(<= 0 n))))
(make-var-lst1 (coerce (symbol-name sym) 'list) sym n nil))
; Union$
(defun union-eq-exec (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2)
(or (symbol-listp l1)
(symbol-listp l2)))))
(cond ((endp l1) l2)
((member-eq (car l1) l2)
(union-eq-exec (cdr l1) l2))
(t (cons (car l1) (union-eq-exec (cdr l1) l2)))))
(defun union-eql-exec (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2)
(or (eqlable-listp l1)
(eqlable-listp l2)))))
(cond ((endp l1) l2)
((member (car l1) l2)
(union-eql-exec (cdr l1) l2))
(t (cons (car l1) (union-eql-exec (cdr l1) l2)))))
(defun union-equal (l1 l2)
(declare (xargs :guard (and (true-listp l1) (true-listp l2))))
(cond ((endp l1) l2)
((member-equal (car l1) l2) (union-equal (cdr l1) l2))
(t (cons (car l1) (union-equal (cdr l1) l2)))))
(defmacro union-eq (&rest lst)
`(union$ ,@lst :test 'eq))
(defthm union-eq-exec-is-union-equal
(equal (union-eq-exec l1 l2)
(union-equal l1 l2)))
(defthm union-eql-exec-is-union-equal
(equal (union-eql-exec l1 l2)
(union-equal l1 l2)))
(defun parse-args-and-test (x tests default ctx form name)
; We use this function in union$ and intersection$ to remove optional keyword
; argument :TEST test from the given argument list, x. The result is (mv args
; test), where either x ends in :TEST test and args is the list of values
; preceding :TEST, or else args is x and test is default.
; Tests is the list of legal tests, typically '('eq 'eql 'equal). Default is
; the test to use by default, typically ''eql. Ctx, form, and name are used
; for error reporting.
(declare (xargs :guard (and (true-listp x)
(true-listp tests)
(symbolp name))))
(let* ((len (length x))
(len-2 (- len 2))
(kwd/val
(cond ((<= 2 len)
(let ((kwd (nth len-2 x)))
(cond ((keywordp kwd)
(cond ((eq kwd :TEST)
(nthcdr len-2 x))
(t (hard-error
ctx
"If a keyword is supplied in the ~
next-to-last argument of ~x0, that ~
keyword must be :TEST. The keyword ~x1 ~
is thus illegal in the call ~x2."
(list (cons #\0 name)
(cons #\1 kwd)
(cons #\2 form))))))
(t nil))))
(t nil))))
(mv (cond (kwd/val
(let ((test (car (last x))))
(cond ((not (member-equal test tests))
(hard-error
ctx
"The :TEST argument for ~x0 must be one of ~&1. The ~
form ~x2 is thus illegal. See :DOC ~s3."
(list (cons #\0 name)
(cons #\1 tests)
(cons #\2 form)
(cons #\3 (symbol-name name)))))
(t test))))
(t default))
(cond (kwd/val (butlast x 2))
(t x)))))
(defmacro union$ (&whole form &rest x)
":Doc-Section ACL2::ACL2-built-ins
elements of one list that are not elements of another~/
~bv[]
General Forms:
(union$ l1 l2 ... lk)
(union$ l1 l2 ... lk :test 'eql) ; same as above
(union$ l1 l2 ... lk :test 'eq) ; same, but eq is equality test
(union$ l1 l2 ... lk :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Union$ x y)] equals a list that contains both the members of ~c[x] and
the members of ~c[y]. More precisely, the resulting list is the same as one
would get by first deleting the members of ~c[y] from ~c[x], and then
concatenating the result to the front of ~c[y]. The optional keyword,
~c[:TEST], has no effect logically, but provides the test (default ~ilc[eql])
used for comparing members of the two lists.
~c[Union$] need not take exactly two arguments: ~c[(union$)] is ~c[nil],
~c[(union$ x)] is ~c[x], ~c[(union$ x y z ... :test test)] is
~c[(union$ x (union$ y z ... :test test) :test test)], and if ~c[:TEST] is
not supplied, then ~c[(union$ x y z ...)] is ~c[(union$ x (union$ y z ...))].
For the discussion below we restrict ourselves, then, to the cases
~c[(union$ x y)] and ~c[(union$ x y :test test)].~/
The ~il[guard] for a call of ~c[union$] (in the two cases just above) depends
on the test. In all cases, both arguments must satisfy ~ilc[true-listp]. If
the test is ~ilc[eql], then one of the arguments must satisfy
~ilc[eqlable-listp]. If the test is ~ilc[eq], then one of the arguments must
satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between
~c[union$] and its variants:
~bq[]
~c[(union-eq x lst)] is equivalent to ~c[(union$ x lst :test 'eq)];
~c[(union-equal x lst)] is equivalent to ~c[(union$ x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[union-equal].
Note that ~c[union-eq] can take any number of arguments, in analogy to
~c[union$]; indeed, ~c[(union-eq ...)] expands to ~c[(union$ ... :test 'eq)].
However, ~c[union-equal] is a function, not a macro, and takes exactly two
arguments.
~c[Union$] is similar to the Common Lisp primitive ~c[union]. However,
Common Lisp does not specify the order of elements in the result of a call of
~c[union].~/"
(mv-let
(test args)
(parse-args-and-test x '('eq 'eql 'equal) ''eql 'union$ form 'union$)
(cond
((null args) nil)
((null (cdr args))
(car args))
(t (let* ((vars (make-var-lst 'x (length args)))
(bindings (pairlis$ vars (pairlis$ args nil))))
(cond ((equal test ''eq)
`(let-mbe ,bindings
:logic ,(xxxjoin 'union-equal vars)
:exec ,(xxxjoin 'union-eq-exec vars)))
((equal test ''eql)
`(let-mbe ,bindings
:logic ,(xxxjoin 'union-equal vars)
:exec ,(xxxjoin 'union-eql-exec vars)))
(t ; (equal test 'equal)
(xxxjoin 'union-equal args))))))))
(defun subst-for-nth-arg (new n args)
(declare (xargs :mode :program))
; This substitutes the term new for the nth argument in the argument
; list args (0 based).
(cond ((int= n 0) (cons new (cdr args)))
(t (cons (car args) (subst-for-nth-arg new (1- n) (cdr args))))))
#+acl2-loop-only
(defmacro the-mv (args type body &optional state-pos)
; A typical use of this macro is
; (the-mv 3 (signed-byte 30) <body> 2)
; which expands to
; (MV-LET (X0 X1 STATE)
; <body>
; (MV (THE (SIGNED-BYTE 30) X0) X1 STATE))
; A more flexible use is
; (the-mv (v stobj1 state w) (signed-byte 30) <body>)
; which expands to
; (MV-LET (V STOBJ1 STATE W)
; <body>
; (MV (THE (SIGNED-BYTE 30) V) STOBJ1 STATE W))
; This macro may be used when body returns n>1 things via mv, where n=args if
; args is an integer and otherwise args is a true list of variables and n is
; the length of args. The macro effectively declares that the first (0th)
; value returned is of the indicated type. Finally, if n is an integer and the
; STATE is present in the return vector, you must specify where (0-based).
; The optional state-pos argument is the zero-based position of 'state in the
; argument list, if args is a number. Otherwise state-pos is irrelevant.
(declare (xargs :guard (and (or (and (integerp args)
(< 1 args))
(and (symbol-listp args)
(cdr args)))
(or (null state-pos)
(and (integerp state-pos)
(<= 0 state-pos)
(< state-pos args))))))
(let ((mv-vars (if (integerp args)
(if state-pos
(subst-for-nth-arg 'state
state-pos
(make-var-lst 'x args))
(make-var-lst 'x args))
args)))
(list 'mv-let
mv-vars
body
(cons 'mv
(cons (list 'the type (car mv-vars))
(cdr mv-vars))))))
#-acl2-loop-only
(defmacro the-mv (vars type body &optional state-pos)
(declare (ignore #-acl2-mv-as-values vars
state-pos))
#+acl2-mv-as-values (list 'the
`(values ,type ,@(make-list (if (integerp vars)
(1- vars)
(length (cdr vars)))
:initial-element t))
body)
#-acl2-mv-as-values (list 'the type body))
(defmacro the2s (x y)
(list 'the-mv 2 x y 1))
(deflabel bibliography
:doc
":Doc-Section Miscellaneous
reports about ACL2~/
For a list of notes and reports about ACL2, see
~url[http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html].~/~/")
; Here we implement acl2-defaults-table, which is used for handling the default
; defun-mode and other defaults.
; WARNING: If you add a new key to acl-defaults-table, and hence a new
; set- function for smashing the acl2-defaults-table at that key, then
; be sure to add that set- function to the list in
; chk-embedded-event-form! E.g., when we added the
; :irrelevant-formals-ok key we also defined set-irrelevant-formals-ok
; and then added it to the list in chk-embedded-event-form. Also add
; similarly to (deflabel acl2-defaults-table ...) and to
; primitive-event-macros.
(defun non-free-var-runes (runes free-var-runes-once free-var-runes-all acc)
(declare (xargs :guard (and (true-listp runes)
(true-listp free-var-runes-once)
(true-listp free-var-runes-all))))
(if (endp runes)
acc
(non-free-var-runes (cdr runes)
free-var-runes-once free-var-runes-all
(if (or (member-equal (car runes)
free-var-runes-once)
(member-equal (car runes)
free-var-runes-all))
acc
(cons (car runes) acc)))))
(defun free-var-runes (flg wrld)
(declare (xargs :guard (plist-worldp wrld)))
(cond
((eq flg :once)
(global-val 'free-var-runes-once wrld))
(t ; (eq flg :all)
(global-val 'free-var-runes-all wrld))))
(defthm natp-position-ac ; for admission of absolute-pathname-string-p
(implies (and (integerp acc)
(<= 0 acc))
(or (equal (position-ac item lst acc) nil)
(and (integerp (position-ac item lst acc))
(<= 0 (position-ac item lst acc)))))
:rule-classes :type-prescription)
(defun absolute-pathname-string-p (str directoryp os)
; Str is a Unix-style pathname. However, on Windows, Unix-style absolute
; pathnames may start with a prefix such as "c:"; see mswindows-drive.
; Directoryp is non-nil when we require str to represent a directory in ACL2
; with Unix-style syntax, returning nil otherwise.
; Function expand-tilde-to-user-home-dir should already have been applied
; before testing str with this function.
(declare (xargs :guard (stringp str)))
(let ((len (length str)))
(and (< 0 len)
(cond ((and (eq os :mswindows) ; hence os is not nil
(let ((pos-colon (position #\: str))
(pos-sep (position *directory-separator* str)))
(and pos-colon
(eql pos-sep (1+ pos-colon))))
t))
((eql (char str 0) *directory-separator*)
t)
(t ; possible hard error for ~ or ~/...
(and (eql (char str 0) #\~)
; Note that a leading character of `~' need not get special treatment by
; Windows. See also expand-tilde-to-user-home-dir.
(not (eq os :mswindows))
(prog2$ (and (or (eql 1 len)
(eql (char str 1)
*directory-separator*))
(hard-error 'absolute-pathname-string-p
"Implementation error: Forgot ~
to apply ~
expand-tilde-to-user-home-dir ~
before calling ~
absolute-pathname-string-p. ~
Please contact the ACL2 ~
implementors."
nil))
t))))
(if directoryp
(eql (char str (1- len)) *directory-separator*)
t))))
(defun include-book-dir-alistp (x os)
(declare (xargs :guard t))
(cond ((atom x) (null x))
(t (and (consp (car x))
(keywordp (caar x))
(stringp (cdar x))
(absolute-pathname-string-p (cdar x) t os)
(include-book-dir-alistp (cdr x) os)))))
(defun illegal-ruler-extenders-values (x wrld)
(declare (xargs :guard (and (symbol-listp x)
(plist-worldp wrld))))
(cond ((endp x) nil)
((or (eq (car x) :lambdas)
(function-symbolp (car x) wrld))
(illegal-ruler-extenders-values (cdr x) wrld))
(t (cons (car x)
(illegal-ruler-extenders-values (cdr x) wrld)))))
; Intersection$
(defun intersection-eq-exec (l1 l2)
(declare (xargs :guard
(and (true-listp l1)
(true-listp l2)
(or (symbol-listp l1)
(symbol-listp l2)))))
(cond ((endp l1) nil)
((member-eq (car l1) l2)
(cons (car l1)
(intersection-eq-exec (cdr l1) l2)))
(t (intersection-eq-exec (cdr l1) l2))))
(defun intersection-eql-exec (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2)
(or (eqlable-listp l1)
(eqlable-listp l2)))))
(cond ((endp l1) nil)
((member (car l1) l2)
(cons (car l1)
(intersection-eql-exec (cdr l1) l2)))
(t (intersection-eql-exec (cdr l1) l2))))
(defun intersection-equal (l1 l2)
(declare (xargs :guard
(and (true-listp l1)
(true-listp l2))))
(cond ((endp l1) nil)
((member-equal (car l1) l2)
(cons (car l1)
(intersection-equal (cdr l1) l2)))
(t (intersection-equal (cdr l1) l2))))
(defmacro intersection-eq (&rest lst)
`(intersection$ ,@lst :test 'eq))
(defthm intersection-eq-exec-is-intersection-equal
(equal (intersection-eq-exec l1 l2)
(intersection-equal l1 l2)))
(defthm intersection-eql-exec-is-intersection-equal
(equal (intersection-eql-exec l1 l2)
(intersection-equal l1 l2)))
(defmacro intersection$ (&whole form &rest x)
":Doc-Section ACL2::ACL2-built-ins
elements of one list that are not elements of another~/
~bv[]
General Forms:
(intersection$ l1 l2 ... lk)
(intersection$ l1 l2 ... lk :test 'eql) ; same as above
(intersection$ l1 l2 ... lk :test 'eq) ; same, but eq is equality test
(intersection$ l1 l2 ... lk :test 'equal) ; same, but equal is equality test
~ev[]
~c[(Intersection$ x y)] equals a list that contains the ~c[member]s of ~c[x]
that are also ~c[member]s of ~c[y]. More precisely, the resulting list is
the result of deleting from ~c[x] those members that that are not members of
~c[y]. The optional keyword, ~c[:TEST], has no effect logically, but
provides the test (default ~ilc[eql]) used for comparing members of the two
lists.
~c[Intersection$] need not take exactly two arguments, though it must take at
least one argument: ~c[(intersection$ x)] is ~c[x],
~c[(intersection$ x y z ... :test test)] is
~c[(intersection$ x (intersection$ y z ... :test test) :test test)], and if
~c[:TEST] is not supplied, then ~c[(intersection$ x y z ...)] is
~c[(intersection$ x (intersection$ y z ...))]. For the discussion below we
restrict ourselves, then, to the cases ~c[(intersection$ x y)] and
~c[(intersection$ x y :test test)].~/
The ~il[guard] for a call of ~c[intersection$] (in the two cases just above)
depends on the test. In all cases, both arguments must satisfy
~ilc[true-listp]. If the test is ~ilc[eql], then one of the arguments must
satisfy ~ilc[eqlable-listp]. If the test is ~ilc[eq], then one of the
arguments must satisfy ~ilc[symbol-listp].
~l[equality-variants] for a discussion of the relation between
~c[intersection$] and its variants:
~bq[]
~c[(intersection-eq x lst)] is equivalent to
~c[(intersection$ x lst :test 'eq)];
~c[(intersection-equal x lst)] is equivalent to
~c[(intersection$ x lst :test 'equal)].
~eq[]
In particular, reasoning about any of these primitives reduces to reasoning
about the function ~c[intersection-equal].
Note that ~c[intersection-eq] can take any positive number of arguments, in
analogy to ~c[intersection$]; indeed, ~c[(intersection-eq ...)] expands to
~c[(intersection$ ... :test 'eq)]. However, ~c[intersection-equal] is a
function, not a macro, and takes exactly two arguments.
~c[Intersection$] is similar to the Common Lisp primitive ~c[intersection].
However, Common Lisp does not specify the order of elements in the result of
a call of ~c[intersection].~/"
(mv-let
(test args)
(parse-args-and-test x '('eq 'eql 'equal) ''eql 'intersection$ form
'intersection$)
(cond
((null args)
(er hard 'intersection$
"Intersection$ requires at least one list argument. The call ~x0 is ~
thus illegal."
form))
((null (cdr args))
(car args))
(t (let* ((vars (make-var-lst 'x (length args)))
(bindings (pairlis$ vars (pairlis$ args nil))))
(cond ((equal test ''eq)
`(let-mbe ,bindings
:logic ,(xxxjoin 'intersection-equal vars)
:exec ,(xxxjoin 'intersection-eq-exec vars)))
((equal test ''eql)
`(let-mbe ,bindings
:logic ,(xxxjoin 'intersection-equal vars)
:exec ,(xxxjoin 'intersection-eql-exec vars)))
(t ; (equal test 'equal)
`(xxxjoin 'intersection-equal ,args))))))))
(defun table-alist (name wrld)
; Return the named table as an alist.
(declare (xargs :guard (and (symbolp name)
(plist-worldp wrld))))
(getprop name 'table-alist nil 'current-acl2-world wrld))
(defun ruler-extenders-msg-aux (vals return-last-table)
; We return the intersection of vals with the symbols in the cdr of
; return-last-table.
(declare (xargs :guard (and (symbol-listp vals)
(symbol-alistp return-last-table))))
(cond ((endp return-last-table) nil)
(t (let* ((first-cdr (cdar return-last-table))
(sym (if (consp first-cdr) (car first-cdr) first-cdr)))
(cond ((member-eq sym vals)
(cons sym
(ruler-extenders-msg-aux vals
(cdr return-last-table))))
(t (ruler-extenders-msg-aux vals
(cdr return-last-table))))))))
(defun ruler-extenders-msg (x wrld)
; This message, if not nil, is passed to chk-ruler-extenders.
(declare (xargs :guard (and (plist-worldp wrld)
(symbol-alistp (fgetprop 'return-last-table
'table-alist
nil wrld)))))
(cond ((member-eq x '(:ALL :BASIC :LAMBDAS))
nil)
((and (consp x)
(eq (car x) 'quote))
(msg "~x0 has a superfluous QUOTE, which you may wish to remove"
x))
((not (symbol-listp x))
(msg "~x0 is not a true list of symbols" x))
(t (let* ((vals (illegal-ruler-extenders-values x wrld))
(suspects (ruler-extenders-msg-aux
vals
(table-alist 'return-last-table wrld))))
(cond (vals
(msg "~&0 ~#0~[is not a~/are not~] legal ruler-extenders ~
value~#0~[~/s~].~@1"
vals
(cond (suspects
(msg " Note in particular that ~&0 ~#0~[is a ~
macro~/are macros~] that may expand to ~
calls of ~x1, which you may want to ~
specify instead."
suspects 'return-last))
(t ""))))
(t nil))))))
(defmacro chk-ruler-extenders (x soft ctx wrld)
(let ((err-str "The proposed ruler-extenders is illegal because ~@0."))
`(let ((ctx ,ctx)
(err-str ,err-str)
(msg (ruler-extenders-msg ,x ,wrld)))
(cond (msg ,(cond ((eq soft 'soft) `(er soft ctx err-str msg))
(t `(illegal ctx err-str (list (cons #\0 msg))))))
(t ,(cond ((eq soft 'soft) '(value t))
(t t)))))))
(defmacro fixnum-bound () ; most-positive-fixnum in Allegro CL and many others
(1- (expt 2 29)))
(defconst *default-step-limit*
; The defevaluator event near the top of community book
; books/meta/meta-plus-equal.lisp, submitted at the top level without any
; preceding events, takes over 40,000 steps. Set the following to 40000 in
; order to make that event quickly exceed the default limit.
(fixnum-bound))
(table acl2-defaults-table nil nil
; Warning: If you add a new key to this table, there will probably be a
; change you should make to a list in chk-embedded-event-form. (Search there
; for add-include-book-dir, and consider keeping that list alphabetical, just
; for convenience.)
; Developer suggestion: The following form provides an example of how to add a
; new key to the table guard, in this case,
; (setf (cadr (assoc-eq 'table-guard
; (get 'acl2-defaults-table *current-acl2-world-key*)))
; `(if (eq key ':new-key)
; (if (eq val 't) 't (symbol-listp val))
; ,(cadr (assoc-eq 'table-guard
; (get 'acl2-defaults-table
; *current-acl2-world-key*)))))
:guard
(cond
((eq key :defun-mode)
(member-eq val '(:logic :program)))
((eq key :verify-guards-eagerness)
(member val '(0 1 2)))
((eq key :enforce-redundancy)
(member-eq val '(t nil :warn)))
((eq key :ignore-doc-string-error)
(member-eq val '(t nil :warn)))
((eq key :compile-fns)
(member-eq val '(t nil)))
((eq key :measure-function)
(and (symbolp val)
(function-symbolp val world)
; The length expression below is just (arity val world) but we don't have arity
; yet.
(= (length (getprop val 'formals t 'current-acl2-world world))
1)))
((eq key :well-founded-relation)
(and (symbolp val)
(assoc-eq val (global-val 'well-founded-relation-alist world))))
((eq key :bogus-defun-hints-ok)
(member-eq val '(t nil :warn)))
((eq key :bogus-mutual-recursion-ok)
(member-eq val '(t nil :warn)))
((eq key :irrelevant-formals-ok)
(member-eq val '(t nil :warn)))
((eq key :ignore-ok)
(member-eq val '(t nil :warn)))
((eq key :bdd-constructors)
; We could insist that the symbols are function symbols by using
; (all-function-symbolps val world),
; but perhaps one wants to set the bdd-constructors even before defining the
; functions.
(symbol-listp val))
((eq key :ttag)
(or (null val)
(and (keywordp val)
(not (equal (symbol-name val) "NIL")))))
((eq key :state-ok)
(member-eq val '(t nil)))
; Rockwell Addition: See the doc string associated with
; set-let*-abstractionp.
((eq key :let*-abstractionp)
(member-eq val '(t nil)))
; Rockwell Addition: See the doc string associated with
; set-nu-rewriter-mode.
((eq key :nu-rewriter-mode)
(member-eq val '(nil t :literals)))
((eq key :backchain-limit)
(and (true-listp val)
(equal (length val) 2)
(or (null (car val))
(natp (car val)))
(or (null (cadr val))
(natp (cadr val)))))
((eq key :step-limit)
(and (natp val)
(<= val *default-step-limit*)))
((eq key :default-backchain-limit)
(and (true-listp val)
(equal (length val) 2)
(or (null (car val))
(natp (car val)))
(or (null (cadr val))
(natp (cadr val)))))
((eq key :rewrite-stack-limit)
(unsigned-byte-p 29 val))
((eq key :case-split-limitations)
; In set-case-split-limitations we permit val to be nil and default that
; to (nil nil).
(and (true-listp val)
(equal (length val) 2)
(or (null (car val))
(natp (car val)))
(or (null (cadr val))
(natp (cadr val)))))
((eq key :match-free-default)
(member-eq val '(:once :all nil)))
((eq key :match-free-override)
(or (eq val :clear)
(null (non-free-var-runes val
(free-var-runes :once world)
(free-var-runes :all world)
nil))))
((eq key :match-free-override-nume)
(integerp val))
((eq key :non-linearp)
(booleanp val))
((eq key :tau-auto-modep)
(booleanp val))
((eq key :include-book-dir-alist)
(and (include-book-dir-alistp val (os world))
(null (assoc-eq :SYSTEM val))))
((eq key :ruler-extenders)
(or (eq val :all)
(chk-ruler-extenders val hard 'acl2-defaults-table world)))
#+hons
((eq key :memoize-ideal-okp)
(or (eq val :warn)
(booleanp val)))
(t nil)))
(deflabel acl2-defaults-table
:doc
":Doc-Section Other
a ~il[table] specifying certain defaults, e.g., the default ~il[defun-mode]~/
~bv[]
Example Forms:
(table acl2-defaults-table :defun-mode) ; current default defun-mode
(table acl2-defaults-table :defun-mode :program)
; set default defun-mode to :program
~ev[]~/
~l[table] for a discussion of tables in general. The legal
keys for this ~il[table] are shown below. They may be accessed and
changed via the general mechanisms provided by ~il[table]s. However,
there are often more convenient ways to access and/or change the
defaults. (See also the note below.)
~bv[]
:defun-mode
~ev[]
the default ~il[defun-mode], which must be ~c[:]~ilc[program] or ~c[:]~ilc[logic].
~l[defun-mode] for a general discussion of ~il[defun-mode]s. The
~c[:]~ilc[defun-mode] key may be conveniently set by keyword commands
naming the new ~il[defun-mode], ~c[:]~ilc[program] and ~c[:]~ilc[logic].
~l[program] and ~pl[logic].
~bv[]
:enforce-redundancy
~ev[]
if ~c[t], cause ACL2 to insist that most events are redundant
(~pl[redundant-events]); if ~c[:warn], cause a warning instead of an error
for such non-redundant events; else, ~c[nil]. ~l[set-enforce-redundancy].
~bv[]
:ignore-doc-string-error
~ev[]
if ~c[t], cause ACL2 to ignore ill-formed ~il[documentation] strings rather
than causing an error; if ~c[:warn], cause a warning instead of an error
in such cases; else, ~c[nil] (the default).
~l[set-ignore-doc-string-error].
~bv[]
:verify-guards-eagerness
~ev[]
an integer between 0 and 2 indicating how eager the system is to
verify the ~il[guard]s of a ~il[defun] event. ~l[set-verify-guards-eagerness].
~bv[]
:compile-fns
~ev[]
When this key's value is ~c[t], functions are compiled when they are
~ilc[defun]'d; otherwise, the value is ~c[nil]. (Except, this key's value is
ignored when explicit compilation is suppressed; ~pl[compilation].) To set
the flag, ~pl[set-compile-fns].
~bv[]
:measure-function
~ev[]
the default measure function used by ~ilc[defun] when no ~c[:measure] is
supplied in ~ilc[xargs]. The default measure function must be a function
symbol of one argument. Let ~c[mfn] be the default measure function and
suppose no ~c[:measure] is supplied with some recursive function
definition. Then ~ilc[defun] finds the first formal, ~c[var], that is tested
along every branch and changed in each recursive call. The system
then ``guesses'' that ~c[(mfn var)] is the ~c[:measure] for that ~ilc[defun].
~bv[]
:well-founded-relation
~ev[]
the default well-founded relation used by ~ilc[defun] when no
~c[:]~ilc[well-founded-relation] is supplied in ~ilc[xargs]. The default
well-founded relation must be a function symbol, ~c[rel], of two
arguments about which a ~c[:]~ilc[well-founded-relation] rule has been
proved. ~l[well-founded-relation].
~bv[]
:bogus-defun-hints-ok
~ev[]
When this key's value is ~c[t], ACL2 allows ~c[:hints] for nonrecursive
function definitions. Otherwise, the value is the ~c[nil] (the default) or
~c[:warn] (which makes the check but merely warns when the check fails).
~l[set-bogus-defun-hints-ok].
~bv[]
:bogus-mutual-recursion-ok
~ev[]
When this key's value is ~c[t], ACL2 skips the check that every function in a
~ilc[mutual-recursion] (or ~ilc[defuns]) ``clique'' calls at least one other
function in that ``clique.'' Otherwise, the value is ~c[nil] (the default)
or ~c[:warn] (which makes the check but merely warns when the check fails).
~l[set-bogus-mutual-recursion-ok].
~bv[]
:irrelevant-formals-ok
~ev[]
When this key's value is ~c[t], the check for irrelevant formals is
bypassed; otherwise, the value is the keyword ~c[nil] (the default)
or ~c[:warn] (which makes the check but merely warns when the check
fails). ~l[irrelevant-formals] and ~pl[set-irrelevant-formals-ok].
~bv[]
:ignore-ok
~ev[]
When this key's value is ~c[t], the check for ignored variables is
bypassed; otherwise, the value is the keyword ~c[nil] (the default)
or ~c[:warn] (which makes the check but merely warns when the check
fails). ~l[set-ignore-ok].
~bv[]
:bdd-constructors
~ev[]
This key's value is a list of function symbols used to define the
notion of ``BDD normal form.'' ~l[bdd-algorithm] and
~pl[hints].
~bv[]
:ttag
~ev[]
This key's value, when non-~c[nil], allows certain operations that
extend the trusted code base beyond what is provided by ACL2. ~l[defttag].
~l[defttag].
~bv[]
:state-ok
~ev[]
This key's value is either ~c[t] or ~c[nil] and indicates whether the user
is aware of the syntactic restrictions on the variable symbol ~c[STATE].
~l[set-state-ok].
~bv[]
:backchain-limit
~ev[]
This key's value is a list of two ``numbers.'' Either ``number'' may
optionally be ~c[nil], which is treated like positive infinity. The
numbers control backchaining through hypotheses during type-set reasoning and
rewriting. ~l[backchain-limit].
~bv[]
:default-backchain-limit
~ev[]
This key's value is a list of two ``numbers.'' Either ``number'' may
optionally be ~c[nil], which is treated like positive infinity. The
numbers are used respectively to set the backchain limit of a rule if one has
not been specified. ~l[backchain-limit].
~bv[]
:step-limit
~ev[]
This key's value is either ~c[nil] or a natural number not exceeding the
value of ~c[*default-step-limit*]. If the value is ~c[nil] or the value of
~c[*default-step-limit*], there is no limit on the number of ``steps'' that
ACL2 counts during a proof: currently, the number of top-level rewriting
calls. Otherwise, the value is the maximum number of such calls allowed
during evaluation of any event. ~l[set-prover-step-limit].
~bv[]
:rewrite-stack-limit
~ev[]
This key's value is a nonnegative integer less than ~c[(expt 2 28)]. It is
used to limit the depth of calls of ACL2 rewriter functions.
~l[rewrite-stack-limit].
~bv[]
:let*-abstractionp
~ev[]
This key affects how the system displays subgoals. The value is either
~c[t] or ~c[nil]. When t, let* expressions are introduced before printing to
eliminate common subexpressions. The actual goal being worked on is
unchanged.
~bv[]
:nu-rewriter-mode
~ev[]
This key's value is ~c[nil], ~c[t], or ~c[:literals]. When the value is
non-~c[nil], the rewriter gives special treatment to expressions and
functions defined in terms of ~ilc[nth] and ~ilc[update-nth]. See
~ilc[set-nu-rewriter-mode].
~bv[]
:case-split-limitations
~ev[]
This key's value is a list of two ``numbers.'' Either ``number'' may
optionally be ~c[nil], which is treated like positive infinity. The
numbers control how the system handles case splits in the simplifier.
~l[set-case-split-limitations].
~bv[]
:include-book-dir-alist
~ev[]
This key's value is used by ~ilc[include-book]'s ~c[:DIR] argument to
associate a directory with a keyword. An exception is the keyword
~c[:SYSTEM] for the ~c[books/] directory; ~pl[include-book],
in particular the section on ``Books Directory.''
~bv[]
:match-free-default
~ev[]
This key's value is either ~c[:all], ~c[:once], or ~c[nil].
~l[set-match-free-default].
~bv[]
:match-free-override
~ev[]
This key's value is a list of runes. ~l[add-match-free-override].
~bv[]
:match-free-override-nume
~ev[]
This key's value is an integer used in the implementation of
~il[add-match-free-override], so that only existing runes are affected by
that event.
~bv[]
:non-linearp
~ev[]
This key's value is either ~c[t] or ~c[nil] and indicates whether the user
wishes ACL2 to extend the linear arithmetic decision procedure to include
non-linear reasoning. ~l[non-linear-arithmetic].
~bv[]
:tau-auto-modep
~ev[]
This key's value is either ~c[t] or ~c[nil] and indicates whether the user
wishes ACL2 to look for opportunities to create ~c[:]~ilc[tau-system] rules from
all suitable ~c[defun]s and from all suitable ~c[defthm]s (with non-~c[nil]
~c[:]~ilc[rule-classes]). ~l[set-tau-auto-mode].
~bv[]
:ruler-extenders
~ev[]
This key's value may be a list of symbols, indicating those function symbols
that are not to block the collection of rulers; ~pl[defun]. Otherwise the
value is ~c[:all] to indicate all function symbols, i.e., so that no function
symbol blocks the collection of rulers. If a list is specified (rather than
~c[:all]), then it may contain the keyword ~c[:lambdas], which has the
special role of specifying all ~c[lambda] applications. No other keyword is
permitted in the list. ~l[ruler-extenders].
~bv[]
:memoize-ideal-okp
~ev[]
This key is only legal in an experimental ~ilc[hons] version
(~pl[hons-and-memoization]). Its value must be either ~c[t], ~c[nil], or
~c[:warn]. If the value is ~c[nil] or not present, then it is illegal by
default to ~il[memoize] a ~c[:]~ilc[logic] mode function that has not been
~il[guard]-verified (~pl[verify-guards]), sometimes called an ``ideal-mode''
function. This illegality is the default because such calls of such
functions in the ACL2 loop are generally evaluated in the logic (using
so-called ``executable counterpart'' definitions), rather than directly by
executing calls of the corresponding (memoized) raw Lisp function. However,
such a raw Lisp call can be made when the function is called by a
~c[:]~ilc[program] mode function, so we allow you to override the default
behavior by associating the value ~c[t] or ~c[:warn] with the key
~c[:memoize-ideal-okp], where with ~c[:warn] you get a suitable warning.
Note that you can also allow memoization of ideal-mode functions by supplying
argument ~c[:ideal-okp] to your memoization event (~pl[memoize]), in which
case the value of ~c[:memoize-ideal-okp] in the ~c[acl2-defaults-table] is
irrelevant.
Note: Unlike all other ~il[table]s, ~c[acl2-defaults-table] can affect the
soundness of the system. The ~il[table] mechanism therefore enforces on
it a restriction not imposed on other ~il[table]s: when ~ilc[table] is used to
update the ~c[acl2-defaults-table], the key and value must be
variable-free forms. Thus, while
~bv[]
(table acl2-defaults-table :defun-mode :program),
(table acl2-defaults-table :defun-mode ':program), and
(table acl2-defaults-table :defun-mode (compute-mode *my-data*))
~ev[]
are all examples of legal ~il[events] (assuming ~c[compute-mode] is a
function of one non-~ilc[state] argument that produces a ~il[defun-mode] as
its single value),
~bv[]
(table acl2-defaults-table :defun-mode (compute-mode (w state)))
~ev[]
is not legal because the value form is ~ilc[state]-sensitive.
Consider for example the following three ~il[events] which one might make
into the text of a book.
~bv[]
(in-package \"ACL2\")
(table acl2-defaults-table
:defun-mode
(if (ld-skip-proofsp state) :logic :program))
(defun crash-and-burn (x) (car x))
~ev[]
The second event is illegal because its value form is
~ilc[state]-sensitive. If it were not illegal, then it would set the
~c[:]~ilc[defun-mode] to ~c[:]~ilc[program] when the book was being certified but
would set the ~il[defun-mode] to ~c[:]~ilc[logic] when the book was being loaded
by ~ilc[include-book]. That is because during certification,
~ilc[ld-skip-proofsp] is ~c[nil] (proof obligations are generated and
proved), but during book inclusion ~ilc[ld-skip-proofsp] is non-~c[nil]
(those obligations are assumed to have been satisfied.) Thus, the
above book, when loaded, would create a function in ~c[:]~ilc[logic] mode that
does not actually meet the conditions for such status.
For similar reasons, ~ilc[table] ~il[events] affecting ~c[acl2-defaults-table] are
illegal within the scope of ~ilc[local] forms. That is, the text
~bv[]
(in-package \"ACL2\")
(local (table acl2-defaults-table :defun-mode :program))
(defun crash-and-burn (x) (car x))
~ev[]
is illegal because ~c[acl2-defaults-table] is changed locally. If
this text were acceptable as a book, then when the book was
certified, ~c[crash-and-burn] would be processed in ~c[:]~ilc[program] mode,
but when the certified book was included later, ~c[crash-and-burn]
would have ~c[:]~ilc[logic] mode because the ~ilc[local] event would be skipped.
The text
~bv[]
(in-package \"ACL2\")
(program) ;which is (table acl2-defaults-table :defun-mode :program)
(defun crash-and-burn (x) (car x))
~ev[]
is acceptable and defines ~c[crash-and-burn] in ~c[:]~ilc[program] mode, both
during certification and subsequent inclusion.
We conclude with an important observation about the relation between
~c[acl2-defaults-table] and ~ilc[include-book], ~ilc[certify-book], and
~ilc[encapsulate]. Including or certifying a book never has an effect on the
~c[acl2-defaults-table], nor does executing an ~ilc[encapsulate] event; we
always restore the value of this ~il[table] as a final act. (Also
~pl[include-book], ~pl[encapsulate], and ~pl[certify-book].) That is, no
matter how a book fiddles with the ~c[acl2-defaults-table], its value
immediately after including that book is the same as immediately before
including that book. If you want to set the ~c[acl2-defaults-table] in a way
that persists, you need to do so using ~il[command]s that are not inside
~il[books]. It may be useful to set your favorite defaults in your
~ilc[acl2-customization] file; ~pl[acl2-customization].")
#+acl2-loop-only
(defmacro set-enforce-redundancy (x)
":Doc-Section switches-parameters-and-modes
require most events to be redundant~/
~bv[]
General Forms:
(set-enforce-redundancy nil) ; do not require redundancy (default)
(set-enforce-redundancy t) ; most events (see below) must be redundant
(set-enforce-redundancy :warn) ; warn for most non-redundant events
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so recorded.~/
~bv[]
General Form:
(set-enforce-redundancy flag)
~ev[]
where ~c[flag] is ~c[nil], ~c[t], or ~c[:warn], as indicated above.
This macro is essentially equivalent to
~bv[]
(table acl2-defaults-table :enforce-redundancy flag)
~ev[]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table]. However, unlike the above
simple call of the ~ilc[table] event function (~pl[table]), no output results
from a ~c[set-enforce-redundancy] event.
~c[Set-enforce-redundancy] may be thought of as an event that merely sets a
flag as indicated above, which determines whether most ~il[events], including
~ilc[defun] and ~ilc[defthm] events, are allowed to be redundant;
~pl[redundant-events]. The exceptions are ~ilc[deflabel], ~ilc[defpkg],
~ilc[encapsulate], ~ilc[include-book], ~ilc[push-untouchable],
~ilc[remove-untouchable], ~ilc[set-body], and ~ilc[table] ~il[events]. Any
other type of non-redundant event will cause an error if ~c[flag] is ~c[t]
and a warning if ~c[flag] is ~c[nil], ~em[except] in the course of carrying
out an ~ilc[include-book] form.
Note that because ~ilc[table] ~il[events] that set the
~ilc[acl2-defaults-table] are implicitly ~ilc[local],
~c[set-enforce-redundancy] events are ignored when including books. However,
the presence of the event ~c[(set-enforce-redundancy t)] in a book guarantees
that its subsequent definitions and theorems are redundant. This can be a
useful property to maintain in library development, as we now describe.
An example of the use of this form can be found in the community ~il[books]
under directory ~c[books/rtl/rel4/]. The intention in that directory has
been to put all the gory details in subdirectories ~c[support/] and
~c[arithmetic/], so that the books in subdirectory ~c[lib/] contain only the
``exported'' definitions and theorems. This approach is useful for human
readability. Moreover, suppose we want to prove new theorems in ~c[lib/].
Typically we wish to prove the new theorems using the existing books in
~c[lib/]; however, our methodology demands that the proofs go into books in
~c[support/]. If every theorem in ~c[lib/] is redundant, then we can
~em[develop] the proofs in ~c[lib/] but then when we are done, ~em[move] each
book with such proofs into ~c[support/] as follows. In any such book, we
first replace ~ilc[include-book] forms referring to books in ~c[lib/] by
~ilc[include-book] forms referring to corresponding books in ~c[support/]
and/or ~c[arithmetic/]. Then, we add suitable ~ilc[in-theory] events to get
us back into the original ~c[lib/] proof environment.
The default behavior of the system is as though the ~c[:enforce-redundancy]
value is ~c[nil]. The current behavior can be ascertained by evaluating the
following form.
~bv[]
(cdr (assoc-eq :enforce-redundancy (table-alist 'acl2-defaults-table wrld)))
~ev[]"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :enforce-redundancy ,x)
(table acl2-defaults-table :enforce-redundancy))))
#-acl2-loop-only
(defmacro set-enforce-redundancy (x)
(declare (ignore x))
nil)
#+acl2-loop-only
(defmacro set-ignore-doc-string-error (x)
":Doc-Section switches-parameters-and-modes
allow ill-formed ~il[documentation] strings~/
~bv[]
General Forms:
(set-ignore-doc-string-error nil) ; :doc strings must be well-formed
(set-ignore-doc-string-error t) ; ill-formed :doc strings are ignored
(set-ignore-doc-string-error :warn) ; ill-formed :doc strings are ignored
; except for causing a warning
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so recorded.~/
~bv[]
General Form:
(set-ignore-doc-string-error flag)
~ev[]
where ~c[flag] is ~c[nil], ~c[t], or ~c[:warn], as indicated above.
This macro is essentially equivalent to
~bv[]
(table acl2-defaults-table :ignore-doc-string-error flag)
~ev[]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table]. However, unlike the above
simple call of the ~ilc[table] event function (~pl[table]), no output results
from a ~c[set-ignore-doc-string-error] event.
Note that since ~ilc[defdoc] ~il[events] have the sole purpose of installing
~il[documentation] strings, these require well-formed documentation strings
even after executing a call of ~c[ignore-doc-string-error].
The default behavior of the system is as though the
~c[:ignore-doc-string-error] value is ~c[nil]. The current behavior can be
ascertained by evaluating the following form.
~bv[]
(ignore-doc-string-error (w state))
~ev[]"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :ignore-doc-string-error ,x)
(table acl2-defaults-table :ignore-doc-string-error))))
#-acl2-loop-only
(defmacro set-ignore-doc-string-error (x)
(declare (ignore x))
nil)
(defmacro default-verify-guards-eagerness-from-table (alist)
`(or (cdr (assoc-eq :verify-guards-eagerness ,alist))
1))
(defun default-verify-guards-eagerness (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table
wrld)))))
(default-verify-guards-eagerness-from-table
(table-alist 'acl2-defaults-table wrld)))
#+acl2-loop-only
(defmacro set-verify-guards-eagerness (x)
":Doc-Section switches-parameters-and-modes
the eagerness with which ~il[guard] verification is tried.~/
~bv[]
Example Forms: try guard verification?
(set-verify-guards-eagerness 0) ; no, unless :verify-guards t
(set-verify-guards-eagerness 1) ; yes if a guard or type is supplied
(set-verify-guards-eagerness 2) ; yes, unless :verify-guards nil
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so recorded.~/
~bv[]
General Form:
(set-verify-guards-eagerness n)
~ev[]
where ~c[n] is a variable-free term that evaluates to ~c[0], ~c[1], or
~c[2]. This macro is essentially equivalent to
~bv[]
(table acl2-defaults-table :verify-guards-eagerness n)
~ev[]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table]. However, unlike the above
simple call of the ~ilc[table] event function (~pl[table]), no output results
from a ~c[set-verify-guards-eagerness] event.
~c[Set-verify-guards-eagerness] may be thought of as an event that merely
sets a flag to ~c[0], ~c[1], or ~c[2]. The flag is used by certain
~ilc[defun] ~il[events] to determine whether ~il[guard] verification is
tried. The flag is irrelevant to those ~ilc[defun] ~il[events] in
~c[:]~ilc[program] mode and to those ~ilc[defun] ~il[events] in which an
explicit ~c[:]~ilc[verify-guards] setting is provided among the ~ilc[xargs].
In the former case, ~il[guard] verification is not done because it can only
be done when logical functions are being defined. In the latter case, the
explicit ~c[:]~ilc[verify-guards] setting determines whether ~il[guard]
verification is tried. So consider a ~c[:]~ilc[logic] mode ~ilc[defun] in
which no ~c[:]~ilc[verify-guards] setting is provided. Is ~il[guard]
verification tried? The answer depends on the eagerness setting as follows.
If the eagerness is ~c[0], ~il[guard] verification is not tried. If the
eagerness is ~c[1], it is tried if and only if a guard is explicitly
specified in the ~ilc[defun], in the following sense: there is an ~c[xargs]
keyword ~c[:guard] or ~c[:stobjs] or a ~ilc[type] declaration. If the
eagerness is ~c[2], ~il[guard] verification is tried.
The default behavior of the system is as though the
~c[:verify-guards-eagerness] is ~c[1]. The current behavior can be
ascertained by evaluating the form
~c[(default-verify-guards-eagerness (w state))]."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :verify-guards-eagerness ,x)
(table acl2-defaults-table :verify-guards-eagerness))))
#-acl2-loop-only
(defmacro set-verify-guards-eagerness (x)
(declare (ignore x))
nil)
(defun default-compile-fns (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(cdr (assoc-eq :compile-fns (table-alist 'acl2-defaults-table wrld))))
#+acl2-loop-only
(defmacro set-compile-fns (x)
":Doc-Section switches-parameters-and-modes
have each function compiled as you go along.~/
~bv[]
Example Forms:
(set-compile-fns t) ; new functions compiled after DEFUN
(set-compile-fns nil) ; new functions not compiled after DEFUN
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so recorded.
Also ~pl[comp], because it may be more efficient in some Common
Lisps to compile many functions at once rather than to compile each
one as you go along.~/
~bv[]
General Form:
(set-compile-fns term)
~ev[]
where ~c[term] is a variable-free term that evaluates to ~c[t] or ~c[nil].
This macro is equivalent to
~bv[]
(table acl2-defaults-table :compile-fns term)
~ev[]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table]. However, unlike the above
simple call of the ~ilc[table] event function (~pl[table]), no output results
from a ~c[set-compile-fns] event.
~c[Set-compile-fns] may be thought of as an event that merely sets a
flag to ~c[t] or ~c[nil]. The flag's effect is felt when functions
are defined, as with ~ilc[defun]. If the flag is ~c[t], functions are
automatically compiled after they are defined, as are their
executable counterparts (~pl[executable-counterpart]).
Otherwise, functions are not automatically compiled. Exception: The flag has
no effect when explicit compilation is suppressed; ~pl[compilation].
Because ~c[set-compile-fns] is an event, the old value of the flag is
restored when a ~c[set-compile-fns] event is undone.
Even when ~c[:set-compile-fns t] has been executed, functions are not
individually compiled when processing an ~ilc[include-book] event. If
you wish to include a book of compiled functions, we suggest that
you first certify it with the ~il[compilation] flag set
(~pl[certify-book]) or else compile the book by supplying the appropriate
~c[load-compiled-file] argument to ~ilc[include-book]. More generally,
~il[compilation] via ~c[set-compile-fns] is suppressed when the ~il[state]
global variable ~ilc[ld-skip-proofsp] has value ~c[']~ilc[include-book].~/
:cited-by Programming"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :compile-fns ,x)
(table acl2-defaults-table :compile-fns))))
#-acl2-loop-only
(defmacro set-compile-fns (x)
(declare (ignore x))
nil)
(defun set-compiler-enabled (val state)
; We disallow the modification of 'compiler-enabled while inside include-book
; or certify-book, simply because it's too strange to contemplate; we think of
; 'compiler-enabled as a global property affecting defaults for certify-book
; and include-book.
(declare (xargs :guard (and (member-eq val '(t nil :books))
(boundp-global 'certify-book-info state))
:stobjs state))
#-acl2-loop-only
(when *inside-include-book-fn*
(let ((str
"It is illegal to call set-compiler-enabled inside include-book."))
(illegal 'set-compiler-enabled str nil)
(error str) ; in surprising case that illegal doesn't cause an error
))
(cond ((f-get-global 'certify-book-info state)
(prog2$ (hard-error 'set-compiler-enabled
"It is illegal to call set-compiler-enabled ~
inside certify-book."
nil)
state))
(t (f-put-global 'compiler-enabled val state))))
(defun default-measure-function (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(or (cdr (assoc-eq :measure-function (table-alist 'acl2-defaults-table wrld)))
'acl2-count))
#+acl2-loop-only
(defmacro set-measure-function (name)
":Doc-Section switches-parameters-and-modes
set the default measure function symbol~/
~bv[]
Examples:
(set-measure-function nqthm::count)
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded.~/
~bv[]
General Form:
(set-measure-function name)
~ev[]
where ~c[name] is a function symbol of one argument. This macro is
equivalent to ~c[(table acl2-defaults-table :measure-function 'name)],
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table]. Although this is thus an event
(~pl[table]), nevertheless no output results from a ~c[set-measure-function]
event.
This event sets the default measure function to ~c[name]. Subsequently,
if a recursively defined function is submitted to ~ilc[defun] with no
explicitly given ~c[:measure] argument, ~ilc[defun] ``guesses'' the measure
~c[(name var)], where ~c[name] is the then current default measure function
and ~c[var] is the first formal found to be tested along every branch
and changed in every recursive call.
Note that if ~c[(table acl2-defaults-table :measure-function 'name)] has its
default value of ~c[nil], then the default measure function is
~ilc[acl2-count].~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :measure-function ',name)
(table acl2-defaults-table :measure-function))))
#-acl2-loop-only
(defmacro set-measure-function (name)
(declare (ignore name))
nil)
(defun default-well-founded-relation (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(or (cdr (assoc-eq :well-founded-relation (table-alist 'acl2-defaults-table wrld)))
'o<))
#+acl2-loop-only
(defmacro set-well-founded-relation (rel)
":Doc-Section switches-parameters-and-modes
set the default well-founded relation~/
~bv[]
Examples:
(set-well-founded-relation lex2)
~ev[]
provided ~c[lex2] has been proved to be a well-founded relation
(~pl[well-founded-relation]). Note: This is an event! It does
not print the usual event summary but nevertheless changes the ACL2
logical ~il[world] and is so recorded.~/
~bv[]
General Form:
(set-well-founded-relation rel)
~ev[]
where ~c[rel] has been proved to be a well-founded relation on objects
satisfying some predicate, ~c[mp]; ~pl[well-founded-relation]. This macro is
equivalent to ~c[(table acl2-defaults-table :well-founded-relation 'rel)],
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table].
This event sets the default well-founded relation to be that imposed
on ~c[mp]-measures by the relation ~c[rel]. Subsequently, if a recursively
defined function is submitted to ~ilc[defun] with no explicitly given
~c[:]~ilc[well-founded-relation] argument, ~ilc[defun] uses the default relation,
~c[rel], and the associated domain predicate ~c[mp] used in its
well-foundedness theorem. That is, the termination conditions
generated will require proving that the measure used by the ~ilc[defun] is
an ~c[mp]-measure and that in every recursive call the measure of the
arguments decreases according to ~c[rel].~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :well-founded-relation ',rel)
(table acl2-defaults-table :well-founded-relation))))
#-acl2-loop-only
(defmacro set-well-founded-relation (rel)
(declare (ignore rel))
nil)
; Another default is the defun-mode.
(defmacro default-defun-mode-from-table (alist)
`(let ((val (cdr (assoc-eq :defun-mode ,alist))))
(if (member-eq val '(:logic :program)) ; from table guard
val
; We set the default-defun-mode to :program when val is NIL, which is
; the case for boot-strapping.
:program)))
(defun default-defun-mode (wrld)
":Doc-Section Miscellaneous
the default ~il[defun-mode] of ~ilc[defun]'d functions~/
When a ~ilc[defun] is processed and no ~c[:mode] ~c[xarg] is supplied, the
function ~c[default-defun-mode] is used. To find the default ~il[defun-mode]
of the current ACL2 ~il[world], type ~c[(default-defun-mode (w state))].
~l[defun-mode] for a discussion of ~il[defun-mode]s. To change the
default ~il[defun-mode] of the ACL2 ~il[world], type one of the keywords
~c[:]~ilc[program] or ~c[:]~ilc[logic].~/
The default ACL2 ~il[prompt] displays the current default ~il[defun-mode] by
showing the character ~c[p] for ~c[:]~ilc[program] mode, and omitting it for
~c[:]~ilc[logic] mode; ~pl[default-print-prompt]. The default ~il[defun-mode]
may be changed using the keyword ~il[command]s ~c[:]~ilc[program] and ~c[:]~ilc[logic],
which are equivalent to the ~il[command]s ~c[(program)] and ~c[(logic)].
Each of these names is documented separately: ~pl[program] and
~pl[logic]. The default ~il[defun-mode] is stored in the ~il[table]
~ilc[acl2-defaults-table] and hence may also be changed by a ~ilc[table]
~il[command]. ~l[table] and also ~pl[acl2-defaults-table].
Both mode-changing ~il[command]s are ~il[events].
While ~il[events] that change the default ~il[defun-mode] are permitted within
an ~ilc[encapsulate] or the text of a book, their effects are ~ilc[local] in
scope to the duration of the encapsulation or inclusion. For
example, if the default ~il[defun-mode] is ~c[:]~ilc[logic] and a book is
included that contains the event ~c[(program)], then subsequent
~il[events] within the book are processed with the default ~il[defun-mode]
~c[:]~ilc[program]; but when the ~ilc[include-book] event completes, the
default ~il[defun-mode] will still be ~c[:]~ilc[logic]. ~il[Command]s that change
the default ~il[defun-mode] are not permitted inside ~ilc[local] forms.~/"
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table
wrld)))))
(default-defun-mode-from-table (table-alist 'acl2-defaults-table wrld)))
; The following is used in the definition of when-logic, in order to provide
; something limited to put on the chk-new-name-lst of the primordial world.
(defun default-defun-mode-from-state (state)
(declare (xargs :guard (state-p state)))
(default-defun-mode (w state)))
#+acl2-loop-only
(defmacro logic nil
":Doc-Section switches-parameters-and-modes
to set the default ~il[defun-mode] to ~c[:logic]~/
~bv[]
Example:
ACL2 p!>:logic
ACL2 !>
~ev[]
Typing the keyword ~c[:logic] sets the default ~il[defun-mode] to ~c[:logic].
Functions defined in ~c[:logic] mode are logically defined.
~l[defun-mode].
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded.~/
~l[defun-mode] for a discussion of the ~il[defun-mode]s available
and what their effects on the logic are.
~l[default-defun-mode] for a discussion of how the default
~il[defun-mode] is used. This event is equivalent to
~c[(table acl2-defaults-table :defun-mode :logic)],
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs. ~l[acl2-defaults-table].
Recall that the top-level form ~c[:logic] is equivalent to ~c[(logic)];
~pl[keyword-commands]. Thus, to change the default ~il[defun-mode]
to ~c[:logic] in a book, use ~c[(logic)], which is an embedded event
form, rather than ~c[:logic], which is not a legal form for ~il[books].
~l[embedded-event-form]."
'(state-global-let*
((inhibit-output-lst (list* 'summary (@ inhibit-output-lst))))
(er-progn (table acl2-defaults-table :defun-mode :logic)
(value :invisible))))
#-acl2-loop-only
(defmacro logic () nil)
#+acl2-loop-only
(defmacro program nil
":Doc-Section switches-parameters-and-modes
to set the default ~il[defun-mode] to ~c[:]~ilc[program]~/
~bv[]
Example:
ACL2 !>:program
ACL2 p!>
~ev[]
Typing the keyword ~c[:program] sets the default ~il[defun-mode] to ~c[:program].
Functions defined in ~c[:program] mode are logically undefined but can
be executed on constants outside of deductive contexts.
~l[defun-mode].
Calls of the following macros are ignored (skipped) when in ~c[:program]
mode.
~bv[]
local
verify-guards
verify-termination
defaxiom
defthm
deftheory
in-theory
in-arithmetic-theory
regenerate-tau-database
theory-invariant
defchoose
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded.~/
~l[defun-mode] for a discussion of the ~il[defun-mode]s available
and what their effects on the logic are.
~l[default-defun-mode] for a discussion of how the default
~il[defun-mode] is used. This event is equivalent to
~c[(table acl2-defaults-table :defun-mode :program)],
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs. ~l[acl2-defaults-table].
Recall that the top-level form ~c[:program] is equivalent to ~c[(program)];
~pl[keyword-commands]. Thus, to change the default ~il[defun-mode]
to ~c[:program] in a book, use ~c[(program)], which is an embedded event
form, rather than ~c[:program], which is not a legal form for ~il[books].
~l[embedded-event-form]."
'(state-global-let*
((inhibit-output-lst (list* 'summary (@ inhibit-output-lst))))
(er-progn (table acl2-defaults-table :defun-mode :program)
(value :invisible))))
#-acl2-loop-only
(defmacro program () nil)
(defun invisible-fns-table (wrld)
":Doc-Section switches-parameters-and-modes
functions that are invisible to the ~il[loop-stopper] algorithm~/
~bv[]
Examples:
ACL2 !>(invisible-fns-table (w state))
((binary-+ unary--)
(binary-* unary-/)
(unary-- unary--)
(unary-/ unary-/))
~ev[]
Among other things, the setting above has the effect of making ~ilc[unary--]
``invisible'' for the purposes of applying permutative ~c[:]~ilc[rewrite]
rules to ~ilc[binary-+] trees. Also ~pl[add-invisible-fns] and
~pl[remove-invisible-fns], which manage macro aliases
(~pl[macro-aliases-table]), as well as ~pl[set-invisible-fns-table].
~l[table] for a general discussion of tables.~/
The ``invisible functions ~il[table]'' is an alist with elements of the following
form, where ~c[fn] is a function symbol and the ~c[ufni] are unary function
symbols in the current ACL2 ~il[world], and ~c[k] is at least 1.
~bv[]
(fn ufn1 ufn2 ... ufnk)
~ev[]
This ~il[table] thus associates with certain function symbols, e.g., ~c[fn]
above, a set of unary functions, e.g., the ~c[ufni] above. The ~c[ufni]
associated with ~c[fn] in the invisible functions table are said to be
``invisible with respect to ~c[fn].'' If ~c[fn] is not the ~ilc[car] of any
pair in the ~c[alist], then no function is invisible for it. Thus for
example, setting the invisible functions alist to ~c[nil] completely
eliminates the consideration of invisibility.
The notion of invisibility is involved in the use of the
~c[:]~ilc[loop-stopper] field of ~c[:]~ilc[rewrite] rules to prevent the indefinite
application of permutative rewrite rules. Roughly speaking, if
rewrite rules are being used to permute ~c[arg] and (ufni arg) inside of
a nest of ~c[fn] calls, and ~c[ufni] is invisible with respect to ~c[fn], then
~c[arg] and ~c[(ufni arg)] are considered to have the same ``weight'' and
will be permuted so as to end up as adjacent tips in the ~c[fn] nest.
~l[loop-stopper].~/"
(declare (xargs :guard (plist-worldp wrld)))
(table-alist 'invisible-fns-table wrld))
(defmacro set-invisible-fns-table (alist)
":Doc-Section switches-parameters-and-modes
set the invisible functions table~/
~bv[]
Examples:
(set-invisible-fns-table ((binary-+ unary--)
(binary-* unary-/)
(unary-- unary--)
(unary-/ unary-/)))
(set-invisible-fns-table t) ; restore original invisible-fns-table
~ev[]
Among other things, the setting above has the effect of making
~ilc[unary--] ``invisible'' for the purposes of applying permutative
~c[:]~ilc[rewrite] rules to ~ilc[binary-+] trees. Thus, ~c[arg] and ~c[(unary-- arg)] will
be given the same weight and will be permuted so as to be adjacent.
The form ~c[(invisible-fns-table (w state))] returns the current value
of the invisible functions table.
Also ~pl[add-invisible-fns] and ~pl[remove-invisible-fns] for events that add
to and remove from the invisible functions table, while accounting for macro
aliases (~pl[macro-aliases-table]).~/
~bv[]
General Form:
(set-invisible-fns-table alist)
~ev[]
where ~c[alist] is either ~c[t] or a true list of pairs, each element of
which is of the form ~c[(fn ufn1 ... ufnk)], where ~c[fn] is a function
symbol and each ~c[ufni] is a unary function symbol. When alist is ~c[t],
the initial value of this table is used in its place. Modulo the
replacement of ~c[alist] by the default setting when ~c[alist] is ~c[t], this
macro is equivalent to
~bv[]
(table invisible-fns-table nil 'alist :clear)
~ev[]
which is also an event (~pl[table]).
Note that ~c[set-invisible-fns-table] does not evaluate its argument.
However, you can call ~ilc[table] directly for that purpose. For example,
~bv[]
(set-invisible-fns-table ((binary-+ unary--)
(binary-* unary-/)
(unary-- unary--)
(unary-/ unary-/)))
~ev[]
ie equivalent to the following; ~pl[table].
~bv[]
(table invisible-fns-table nil
(quote ((binary-+ unary--)
(binary-* unary-/)
(unary-- unary--)
(unary-/ unary-/)))
:clear)
~ev[]
~l[invisible-fns-table] for a description of the invisible functions table.~/"
`(table invisible-fns-table
nil
',(cond ((eq alist t)
; We provide the alist = t setting mainly so the user can always
; obtain the initial setting. But we also use it ourselves in a call
; of (set-invisible-fns-table t) below that initialize the table.
'((binary-+ unary--)
(binary-* unary-/)
(unary-- unary--)
(unary-/ unary-/)))
(t alist))
:clear))
(defun unary-function-symbol-listp (lst wrld)
(declare (xargs :guard (plist-worldp wrld)))
(cond ((atom lst) (null lst))
(t (and (symbolp (car lst))
; The length expression below is roughly arity, which could have been used
; instead except that it is not defined yet in axioms.lisp. Note that since
; (length nil) = 1, this works even when we have do not have a
; function-symbolp. Actually we avoid length in order to ease the
; guard verification process at this point.
; (= (length formals) 1)...
(let ((formals (getprop (car lst) 'formals nil
'current-acl2-world wrld)))
(and (consp formals)
(null (cdr formals))))
(unary-function-symbol-listp (cdr lst) wrld)))))
(defun invisible-fns-entryp (key val wrld)
(declare (xargs :guard (plist-worldp wrld)))
(and (symbolp key)
(function-symbolp key wrld)
(unary-function-symbol-listp val wrld)))
(table invisible-fns-table nil nil
:guard
(invisible-fns-entryp key val world))
(set-invisible-fns-table t)
(defmacro add-invisible-fns (top-fn &rest unary-fns)
":Doc-Section switches-parameters-and-modes
make some unary functions invisible to the ~il[loop-stopper] algorithm~/
~bv[]
Examples:
(add-invisible-fns binary-+ unary-- foo)
(add-invisible-fns + unary-- foo)
~ev[]
Each of the ~il[events] above makes unary functions ~ilc[unary--] and ~c[foo]
``invisible'' for the purposes of applying permutative ~c[:]~ilc[rewrite]
rules to ~ilc[binary-+] trees. Thus, ~c[arg] and ~c[(unary-- arg)] will be
given the same weight and will be permuted so as to be adjacent.~/
~bv[]
General Form:
(add-invisible-fns top-fn unary-fn1 ... unary-fnk)
~ev[]
where ~c[top-fn] is a function symbol and the ~c[unary-fni] are unary
function symbols, or more generally, these are all macro aliases for function
symbols (~pl[macro-aliases-table]).
For more information ~pl[invisible-fns-table]. Also
~pl[set-invisible-fns-table], which explains how to set the entire table in a
single event, and ~pl[remove-invisible-fns].~/"
`(table invisible-fns-table nil
(let* ((tbl (table-alist 'invisible-fns-table world))
(macro-aliases (macro-aliases world))
(top-fn (deref-macro-name ',top-fn macro-aliases))
(old-entry (assoc-eq top-fn tbl))
(unary-fns (deref-macro-name-lst ',unary-fns macro-aliases)))
(if (not (subsetp-eq unary-fns (cdr old-entry)))
(put-assoc-eq top-fn
(union-eq unary-fns (cdr old-entry))
tbl)
(prog2$ (cw "~%NOTE: Add-invisible-fns did not change the ~
invisible-fns-table. Consider using :u or :ubt to ~
undo this event.~%")
tbl)))
:clear))
(defmacro remove-invisible-fns (top-fn &rest unary-fns)
":Doc-Section switches-parameters-and-modes
make some unary functions no longer invisible~/
~bv[]
Examples:
(remove-invisible-fns (binary-+ unary-- foo)
(remove-invisible-fns (+ unary-- foo)
~ev[]
The setting above has makes unary functions ~ilc[unary--] and ~c[foo] no
longer ``invisible'' for the purposes of applying permutative ~c[:]~ilc[rewrite]
rules to ~ilc[binary-+] trees.~/
~bv[]
General Form:
(remove-invisible-fns top-fn unary-fn1 ... unary-fnk)
~ev[]
where ~c[top-fn] is a function symbol and the ~c[unary-fni] are unary
function symbols, or more generally, these are all macro aliases for function
symbols (~pl[macro-aliases-table]).
~l[add-invisible-fns] and also ~pl[invisible-fns-table] and
~pl[set-invisible-fns-table].~/"
`(table invisible-fns-table nil
(let* ((tbl (table-alist 'invisible-fns-table world))
(macro-aliases (macro-aliases world))
(top-fn (deref-macro-name ',top-fn macro-aliases))
(old-entry (assoc-eq top-fn tbl))
(unary-fns (deref-macro-name-lst ',unary-fns macro-aliases)))
(if (intersectp-eq unary-fns (cdr old-entry))
(let ((diff (set-difference-eq (cdr old-entry) unary-fns)))
(if diff
(put-assoc-eq top-fn diff tbl)
(delete-assoc-eq top-fn tbl)))
(prog2$ (cw "~%NOTE: Remove-invisible-fns did not change the ~
invisible-fns-table. Consider using :u or :ubt to ~
undo this event.~%")
tbl)))
:clear))
; The following two definitions are included to help users transition from
; Version_2.6 to Version_2.7 (where [set-]invisible-fns-alist was replaced by
; [set-]invisible-fns-table).
(defmacro set-invisible-fns-alist (alist)
(declare (ignore alist))
'(er hard 'set-invisible-fns-alist
"Set-invisible-fns-alist has been replaced by set-invisible-fns-table. ~
See :DOC invisible-fns-table. Also see :DOC add-invisible-fns and see ~
:DOC remove-invisible-fns."))
(defmacro invisible-fns-alist (wrld)
(declare (ignore wrld))
'(er hard 'invisible-fns-alist
"Invisible-fns-alist has been replaced by invisible-fns-table. Please ~
see :DOC invisible-fns-table."))
#+acl2-loop-only
(defmacro set-bogus-defun-hints-ok (x)
":Doc-Section switches-parameters-and-modes
allow unnecessary ``mutual recursion'' ~/
~bv[]
General Forms:
(set-bogus-defun-hints-ok t)
(set-bogus-defun-hints-ok nil)
(set-bogus-defun-hints-ok :warn)
~ev[]
By default, ACL2 causes an error when the keyword ~c[:]~ilc[hints] is
supplied in an ~ilc[xargs] ~il[declare] form for a definition (~pl[defun]).
This behavior can be defeated with ~c[(set-bogus-defun-hints-ok t)], or if
you still want to see a warning in such cases,
~c[(set-bogus-defun-hints-ok :warn)].~/~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :bogus-defun-hints-ok ,x)
(table acl2-defaults-table :bogus-defun-hints-ok))))
#-acl2-loop-only
(defmacro set-bogus-defun-hints-ok (x)
(declare (ignore x))
nil)
#+acl2-loop-only
(defmacro set-bogus-mutual-recursion-ok (x)
":Doc-Section switches-parameters-and-modes
allow unnecessary ``mutual recursion'' ~/
~bv[]
Examples:
(set-bogus-mutual-recursion-ok t)
(set-bogus-mutual-recursion-ok nil)
(set-bogus-mutual-recursion-ok :warn)
~ev[]
By default, ACL2 checks that when a ``clique'' of more than one
function is defined simultaneously (using ~ilc[mutual-recursion] or
~ilc[defuns]), then every body calls at least one of the functions in
the ``clique.'' Below, we refer to definitional events that fail
this check as ``bogus'' mutual recursions. The check is important
because ACL2 does not store induction schemes for functions defined
with other functions in a ~ilc[mutual-recursion] or ~ilc[defuns]
event. Thus, ACL2 may have difficulty proving theorems by induction
that involve such functions. Moreover, the check can call attention
to bugs, since users generally intend that their mutual recursions
are not bogus.
Nevertheless, there are times when it is advantageous to allow bogus
mutual recursions, for example when they are generated mechanically,
even at the expense of losing stored induction schemes. The first
example above allows bogus mutual recursion. The second example
disallows bogus mutual recursion; this is the default. The third
example allows bogus mutual recursion, but prints an appropriate
warning.
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].~/
~bv[]
General Form:
(set-bogus-mutual-recursion-ok flg)
~ev[]
where ~c[flg] is either ~c[t], ~c[nil], or ~c[:warn].~/
:cited-by Programming"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :bogus-mutual-recursion-ok ,x)
(table acl2-defaults-table :bogus-mutual-recursion-ok))))
#-acl2-loop-only
(defmacro set-bogus-mutual-recursion-ok (x)
(declare (ignore x))
nil)
(defdoc ruler-extenders
":Doc-Section switches-parameters-and-modes
control for ACL2's termination and induction analyses~/
~st[Introduction]
Consider the following recursive definition, which returns a list of threes
of length one more than the length of ~c[x].
~bv[]
(defun f (x)
(cons 3
(if (consp x)
(f (cdr x))
nil)))
~ev[]
One might expect ACL2's termination analysis to admit this function, since we
know that ~c[(cdr x)] is ``smaller'' than ~c[x] if ~c[(consp x)] is true.
(By default, ACL2's notion of ``smaller'' is ordinary natural-number ~c[<],
and the argument ~c[x] is measured by applying function ~c[acl2-count] to
~c[x].) However, that termination analysis does not consider ~ilc[IF] tests,
like ~c[(consp x)] above, when they occur under calls of functions other than
~c[IF], such as ~c[CONS] in the case above.
One way to overcome this problem is to ``lift'' the ~c[IF] test to the top
level, as follows.
~bv[]
(defun f (x)
(if (consp x)
(cons 3 (f (cdr x)))
(cons 3 nil)))
~ev[]
But another way to overcome the problem is to tell ACL2 to extend its
termination (and induction) analysis through calls of ~c[cons], as follows.
~bv[]
(defun f (x)
(declare (xargs :ruler-extenders (cons)))
(cons 3
(if (consp x)
(f (cdr x))
nil)))
~ev[]
You may even wish to provide value ~c[:all] instead of an explicit list of
ruler-extenders, so that no function call blocks the termination analysis:
~bv[]
(defun f (x)
(declare (xargs :ruler-extenders :all))
(cons 3
(if (consp x)
(f (cdr x))
nil)))
~ev[]
Alternatively, you can omit the ~c[XARGS] ~c[:RULER-EXTENDERS] form, instead
modifying the global default set of ruler-extenders:
~bv[]
(set-ruler-extenders :all)
; or, for example:
(set-ruler-extenders '(cons return-last))
~ev[]
You can call the function ~ilc[default-ruler-extenders] as follows to see the
current global default set of ruler-extenders:
~bv[]
(default-ruler-extenders (w state))
~ev[]
We conclude this introduction by considering the handling of ~c[LET]
expressions by termination analysis. Consider the following example.
~bv[]
(defun fact (n)
(the (integer 1 *)
(if (posp n)
(* n (fact (1- n)))
1)))
~ev[]
ACL2 treats the call of ~ilc[THE] in the body of this definition as follows.
~bv[]
(let ((var (if (posp n)
(* n (fact (1- n)))
1)))
(if (and (integerp var) (<= 1 var))
var
<some_error>))
~ev[]
A ~ilc[LET] expression, in turn, is treated as a ~ilc[LAMBDA] application:
~bv[]
((lambda (var)
(if (if (integerp var)
(not (< var 1))
nil)
var
<some_error>))
(if (posp n)
(* n (fact (1- n)))
1))
~ev[]
Notice that the ~ilc[posp] test, which governs the recursive call of
~c[fact], is inside an argument of a function application, namely the
application of the ~c[LAMBDA] expression. So by default, ACL2 will not
consider this ~ilc[posp] test in its termination analysis. The keyword
~c[:LAMBDAS] in the list of ruler-extenders denotes all calls of lambda
expressions, much as the inclusion of ~c[CONS] in the ruler-extenders denotes
all calls of ~c[CONS]. The following definition is thus accepted by ACL2.
~bv[]
(defun fact (n)
(declare (xargs :ruler-extenders (:lambdas)))
(the (integer 1 *)
(if (posp n)
(* n (fact (1- n)))
1)))
~ev[]
As a convenience, ACL2 allows the symbol ~c[:lambdas] in place of
~c[(:lambdas)], and in fact the former will also include the default
ruler-extenders: ~ilc[RETURN-LAST] (which comes from macroexpansion of calls
of ~ilc[PROG2$], ~ilc[EC-CALL], and others) and ~ilc[MV-LIST].
IMPORTANT REMARKS. (1) Notice that the argument to ~c[set-ruler-extenders]
is evaluated, but the argument to ~c[:RULER-EXTENDERS] in ~c[XARGS] is not
evaluated. (2) Do not put macro names in your list of ruler-extenders. For
example, if you intend that ~c[+] should not block the termination analysis,
in analogy to ~c[cons] in the example above, then the list of ruler-extenders
should include ~c[binary-+], not ~c[+]. Of course, if you use ~c[:all] then
this is not an issue, but see the next remark. (3) Also please note that by
taking advantage of the ruler-extenders, you may be complicating the
induction scheme stored for the function, whose computation takes similar
advantage of the additional ~c[IF] structure that you are specifying.
Below we describe the notion of ruler-extenders in detail, as well as how to
set its default using ~c[set-ruler-extenders].
~st[Details]
We begin by discussing how to set the ruler-extenders by using the macro
~c[set-ruler-extenders]; below we will discuss the use of keyword
~c[:ruler-extenders] in ~ilc[XARGS] ~ilc[declare] forms.
~bv[]
Examples:
(set-ruler-extenders :basic) ; return to default
(set-ruler-extenders *basic-ruler-extenders*) ; same as immediately above
(set-ruler-extenders :all) ; every governing IF test rules a recursive call
(set-ruler-extenders :lambdas) ; LET does not block termination analysis
(set-ruler-extenders (cons :lambdas *basic-ruler-extenders*))
; same as immediately above
(set-ruler-extenders '(f g)) ; termination analysis goes past calls of f, g
General Form:
(set-ruler-extenders val)
~ev[]
where ~c[val] evaluates to one of ~c[:basic], ~c[:all], ~c[:lambdas], or a
true list of symbols containing no keyword other than, optionally,
~c[:lambdas].~/
When a recursive definition is submitted to ACL2 (in ~c[:]~ilc[logic] mode),
the recursion must be proved to terminate; ~pl[defun]. More precisely, ACL2
explores the ~ilc[IF] structure of the body of the definition to accumulate
the tests that ``rule'' any given recursive call. The following example
reviews how this works. Suppose that ~c[f] has already been defined.
~bv[]
(defun g (x y)
(declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
(if (consp x)
(g (cdr x) y)
(if (consp y)
(f (g x (cdr y)))
(f (list x y)))))
~ev[]
ACL2 makes the following response to this proposed definition. Notice that
the ~c[:measure] proposed above must be proved to be an ACL2 ordinal ~-[]
that is, to satisfy ~c[O-P] ~-[] and that the arguments to each recursive
call must be smaller (in the sense of that measure and ~c[O<], which here
reduces to the ordinary ~c[<] relation) than the formals under the assumption
of the ruling ~c[IF] tests. The first ~c[IMPLIES] term below thus
corresponds to the recursive call ~c[(g (cdr x) y)], while the second
corresponds to the recursive call ~c[(g x (cdr y))].
~bv[]
For the admission of G we will use the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(+ (ACL2-COUNT X) (ACL2-COUNT Y)). The non-trivial part of the measure
conjecture is
Goal
(AND (O-P (+ (ACL2-COUNT X) (ACL2-COUNT Y)))
(IMPLIES (CONSP X)
(O< (+ (ACL2-COUNT (CDR X)) (ACL2-COUNT Y))
(+ (ACL2-COUNT X) (ACL2-COUNT Y))))
(IMPLIES (AND (NOT (CONSP X)) (CONSP Y))
(O< (+ (ACL2-COUNT X) (ACL2-COUNT (CDR Y)))
(+ (ACL2-COUNT X) (ACL2-COUNT Y))))).
~ev[]
Now consider the following alternate version of the above definition.
~bv[]
(defun g (x y)
(declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
(if (consp x)
(g (cdr x) y)
(f (if (consp y)
(g x (cdr y))
(list x y)))))
~ev[]
The first test, ~c[(consp x)], still rules the first recursive call,
~c[(g (cdr x) y)]. And the negation of that test, namely
~c[(not (consp x))], still rules the second recursive call ~c[(g x (cdr y))].
But the call of ~c[f] blocks the top-down exploration of the ~c[IF] structure
of the body of ~c[g], so ~c[(consp y)] does not rule that second recursive
call, which (again) is ~c[(g x (cdr y))]. As a result, ACL2 fails to admit
the above definition.
~c[Set-ruler-extenders] is provided to overcome the sort of blocking
described above. Suppose for example that the following event is submitted:
~bv[]
(set-ruler-extenders '(f))
~ev[]
Then the alternate definition of ~c[g] above is admissible, because the call
of ~c[f] no longer blocks the top-down exploration of the ~c[IF] structure of
the body of ~c[g]: that is, ~c[(consp y)] becomes a ruler of the recursive
call ~c[(g x (cdr y))]. In this case, we say that ~c[f] is a
``ruler-extender''. The same result obtains if we first submit
~bv[]
(set-ruler-extenders :all)
~ev[]
as this removes all function calls as blockers of the top-down analysis. In
other words, with ~c[:all] it is the case that for every recursive call,
every test argument of a superior call of ~c[IF] contributes a ruler of that
recursive call.
ACL2 handles ~ilc[LET] (and ~ilc[LET*]) expressions by translating them to
~c[LAMBDA] expressions (~pl[term]). The next examples illustrates
termination analysis involving such expressions. First consider the
following (admittedly inefficient) definition.
~bv[]
(defun fact (n)
(let ((k (if (natp n) n 0)))
(if (equal k 0)
1
(* k (fact (+ -1 k))))))
~ev[]
ACL2 translates the body of this definition to a ~c[LAMBDA] application,
essentially:
~bv[]
((lambda (k)
(if (equal k 0)
1
(* k (fact (+ -1 k)))))
(if (natp n) n 0))
~ev[]
As with the application of any function other than ~c[IF], the top-down
termination analysis does not dive into arguments: the ~c[LAMBDA] blocks the
continuation of the analysis into its argument. But here, the argument of
the ~c[LAMBDA] is ~c[(if (natp n) n 0)], which has no recursive calls to
consider anyhow. What is more interesting: ACL2 does continue its
termination analysis into the body of the ~c[LAMBDA], in an environment
binding the ~c[LAMBDA] formals to its actuals. In this case, the termination
analysis thus continues into the term
~bv[]
(if (equal k 0)
1
(* k (fact (+ -1 k))))
~ev[]
in the environment that binds ~c[k] to the term ~c[(if (natp n) n 0)]. Thus,
the proof obligation is successfully discharged, as reported by ACL2:
~bv[]
For the admission of FACT we will use the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT N). The non-trivial part of the measure conjecture is
Goal
(IMPLIES (NOT (EQUAL (IF (NATP N) N 0) 0))
(O< (ACL2-COUNT (+ -1 (IF (NATP N) N 0)))
(ACL2-COUNT N))).
.....
Q.E.D.
That completes the proof of the measure theorem for FACT.
~ev[]
But now consider the following definition, in which the recursion takes place
inside the argument of the ~c[LAMBDA] rather than inside the ~c[LAMBDA]
body.
~bv[]
(defun app (x y)
(let ((result (if (endp x)
y
(cons (car x)
(app (cdr x) y)))))
(if (our-test result)
result
0)))
~ev[]
Writing the body in ~c[LAMBDA] notation:
~bv[]
((lambda (result)
(if (our-test result)
result
0))
(if (endp x)
y
(cons (car x)
(app (cdr x) y))))
~ev[]
By default, the ~c[LAMBDA] call blocks the top-down termination analysis from
proceeding into the term ~c[(if (endp x) ...)]. To solve this, one can
submit the event:
~bv[]
(set-ruler-extenders :lambdas)
~ev[]
The above definition of ~c[app] is then admitted by ACL2, because the
termination analysis is no longer blocked by the ~c[LAMBDA] call.
The example just above illustrates that the heuristically-chosen measure is
suitably sensitive to the ruler-extenders. Specifically: that measure is the
application of ~c[acl2-count] to the first formal parameter of the function
that is tested along every branch of the relevant ~c[IF] structure (as
determined by the rulers) and occurs as a proper subterm at the same argument
position in every recursive call. The heuristics for choosing the
controller-alist for a ~ilc[definition] rule are similarly sensitive to the
ruler-extenders (~pl[definition]).
The remarks above for ~ilc[defun] ~il[events] are equally applicable when a
definition sits inside a ~ilc[mutual-recursion] event, except of course that
in this case, a ``recursive call'' is a call of any function being defined by
that ~ilc[mutual-recursion] event.
Rules of class ~c[:]~ilc[definition] are sensitive to ~c[set-ruler-extenders]
in analogy to the case of ~c[defun] ~il[events].
This macro generates a call
~c[(table acl2-defaults-table :ruler-extenders val)]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs. ~l[acl2-defaults-table]. The current list of
ruler-extenders may be obtained as
~bv[]
(cdr (assoc-eq :ruler-extenders
(table-alist 'acl2-defaults-table (w state))))
~ev[]
or more conveniently, as:
~bv[]
(default-ruler-extenders (w state))
~ev[]
Note that evaluation of ~c[(set-ruler-extenders lst)], where ~c[lst]
evaluates to a list, does not necessarily include the default ruler-extenders
~-[] i.e., those included for the argument, ~c[:basic] ~-[] which are the
elements of the list constant ~c[*basic-ruler-extenders*], namely
~ilc[return-last] and ~ilc[mv-list]. You may, of course, include these
explicitly in your list argument.
We conclude our discussion by noting that the set of ruler-extenders can
affect the induction scheme that is stored with a recursive definition. The
community book ~c[books/misc/misc2/ruler-extenders-tests.lisp] explains how
induction schemes are derived in this case. Consider the following example.
~bv[]
(defun tree-of-nils-p (x)
(if (consp x)
(and (tree-of-nils-p (car x))
(tree-of-nils-p (cdr x)))
(null x)))
~ev[]
The above definition generates the following induction scheme. Note that
~c[(and u v)] expands to ~c[(if u v nil)], which explains why the term
~c[(tree-of-nils-p (car x))] rules the recursive call
~c[(tree-of-nils-p (cdr x))], resulting in the hypothesis
~c[(tree-of-nils-p (car x))] in the final conjunct below.
~bv[]
(AND (IMPLIES (NOT (CONSP X)) (:P X))
(IMPLIES (AND (CONSP X)
(NOT (TREE-OF-NILS-P (CAR X)))
(:P (CAR X)))
(:P X))
(IMPLIES (AND (CONSP X)
(TREE-OF-NILS-P (CAR X))
(:P (CAR X))
(:P (CDR X)))
(:P X)))
~ev[]
Now consider the following variant of the above definition, in which a call
of the function ~c[identity] blocks the termination analysis.
~bv[]
(defun tree-of-nils-p (x)
(if (consp x)
(identity (and (tree-of-nils-p (car x))
(tree-of-nils-p (cdr x))))
(null x)))
~ev[]
This time the induction scheme is as follows, since only the top-level ~c[IF]
test contributes rulers to the termination analysis.
~bv[]
(AND (IMPLIES (NOT (CONSP X)) (:P X))
(IMPLIES (AND (CONSP X)
(:P (CAR X))
(:P (CDR X)))
(:P X)))
~ev[]
But now suppose we first designate ~c[identity] as a ruler-extender.
~bv[]
(set-ruler-extenders '(identity))
~ev[]
Then the induction scheme generated for the both of the above variants of
~c[tree-of-nils-p] is the one shown for the first variant, which is
reasonable because both definitions now produce essentially the same
termination analysis.~/")
#+acl2-loop-only
(defmacro set-ruler-extenders (x)
; It seems a bit sad to evaluate x twice, but that seems kind of unavoidable if
; we are to use a table event to set the acl2-defaults-table, since WORLD is
; not available for the expression of that event.
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(er-progn
(chk-ruler-extenders ,x soft 'set-ruler-extenders (w state))
(progn
(table acl2-defaults-table :ruler-extenders
(let ((x0 ,x))
(case x0
; If keywords other than :ALL, :BASIC, and :LAMBDAS are supported, then also
; change get-ruler-extenders1.
(:all :all)
(:lambdas (cons :lambdas *basic-ruler-extenders*))
(:basic *basic-ruler-extenders*)
(otherwise x0))))
(table acl2-defaults-table :ruler-extenders)))))
#-acl2-loop-only
(defmacro set-ruler-extenders (x)
(declare (ignore x))
nil)
#+acl2-loop-only
(defmacro set-irrelevant-formals-ok (x)
":Doc-Section switches-parameters-and-modes
allow irrelevant formals in definitions~/
~bv[]
Examples:
(set-irrelevant-formals-ok t)
(set-irrelevant-formals-ok nil)
(set-irrelevant-formals-ok :warn)
~ev[]
The first example above allows irrelevant formals in definitions;
~pl[irrelevant-formals]. The second example disallows
irrelevant formals; this is the default. The third example allows
irrelevant formals, but prints an appropriate warning.
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].~/
~bv[]
General Form:
(set-irrelevant-formals-ok flg)
~ev[]
where ~c[flg] is either ~c[t], ~c[nil], or ~c[:warn].~/
:cited-by Programming"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :irrelevant-formals-ok ,x)
(table acl2-defaults-table :irrelevant-formals-ok))))
#-acl2-loop-only
(defmacro set-irrelevant-formals-ok (x)
(declare (ignore x))
nil)
#+acl2-loop-only
(defmacro set-ignore-ok (x)
":Doc-Section switches-parameters-and-modes
allow unused formals and locals without an ~c[ignore] or ~c[ignorable] declaration~/
~bv[]
Examples:
(set-ignore-ok t)
(set-ignore-ok nil)
(set-ignore-ok :warn)
~ev[]
The first example above allows unused formals and locals, i.e., variables
that would normally have to be ~il[declare]d ~c[ignore]d or ~c[ignorable].
The second example disallows unused formals and locals; this is the default.
The third example allows them, but prints an appropriate warning.
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].~/
~bv[]
General Form:
(set-ignore-ok flg)
~ev[]
where ~c[flg] is either ~c[t], ~c[nil], or ~c[:warn].
One might find this event useful when one is generating function
definitions by an automated procedure, when that procedure does not
take care to make sure that all formals are actually used in the
definitions that it generates.
Note: Defun will continue to report irrelevant formals even if
~c[:set-ignore-ok] has been set to ~c[t], unless you also use
~ilc[set-irrelevant-formals-ok] to instruct it otherwise.~/
:cited-by Programming"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :ignore-ok ,x)
(table acl2-defaults-table :ignore-ok))))
#-acl2-loop-only
(defmacro set-ignore-ok (x)
(declare (ignore x))
nil)
#-acl2-loop-only
(defmacro set-inhibit-warnings! (&rest x)
(declare (ignore x))
nil)
(table inhibit-warnings-table nil nil
:guard
(stringp key))
#+acl2-loop-only
(defmacro set-inhibit-warnings! (&rest lst)
":Doc-Section switches-parameters-and-modes
control warnings non-~ilc[local]ly~/
Please ~pl[set-inhibit-warnings], which is the same as
~c[set-inhibit-warnings!] except that the latter is not ~ilc[local] to the
~ilc[encapsulate] or the book in which it occurs. Probably
~il[set-inhibit-warnings] is to be preferred unless you have a good reason
for wanting to export the effect of this event outside the enclosing
~ilc[encapsulate] or book.~/~/"
(declare (xargs :guard (string-listp lst)))
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table inhibit-warnings-table nil ',(pairlis$ lst nil) :clear)
(value-triple ',lst))))
(defmacro set-inhibit-warnings (&rest lst)
":Doc-Section switches-parameters-and-modes
control warnings~/
~bv[]
Examples:
(set-inhibit-warnings \"theory\" \"use\")
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. It is ~ilc[local] to the book or ~ilc[encapsulate] form in which it
occurs; ~pl[set-inhibit-warnings!] for a corresponding non-~ilc[local]
event. Indeed, ~c[(set-inhibit-warnings ...)] is equivalent to
~c[(local (set-inhibit-warnings! ...))].~/
~bv[]
General Form:
(set-inhibit-warnings string1 string2 ...)
~ev[]
where each string is considered without regard to case. This macro is
equivalent to ~c[(local (table inhibit-warnings-table nil 'lst :clear))],
where ~c[lst] is the list of strings supplied. This macro is an
event (~pl[table]), but no output results from a ~c[set-inhibit-warnings]
event.
ACL2 prints warnings that may, from time to time, seem excessive to
experienced users. Each warning is ``labeled'' with a string identifying the
type of warning. Consider for example
~bv[]
ACL2 Warning [Use] in ( THM ...): It is unusual to :USE ....
~ev[]
Here, the label is \"Use\". The argument list for ~c[set-inhibit-warnings]
is a list of such labels, each of which is a string. Any warning is
suppressed if its label is a member of this list, where case is ignored, .
Thus, for example, the warning above will not be printed after a call of
~c[set-inhibit-warnings] that contains the string, ~c[\"Use\"] (or any string
that is ~ilc[string-equal] to ~c[\"Use\"], such as ~c[\"use\"] or
~c[\"USE\"]). In summary: the effect of this event is to suppress any
warning whose label is a member of the given argument list, where case is
ignored.
The list of currently inhibited warnings is the list of keys in the
~il[table] named ~c[inhibit-warnings-table]. (The values in the table are
irrelevant.) One way to get that value is to get the result from evaluating
the following form: ~c[(table-alist 'inhibit-warnings-table (w state))]. Of
course, if warnings are inhibited overall ~-[] ~pl[set-inhibit-output-lst]
~-[] then this value is entirely irrelevant."
`(local (set-inhibit-warnings! ,@lst)))
(defmacro set-inhibit-output-lst (lst)
; In spite of the documentation for this macro, 'warning and 'warning! are
; handled completely independently by the ACL2 warning mechanism, which looks
; for 'warning or 'warning! in the value of state global 'inhibit-output-lst.
; Set-inhibit-output-lst adds 'warning to this state global whenever it adds
; 'warning. If the user sets inhibit-output-lst directly using f-put-global or
; assign, then including 'warning! will not automatically include 'warning.
":Doc-Section switches-parameters-and-modes
control output~/
~bv[]
Examples:
(set-inhibit-output-lst '(warning))
(set-inhibit-output-lst '(proof-tree prove proof-checker))
(set-inhibit-output-lst *valid-output-names*) ; inhibit all prover output
:set-inhibit-output-lst (proof-tree prove)~/
General Form:
(set-inhibit-output-lst lst)
~ev[]
where ~c[lst] is a form (which may mention ~ilc[state]) that evaluates
to a list of names, each of which is the name of one of the
following ``kinds'' of output produced by ACL2.
~bv[]
error error messages
warning warnings other than those related to soundness
warning! warnings (of all degrees of importance)
observation observations
prove commentary produced by the theorem prover
proof-checker commentary produced by the proof-checker
event non-proof commentary produced by events such as defun
and encapsulate
expansion commentary produced by make-event expansion
summary the summary at the successful conclusion of an event
proof-tree proof-tree output
~ev[]
It is possible to inhibit each kind of output by putting the
corresponding name into ~c[lst]. For example, if ~c['warning] is
included in (the value of) ~c[lst], then no warnings are printed
except those related to soundness, e.g., the inclusion of an
uncertified book. Note that ~il[proof-tree] output is affected by
~c[set-inhibit-output-lst]; ~pl[proof-tree].
~l[with-output] for a variant of this utility that can be used in
~il[books]. Also ~pl[set-inhibit-warnings] for how to inhibit individual
warning types and ~pl[set-inhibited-summary-types] for how to inhibit
individual parts of the summary.
Printing of events on behalf of ~ilc[certify-book] and ~ilc[encapsulate] is
inhibited when both ~c['event] and ~c['prove] belong to ~c[lst]. Otherwise,
printing of events is controlled by the ~ilc[ld] special
~ilc[ld-pre-eval-print].
~em[Note for advanced users.] By including ~c[warning!] in ~c[lst], you are
automatically including ~c[warning] as well: all warnings will be inhibited.
This is not the case if you modify value of state global variable
~c['inhibit-output-lst] directly (with ~ilc[assign] or ~c[f-put-global]);
then, if you include ~c[warning!] but not ~c[warning], then warnings not
related to soundness will still be printed (which is probably not what was
intended)."
`(let ((ctx 'set-inhibit-output-lst))
(er-let* ((lst (chk-inhibit-output-lst ,lst ctx state)))
(pprogn (f-put-global 'inhibit-output-lst lst state)
(value lst)))))
(defmacro set-inhibited-summary-types (lst)
":Doc-Section switches-parameters-and-modes
control which parts of the summary are printed~/
~bv[]
Example:
(set-inhibited-summary-types '(rules time))
~ev[]
Note: This is not an event. Rather, it changes the ~il[state], in analogy to
~ilc[set-inhibit-output-lst].~/
~bv[]
General Form:
(set-inhibited-summary-types form)
~ev[]
where form evaluates to a true-list of symbols, each of which is among the
values of the constant ~c[*summary-types*], i.e.: ~c[header], ~c[form],
~c[rules], ~c[hint-events] ~c[warnings], ~c[time], ~c[steps], ~c[value], and
~c[splitter-rules]. Each specified type inhibits printing of the
corresponding portion of the summaries printed at the conclusions of
~il[events], where ~c[header] refers to an initial newline followed by the
line containing just the word ~c[Summary].
Note the distinction between ~c[rules] and ~c[hint-events]. ~c[Rules]
provides a record of automatic rule usage by the prover, while
~c[hint-events] shows the names of events given to ~c[:USE] or ~c[:BY]
~il[hints], as well as ~il[clause-processor] functions given to
~c[:CLAUSE-PROCESSOR] hints that have an effect on the proof.
Also ~pl[set-inhibit-output-lst]. Note that ~c[set-inhibited-summary-types]
has no effect when ~c[summary] is one of the types inhibited by
~il[set-inhibit-output-lst], because in that case none of the summary will be
printed.
To control summary types for a single event, ~pl[with-output]."
`(let ((lst ,lst)
(ctx 'set-inhibited-summary-types))
(cond ((not (true-listp lst))
(er soft ctx
"The argument to set-inhibited-summary-types must evaluate ~
to a true-listp, unlike ~x0."
lst))
((not (subsetp-eq lst *summary-types*))
(er soft ctx
"The argument to set-inhibited-summary-types must evaluate ~
to a subset of the list ~X01, but ~x2 contains ~&3."
*summary-types*
nil
lst
(set-difference-eq lst *summary-types*)))
(t (pprogn (f-put-global 'inhibited-summary-types lst state)
(value lst))))))
#+acl2-loop-only
(defmacro set-state-ok (x)
":Doc-Section switches-parameters-and-modes
allow the use of STATE as a formal parameter~/
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded.
In brief: The variable symbol ~ilc[STATE] has an unusual status in ACL2.
In order to use it, you either need to issue ~c[:set-state-ok t], as
we explain below, or you need to declare it to be a ~il[stobj], as
explained elsewhere (~pl[declare-stobjs]). Now we explain in
more detail.
Because the variable symbol ~ilc[STATE] denotes the ``current ACL2
state,'' ACL2 treats the symbol very restrictively when it occurs as
a formal parameter of a defined function. The novice user, who is
unlikely to be aware of the special status of that symbol, is
likely to be confused when error messages about ~c[STATE] are printed
in response to the innocent choice of that symbol as a formal
variable. Therefore the top-level ACL2 loop can operate in a mode
in which ~ilc[STATE] is simply disallowed as a formal parameter.~/
For a discussion of ~c[STATE], ~l[state] and ~pl[stobj]. Roughly speaking, at
the top-level, the ``current ACL2 state'' is denoted by the variable
symbol ~c[STATE]. Only the current state may be passed into a
function expecting a state as an argument. Furthermore, the name of
the formal parameter into which the current state is passed must be
~c[STATE] and nothing but the current state may be passed into a
formal of that name. Therefore, only certain access and change
functions can use that formal ~-[] namely those with a ~c[STATE] formal
~-[] and if any such function produces a new state it becomes the
``current state'' and must be passed along in the ~c[STATE] position
thereafter. Thus, ACL2 requires that the state be single-threaded.
This, in turn, allows us to represent only one state at a time and
to produce new states from it destructively in a von Neumaneque
fashion. The syntactic restrictions on the variable ~c[STATE] are
enforced by the translate mechanism (~pl[trans] and ~pl[term]) when
terms are read.
To prevent the novice user from seeing messages prohibiting certain
uses of the variable symbol ~C[STATE] ACL2 has a mode in which it
simply disallows the use of that symbol as a formal parameter. Use of
the symbol causes a simple error message. The system is initially
in that mode.
To get out of that mode, execute:
~bv[]
:set-state-ok t ;;; or, (set-state-ok t)
~ev[]
It is not recommended that you do this until you have read the
documentation of ~ilc[STATE].
To enter the mode in which use of ~c[state] is prohibited as a formal
parameter, do:
~bv[]
:set-state-ok nil
~ev[]
The mode is stored in the defaults table, ~l[acl2-defaults-table].
Thus, the mode may be set ~ilc[local]ly in books.~/
:cited-by programming
"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :state-ok ,x)
(table acl2-defaults-table :state-ok))))
#-acl2-loop-only
(defmacro set-state-ok (x)
(declare (ignore x))
nil)
; Rockwell Addition: This is the standard litany of definitions supporting
; a new acl2-defaults-table entry. The doc string explains what it is all
; about.
#+acl2-loop-only
(defmacro set-let*-abstractionp (x)
":Doc-Section switches-parameters-and-modes
to shorten many prettyprinted clauses~/
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].
When this flag is set to ~c[t], subterms that occur more than once in
a clause are abstracted away with ~ilc[let*], generally shortening
the displayed size of the clauses. This flag only affects how
clauses are printed. It does not change what terms the theorem
prover manipulates.~/
~bv[]
:set-let*-abstractionp t ;;; or, (set-let*-abstractionp t)
~ev[]
will cause the prettyprinter to do ``let* abstraction'' on clauses
before they are printed. The algorithm finds the maximal
multiply-occuring subterm and extracts it, binding it to some new
variable and replacing its occurrences by that variable. This produces
a ~c[let*] form. This process is iterated until no subterm occurs more
than once. This process generally takes a little time, but less time
than to print large clauses. The process can greatly reduce the amount of
text produced by the prover.
THIS ONLY AFFECTS HOW THE CLAUSES ARE PRINTED! The unabstracted
clauses are manipulated by the theorem prover.
~bv[]
:set-let*-abstractionp nil
~ev[]
restores normal clause printing.
The mode is stored in the defaults table, ~l[acl2-defaults-table].
Thus, the mode may be set locally in books."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :let*-abstractionp ,x)
(table acl2-defaults-table :let*-abstractionp))))
#-acl2-loop-only
(defmacro set-let*-abstractionp (x)
(declare (ignore x))
nil)
(defmacro set-let*-abstraction (x)
; Usually the names of our set utilities do not end in "p". We leave
; set-let*-abstractionp for backward compatibility, but we add this version for
; consistency.
`(set-let*-abstractionp ,x))
(defun let*-abstractionp (state)
; This function returns either nil or else a non-nil symbol in the current
; package.
(declare (xargs :mode :program))
(and (cdr (assoc-eq :let*-abstractionp
(table-alist 'acl2-defaults-table (w state))))
(pkg-witness (current-package state))))
; WARNING: If you change the value of *initial-backchain-limit*, be sure
; to change the reference to it in (deflabel backchain-limit ...) and
; (defmacro set-backchain-limit ...).
(defconst *initial-backchain-limit* '(nil nil))
(defconst *initial-default-backchain-limit* '(nil nil))
#+acl2-loop-only
(defmacro set-backchain-limit (limit)
":Doc-Section switches-parameters-and-modes
sets the backchain-limit used by the type-set and rewriting mechanisms~/
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].
This event sets the global ~ilc[backchain-limit] used by the ACL2 type-set
and rewriting mechanisms. Its value may be a cons whose car and cdr are each
either ~c[nil] or a non-negative integer. Its value ~c[x] may also be
~c[nil] or a non-negative integer, which is treated as a cons whose car and
cdr are both ~c[x].
The car is used to limit backchaining used by the ACL2 type-set mechanism,
while the cdr is used to limit backchaining used by the rewriting mechanism.
~l[backchain-limit] for details about how backchain-limits are used. Rewrite
backchain limits may also be installed at the level of hints; ~pl[hints] for
a discussion of ~c[:backchain-limit-rw].~/
~bv[]
:set-backchain-limit nil ; do not impose any additional limits
:set-backchain-limit 0 ; allow only type-set reasoning for rewriting
; hypotheses
:set-backchain-limit 500 ; allow backchaining to a depth of no more
; than 500 for rewriting hypotheses
(set-backchain-limit 500) ; same as above
:set-backchain-limit (500 500)
; same as above
(set-backchain-limit '(500 500))
; same as above
(set-backchain-limit '(3 500))
; allow type-set backchaining to a depth of no more
; than 3 and rewriter backchaining to a depth of no
; more than 500
~ev[]
The default limit is ~c[(nil nil)]."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :backchain-limit
(let ((limit ,limit))
(if (atom limit)
(list limit limit)
limit)))
(table acl2-defaults-table :backchain-limit))))
#-acl2-loop-only
(defmacro set-backchain-limit (limit)
(declare (ignore limit))
nil)
(defun backchain-limit (wrld flg)
":Doc-Section Miscellaneous
limiting the effort expended on relieving hypotheses~/
Before ACL2 can apply a rule with hypotheses, it must establish that the
hypotheses are true. (We ignore the relaxing of this requirement afforded by
~ilc[case-split]s and ~ilc[force]d hypotheses.) ACL2 typically establishes
each hypothesis by backchaining ~-[] instantiating the hypothesis and then
rewriting it recursively. Here we describe how ACL2 allows the user to limit
backchaining. At the end, below, we describe the function
~ilc[backchain-limit].~/
Each hypothesis of a ~ilc[rewrite], ~ilc[meta], ~ilc[linear], or
~ilc[type-prescription] rule is assigned a backchain-limit when the rule is
stored. By default, this limit is ~c[nil], denoting infinity (no limit).
However, the value used for the default may be set to a non-negative
integer (or to ~c[nil]) by the user; ~pl[set-default-backchain-limit]. The
default is overridden when a ~c[:backchain-limit-lst] is supplied explicitly
with the rule; ~pl[rule-classes]. The number of recursive applications of
backchaining starting with the hypothesis of a rule is limited to the
backchain-limit associated with that hypothesis.
Moreover, the user may set global backchain-limits that limit the total
backchaining depth. ~l[set-backchain-limit]. One limit is for the use of
~ilc[rewrite], ~ilc[meta], and ~ilc[linear] rules, while the other limit is
for so-called ``~il[type-set] reasoning'', which uses rules of class
~ilc[type-prescription] rules. The two limits operate independently. Below,
we discuss the first kind of backchain limits, i.e., for other than
~ilc[type-prescription] rules, except as otherwise indicated; but the
mechanism for those rules is similar.
Below we lay out the precise sense in which a global backchain-limit
interacts with the backchain-limits of individual rules in order to limit
backchaining. But first we note that when further backchaining is
disallowed, ACL2 can still prove a hypothesis in a given context by using
that contextual information. In fact, ~il[type-set] reasoning may be
used (except that a weaker version of it is used in the second case above,
i.e., where we are already doing type-set reasoning). Thus, the relieving of
hypotheses may be limited to the use of contextual information (without
backchaining, i.e., without recursively rewriting hypotheses) by executing
~c[:set-backchain-limit 0].
Recall that there are two sorts of backchain limits: those applied to
hypotheses of individual rules, as assigned by their ~c[:]~ilc[rule-classes]
or else taken from the default (~pl[set-default-backchain-limit]); and the
global limit, initially ~c[nil] (no limit) but settable with
~c[:]~ilc[set-backchain-limit]. Here is how these two types of limits
interact to limit backchaining, i.e., recursive rewriting of hypotheses.
ACL2 maintains a current backchain limit, which is the limit on the depth of
recursive calls to the rewriter, as well as a current backchain depth, which
is initially 0 and is incremented each time ACL2 backchains (and is
decremented when a backchain completes). When ACL2 begins to rewrite a
literal (crudely, one of the ``top-level'' terms of the goal currently being
worked on), it sets the current backchain-limit to the global value, which is
initially ~c[nil] but can be set using ~c[:]~ilc[set-backchain-limit]. When
ACL2 is preparing to relieve a hypothesis by backchaining (hence, after it
has already tried type-set reasoning), it first makes sure that the current
backchain limit is greater than the current backchain depth. If not, then it
refuses to relieve that hypothesis. Otherwise, it increments the current
backchain depth and calculates a new current backchain-limit by taking the
minimum of two values: the existing current backchain-limit, and the sum of
the current backchain depth and the backchain-limit associated with the
hypothesis. Thus, ACL2 only modifies the current backchain-limit if it is
necessary to decrease that limit in order to respect the backchain limit
associated with the hypothesis.
We illustrate with the following examples.
~bv[]
; We stub out some functions so that we can reason about them.
(defstub p0 (x) t)
(defstub p1 (x) t)
(defstub p2 (x) t)
(defstub p3 (x) t)
; Initially, the default-backchain-limit is nil, or infinite.
(defaxiom p2-implies-p1-limitless
(implies (p2 x)
(p1 x)))
; The following rule will have a backchain-limit of 0.
(defaxiom p1-implies-p0-limit-0
(implies (p1 x)
(p0 x))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
; We have (p2 x) ==> (p1 x) ==> (p0 x). We wish to establish that
; (p2 x) ==> (p0 x). Normally, this would be no problem, but here
; we fail because ACL2 cannot establish (p0 x) by type-set reasoning
; alone.
(thm
(implies (p2 x)
(p0 x)))
; We set the default-backchain-limit (for rewriting) to 1.
:set-default-backchain-limit 1
; The following is more powerful than p1-implies-p0-limit-0
; because it can use rewrite rules to establish (p1 x).
(defaxiom p1-implies-p0-limit-1
(implies (p1 x)
(p0 x)))
; This theorem will succeed:
(thm
(implies (p2 x)
(p0 x)))
; We return the default-backchain-limit to its initial value.
:set-default-backchain-limit nil
; Here is our last axiom.
(defaxiom p3-implies-p2-limitless
(implies (p3 x)
(p2 x)))
; We now have (p3 x) ==> (p2 x) ==> (p1 x) ==> (p0 x). However the
; rule p1-implies-p0-limit-1 has a backchain-limit of 1; hence we
; are not allowed to backchain far enough back to use
; p3-implies-p2-limitless. We therefore lose.
(defthm will-fail
(implies (p3 x)
(p0 x)))
~ev[]
Finally, we remark that to see the current global backchain-limits, issue the
following commands.
~bv[]
(backchain-limit wrld :ts) ; backchain limit for type-set reasoning
(backchain-limit wrld :rewrite) ; backchain limit for rewriting
~ev[]"
(declare (xargs :guard
(and (member-eq flg '(:ts :rewrite))
(plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld))
(true-listp (assoc-eq :backchain-limit
(table-alist 'acl2-defaults-table
wrld))))))
(let ((entry (or (cdr (assoc-eq :backchain-limit
(table-alist 'acl2-defaults-table wrld)))
*initial-backchain-limit*)))
(if (eq flg :ts)
(car entry)
(cadr entry))))
#+acl2-loop-only
(defmacro set-default-backchain-limit (limit)
":Doc-Section switches-parameters-and-modes
sets the default backchain-limit used when admitting a rule~/
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].
This event sets the default ~ilc[backchain-limit] used when a new
~ilc[rewrite], ~ilc[linear], ~ilc[meta], or ~ilc[type-prescription] rule is
admitted. Its value may be a two-element list whose elements are each either
~c[nil] or a non-negative integer. Its value ~c[x] may also be ~c[nil] or a
non-negative integer, which is treated as the two element list ~c[(x x)].
The first element of the list is used to limit backchaining for a rule of
class ~ilc[type-prescription] while the second element is used to limit
backchaining for the other three classes of rules mentioned above.
~l[backchain-limit] for details about how backchain-limits are used. The
examples below assume that a new rule doesn't itself specify a value for
~c[:backchain-limit-lst].~/
~bv[]
:set-default-backchain-limit nil ; do not impose backchain limits for the
; rule
:set-default-backchain-limit 0 ; allow only type-set reasoning for
; relieving a new rule's hypotheses
:set-default-backchain-limit 500 ; allow backchaining through a new rewrite,
; linear, or meta rule's hypotheses to a
; depth of no more than 500
(set-default-backchain-limit 500) ; same as above
:set-default-backchain-limit (nil 500)
; same as above
(set-default-backchain-limit '(nil 500))
; same as above
(set-default-backchain-limit '(3 500))
; for a new :type-prescription rule, allow
; type-set backchaining to a depth
; of no more than 3; for a new
; rule of class :rewrite, :linear,
; or :meta, allow backchaining to
; a depth of no more than 50
(set-default-backchain-limit '(nil 500))
; do not limit backchaining for a
; new :type-prescription rule; for
; a new rule of class :rewrite,
; :linear, or :meta, allow
; backchaining to a depth of no
; more than 50
~ev[]
The initial default backchain-limit is ~c[nil]."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :default-backchain-limit
(let ((limit ,limit))
(if (atom limit)
(list limit limit)
limit)))
(table acl2-defaults-table :default-backchain-limit))))
#-acl2-loop-only
(defmacro set-default-backchain-limit (limit)
(declare (ignore limit))
nil)
(defun default-backchain-limit (wrld flg)
":Doc-Section Miscellaneous
specifying the backchain limit for a rule~/
~l[backchain-limit].~/
The initial value is ~c[(nil nil)]. To inspect the current value (as
explained elsewhere; ~pl[backchain-limit]):
~bv[]
(default-backchain-limit wrld :ts) ; for type-set reasoning
(default-backchain-limit wrld :rewrite) ; for rewriting
~ev[]"
(declare (xargs :guard
(and (member-eq flg '(:ts :rewrite))
(plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld))
(true-listp (assoc-eq :default-backchain-limit
(table-alist 'acl2-defaults-table
wrld))))))
(let ((entry (or (cdr (assoc-eq :default-backchain-limit
(table-alist 'acl2-defaults-table wrld)))
*initial-default-backchain-limit*)))
(if (eq flg :ts)
(car entry)
(cadr entry))))
; Essay on Step-limits
; We assume familiarity with step-limits at the user level; see :DOC
; set-prover-step-limit and see :DOC with-prover-step-limit.
; Step-limits are managed through the following three global data structures.
; - (f-get-global 'last-step-limit state)
; This value records the current step-limit (updated from time to time, but not
; constantly within the rewriter). In a compound event, this decreases as
; events are executed, except for those within a call of with-prover-step-limit
; whose flag is t (see :DOC with-prover-step-limit).
; - (table acl2-defaults-table :step-limit)
; The table value supplies a starting step-limit for top-level calls that are
; not in the scope of with-prover-step-limit, hence not in the scope of
; with-ctx-summarized (which calls save-event-state-globals, which calls
; with-prover-step-limit with argument :START).
; - (f-get-global 'step-limit-record state)
; This global is bound whenever entering the scope of with-prover-step-limit.
; It stores information about the step-limit being established for that scope,
; including the starting value to use for state global 'last-step-limit. That
; value is the current value of that state global, unless a call of
; set-prover-step-limit has set a different limit in the same context.
; We may write more if that becomes necessary, but we hope that the summary
; above provides sufficient orientation to make sense of the implementation.
; NOTE: If you change the implementation of step-limits, be sure to LD and
; also certify community book books/misc/misc2/step-limits.lisp.
; When writing a recursive function that uses step-limits, for which you are
; willing to have a return type of (mv step-limit erp val state):
; * give it a step-limit arg;
; * pass that along, for example with sl-let if that is convenient;
; * decrement the step-limit when you deem that a "step" has been taken;
; * call the top-level entry with the step-limit arg set to a fixnum limit that
; you prefer, for example with (initial-step-limit wrld state) or
; *default-step-limit*
; * wrap the top-level call in a catch-step-limit as illustrated in
; prove-loop1
; See also catch-step-limit for more about how step-limits are managed.
(defun step-limit-from-table (wrld)
; We return the top-level prover step-limit, with of course can be overridden
; by calls of with-prover-step-limit.
(declare (xargs :guard
(and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld))
(let ((val (cdr (assoc-eq :step-limit
(table-alist 'acl2-defaults-table
wrld)))))
(or (null val)
(and (natp val)
(<= val *default-step-limit*)))))))
(or (cdr (assoc-eq :step-limit
(table-alist 'acl2-defaults-table wrld)))
*default-step-limit*))
#-acl2-loop-only
(defparameter *step-limit-error-p*
; The value of this special variable is nil when not in the scope of
; catch-step-limit. When in such a scope, the value is t unless a throw has
; occurred to tag 'step-limit-tag, in which case the value is 'error.
nil)
#+acl2-loop-only
(defmacro set-prover-step-limit (limit)
; See the Essay on Step-limits.
":Doc-Section switches-parameters-and-modes
sets the step-limit used by the ACL2 prover~/
This event provides a way to limit the number of so-called ``prover steps''
permitted for an event. ~l[with-prover-step-limit] for a way to specify the
limit on prover steps for a single event, rather than globally. For a
related utility based on time instead of prover steps,
~pl[with-prover-time-limit]. For examples of how step limits work, see the
community book ~c[books/misc/misc2/step-limits.lisp]. For a utility that
returns an indicator of the number of prover steps most recently taken,
~pl[last-prover-steps].
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].
~bv[]
Example Forms:
(set-prover-step-limit *default-step-limit*) ; no limit on prover steps
(set-prover-step-limit nil) ; abbreviation for the form just above
(set-prover-step-limit 10000) ; allow at most 10,000 prover steps per event~/
General Form:
(set-prover-step-limit expr)
~ev[]
where ~c[expr] evaluates either to ~c[nil] or else to a natural number not
exceeding the value of ~c[*default-step-limit*]. If that value is ~c[nil] or
the value of ~c[*default-step-limit*], then no default limit is placed on the
number of prover ``steps'' (see below) during processing of an event.
Otherwise, that value is the maximum number of prover steps permitted before
an error occurs.
This event specifies the limit on the number of ``steps'' counted by the ACL2
prover during processing of an event. Currently, a step is counted for each
call of the system functions ~c[rewrite] and ~c[expand-abbreviations].
However, the steps counted may change in future releases of ACL2, so users
would probably be well served by avoiding the assumption that only the above
two calls are counted as prover steps.
Depending on the computer you are using, you may have less than a half-hour
of time before the number of prover steps exceeds the maximum step-limit,
which is one less than the value of ~c[*default-step-limit*]. Note however
the exception stated above: if the ``limit'' is ~c[nil] or is the value of
~c[*default-step-limit*], then no limit is imposed.
There is at best a loose connection between the counting of steps and
~ilc[with-prover-time-limit]. In particular, for a call of ~c[mfc-rw] or any
~c[mfc-] function (~pl[extended-metafunctions]), the steps taken during that
call are forgotten when returning from that call.
The limit is relevant for every event, as well as for calls of ~ilc[thm] and
~ilc[certify-book] ~-[] and more generally, to any form that creates a
``summary context'' to print the usual event summary. The limit is also put
in force when entering the ~il[proof-checker]. A call of
~c[set-prover-step-limit] applies to each subsequent form unless the call of
~c[set-prover-step-limit] is within a summary context, in which case its
effect disappears when exiting that summary context.
The limit applies to each event, not just ``atomic'' events. Consider the
following example.
~bv[]
(set-prover-step-limit 500)
(encapsulate
()
(defthm lemma-1 ; takes 380 steps
(equal (append (append x y) z) (append x y z))
:rule-classes nil)
(defthm lemma-2 ; would take 319 steps
(equal (len (append x y)) (+ (len x) (len y)))
:rule-classes nil))
~ev[]
The first ~ilc[defthm] event, ~c[lemma-1] takes 380 steps (as of this
writing), as shown in the summary:
~bv[]
Prover steps counted: 380
LEMMA-1
~ev[]
The second ~ilc[defthm] event, ~c[lemma-2], takes 319 steps (as of this
writing) when evaluated at the top level. However, in the context above, 380
steps of the available 500 steps (from the ~c[set-prover-step-limit] event
above) have already been taken under the above ~ilc[encapsulate] event.
Thus, when the number of steps would exceed 120, the proof of ~c[lemma-2] is
aborted:
~bv[]
ACL2 Error in STEP-LIMIT: The prover step-limit, which is 120 in the
current context, has been exceeded. See :DOC set-prover-step-limit.
~ev[]
The summary for ~c[lemma-2] reflects that situation:
~bv[]
Prover steps counted: More than 120
~ev[]
The summary for the ~ilc[encapsulate] event then indicates that the
available steps for that event have also been exceeded:
~bv[]
Prover steps counted: More than 500
~ev[]
The discussion above applies to any event that contains other events, hence
applies similarly to ~ilc[progn] events.
For those who use ~ilc[make-event], we note that prover steps in the
expansion phase similarly contribute to the total number of steps counted.
For example, suppose that the limit is 500 prover steps as above, and you
submit ~c[(make-event EXPR)], where 300 prover steps take place during
evaluation of ~c[EXPR], producing event ~c[EV]. Then evaluation of ~c[EV]
will cause an error if it takes more than 200 prover steps. This observation
actually can be used to count prover steps for sequences of forms that are
not all legal ~ilc[events] (~pl[embedded-event-form]), such as calls of
~ilc[thm]. For example, a small built-in ACL2 test suite that includes
~ilc[thm] forms can be run by evaluating the form ~c[(mini-proveall)], and
the steps can be counted as shown below. (Here we assume a fresh ACL2
session; an error would occur if first, we evaluate the event
~c[(set-prover-step-limit 500)] displayed above.)
~bv[]
ACL2 !>(make-event (er-progn (mini-proveall) (value '(value-triple nil))))
[[... output omitted here ...]]
Summary
Form: ( MAKE-EVENT (ER-PROGN ...))
Rules: NIL
Warnings: Double-rewrite, Equiv, Subsume and Non-rec
Time: 0.38 seconds (prove: 0.04, print: 0.29, other: 0.05)
Prover steps counted: 41090
NIL
ACL2 !>
~ev[]~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(pprogn
(let ((rec (f-get-global 'step-limit-record state))
(limit (or ,limit *default-step-limit*)))
(cond ((and rec
; We check here that limit is legal, even though this is also checked by the
; table event below. Otherwise, we can get a raw Lisp error from, for example:
; (progn (set-prover-step-limit '(a b)))
(natp limit)
(<= limit *default-step-limit*))
(f-put-global 'step-limit-record
(change step-limit-record rec
:sub-limit
limit
:strictp
(or (< limit *default-step-limit*)
(access step-limit-record rec
:strictp)))
state))
(t state)))
(progn (table acl2-defaults-table :step-limit
(or ,limit *default-step-limit*))
(table acl2-defaults-table :step-limit)))))
#-acl2-loop-only
(defmacro set-prover-step-limit (limit)
(declare (ignore limit))
nil)
#+(and (not acl2-loop-only) acl2-rewrite-meter) ; for stats on rewriter depth
(progn
; Here we provide a mechanism for checking the maximum stack depth attained by
; the rewrite nest, while at the same time turning off the rewrite-stack depth
; limit check.
; When we do a make certify-books or make regression after compiling with
; acl2-rewrite-meter in *features*, we will create a file foo.rstats for every
; book foo being certified. We can then collect all those stats into a single
; file by executing the following Unix command, where DIR is the acl2-sources
; directory:
; find DIR/books -name '*.rstats' -exec cat {} \; > rewrite-depth-stats.lisp
(defparameter *rewrite-depth-max* 0) ; records max depth per event
(defparameter *rewrite-depth-alist* nil) ; records max depth per book
)
; We might as well include code here for analyzing the resulting file
; rewrite-depth-stats.lisp (see comment above). We comment out this code since
; it will not be used very often.
; (include-book "books/misc/file-io")
;
; (defun collect-rstats-1 (filename alist acc)
;
; ; Elements of alist are of the form (event-name . n). We extend acc by an
; ; alist with corresponding elements (but no specified order) of the form
; ; ((filename . event-name) . n).
;
; (if (endp alist)
; acc
; (collect-rstats-1 filename
; (cdr alist)
; (cons (cons (cons filename (caar alist))
; (cdar alist))
; acc))))
;
; (defun collect-rstats-2 (alist acc)
;
; ; Elements of alist are of the form (filename . alist2), where alist2 is an
; ; alist with elements of the form (event-name . n).
;
; (if (endp alist)
; acc
; (collect-rstats-2 (cdr alist)
; (collect-rstats-1 (caar alist) (cdar alist) acc))))
;
; (defun collect-rstats (infile outfile state)
;
; ; Each object in infile as the form (filename . alist), where alist has
; ; elements of the form (event-name . n), where n is the rewrite stack depth
; ; required for event-name. We write out outfile, which contains a single form
; ; whose elements are of the form ((filename . event-name) . n). the cdr of
; ; each object in infile, as well as the object in the resulting outfile, are
; ; alists sorted by cdr (heaviest entry first).
;
; (declare (xargs :stobjs state :mode :program))
; (er-let* ((forms (read-list infile 'collect-rstats state)))
; (write-list (merge-sort-cdr-> (collect-rstats-2 forms nil))
; outfile 'collect-rstats state)))
(defconst *default-rewrite-stack-limit*
; A proof at AMD has needed a value of at least 774, because of a subterm in
; hypothesis position of the form (member x '(255 254 253 ... 2 1 0)). But the
; entire regression suite (as of 1/8/03, during development of v2-8) only
; needed a value of at least 186 (one more than the 185 reported using
; collect-rstats). The example with :do-not in :doc rewrite-stack-limit
; caused a stack overflow in GCL with (set-rewrite-stack-limit 4350) but not
; with (set-rewrite-stack-limit 4300). Even 15000 didn't cause a stack
; overflow without the :do-not hint.
1000)
#+acl2-loop-only
(defmacro set-rewrite-stack-limit (limit)
":Doc-Section switches-parameters-and-modes
Sets the rewrite stack depth used by the rewriter~/
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded.
~bv[]
Example Forms:
(set-rewrite-stack-limit 30) ; set to small limit
:set-rewrite-stack-limit 30 ; same as above
(set-rewrite-stack-limit *default-rewrite-stack-limit*) ; the default
(set-rewrite-stack-limit (1- (expt 2 28))) ; maximum legal limit
:set-rewrite-stack-limit nil ; same as above -- essentially, no limit
~ev[]
This event sets the maximum stack depth for calls of certain functions that
implement the ACL2 rewriter; ~pl[rewrite-stack-limit]. It must be a
non-negative integer less than 2^28. A call
~c[(set-rewrite-stack-limit limit)] is equivalent to:
~bv[]
(table acl2-defaults-table :rewrite-stack-limit limit).
~ev[]
The use of ~ilc[acl2-defaults-table] ensures that this event's effect is
implicitly ~ilc[local] to the book or ~ilc[encapsulate] form in which it
occurs.~/
For a different but somewhat related concept, ~pl[backchain-limit]."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :rewrite-stack-limit
,(if (or (null limit) (equal limit (kwote nil)))
(1- (expt 2 28))
limit))
(table acl2-defaults-table :rewrite-stack-limit))))
#-acl2-loop-only
(defmacro set-rewrite-stack-limit (limit)
(declare (ignore limit))
nil)
(defun rewrite-stack-limit (wrld)
":Doc-Section Miscellaneous
limiting the stack depth of the ACL2 rewriter~/
ACL2 users can create rules of class ~c[:]~ilc[rewrite] (~pl[rule-classes])
that have the potential of causing an infinite loop in the ACL2 rewriter.
This could lead to Lisp stack overflows and even segmentation faults. For
this reason, the depth of certain calls of functions in the ACL2 rewriter is
limited by default using the value of the form
~c[(rewrite-stack-limit (w state))]. To see the limit in action, execute the
following forms.
~bv[]
(defthm app-assoc-1
(equal (append (append x y) z)
(append x y z)))
(defthm app-assoc-2
(equal (append x y z)
(append (append x y) z)))
(thm (equal (append a b c) xxx)
; try without these hints to see a slightly different error message
:hints ((\"Goal\" :do-not '(preprocess))))
~ev[]
The ensuing error message shows a stack of one greater than the value of
~c[(rewrite-stack-limit (w state))], which by default is the value of the
constant ~c[*default-rewrite-stack-limit*]. The error message also explains
how to use ~c[:]~ilc[brr]~c[ t] and ~c[(]~ilc[cw-gstack]~c[)] to find looping
rewrite rules.
This limit can be changed; ~pl[set-rewrite-stack-limit].~/
For a related limit, ~pl[backchain-limit].~/"
(declare (xargs :guard
(and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
#+(and (not acl2-loop-only) acl2-rewrite-meter)
(prog2$ wrld 0) ; setting this to 0 initializes rdepth to 0 for rewrite calls
#-(and (not acl2-loop-only) acl2-rewrite-meter)
(or (cdr (assoc-eq :rewrite-stack-limit
(table-alist 'acl2-defaults-table wrld)))
*default-rewrite-stack-limit*))
#+acl2-loop-only
(defmacro set-nu-rewriter-mode (x)
":Doc-Section switches-parameters-and-modes
to turn on and off the nu-rewriter~/
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded.
This event sets a flag that controls whether the ACL2 rewriter uses
the special-purpose ~c[nth]/~c[update-nth] rewriter (nu-rewriter).
The flag may have one of three values: ~c[nil], ~c[t], or ~c[:literals].~/
~bv[]
:set-nu-rewriter-mode nil ; do not use nu-rewriter
:set-nu-rewriter-mode t ; use nu-rewriter in rewriting
:set-nu-rewriter-mode :literals ; use nu-rewriter in rewriting after
; a pre-pass through every literal
(set-nu-rewriter-mode :literals) ; same as above
~ev[]
The value ~c[nil] prevents the use of the nu-rewriter. The other two
values allow the use of the nu-rewriter.
When the flag is non-~c[nil] and the rewriter encounters a term that
``begins with an ~c[nth]'', the nu-rewriter is applied. By ``begins
with an ~c[nth]'' here we mean either the term is an application of
~c[nth] or is an application of some nonrecursive function or
~c[lambda] expression whose body contains an expression that begins
with an ~c[nth].
Note that the use of the nu-rewriter here described above is driven
by the rewriter, i.e., the nu-rewriter is applied only to terms
visited by the rewriter in its inside-out sweep. When the flag is
set to ~c[:literals] the system makes a pre-pass through every goal
clause and applies the nu-rewriter to every subterm. The rewriter
is then used on the output of that pre-pass.
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. Moreover, its effect is to set the ~ilc[acl2-defaults-table], and
hence its effect is ~ilc[local] to the book or ~ilc[encapsulate] form
containing it; ~pl[acl2-defaults-table].
We expect to write more documentation as we gain experience with the
nu-rewriter."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :nu-rewriter-mode ,x)
(table acl2-defaults-table :nu-rewriter-mode))))
#-acl2-loop-only
(defmacro set-nu-rewriter-mode (x)
(declare (ignore x))
nil)
(defun nu-rewriter-mode (wrld)
(declare (xargs :mode :program))
(cdr (assoc-eq :nu-rewriter-mode
(table-alist 'acl2-defaults-table wrld))))
; Through Version_2.9.4, we set the nu-rewriter mode by default as follows:
; (set-nu-rewriter-mode nil)
; But nil is the default anyhow, and we prefer to keep the acl2-defaults-table
; clean so that its initial value agrees with the value in
; chk-raise-portcullis1. This isn't essentially, but for example it avoids
; laying down extra table forms when we :puff.
; Terminology: case-split-limitations refers to a list of two
; "numbers" (either of which might be nil meaning infinity), sr-limit
; is the name of the first number, and case-limit is the name of the
; second. To see how sr-limit is used, see clausify. To see how
; case-limit is used, see the Essay on Case Limit and also
; rewrite-clause. We allow the user only to set the
; case-split-limitations, not the numbers individually.
(defun case-split-limitations (wrld)
(declare (xargs :guard
(and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
":Doc-Section Miscellaneous
a list of two ``numbers'' limiting the number of cases produced at once~/
~bv[]
Examples:
ACL2 !>(case-split-limitations (w state))
(500 100)
~ev[]
With the setting above, ~c[clausify] will not try subsumption/replacement
if more than 500 clauses are involved. Furthermore, the simplifier,
as it sweeps over a clause, will inhibit further case splits
when it has accumulated 100 subgoals. This inhibition is implemented by
continuing to rewrite subsequent literals but not splitting out their cases.
This can produce literals containing ~c[IF]s.~/
~l[set-case-split-limitations] for a more general discussion."
(cdr (assoc-eq :case-split-limitations
(table-alist 'acl2-defaults-table wrld))))
; Warning: The function tilde-@-case-split-limitations-phrase builds in the
; fact that the car of case-split-limitations is the sr-limit and cadr is the
; case-limit. Rewrite-clause makes a similar assumption. So don't be fooled
; into thinking you can just change the structure here!
(defmacro sr-limit (wrld)
`(car (case-split-limitations ,wrld)))
(defmacro case-limit (wrld)
`(cadr (case-split-limitations ,wrld)))
#+acl2-loop-only
(defmacro set-case-split-limitations (lst)
":Doc-Section switches-parameters-and-modes
set the case-split-limitations~/
~bv[]
Examples:
(set-case-split-limitations '(500 100))
(set-case-split-limitations 'nil)
(set-case-split-limitations '(500 nil))
~ev[]
The first of these prevents ~c[clausify] from trying the
subsumption/replacement (see below) loop if more than 500 clauses are
involved. It also discourages the clause simplifier from splitting into more
than 100 cases at once.
Note: This is an event! It does not print the usual event summary but
nevertheless changes the ACL2 logical ~il[world] and is so recorded.
Moreover, its effect is to set the ~ilc[acl2-defaults-table], and hence its
effect is ~ilc[local] to the book or ~ilc[encapsulate] form containing it;
~pl[acl2-defaults-table].
~l[hints] for discussion of a related hint, ~c[:case-split-limitations].
Also ~pl[splitter] for information about reports on rules that may be
responsible for case splits.~/
~bv[]
General Form:
(set-case-split-limitations lst)
~ev[]
where ~c[lst] is either ~c[nil] (denoting a list of two ~c[nil]s), or a list
of length two, each element of which is either ~c[nil] or a natural number.
When ~c[nil] is used as an element, it is treated as positive infinity. The
default setting is ~c[(500 100)].
The first number specifies the maximum number of clauses that may participate
in the ``subsumption/replacement'' loop. Because of the expensive nature of
that loop (which compares every clause to every other in a way that is
quadratic in the number of literals in the clauses), when the number of
clauses exceeds about 1000, the system tends to ``go into a black hole,''
printing nothing and not even doing many garbage collections (because the
subsumption/replacement loop does not create new clauses so much as it just
tries to delete old ones). The initial setting is lower than the threshold
at which we see noticeably bad performance, so you probably will not see this
behavior unless you have raised or disabled the limit.
Why raise the subsumption/replacement limit? The subsumption/replacement
loop cleans up the set of subgoals produced by the simplifier. For example,
if one subgoal is
~bv[]
(implies (and p q r) s) [1]
~ev[]
and another is
~bv[]
(implies (and p (not q) r) s) [2]
~ev[]
then the subsumption/replacement loop would produce the single subgoal
~bv[]
(implies (and p r) s) [3]
~ev[]
instead. This cleanup process is simply skipped when the number of subgoals
exceeds the subsumption/replacement limit. But each subgoal must nonetheless
be proved. The proofs of [1] and [2] are likely to duplicate much work,
which is only done once in proving [3]. So with a low limit, you may find
the system quickly produces a set of subgoals but then takes a long time to
prove that set. With a higher limit, you may find the set of subgoals to be
``cleaner'' and faster to prove.
Why lower the subsumption/replacement limit? If you see the system go into a
``black hole'' of the sort described above (no output, and few garbage
collections), it could due to the subsumption/replacement loop working on a
large set of large subgoals. You might temporarily lower the limit so that
it begins to print the uncleaned set of subgoals. Perhaps by looking at the
output you will realize that some function can be disabled so as to prevent
the case explosion. Then raise or disable the limit again!
The second number in the case-split-limitations specifies how many case
splits the simplifier will allow before it begins to shut down case
splitting. In normal operation, when a literal rewrites to a nest of
~c[IF]s, the system simplifies all subsequent literals in all the contexts
generated by walking through the nest in all possible ways. This can also
cause the system to ``go into a black hole'' printing nothing except garbage
collection messages. This ``black hole'' behavior is different from than
mentioned above because space is typically being consumed at a prodigious
rate, since the system is rewriting the literals over and over in many
different contexts.
As the simplifier sweeps across the clause, it keeps track of the number of
cases that have been generated. When that number exceeds the second number
in case-split-limitations, the simplifier stops rewriting literals. The
remaining, unrewritten, literals are copied over into the output clauses.
~c[IF]s in those literals are split out, but the literals themselves are not
rewritten. Each output clause is then attacked again, by subsequent
simplification, and eventually the unrewritten literals in the tail of the
clause will be rewritten because the earlier literals will stabilize and stop
producing case splits.
The default setting of 100 is fairly low. We have seen successful proofs in
which thousands of subgoals were created by a simplification. By setting the
second number to small values, you can force the system to case split slowly.
For example, a setting of 5 will cause it to generate ``about 5'' subgoals
per simplification.
You can read about how the simplifier works in the book Computer-Aided
Reasoning: An Approach (Kaufmann, Manolios, Moore); also
~pl[introduction-to-the-theorem-prover] for a detailed tutorial on using the
ACL2 prover. If you think about it, you will see that with a low case limit,
the initial literals of a goal are repeatedly simplified, because each time a
subgoal is simplified we start at the left-most subterm. So when case
splitting prevents the later subterms from being fully split out, we revisit
the earlier terms before getting to the later ones. This can be good.
Perhaps it takes several rounds of rewriting before the earlier terms are in
normal form and then the later terms rewrite quickly. But it could happen
that the earlier terms are expensive to rewrite and do not change, making the
strategy of delayed case splits less efficient. It is up to you.
Sometimes the simplifier produces more clauses than you might expect, even
with case-split-limitations in effect. As noted above, once the limit has
been exceeded, the simplifier does not rewrite subsequent literals. But
~c[IF]s in those literals are split out nonetheless. Furthermore, the
enforcement of the limit is -- as described above -- all or nothing: if the
limit allows us to rewrite a literal then we rewrite the literal fully,
without regard for limitations, and get as many cases as ``naturally'' are
produced. It quite often happens that a single literal, when expanded, may
grossly exceed the specified limits.
If the second ``number'' is ~c[nil] and the simplifier is going to produce
more than 1000 clauses, a ``helpful little message'' to this effect is
printed out. This output is printed to the system's ``comment window'' not
the standard proofs output.~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :case-split-limitations
(let ((lst ,lst))
(cond ((eq lst nil)
'(nil nil))
(t lst))))
(table acl2-defaults-table :case-split-limitations))))
#-acl2-loop-only
(defmacro set-case-split-limitations (lst)
(declare (ignore lst))
nil)
; Up through Version_2.9.4 we set case split limitations as follows:
; (set-case-split-limitations *default-case-split-limitations*)
; But as explained in the comment above for set-nu-rewriter-mode, we prefer to
; start with an acl2-defaults-table that agrees with the one in
; chk-raise-portcullis1. So we instead we set the initial acl2-defaults-table
; as follows, in end-prehistoric-world.
(defconst *initial-acl2-defaults-table*
`((:DEFUN-MODE . :LOGIC)
(:INCLUDE-BOOK-DIR-ALIST . NIL)
(:CASE-SPLIT-LIMITATIONS . (500 100))
(:TAU-AUTO-MODEP . ,(cddr *tau-status-boot-strap-settings*)))) ; (2.b)
(defun untrans-table (wrld)
":Doc-Section switches-parameters-and-modes
associates a function symbol with a macro for printing user-level terms~/
~bv[]
Examples:
ACL2 !>(untrans-table (w state))
((BINARY-+ + . T)
(BINARY-* * . T)
(BINARY-APPEND APPEND . T)
(BINARY-LOGAND LOGAND . T)
(BINARY-LOGIOR LOGIOR . T)
(BINARY-LOGXOR LOGXOR . T)
(BINARY-LOGEQV LOGEQV . T)
(BINARY-POR POR . T)
(BINARY-PAND PAND . T))
~ev[]
~l[table] for a general discussion of tables.~/
~l[add-macro-fn] for a more general discussion of this ~il[table] and for a
way to associate a macro name with a function name in theory events."
(declare (xargs :guard (plist-worldp wrld)))
(table-alist 'untrans-table wrld))
(table untrans-table nil
'((binary-+ + . t)
(binary-* * . t)
(binary-append append . t)
(binary-logand logand . t)
(binary-logior logior . t)
(binary-logxor logxor . t)
(binary-logeqv logeqv . t)
(binary-por por . t)
(binary-pand pand . t))
:clear)
(defmacro add-macro-fn (macro macro-fn &optional right-associate-p)
":Doc-Section switches-parameters-and-modes
associate a function name with a macro name~/
~bv[]
Examples:
(add-macro-fn append binary-append)
(add-macro-fn append binary-append t)
~ev[]
These examples each associate the function symbol ~ilc[binary-append] with
the macro name ~ilc[append]. As a result, theory functions will understand
that ~c[append] refers to ~c[binary-append] ~-[] ~pl[add-macro-alias] ~-[]
and moreover, proof output will be printed using ~c[append] rather than
~c[binary-append]. In the first case, ~c[(append x (append y z))] is printed
rather than ~c[(append x y z)]. In the second case, right-associated
arguments are printed flat: ~c[(append x y z)]. Such right-association is
considered only for binary function symbols; otherwise the optional third
argument is ignored.~/
~bv[]
General Forms:
(add-macro-fn macro-name function-name)
(add-macro-fn macro-name function-name nil) ; same as abov
(add-macro-fn macro-name function-name t)
~ev[]
This is a convenient way to add an entry to ~ilc[macro-aliases-table] and at
the same time extend the ~ilc[untrans-table]. As suggested by the example
above, calls of a function in this table will be printed as corresponding
calls of macros, with right-associated arguments printed flat in the case of
a binary function symbol if the optional third argument is t. In that case,
for a binary function symbol ~c[fn] associated with macro name ~c[mac], then
a call ~c[(fn arg1 (fn arg2 (... (fn argk arg))))] will be displayed to the
user as though the ``term'' were ~c[(mac arg1 arg2 ... argk arg)]. For a
call ~c[(f a1 ... ak)] of a function symbol that is not binary, or the
optional argument is not supplied as ~c[t], then the effect is simply to
replace ~c[f] by the corresponding macro symbol. ~l[add-macro-alias], which
is invoked on the first two arguments. Also ~pl[remove-macro-alias],
~pl[untrans-table], and ~pl[remove-macro-fn].~/"
`(progn (add-macro-alias ,macro ,macro-fn)
(table untrans-table ',macro-fn '(,macro . ,right-associate-p))))
(defmacro add-binop (macro macro-fn)
":Doc-Section switches-parameters-and-modes
associate a function name with a macro name~/
The form ~c[(add-binop macro macro-fn)] is an abbreviation for the form
~c[(add-macro-fn macro macro-fn t)]. ~l[add-macro-fn].~/~/"
`(add-macro-fn ,macro ,macro-fn t))
(defmacro remove-macro-fn (macro-fn)
":Doc-Section switches-parameters-and-modes
remove the association of a function name with a macro name~/
~bv[]
Example:
(remove-macro-fn binary-append)~/
General Form:
(remove-macro-fn macro-fn)
~ev[]
~l[add-macro-fn] for a discussion of how to associate a macro name with a
function name. This form sets ~ilc[untrans-table] to the result of deleting
the association of a macro name with the given binary function name. If the
function name has no such association, then this form still generates an
event, but the event has no real effect.~/"
`(table untrans-table nil
(let ((tbl (table-alist 'untrans-table world)))
(if (assoc-eq ',macro-fn tbl)
(delete-assoc-eq-exec ',macro-fn tbl)
(prog2$ (cw "~%NOTE: the name ~x0 did not appear as a key in ~
untrans-table. Consider using :u or :ubt to ~
undo this event, which is harmless but does not ~
change untrans-table.~%"
',macro-fn)
tbl)))
:clear))
(defmacro remove-binop (macro-fn)
":Doc-Section switches-parameters-and-modes
remove the association of a function name with a macro name~/
The form ~c[(remove-binop macro-fn)] is an abbreviation for the form
~c[(remove-macro-fn macro-fn)]. ~l[remove-macro-fn].~/~/"
`(remove-macro-fn ,macro-fn))
; Begin implementation of tables allowing user control of :once and :all for
; the :match-free behavior of rewrite, linear, and forward-chaining rules.
(defun match-free-default (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table
wrld)))))
(cdr (assoc-eq :match-free-default
(table-alist 'acl2-defaults-table wrld))))
#+acl2-loop-only
(defmacro set-match-free-default (x)
":Doc-Section switches-parameters-and-modes
provide default for ~c[:match-free] in future rules~/
~bv[]
General Forms:
(set-match-free-default :once)
(set-match-free-default :all)
(set-match-free-default nil)
~ev[]
Note: This utility does not apply to ~il[type-prescription] rules; for
a related topic pertinent to such rules,
~pl[free-variables-type-prescription].
As described elsewhere (~pl[free-variables]), a ~il[rewrite], ~il[linear], or
~il[forward-chaining] rule may have free variables in its hypotheses, and
ACL2 can be directed either to try all bindings (``~c[:all]'') or just the
first (``~c[:once]'') when relieving that hypothesis, as a basis for
relieving subsequent hypotheses. This directing of ~c[:all] or ~c[:once] is
generally provided by specifying either ~c[:match-free :once] or
~c[:match-free :all] in the ~c[:]~ilc[rule-classes] of the rule. If neither
of these is specified, then the most recent ~c[set-match-free-default] is
used by ACL2 to fill in this missing ~c[:match-free] field.
~l[rule-classes]. Except: If the last ~c[set-match-free-default] specifies
~c[nil], then ACL2 reverts to the behavior it had at start-up, as described
in Remarks (2) and (3) below.
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. It uses the ~ilc[acl2-defaults-table], and hence its effect is
~ilc[local] to the book or ~ilc[encapsulate] form in which it occurs.~/
Remarks.
(1) The use of ~c[set-match-free-default] has no effect on existing rules. In
order to change the behavior of existing rules with respect to free-variable
matching, ~pl[add-match-free-override].
(2) If you submit a ~il[rewrite], ~il[linear], or ~il[forward-chaining] rule
with a free variable in a hypothesis, and no default setting was previously
specified with ~c[set-match-free-default] or the default setting is ~c[nil],
and the rule is not within a book being processed with ~ilc[include-book],
~ilc[certify-book], or ~ilc[rebuild], then a warning or error is caused. In
order to make this an error instead of a warning, ~pl[set-match-free-error].
(3) If you submit a ~il[rewrite], ~il[linear], or ~il[forward-chaining] rule
with a free variable in a hypothesis, and no default setting has been
previously specified with ~c[set-match-free-default] or the default setting
is ~c[nil], and no error is caused (see (2) above), then the default ~c[:all]
is used.~/"
; :cited-by free-variables add-match-free-override set-match-free-error
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :match-free-default ,x)
(table acl2-defaults-table :match-free-default))))
#-acl2-loop-only
(defmacro set-match-free-default (x)
(declare (ignore x))
nil)
(defmacro set-match-free-error (x)
":Doc-Section switches-parameters-and-modes
control error vs. warning when ~c[:match-free] is missing~/
~bv[]
Legal Forms:
(set-match-free-error nil)
:set-match-free-error nil
(set-match-free-error t)
:set-match-free-error t
~ev[]
As described elsewhere (~pl[free-variables]), when a ~il[rewrite],
~il[linear], or ~il[forward-chaining] rule has free variables in its
hypotheses, the user can specify whether to try all bindings
(``~c[:all]'') or just the first (``~c[:once]'') when relieving its
hypotheses, as a basis for relieving subsequent hypotheses. This direction
of ~c[:all] or ~c[:once] is generally provided by specifying either
~i[:match-free :once] or ~i[:match-free :all] in the ~c[:]~ilc[rule-classes]
of the rule.
But suppose that neither of these is specified for such a rule. (Note:
~c[set-match-free-error] is not relevant for ~il[type-prescription] rules.)
Also suppose that ~c[set-match-free-default] has not specified a default of
~c[:once] or ~c[:all] (~pl[set-match-free-default]). In this case a warning
will occur except when in the context of ~ilc[include-book]. If you prefer
to see an error in such cases, except in the context of ~ilc[certify-book],
execute ~c[(set-match-free-error t)]. If there is no error, then a default
of ~c[:all] is used.~/
Note: This is ~sc[not] an event! Instead, ~c[set-match-free-error] sets the
state global ~c['match-free-error] (~pl[state] and ~pl[assign]). Thus, this
form cannot be put into a book. If you are tempted to put it into a book,
consider the fact that it really isn't needed there, since the absence of
~c[:match-free] does not cause an error in the context of ~ilc[certify-book]
or ~ilc[include-book]. If you still feel the need for such a form, consider
using ~c[set-match-free-default] to provide a default, at least within the
scope of the current book (if any); ~pl[set-match-free-default].~/"
; :cited-by free-variables add-match-free-override set-match-free-default
(declare (xargs :guard (booleanp x)))
`(f-put-global 'match-free-error ,x state))
(defun match-free-override (wrld)
; We return either :clear or else a cons, whose car indicates the minimum nume
; to which the override will not apply, and whose cdr is the list of runes in
; the :match-free-override field of the acl2-defaults-table.
(declare (xargs :guard (and (plist-worldp wrld)
(alistp
(table-alist 'acl2-defaults-table wrld)))))
(let ((pair (assoc-eq :match-free-override
(table-alist 'acl2-defaults-table wrld))))
(if (or (null pair) (eq (cdr pair) :clear))
:clear
(cons (cdr (assoc-eq :match-free-override-nume
(table-alist 'acl2-defaults-table wrld)))
(cdr pair)))))
#+acl2-loop-only
(defmacro add-match-free-override (flg &rest runes)
":Doc-Section switches-parameters-and-modes
set ~c[:match-free] value to ~c[:once] or ~c[:all] in existing rules~/
~bv[]
Example Forms:
(add-match-free-override :once t)
; Try only the first binding of free variables when relieving hypotheses
; of any rule of class :rewrite, :linear, or :forward-chaining.
(add-match-free-override :all (:rewrite foo) (:rewrite bar))
; For rewrite rules foo and bar, try all bindings of free variables when
; relieving hypotheses.
(add-match-free-override :clear)
; Restore :match-free to what was originally stored for each rule (either
; :all or :once).
~ev[]
As described elsewhere (~pl[free-variables]), a ~il[rewrite], ~il[linear], or
~il[forward-chaining] rule may have free variables in its hypotheses, and
ACL2 can be directed either to try all bindings (``~c[:all]'') or just the
first (``~c[:once]'') when relieving a hypothesis, as a basis for relieving
subsequent hypotheses. This direction is generally provided by specifying
either ~c[:match-free :once] or ~c[:match-free :all] in the
~c[:]~ilc[rule-classes] of the rule, or by using the most recent
~ilc[set-match-free-default] event. Also ~pl[rule-classes].
However, if a proof is going slowly, you may want to modify the behavior of
some such rules so that they use only the first match for free variables in a
hypothesis when relieving subsequent hypotheses, rather than backtracking and
trying additional matches as necessary. (But note:
~c[add-match-free-override] is not relevant for ~il[type-prescription]
rules.) The event ~c[(add-match-free-override :once t)] has that effect. Or
at the other extreme, perhaps you want to specify all rules as ~c[:all] rules
except for a some specific exceptions. Then you can execute
~c[(add-match-free-override :all t)] followed by, say,
~c[(add-match-free-override :once (:rewrite foo) (:linear bar))].~/
~bv[]
General Forms:
(add-match-free-override :clear)
(add-match-free-override flg t)
(add-match-free-override flg rune1 rune2 ... runek)
~ev[]
where ~c[flg] is ~c[:once] or ~c[:all] and the ~c[runei] are ~ilc[rune]s. If
~c[:clear] is specified then all rules will have the ~c[:all]/~c[:once]
behavior from when they were first stored. The second general form causes
all ~il[rewrite] ~il[linear], and ~il[forward-chaining] rules to have the
behavior specified by ~c[flg] (~c[:all] or ~c[:once]). Finally, the last of
these, where runes are specified, is additive in the sense that only the
indicated rules are affected; all others keep the behavior they had just
before this event was executed (possible because of earlier
~c[add-match-free-override] events).
At the conclusion of this event, ACL2 prints out the list of all
~c[:]~ilc[linear], ~c[:]~ilc[rewrite], and ~c[:]~ilc[forward-chaining] runes
whose rules contain free variables in hypotheses that are to be bound
~c[:once], except that if there are no overrides (value ~c[:clear] was used),
then ~c[:clear] is printed.
This event only affects rules that exist at the time it is executed. Future
rules are not affected by the override.
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. It uses the ~ilc[acl2-defaults-table], and hence its effect is
~ilc[local] to the book or ~ilc[encapsulate] form in which it occurs.
~em[Remarks]
Lists of the ~c[:]~ilc[rewrite], ~c[:]~ilc[linear], and
~c[:]~ilc[forward-chaining] ~il[rune]s whose behavior was originally
~c[:once] or ~c[:all] are returned by the following forms, respectively.
~bv[]
(free-var-runes :once (w state))
(free-var-runes :all (w state))
~ev[]
The form
~bv[]
(match-free-override (w state))
~ev[]
evaluates to a pair, whose ~ilc[car] is a number used by ACL2 to determine
whether a ~il[rune] is sufficiently old to be affected by the override, and
whose ~ilc[cdr] is the list of ~il[rune]s whose behavior is specified as
~c[:once] by ~c[add-match-free-override]; except, if no runes have been
overridden, then the keyword ~c[:clear] is returned.~/"
; :cited-by free-variables set-match-free-default set-match-free-error
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
,(cond
((eq flg :clear)
(cond
((null runes)
'(progn (table acl2-defaults-table :match-free-override :clear)
(table acl2-defaults-table :match-free-override)))
(t
`(er soft 'add-match-free-override
"When the first argument of add-match-free-override is :clear, it ~
must be the only argument."))))
((not (member-eq flg '(:all :once)))
`(er soft 'add-match-free-override
"The first argument of add-match-free-override must be :clear, ~
:all, or :once, but it is: ~x0."
',flg))
(t
`(let ((runes ',runes))
(cond
((and (not (equal runes '(t)))
(non-free-var-runes runes
(free-var-runes :once (w state))
(free-var-runes :all (w state))
nil))
(er soft 'add-match-free-override
"Unless add-match-free-override is given a single argument of ~
T, its arguments must be :rewrite, :linear, or ~
:forward-chaining runes in the current ACL2 world with free ~
variables in their hypotheses. The following argument~#0~[ ~
is~/s are~] thus illegal: ~&0."
(non-free-var-runes runes
(free-var-runes :once (w state))
(free-var-runes :all (w state))
nil)))
(t
(er-progn
,(cond
((and (equal runes '(t))
(eq flg :all))
'(er-progn (let ((next-nume (get-next-nume (w state))))
(table-fn 'acl2-defaults-table
(list :match-free-override-nume
(list 'quote next-nume))
state
(list 'table
'acl2-defaults-table
':match-free-override-nume
(list 'quote next-nume))))
(table acl2-defaults-table
:match-free-override
nil)))
(t
`(let* ((wrld (w state))
(old-table-val
(match-free-override wrld))
(old-once-runes
(cond
((equal runes '(t))
(union-equal
(free-var-runes :all wrld)
(free-var-runes :once wrld)))
((eq old-table-val :clear)
(free-var-runes :once wrld))
(t (cdr old-table-val))))
(new-once-runes
,(cond
((equal runes '(t)) ; and (eq flg :once)
'old-once-runes)
((eq flg :once)
`(union-equal ',runes old-once-runes))
(t
`(set-difference-equal old-once-runes
',runes))))
(next-nume (get-next-nume wrld)))
(er-progn (table-fn 'acl2-defaults-table
(list :match-free-override-nume
(list 'quote next-nume))
state
(list 'table
'acl2-defaults-table
':match-free-override-nume
(list 'quote next-nume)))
(table-fn 'acl2-defaults-table
(list :match-free-override
(list 'quote
new-once-runes))
state
(list 'table
'acl2-defaults-table
':match-free-override
(list 'quote
new-once-runes)))))))
(value (let ((val (match-free-override (w state))))
(if (eq val :clear)
:clear
(cdr val))))))))))))
#-acl2-loop-only
(defmacro add-match-free-override (flg &rest runes)
(declare (ignore flg runes))
nil)
(defmacro add-include-book-dir (keyword dir)
":Doc-Section switches-parameters-and-modes
link keyword for ~c[:dir] argument of ~ilc[ld] and ~ilc[include-book]~/
~bv[]
Example Form:
(add-include-book-dir :smith \"/u/smith/\")
; For (include-book \"foo\" :dir :smith), prepend \"/u/smith/\" to \"foo\".~/
General Form:
(add-include-book-dir kwd dir)
~ev[]
where ~c[kwd] is a ~ilc[keywordp] and ~c[dir] is the ~il[pathname] of a
directory. (If the final '~c[/]' is missing, ACL2 will add it for you.) The
effect of this event is to modify the meaning of the ~c[:dir] keyword
argument of ~ilc[include-book] as indicated by the examples above, and
similarly for ~ilc[ld], namely by associating the indicated directory with
the indicated keyword for purposes of the ~c[:dir] argument. By the
``indicated directory'' we mean, in the case that the pathname is a relative
pathname, the directory relative to the current connected book directory;
~pl[cbd]. ~l[delete-include-book-dir] for how to undo this effect.
A keyword that is already associated with a directory string by an existing
invocation of ~c[add-include-book-dir] cannot be associated with a different
directory string. If that is your intention, first apply
~ilc[delete-include-book-dir] to that keyword; ~pl[delete-include-book-dir].
If however the new directory string is identical with the old, then the call
of ~c[add-include-book-dir] will be redundant (~pl[redundant-events]).
The keyword ~c[:system] can never be redefined. It will always point to the
absolute pathname of the system books directory, which by default is
immediately under the directory where the ACL2 executable was originally
built (~pl[include-book], in particular the discussion there of ``books
directory'').
This macro generates (in essence) a call
~c[(table acl2-defaults-table :include-book-dir-alist ...)]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs. ~l[acl2-defaults-table]. Even if you invoke
~c[add-include-book-dir] before certifying a book, so that this event is
among the book's ~il[portcullis] commands rather than in the book itself,
nevertheless that ~c[add-include-book-dir] event will not be visible after
the book is included. (Note: The above behavior is generally preserved in
raw-mode (~pl[set-raw-mode]),though by means other than a table.)~/"
`(add-include-book-dir-fn ,keyword
,dir
; We use state in the loop but the live state outside it. This could be a
; problem if we could define a function that can take a non-live state as an
; argument; see the bug through Version_4.3 explained in a comment in
; with-live-state. However, we prevent that problem by putting
; add-include-book-dir in a suitable list in the definition of translate11.
#+acl2-loop-only state
#-acl2-loop-only *the-live-state*))
(defmacro delete-include-book-dir (keyword)
":Doc-Section switches-parameters-and-modes
unlink keyword for ~c[:dir] argument of ~ilc[ld] and ~ilc[include-book]~/
~bv[]
Example Forms:
(delete-include-book-dir :smith)
; Remove association of directory with :smith for include-book.~/
General Form:
(delete-include-book-dir kwd)
~ev[]
where ~c[kwd] is a ~ilc[keywordp]. The effect of this event is to modify the
meaning of the ~c[:dir] keyword argument of ~ilc[include-book] and ~ilc[ld]
as indicated by the examples above, namely by removing association of any
directory with the indicated keyword for purposes of the ~ilc[include-book]
(and ~ilc[ld]) ~c[:dir] argument. Normally one would instead use
~ilc[add-include-book-dir] to associate a new directory with that keyword;
~pl[add-include-book-dir].
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so recorded.
This macro is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[add-include-book-dir] for a discussion of this aspect
of both macros.~/"
`(delete-include-book-dir-fn ,keyword
; We use state in the loop but the live state outside it. This could be a
; problem if we could define a function that can take a non-live state as an
; argument; see the bug through Version_4.3 explained in a comment in
; with-live-state. However, we prevent that problem by putting
; delete-include-book-dir in a suitable list in the definition of translate11.
#+acl2-loop-only state
#-acl2-loop-only *the-live-state*))
; Begin implementation of tables controlling non-linear arithmetic.
(defconst *non-linear-rounds-value* 3)
(defun non-linearp (wrld)
(declare (xargs :guard
(and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(let ((temp (assoc-eq :non-linearp
(table-alist 'acl2-defaults-table wrld))))
(if temp
(cdr temp)
nil)))
#+acl2-loop-only
(defmacro set-non-linearp (toggle)
":Doc-Section switches-parameters-and-modes
to turn on or off non-linear arithmetic reasoning~/
~bv[]
Examples:
(set-non-linearp t)
(set-non-linearp nil)
~ev[]~/
~l[non-linear-arithmetic]. This event is equivalent to
~c[(table acl2-defaults-table :non-linearp <t-or-nil>)],
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table].
The initial value is ~c[nil]."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :non-linearp ,toggle)
(table acl2-defaults-table :non-linearp))))
#-acl2-loop-only
(defmacro set-non-linearp (toggle)
(declare (ignore toggle))
nil)
(defmacro set-non-linear (toggle)
; Usually the names of our set utilities do not end in "p". We leave
; set-non-linearp for backward compatibility, but we add this version for
; consistency.
`(set-non-linearp ,toggle))
(defun tau-auto-modep (wrld)
; See the Essay on the Status of the Tau System During and After Bootstrapping
; for further details.
; The tau system either makes :tau-system rules out of non-:tau-system rules on
; the fly or it does not. It does if auto mode is t; it doesn't if auto mode
; is nil.
; The auto mode is stored in the acl2-defaults-table. The default auto mode
; when bootstrapping is completed, i.e., choice (2.b) of the essay cited above,
; is t, by virtue of the setting of *initial-acl2-defaults-table*. However,
; that constant is loaded into the acl2-defaults-table only at the very end of
; the bootstrap process, in end-prehistoric-world. So how do we implement
; (1.b), the status of tau-auto-modep during bootstrapping? Answer: here.
; Note: Once we tried to adjust the (1.b) decision by inserting a
; (set-tau-auto-mode ...) event into the boot strap sequence. But that doesn't
; work because you can't insert it early enough, since many events are
; processed before the acl2-defaults-table even exists.
; Note: if the user clears the acl2-defaults-table, then the auto mode is just
; returns to its default value as specified by
; *tau-status-boot-strap-settings*, not to (cdr nil).
(declare (xargs :guard
(and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(let ((temp (assoc-eq :tau-auto-modep
(table-alist 'acl2-defaults-table wrld))))
(cond
((null temp)
(if (global-val 'boot-strap-flg wrld)
(cdar *tau-status-boot-strap-settings*) ; (1.b) tau auto mode during boot strap
nil))
(t (cdr temp)))))
#+acl2-loop-only
(defmacro set-tau-auto-mode (toggle)
":Doc-Section switches-parameters-and-modes
turn on or off automatic (``greedy'') generation of ~c[:tau-system] rules~/
~bv[]
Examples:
(set-tau-auto-mode t) ; select automatic (``greedy'') mode
(set-tau-auto-mode nil) ; select manual mode
~ev[]~/
This event is equivalent to
~c[(table acl2-defaults-table :tau-auto-modep <t-or-nil>)], and hence is
~ilc[local] to any ~il[books] and
~ilc[encapsulate] ~il[events] in which it occurs; ~pl[acl2-defaults-table].
~l[introduction-to-the-tau-system] for background details.
The tau system gathers rules for its database in one of two ways: greedily
or only at the explicit command of the user. ``Greedy'' mode is officially
called ``automatic mode'' and is the default. The other mode is called
``manual mode.''
In automatic mode, all rules processed by ACL2 are also considered for
inclusion in the tau database: if the ~c[:corollary] of some proved theorem
happens to fit into one of the forms described in ~c[:]~ilc[tau-system], that
rule is quietly added to the tau database ~i[regardless of what]
~c[:]~ilc[rule-classes] the user named for the ~c[:corollary]. Of course,
such rules are also stored in the ways named by the user. See the
~i[Design Philosophy] section of ~il[introduction-to-the-tau-system] for a
discussion of why the tau system is greedy by default. More details
are given on automatic mode after we explain manual mode.
To more tightly control the rules available to the tau system, the user may
select manual mode by executing ~c[(set-tau-auto-mode nil)]. In manual mode,
the only events that create ~c[:tau-system] rules are ~c[defthm] events
explicitly specifying the ~c[:]~ilc[tau-system] rule class in the
~c[:]~ilc[rule-classes] argument. Of course, for a ~c[:tau-system] rule to
be created from a proved formula (or its specified ~c[:corollary]), the
formula must be of the appropriate shape (syntactic form). ~l[tau-system].
In manual mode, if the ~c[:tau-system] rule class is specified but the
formula is not of an appropriate form an error is signalled. (Note: even in
manual mode, monadic functions that are recognized as Boolean are classified
as tau predicates; but no rules are created for them.)
Returning to our discussion of automatic mode, a ~c[:]~ilc[tau-system] rule
may be created by any of the events below, provided the definition or formula
proved is of an appropriate shape:
(1) ~c[defun] events introducing ``big switch'' or ``~c[mv-nth] synonyms,''
(2) ~c[defun] events creating type-prescription rules that may be also
represented as ``signature rules'' of form 1, and
(3) any ~c[defthm] event with a non-~c[nil] ~c[:rule-classes] argument if no
~c[:tau-system] rule is among the rule classes and the formula proved is in
the shape of any ~c[tau-system] rule.
Of course, events such as ~ilc[defstobj] and ~ilc[defevaluator] may also add
rules to the tau database when they execute the ~ilc[defun] and ~ilc[defthm]
events implicit in their descriptions. ~l[tau-system] for a description of
the various shapes mentioned above.
Note that any rule (of any rule class) created when the tau system is in
manual mode is also created in automatic mode. For example, if an event
would create a ~c[:DEFINITION], ~c[:TYPE-PRESCRIPTION], ~c[FORWARD-CHAINING],
or ~c[:REWRITE] rule when the tau system is in manual mode, then the event
will create that same rule when the tau system is in automatic mode.
Automatic mode just means that some additional ~c[:tau-system] rules may be
created.
Of course, if a ~c[defthm] event explicitly specifies a ~c[:tau-system] rule
class, then even if the tau system is in automatic mode, that tau rule is
created from the proved formula (or the specified ~c[:corollary]) or else an
error is caused. But if the tau system is in automatic mode and a ~c[defthm]
event doesn't explicitly specify a ~c[:tau-system] rule class, then the
system quietly checks each specified ~c[:corollary] ~-[] or, in the absence
of any ~c[:corollary], it checks the proved formula ~-[] for whether it can
be stored as a tau rule. If so, then the system stores a tau rule, in
addition to storing the specified rule. Of course, no error is signalled if
a proved formula of some non-~c[:tau-system] rule class fails to be of an
appropriate shape for the tau system.
In automatic mode, if the ~c[:rule-classes] specified for ~c[defthm] included
several corollaries and any one of them is of class ~c[:tau-system] then the
only tau system rules created are those explicitly classed as ~c[:tau-system]
rules. For example, suppose a ~c[defthm] has one ~c[:corollary] stored as a
~c[:rewrite] rule and another ~c[:corollary] stored as a ~c[:tau-system]
rule. But suppose the ~c[:rewrite] rule happens to also to fit the form of a
~c[:tau-system] rule. Is it added to the tau database or not? The answer
is no. If you have taken the trouble to specify ~c[:tau-system] corollaries
for an event, then those corollaries are the only ones stored as tau sytem
rules from that event. Note that had both corollaries been classed as
~c[:rewrite] rules (and been of acceptable ~c[:tau-system] form) both would
have also been made ~c[:tau-system] rules. This also allows you be in automatic
mode and state a ~c[:rewrite] or other non-~c[:tau-system] rule and prevent it
from being also made a tau system rule: just add a frivolous ~c[:tau-system]
~c[:corollary] like ~c[(booleanp (integerp x))].
Recall that the use of tau rules is controlled by the rune
~c[(:EXECUTABLE-COUNTERPART TAU-SYSTEM)]. When that rune is disabled, no tau rules
are ~i[used] in proofs. However, the tau system continues to collect tau rules
if the system is in automatic mode. Thus, if and when the tau system is
re-enabled, rules automatically generated while the tau system was disabled
will be used as usual by the tau system.
Finally, note that ~c[defthm] events with ~c[:rule-classes] ~c[nil] do not
create ~c[:tau-system] rules even if the formula proved is of an appropriate
shape, regardless of whether the tau system is in automatic or manual mode.
The macro ~ilc[tau-status] provides a convenient way to enable/disable the
~c[:]~ilc[executable-counterpart] of ~c[tau-system] and/or to switch between
manual and automatic modes. It may also be used to determine the current
settings of those two flags."
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table :tau-auto-modep ,toggle)
(table acl2-defaults-table :tau-auto-modep))))
#-acl2-loop-only
(defmacro set-tau-auto-mode (toggle)
(declare (ignore toggle))
nil)
#+acl2-loop-only
(defmacro defttag (tag-name &key doc)
":Doc-Section Events
introduce a trust tag (ttag)~/
~st[Introduction]. This event is intended for advanced users who, in
essence, want to build extensions of ACL2. The typical intended use is to
create ~il[books] that extend the functionality of ACL2 in ways not allowed
without a so-called ``active trust tag''. A trust tag thus represents a
contract: The writer of such a book is guaranteeing that the book extends
ACL2 in a ``correct'' way as defined by the writer of the book. The writer
of the book will often have a small section of the book in the scope of an
active trust tag that can be inspected by potential users of that book:
~bv[]
<initial part of book, which does not use trust tags>
(defttag :some-ttag) ; install :some-ttag as an active trust tag
<various code that requires an active trust tag>
(defttag nil) ; remove active trust tag
<initial part of book, which does not use trust tags>
~ev[]
Why might trust tags be needed? The evaluation of certain functions can
introduce bugs and even unsoundness, but can be useful in restricted ways
that avoid such issues. For example, ~ilc[sys-call] can be used in an unsafe
way, for example to overwrite files, or worse; ~pl[sys-call] for a
frightening example from Bob Boyer. The following example shows that the
function ~ilc[sys-call] is restricted by default, but can be called after
installing an active trust tag.
~bv[]
ACL2 !>(sys-call \"pwd\" nil)
ACL2 Error in TOP-LEVEL: The SYS-CALL function cannot be called unless
a trust tag is in effect. See :DOC defttag.
ACL2 !>(defttag t) ; Install :T as an active trust tag.
TTAG NOTE: Adding ttag :T from the top level loop.
T
ACL2 !>(sys-call \"pwd\" nil) ; print the current directory and return NIL
/u/kaufmann
NIL
ACL2 !>(defttag nil) ; Remove the active trust tag (using value NIL).
NIL
ACL2 !>(sys-call \"pwd\" nil) ; Now we get the error again:
ACL2 Error in TOP-LEVEL: The SYS-CALL function cannot be called unless
a trust tag is in effect. See :DOC defttag.
ACL2 !>
~ev[]
Of course, using ~ilc[sys-call] with the Linux command ~c[pwd] is not likely
to cause any soundness problems! So suppose we want to create a function
that prints the working directory. We might put the following ~il[events]
into a book that is to be certified.
~bv[]
(in-package \"ACL2\")
(defttag :pwd-ttag)
(defun print-working-dir ()
(declare (xargs :mode :program))
(sys-call \"pwd\" nil))
(defttag nil) ; optional (books end with this implicitly)
~ev[]
We can certify this book with a specification that ~c[:pwd-ttag] is a legal
trust tag:
~bv[]
(certify-book \"pwd\" 0 t :ttags (:pwd-ttag))
~ev[]
One can now use this book by executing ~ilc[include-book] with keyword
parameter ~c[:ttags (:pwd-ttag)] and then calling function
~c[print-working-dir]:
~bv[]
(include-book \"pwd\" :ttags (:pwd-ttag))
(print-working-dir) ; working directory is printed to terminal
~ev[]~/
~st[Detailed documentation.]
~bv[]
General Forms:
(defttag tag-name)
(defttag tag-name :doc doc-string)
~ev[]
where ~c[tag-name] is a symbol. The ~c[:doc doc-string] argument is
optional; if supplied, then it must be a valid ~il[documentation] string
(~pl[doc-string]), and the ~c[defttag] call will generate a corresponding
~ilc[defdoc] event for ~c[tag-name]. (For the rest of this discussion we
ignore the ~c[:doc] argument.)
Note however that (other than the ~c[:doc] argument), if ~c[tag-name] is not
~c[nil] then it is converted to a ``corresponding ~il[keyword]'': a symbol in
the ~c[\"KEYWORD\"] package with the same ~ilc[symbol-name] as ~c[tag-name].
Thus, for example, ~c[(defttag foo)] is equivalent to ~c[(defttag :foo)].
Moreover, a non-~c[nil] symbol with a ~ilc[symbol-name] of ~c[\"NIL\"] is
illegal for trust tags; thus, for example, ~c[(defttag :nil)] is illegal.
This event introduces or removes a so-called active trust tag (or ``ttag'',
pronounced ``tee tag''). An active ttag is a ~il[keyword] symbol that is
associated with potentially unsafe evaluation. For example, calls of
~ilc[sys-call] are illegal unless there is an active trust tag. An active
trust tag can be installed using a ~c[defttag] event. If one introduces an
active ttag and then writes definitions that calls ~ilc[sys-call], presumably
in a defensibly ``safe'' way, then responsibility for those calls is
attributed to that ttag. This attribution (or blame!) is at the level of
~il[books]; a book's ~il[certificate] contains a list of ttags that are
active in that book, or in a book that is included (possibly ~il[local]ly),
or in a book included in a book that is included (either inclusion being
potentially ~il[local]), and so on. We explain all this in more detail
below.
~c[(Defttag :tag-name)] is essentially equivalent to
~bv[]
(table acl2-defaults-table :ttag :tag-name)
~ev[]
and hence is ~ilc[local] to any ~il[books] and ~ilc[encapsulate] ~il[events]
in which it occurs; ~pl[acl2-defaults-table]. We say more about the scope of
~c[defttag] forms below.
Note: This is an event! It does not print the usual event summary but
nevertheless executes the above ~ilc[table] event and hence changes the ACL2
logical ~il[world], and is so recorded. Although no event summary is
printed, it is important to note that the ``TTAG NOTE'', discussed below, is
always printed for a non-nil ~c[:tag-name] (unless deferred;
~pl[set-deferred-ttag-notes]).
~st[Active ttags.] Suppose ~c[tag-name] is a non-~c[nil] symbol. Then
~c[(defttag :tag-name)] sets ~c[:tag-name] to be the (unique) ``active
ttag.'' There must be an active ttag in order for there to be any mention of
certain function and macro symbols, including ~ilc[sys-call]; evaluate the
form ~c[(strip-cars *ttag-fns-and-macros*)] to see the full list of such
symbols. On the other hand, ~c[(defttag nil)] removes the active ttag, if
any; there is then no active ttag. The scope of a ~c[defttag] form in a book
being certified or included is limited to subsequent forms in the same book
before the next ~c[defttag] (if any) in that book. Similarly, if a
~c[defttag] form is evaluated in the top-level loop, then its effect is
limited to subsequent forms in the top-level loop before the next ~c[defttag]
in the top-level loop (if any). Moreoever, ~ilc[certify-book] is illegal
when a ttag is active; of course, in such a circumstance one can execute
~c[(defttag nil)] in order to allow book certification.
~st[Ttag notes and the ``certifier.''] When a ~c[defttag] is executed with
an argument other than ~c[nil], output is printed, starting on a fresh line
with: ~c[TTAG NOTE]. For example:
~bv[]
ACL2 !>(defttag :foo)
TTAG NOTE: Adding ttag :FOO from the top level loop.
:FOO
ACL2 !>
~ev[]
If the ~c[defttag] occurs in an included book, the message looks like this.
~bv[]
TTAG NOTE (for included book): Adding ttag :FOO from file /u/smith/acl2/my-book.lisp.
~ev[]
The ``~c[TTAG NOTE]'' message is always printed on a single line. The
intention is that one can search the standard output for all such notes in
order to find all ~i[defttag] events. In a sense, ~i[defttag] events can
allow you to define your own system on top of ACL2 (for example,
~pl[progn!]). So in order for someone else (who we might call the
``certifier'') to be confident that your collection of ~il[books] is
meaningful, that certifier should certify all the user-supplied books from
scratch and check either that no ~c[:ttags] were supplied to
~ilc[certify-book], or else look for every ~c[TTAG NOTE] in the standard
output in order to locate all ~c[defttag] ~il[events] with non-~c[nil]
tag name. In this way, the certifier can in principle decide whether to be
satisfied that those ~c[defttag] events did not allow inappropriate forms in
the user-supplied books.
In order to eliminate much of the output from ~c[TTAG NOTE]s,
~pl[set-deferred-ttag-notes]. Note however that the resulting security is
somewhat less; therefore, a ~c[TTAG NOTE] is printed when invoking
~c[set-deferred-ttag-notes] to defer printing of ttag notes.
~st[Allowed ttags when certifying and including books.] A ~c[defttag] form
may not be evaluated unless its argument is a so-called ``allowed'' ttag.
All ttags are allowed in the interactive top-level loop. However, during
~ilc[certify-book] and ~ilc[include-book], the set of allowed ttags is
restricted according to the ~c[:ttags] keyword argument. If this argument is
omitted then no ttag is allowed, so a ~c[defttag] call will fail during book
certification or inclusion in this case. This restriction applies even to
~c[defttag] forms already evaluated in the so-called certification ~il[world]
at the time ~ilc[certify-book] is called. But note that ~c[(defttag nil)] is
always legal.
A ~c[:ttags] argument of ~ilc[certify-book] and ~ilc[include-book] can have
value ~c[:all], indicating that every ttag is allowed, i.e., no restriction
is being placed on the arguments, just as in the interactive top-level loop.
In the case of ~c[include-book], an omitted ~c[:ttags] argument or an
argument of ~c[:default] is treated as ~c[:all], except that warnings will
occur when the book's ~il[certificate] includes ttags; but for
~c[certify-book], an omitted ~c[ttags] argument is treated as ~c[nil].
Otherwise, if the ~c[:ttags] argument is supplied but not ~c[:all], then its
value is a true list of ttag specifications, each having one of the following
forms, where ~c[sym] is a non-~c[nil] symbol which is treated as the
corresponding ~il[keyword].
~bq[]
(1) ~c[:sym]
(2) ~c[(:sym)]
(3) ~c[(:sym x1 x2 ... xk)], where k > 0 and each ~c[xi] is a string, except
that one ~c[xi] may be ~c[nil].~eq[]
In Case (1), ~c[(defttag :sym)] is allowed to occur in at most one book or
else in the top-level loop (i.e., the certification world for a book under
certification or a book being included). Case (2) allows ~c[(defttag :sym)]
to occur in an unlimited number of books. For case (3) the ~c[xi] specify
where ~c[(defttag :sym)] may occur, as follows. The case that ~c[xi] is
~c[nil] refers to the top-level loop, while all other ~c[xi] are filenames,
where the ~c[\".lisp\"] extension is optional and relative pathnames are
considered to be relative to the connected book directory (~pl[cbd]). Note
that the restrictions on ~c[(defttag :sym)] apply equally to any equivalent
for based on the notion of ``corresponding keyword'' discussed above, e.g.,
~c[(defttag acl2::sym)].
An error message, as shown below, illustrates how ACL2 enforcess the notion
of allowed ttags. Suppose that you call ~ilc[certify-book] with argument
~c[:ttags (:foo)], where you have already executed ~c[(defttag :foo)] in the
certification world (i.e., before calling ~ilc[certify-book]). Then ACL2
immediately associates the ttag ~c[:foo] with ~c[nil], where again, ~c[nil]
refers to the top-level loop. If ACL2 then encounters ~c[(defttag foo)]
inside that book, you will get the following error (using the full book name
for the book, as shown):
~bv[]
ACL2 Error in ( TABLE ACL2-DEFAULTS-TABLE ...): The ttag :FOO associated
with file /u/smith/work/my-book.lisp is not among the set of ttags permitted
in the current context, specified as follows:
((:FOO NIL)).
See :DOC defttag.
~ev[]
In general the structure displayed by the error message, which is
~c[((:FOO NIL))] in this case, represents the currently allowed ttags with
elements as discussed in (1) through (3) above. In this case, that list's
unique element is ~c[(:FOO NIL)], meaning that ttag ~c[:FOO] is only allowed at
the top level (as represented by ~c[NIL]).
~st[Associating ttags with books and with the top-level loop.] When a book
is certified, each form ~c[(defttag tag)] that is encountered for non-~c[nil]
~c[tag] in that book or an included book is recorded in the generated
~il[certificate], which associates the keyword corresponding to ~c[tag] with
the ~il[full-book-name] of the book containing that ~c[deftag]. If such a
~c[defttag] form is encountered outside a book, hence in the ~il[portcullis]
of the book being certified or one of its included books, then that keyword
is associated with ~c[nil] in the generated ~il[certificate]. Note that the
notion of ``included book'' here applies to the recursive notion of a book
either included directly in the book being certified or else included in such
a book, where we account even for ~il[local]ly included books.
For examples of ways to take advantage of ttags, see community book
~c[books/hacking/hacker.lisp] and ~pl[ttags-seen], ~pl[progn!],
~pl[remove-untouchable], ~pl[set-raw-mode], and ~pl[sys-call]."
(declare (xargs :guard (symbolp tag-name)))
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table acl2-defaults-table
:ttag
',(and tag-name
(intern (symbol-name tag-name) "KEYWORD")))
,@(cond (doc `((defdoc ,tag-name ,doc)))
(t nil))
(table acl2-defaults-table :ttag))))
#-acl2-loop-only
(defmacro defttag (&rest args)
(declare (ignore args))
nil)
(defun ttag (wrld)
; This function returns nil if there is no active ttag.
(declare (xargs :guard
(and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(cdr (assoc-eq :ttag (table-alist 'acl2-defaults-table wrld))))
; We here document some Common Lisp functions. The primitives are near
; the end of this file.
(defdoc complex-rationalp
":Doc-Section ACL2::ACL2-built-ins
recognizes complex rational numbers~/
~bv[]
Examples:
(complex-rationalp 3) ; nil, as 3 is rational, not complex rational
(complex-rationalp #c(3 0)) ; nil, since #c(3 0) is the same as 3
(complex-rationalp t) ; nil
(complex-rationalp #c(3 1)) ; t, as #c(3 1) is the complex number 3 + i
~ev[]~/
~l[complex] for more about complex rationals in ACL2.")
(deflabel let
:doc
":Doc-Section ACL2::ACL2-built-ins
binding of lexically scoped (local) variables~/
~bv[]
Example LET Form:
(let ((x (* x x))
(y (* 2 x)))
(list x y))
~ev[]
If the form above is executed in an environment in which ~c[x] has the
value ~c[-2], then the result is ~c['(4 -4)].~/
~c[Let] expressions bind variables so that their ``local'' values, the
values they have when the ``body'' of the ~c[let] is evaluated, are
possibly different than their ``global'' values, the values they
have in the context in which the ~c[let] expression appears. In the ~c[let]
expression above, the local variables bound by the ~c[let] are ~c[x] and ~c[y].
They are locally bound to the values delivered by the two forms
~c[(* x x)] and ~c[(* 2 x)], respectively, that appear in the
``bindings'' of the ~c[let]. The body of the ~c[let] is ~c[(list x y)].
Suppose that the ~c[let] expression above occurs in a context in which ~c[x]
has the value ~c[-2]. (The global value of ~c[y] is irrelevant to this
example.) For example, one might imagine that the ~c[let] form above
occurs as the body of some function, ~c[fn], with the formal parameter ~c[x]
and we are evaluating ~c[(fn -2)].
To evaluate the ~c[let] above in a context in which ~c[x] is ~c[-2], we first
evaluate the two forms specifying the local values of the variables.
Thus, ~c[(* x x)] is evaluated and produces ~c[4] (because ~c[x] is ~c[-2]) and
~c[(* 2 x)] is evaluated and produces ~c[-4] (because ~c[x] is ~c[-2]).
Then ~c[x] and ~c[y] are bound to these values and the body of the ~c[let]
is evaluated. Thus, when the body, ~c[(list x y)] is evaluated, ~c[x]
is ~c[4] and ~c[y] is ~c[-4]. Thus, the body produces ~c['(4 -4)].
Note that the binding of ~c[y], which is written after the binding of ~c[x]
and which mentions ~c[x], nevertheless uses the global value of ~c[x], not
the new local value. That is, the local variables of the ~c[let] are
bound ``in parallel'' rather than ``sequentially.'' In contrast, if
the
~bv[]
Example LET* Form:
(let* ((x (* x x))
(y (* 2 x)))
(list x y))
~ev[]
is evaluated when the global value of ~c[x] is ~c[-2], then the result is
~c['(4 8)], because the local value of ~c[y] is computed after ~c[x] has been
bound to ~c[4]. ~ilc[Let*] binds its local variables ``sequentially.''
~bv[]
General LET Forms:
(let ((var1 term1) ... (varn termn)) body)
and
(let ((var1 term1) ... (varn termn))
(declare ...) ... (declare ...)
body)
~ev[]
where the ~c[vari] are distinct variables, the ~c[termi] are terms
involving only variables bound in the environment containing the
~c[let], and ~c[body] is a term involving only the ~c[vari] plus the variables
bound in the environment containing the ~c[let]. Each ~c[vari] must be used
in ~c[body] or else ~il[declare]d ignored.
A ~c[let] form is evaluated by first evaluating each of the ~c[termi],
obtaining for each a ~c[vali]. Then, each ~c[vari] is bound to the
corresponding ~c[vali] and ~c[body] is evaluated.
Actually, ~c[let] forms are just abbreviations for certain uses of
~c[lambda] notation. In particular
~bv[]
(let ((var1 term1) ... (varn termn)) (declare ...) body)
~ev[]
is equivalent to
~bv[]
((lambda (var1 ... varn)
(declare ...)
body)
term1 ... termn).
~ev[]
~ilc[Let*] forms are used when it is desired to bind the ~c[vari]
sequentially, i.e., when the local values of preceding ~c[varj] are to
be used in the computation of the local value for ~c[vari].
~bv[]
General LET* Forms:
(let* ((var1 term1) ... (varn termn)) body)
and
(let* ((var1 term1) ... (varn termn))
(declare (ignore x1 ... xm))
body)
~ev[]
where the ~c[vari] are variables (not necessarily distinct), the
~c[termi] are terms involving only variables bound in the environment
containing the ~ilc[let*] and those ~c[varj] such that ~c[j<i], and ~c[body] is a
term involving only the ~c[vari] plus the variables bound in the
environment containing the ~ilc[let*]. Each ~c[vari] must be used either in
some subsequent ~c[termj] or in ~c[body], except that in the second form
above we make an exception when ~c[vari] is among the ~c[xk], in which case
~c[vari] must not be thus used. Note that ~ilc[let*] does not permit the
inclusion of any ~ilc[declare] forms other than one as shown above. In the
second general form above, every ~c[xk] must be among the ~c[vari], and
furthermore, ~c[xk] may not equal ~c[vari] and ~c[varj] for distinct ~c[i], ~c[j].
The first ~ilc[let*] above is equivalent to
~bv[]
(let ((var1 term1))
...
(let ((varn termn)) body)...)
~ev[]
Thus, the ~c[termi] are evaluated successively and after each
evaluation the corresponding ~c[vali] is bound to the value of ~c[termi].
The second ~ilc[let*] is similarly expanded, except that each for each
~c[vari] that is among the ~c[(x1 ... xm)], the form ~c[(declare (ignore vari))]
is inserted immediately after ~c[(vari termi)].
Each ~c[(vari termi)] pair in a ~c[let] or ~ilc[let*] form is called a ``binding''
of ~c[vari] and the ~c[vari] are called the ``local variables'' of the ~c[let]
or ~ilc[let*]. The common use of ~c[let] and ~ilc[let*] is to save the values of
certain expressions (the ~c[termi]) so that they may be referenced
several times in the body without suggesting their recomputation.
~c[Let] is part of Common Lisp. See any Common Lisp documentation
for more information.~/")
(defdoc flet
; Not mentioned here is the fact that oneify-flet-bindings drops type
; declarations in the *1* functions. That point is so low-level that
; explaining it in the :doc topic is likely to do more harm than good.
":Doc-Section ACL2::ACL2-built-ins
local binding of function symbols~/
~bv[]
Example Form:
; The following evaluates to (mv 7 10):
(flet ((f (x)
(+ x 3))
(g (x)
(declare (type integer x))
(* x 2)))
(mv (f 4) (g 5)))~/
General Forms:
(flet (def1 ... defk) body)
(flet (def1 ... defk) declare-form1 .. declare-formk body)
~ev[]
where ~c[body] is a term, and each ~c[defi] is a definition as in ~ilc[defun]
but with the leading ~c[defun] symbol omitted. ~l[defun]. If any
~c[declare-formi] are supplied, then each must be of the form
~c[(declare decl1 ... decln)], where each ~c[decli] is of the form
~c[(inline g1 ... gm)] or ~c[(notinline g1 ... gm)], and each ~c[gi] is
defined by some ~c[defi].
The only effect of the declarations is to provide advice to the host Lisp
compiler. The declarations are otherwise ignored by ACL2, so we mainly
ignore them in the discussion below.
The innermost ~c[flet]-binding of a function symbol, ~c[f], above a call of
~c[f], is the one that provides the definition of ~c[f] for that call. Note
that ~c[flet] does not provide recursion. Consider the following example.
~bv[]
; Give a global definition of f:
(defun f (x) (+ x 3))
; Evaluate an expression using a local binding of f:
(flet ((f (x) (cons x (f (1+ x)))))
(f 4))
~ev[]
In the above term ~c[(cons x (f (1+ x)))], ~c[f] refers to the global
definition of ~c[f] above the ~c[flet] expression. However, ~c[(f 4)] refers
to the ~c[flet]-binding of ~c[f], ~c[(f (x) (cons x (f x)))]. The result of
the ~c[flet] expression is thus obtained by evaluating ~c[(f 4)] where
~c[(f 4)] is ~c[(cons 4 (f (1+ 4)))], where the latter call of ~c[f] refers
to the global definition; thus we have ~c[(cons 4 (f 5))], which evaluates to
~c[(4 . 8)].
Although ~c[flet] behaves in ACL2 essentially as it does in Common Lisp, ACL2
imposes the following restrictions and qualifications.
~bq[]
o Every ~ilc[declare] form for a local definition (~c[def1] through ~c[defk],
above) must be an ~c[ignore], ~c[ignorable], or ~c[type] expression.
o Each ~c[defi] must bind a different function symbol.
o Each ~c[defi] must bind a symbol that is a legal name for an ACL2 function
symbol. In particular, the symbol may not be in the keyword package or the
main Lisp package. Moreover, the symbol may not be a built-in ACL2 function
or macro.
o Every variable occurring in the body of a ~c[defi] must be a formal
parameter of that ~c[defi]. (This restriction is not enforced in Common
Lisp. If the restriction is inconvenient for you, the ACL2 implementors may
be able to remove it, with some effort, if you ask.)
o If the ~c[flet]-binding ~c[defi] is in the body of a function ~c[f], then
the ~il[stobj] inputs for ~c[defi] are implicitly those of its inputs that
are declared ~il[stobj] inputs of ~c[f].~eq[]
~c[Flet] bindings are evaluated in parallel. Consider the following
example.
~bv[]
(defun f (x) x)
(flet ((f (x) (cons x x))
(g (x) (f x)))
(g 3))
~ev[]
The binding of ~c[g] refers to the global value of ~c[f], not the
~c[flet]-binding of ~c[f]. Thus, the ~c[flet] expression evaluates to 3.
Compare the ~c[flet] expression above to the following one, which instead
evaluates to ~c[(3 . 3)].
~bv[]
(defun f (x) x)
(flet ((f (x) (cons x x)))
(flet ((g (x) (f x)))
(g 3)))
~ev[]
Under the hood, ACL2 translates ~c[flet] bindings to ~ilc[lambda] expressions
(~pl[term]), throwing away the ~c[inline] and ~c[notinline] declarations (if
any). The following example illustrates this point.
~bv[]
ACL2 !>:trans (flet ((f (x) (cons x x))
(g (x y) (+ x y)))
(declare (inline f))
(f (g 3 4)))
((LAMBDA (X) (CONS X X))
((LAMBDA (X Y) (BINARY-+ X Y)) '3 '4))
=> *
ACL2 !>
~ev[]
~c[Flet] is part of Common Lisp. See any Common Lisp documentation
for more information. We conclude by pointing out an important aspect of
~c[flet] shared by ACL2 and Common Lisp: The binding is lexical, not
dynamic. That is, the ~c[flet] binding of a function symbol only applies to
calls of that function symbol in the body of the ~c[flet], not other calls
made in the course of evaluation. Consider the following example. Suppose
we define:
~bv[]
(defun f (x) x)
(defun g (x) x)
(defun h (x)
(flet ((f (x) (cons x x)))
(g x)))
~ev[]
Then evaluation of ~c[(h 3)] results in ~c[3], not in the ~c[cons] pair
~c[(3 . 3)], because the ~c[flet] binding of ~c[f] only applies to calls of
~c[f] that appear in the body of that ~c[flet]. In this case, only ~c[g] is
called in the body of that ~c[flet].~/")
#-acl2-loop-only
(defun-one-output what-is-the-global-state ()
; This function is for cosmetics only and is not called by
; anything else. It tells you what you are implicitly passing
; in at the global-table field when you run with *the-live-state*.
(list (list :open-input-channels
(let (ans)
(do-symbols
(sym (find-package "ACL2-INPUT-CHANNEL"))
(cond ((and (get sym *open-input-channel-key*)
(get sym *open-input-channel-type-key*))
(push (cons sym
(list (get sym
*open-input-channel-type-key*)
(strip-numeric-postfix sym)))
ans))))
(sort ans (function (lambda (x y)
(symbol-< (car x) (car y)))))))
(list :open-output-channels
(let (ans)
(do-symbols
(sym (find-package "ACL2-OUTPUT-CHANNEL"))
(cond ((and (get sym *open-output-channel-key*)
(get sym *open-output-channel-type-key*))
(push
(cons sym
(list (get sym *open-output-channel-type-key*)
(strip-numeric-postfix sym)))
ans))))
(sort ans (function (lambda (x y)
(symbol-< (car x) (car y)))))))
(list :global-table (global-table-cars *the-live-state*))
(list :t-stack
(let (ans)
(do ((i (1- *t-stack-length*) (1- i)))
((< i 0))
(push (aref-t-stack i *the-live-state*) ans))
ans))
(list :32-bit-integer-stack
(let (ans)
(do ((i (1- *32-bit-integer-stack-length*) (1- i)))
((< i 0))
(push (aref-32-bit-integer-stack i *the-live-state*) ans))
ans))
(list :big-clock '?)
(list :idates '?)
(list :acl2-oracle '?)
(list :file-clock *file-clock*)
(list :readable-files '?)
(list :written-files '?)
(list :read-files '?)
(list :writeable-files '?)
(list :list-all-package-names-lst '?)))
; Here we implement the macro-aliases table.
; Since books do not set the acl2-defaults-table (see the end of the :doc for
; that topic), we don't use the acl2-defaults-table to hold the macro-aliases
; information. Otherwise, one would not be able to export associations of
; functions with new macros outside a book, which seems unfortunate. Note that
; since macro-aliases are only used for theories, which do not affect the
; soundness of the system, it's perfectly OK to export such information. Put
; another way: we already allow the two passes of encapsulate to yield
; different values of theory expressions, so it's silly to start worrying now
; about the dependency of theory information on macro alias information.
(deflabel macro-aliases-table
:doc
":Doc-Section switches-parameters-and-modes
a ~il[table] used to associate function names with macro names~/
~bv[]
Example:
(table macro-aliases-table 'append 'binary-append)
~ev[]
This example associates the function symbol ~ilc[binary-append] with the
macro name ~ilc[append]. As a result, the name ~ilc[append] may be used as a
runic designator (~pl[theories]) by the various theory functions. Thus, for
example, it will be legal to write
~bv[]
(in-theory (disable append))
~ev[]
as an abbreviation for
~bv[]
(in-theory (disable binary-append))
~ev[]
which in turn really abbreviates
~bv[]
(in-theory (set-difference-theories (current-theory :here)
'(binary-append)))~/
General Form:
(table macro-aliases-table 'macro-name 'function-name)
~ev[]
or very generally
~bv[]
(table macro-aliases-table macro-name-form function-name-form)
~ev[]
where ~c[macro-name-form] and ~c[function-name-form] evaluate, respectively,
to a macro name and a symbol in the current ACL2 ~il[world]. ~l[table] for a
general discussion of tables and the ~c[table] event used to manipulate
tables.
Note that ~c[function-name-form] (above) does not need to evaluate to a
function symbol, but only to a symbol. As a result, one can introduce the
alias before defining a recursive function, as follows.
~bv[]
(table macro-aliases-table 'mac 'fn)
(defun fn (x)
(if (consp x)
(mac (cdr x))
x))
~ev[]
Although this is obviously contrived example, this flexibility can be useful
to macro writers; see for example the definition of ACL2 system macro
~ilc[defun-inline].
The ~ilc[table] ~ilc[macro-aliases-table] is an alist that associates macro
symbols with function symbols, so that macro names may be used as runic
designators (~pl[theories]). For a convenient way to add entries to this
~il[table], ~pl[add-macro-alias]. To remove entries from the ~il[table] with
ease, ~pl[remove-macro-alias].
This ~il[table] is used by the theory functions; ~pl[theories]. For example,
in order that ~c[(disable append)] be interpreted as
~c[(disable binary-append)], it is necessary that the example form above has
been executed. In fact, this ~il[table] does indeed associate many of the
macros provided by the ACL2 system, including ~ilc[append], with function
symbols. Loosely speaking, it only does so when the macro is ``essentially
the same thing as'' a corresponding function; for example, ~c[(append x y)]
and ~c[(binary-append x y)] represent the same term, for any expressions
~c[x] and ~c[y].~/")
(table macro-aliases-table nil nil
:guard
(and (symbolp key)
(not (eq (getprop key 'macro-args t 'current-acl2-world world) t))
(symbolp val)
; We no longer (as of August 2012) require that val be a function symbol, so
; that we can support recursive definition with defun-inline. It would be nice
; to use the following code as a replacement. However,
; chk-all-but-new-name-cmp is not defined at this point, and we don't think
; it's worth the trouble to fight this boot-strapping battle. If we decide
; later to strengthen the guard this, then we will need to update :doc
; macro-aliases-table to require that the value is a function symbol, not just
; a symbol.
; (mv-let (erp val)
; (chk-all-but-new-name-cmp
; val
; "guard for macro-aliases-table"
; 'function
; world)
; (declare (ignore val))
; (null erp)))
))
(table macro-aliases-table nil
'((+ . binary-+)
(* . binary-*)
(digit-char-p . our-digit-char-p)
(intern . intern-in-package-of-symbol)
(append . binary-append)
(logand . binary-logand)
(logior . binary-logior)
(logxor . binary-logxor)
(logeqv . binary-logeqv)
(variablep . atom)
(ffn-symb . car)
(fargs . cdr)
(first . car)
(rest . cdr)
(build-state . build-state1)
(f-boundp-global . boundp-global)
(f-get-global . get-global)
(f-put-global . put-global)
(f-big-clock-negative-p . big-clock-negative-p)
(f-decrement-big-clock . decrement-big-clock))
:clear)
(defun macro-aliases (wrld)
(declare (xargs :guard (plist-worldp wrld)))
(table-alist 'macro-aliases-table wrld))
(defmacro add-macro-alias (macro-name fn-name)
":Doc-Section switches-parameters-and-modes
associate a function name with a macro name~/
~bv[]
Example:
(add-macro-alias append binary-append)
~ev[]
This example associates the function symbol ~ilc[binary-append] with the
macro name ~ilc[append]. As a result, the name ~ilc[append] may be used as a
runic designator (~pl[theories]) by the various theory
functions. ~l[macro-aliases-table] for more details. Also ~pl[add-macro-fn]
for an extension of this utility that also affects printing.~/
~bv[]
General Form:
(add-macro-alias macro-name function-name)
~ev[]
This is a convenient way to add an entry to ~ilc[macro-aliases-table].
~l[macro-aliases-table] and also ~pl[remove-macro-alias].~/"
`(table macro-aliases-table ',macro-name ',fn-name))
(add-macro-alias real/rationalp
#+:non-standard-analysis realp
#-:non-standard-analysis rationalp)
(add-macro-alias member-eq member-equal)
(add-macro-alias member member-equal)
(add-macro-alias assoc-eq assoc-equal)
(add-macro-alias assoc assoc-equal)
(add-macro-alias subsetp-eq subsetp-equal)
(add-macro-alias subsetp subsetp-equal)
(add-macro-alias no-duplicatesp-eq no-duplicatesp-equal)
(add-macro-alias no-duplicatesp no-duplicatesp-equal)
(add-macro-alias rassoc-eq rassoc-equal)
(add-macro-alias rassoc rassoc-equal)
(add-macro-alias remove-eq remove-equal)
(add-macro-alias remove remove-equal)
(add-macro-alias remove1-eq remove1-equal)
(add-macro-alias remove1 remove1-equal)
(add-macro-alias remove-duplicates-eq remove-duplicates-equal)
(add-macro-alias remove-duplicates remove-duplicates-equal)
(add-macro-alias position-ac-eq position-equal-ac)
(add-macro-alias position-eq-ac position-equal-ac)
(add-macro-alias position-ac position-equal-ac)
(add-macro-alias position-eq position-equal)
(add-macro-alias position position-equal)
(add-macro-alias set-difference-eq set-difference-equal)
(add-macro-alias set-difference$ set-difference-equal)
(add-macro-alias add-to-set-eq add-to-set-equal)
(add-macro-alias add-to-set-eql add-to-set-equal) ; for pre-v4-3 compatibility
(add-macro-alias add-to-set add-to-set-equal)
(add-macro-alias intersectp-eq intersectp-equal)
(add-macro-alias intersectp intersectp-equal)
(add-macro-alias put-assoc-eq put-assoc-equal)
(add-macro-alias put-assoc-eql put-assoc-equal) ; for pre-v4-3 compatibility
(add-macro-alias put-assoc put-assoc-equal)
(add-macro-alias delete-assoc-eq delete-assoc-equal)
(add-macro-alias delete-assoc delete-assoc-equal)
(add-macro-alias union-eq union-equal)
(add-macro-alias union$ union-equal)
(add-macro-alias intersection-eq intersection-equal)
(add-macro-alias intersection$ intersection-equal)
(defmacro remove-macro-alias (macro-name)
":Doc-Section switches-parameters-and-modes
remove the association of a function name with a macro name~/
~bv[]
Example:
(remove-macro-alias append)~/
General Form:
(remove-macro-alias macro-name)
~ev[]
~l[macro-aliases-table] for a discussion of macro aliases; also
~pl[add-macro-alias]. This form sets ~ilc[macro-aliases-table] to
the result of deleting the key ~c[macro-name] from that ~il[table]. If
the name does not occur in the ~il[table], then this form still generates
an event, but the event has no real effect.~/"
`(table macro-aliases-table nil
(let ((tbl (table-alist 'macro-aliases-table world)))
(if (assoc-eq ',macro-name tbl)
(delete-assoc-eq-exec ',macro-name tbl)
(prog2$ (cw "~%NOTE: the name ~x0 did not appear as a key in ~
macro-aliases-table. Consider using :u or :ubt to ~
undo this event, which is harmless but does not ~
change macro-aliases-table.~%"
',macro-name)
tbl)))
:clear))
; Here we implement the nth-aliases table. This is quite analogous to the
; macro-aliases table; see the comment above for a discussion of why we do not
; use the acl2-defaults-table here.
(deflabel nth-aliases-table
:doc
":Doc-Section switches-parameters-and-modes
a ~il[table] used to associate names for nth/update-nth printing~/
~bv[]
Example:
(table nth-aliases-table 'st0 'st)
~ev[]
This example associates the symbol ~c[st0] with the symbol ~c[st]. As a
result, when the theorem prover prints terms of the form
~c[(nth n st0)] or ~c[(update-nth n val st0)], where ~c[st] is a ~il[stobj]
whose ~c[n]th accessor function is ~c[f-n], then it will print ~c[n] as
~c[*f-n*].~/
~bv[]
General Form:
(table nth-aliases-table 'alias-name 'name)
~ev[]
This event causes ~c[alias-name] to be treated like ~c[name] for purposes
of the printing of terms that are calls of ~c[nth] and ~c[update-nth].
(Note however that ~c[name] is not recursively looked up in this
table.) Both must be symbols other than ~ilc[state]. ~l[term], in
particular the discussion there of untranslated terms.
For a convenient way to add entries to this ~il[table],
~pl[add-nth-alias]. To remove entries from the ~il[table] with ease,
~pl[remove-nth-alias].~/")
(table nth-aliases-table nil nil
:guard
(and (symbolp key)
(not (eq key 'state))
(eq (getprop key 'accessor-names t
'current-acl2-world world)
t)
(symbolp val)
(not (eq val 'state))))
(table nth-aliases-table nil nil :clear)
(defun nth-aliases (wrld)
(declare (xargs :guard (plist-worldp wrld)))
(table-alist 'nth-aliases-table wrld))
(defmacro add-nth-alias (alias-name name)
":Doc-Section switches-parameters-and-modes
associate one symbol with another for printing of ~ilc[nth]/~ilc[update-nth] terms~/
~bv[]
Example:
(add-nth-alias st0 st)
~ev[]
This example associates the symbol ~c[st0] with the symbol
~c[st] for purposes of printing certain terms of the form
~c[(nth n st0)] and ~c[(update-nth n val st0)].~/
~bv[]
General Form:
(add-nth-alias alias-name name)
~ev[]
This is a convenient way to add an entry to ~ilc[nth-aliases-table].
~l[nth-aliases-table] and also ~pl[remove-nth-alias].~/"
`(table nth-aliases-table ',alias-name ',name))
(defmacro remove-nth-alias (alias-name)
":Doc-Section switches-parameters-and-modes
remove a symbol alias for printing of ~ilc[nth]/~ilc[update-nth] terms~/
~bv[]
Example:
(remove-nth-alias append)~/
General Form:
(remove-nth-alias alias-name)
~ev[]
~l[nth-aliases-table] for further discussion; also
~pl[add-nth-alias]. This form sets ~ilc[nth-aliases-table] to
the result of deleting the key ~c[alias-name] from that ~il[table]. If
the name does not occur in the ~il[table], then this form still generates
an event, but the event has no real effect.~/"
`(table nth-aliases-table nil
(let ((tbl (table-alist 'nth-aliases-table world)))
(if (assoc-eq ',alias-name tbl)
(delete-assoc-eq-exec ',alias-name tbl)
(prog2$ (cw "~%NOTE: the name ~x0 did not appear as a key in ~
nth-aliases-table. Consider using :u or :ubt to ~
undo this event, which is harmless but does not ~
change nth-aliases-table.~%"
',alias-name)
tbl)))
:clear))
; Here we implement the default-hints table. This is quite analogous to the
; macro-aliases table; see the comment above for a discussion of why we do not
; use the acl2-defaults-table here. In this case that decision is perhaps a
; little less clear; in fact, we used the acl2-defaults-table for this purpose
; before Version_2.9. But Jared Davis pointed out that his sets books could be
; more useful if the setting of default-hints could be visible outside a book.
(deflabel default-hints-table
:doc
":Doc-Section switches-parameters-and-modes
a ~il[table] used to provide ~il[hints] for proofs~/
Please ~pl[set-default-hints], ~pl[add-default-hints], and
~pl[remove-default-hints] for how to use this table. For completeness, we
mention here that under the hood, these events all update the
~c[default-hints-table] by updating its key, ~c[t], for example as follows.
~bv[]
(table default-hints-table t
'((computed-hint-1 clause)
(computed-hint-2 clause
stable-under-simplificationp)))
~ev[]~/
The use of default hints is explained elsewhere; ~pl[set-default-hints].
Advanced users only: ~pl[override-hints] for an advanced variant of default
hints.")
(defun default-hints (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'default-hints-table
wrld)))))
":Doc-Section Miscellaneous
a list of hints added to every proof attempt~/
~bv[]
Examples:
ACL2 !>(default-hints (w state))
((computed-hint-1 clause)
(computed-hint-2 clause stable-under-simplificationp))
~ev[]
The value returned by this function is added to the right of the
~c[:]~ilc[hints] argument of every ~ilc[defthm] and ~ilc[thm] command, and to
hints provided to ~ilc[defun]s as well (~c[:hints], ~c[:guard-hints], and
(for ACL2(r)) ~c[:std-hints]).~/
~l[set-default-hints] for a more general discussion. Advanced users only:
~pl[override-hints] for an advanced variant of default hints that are not
superseded by ~c[:]~ilc[hints] arguments."
(cdr (assoc-eq t (table-alist 'default-hints-table wrld))))
(defmacro set-default-hints (lst)
":Doc-Section switches-parameters-and-modes
set the default hints~/
~bv[]
Examples:
(set-default-hints '((computed-hint-1 clause)
(computed-hint-2 clause
stable-under-simplificationp)))
(set-default-hints nil)
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. It is ~ilc[local] to the book or ~ilc[encapsulate] form in which it
occurs; ~pl[set-default-hints!] for a corresponding non-~ilc[local] event.~/
~bv[]
General Form:
(set-default-hints lst)
~ev[]
where ~c[lst] is a list. Generally speaking, the elements of
~c[lst] should be suitable for use as ~ilc[computed-hints].
Whenever a ~ilc[defthm] or ~ilc[thm] command is executed, the default
hints are appended to the right of any explicitly provided
~c[:]~ilc[hints] in the command. The same applies to ~ilc[defun]s as well
(~c[:hints], ~c[:guard-hints], and (for ACL2(r)) ~c[:std-hints]). The hints
are then translated and processed just as though they had been explicitly
included.
Technically, we do not put restrictions on ~c[lst], beyond that it
is a true list. It would be legal to execute
~bv[]
(set-default-hints '((\"Goal\" :use lemma23)))
~ev[]
with the effect that the given hint is added to subsequent hints supplied
explicitly. An explicit \"Goal\" hint would, however, take priority, as
suggested by the mention above of ``appended to the right.''
Note that ~c[set-default-hints] sets the default hints as specified.
To add to or remove from the current default, ~pl[add-default-hints] and
~pl[remove-default-hints]. To see the current default hints,
~pl[default-hints].
Finally, note that the effects of ~c[set-default-hints],
~ilc[add-default-hints], and ~ilc[remove-default-hints] are ~ilc[local] to the
book in which they appear. Thus, users who include a book with such forms
will not have their default hints affected by such forms. In order to export
the effect of setting the default hints, use ~ilc[set-default-hints!],
~ilc[add-default-hints!], or ~ilc[remove-default-hints!].
For a related feature, which however is only for advanced system builders,
~pl[override-hints].~/"
`(local (set-default-hints! ,lst)))
#+acl2-loop-only
(defmacro set-default-hints! (lst)
":Doc-Section switches-parameters-and-modes
set the default hints non-~ilc[local]ly~/
Please ~pl[set-default-hints], which is the same as ~c[set-default-hints!]
except that the latter is not ~ilc[local] to the ~ilc[encapsulate] or the book
in which it occurs. Probably ~il[set-default-hints] is to be preferred
unless you have a good reason for wanting to export the effect of this event
outside the enclosing ~ilc[encapsulate] or book.~/~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table default-hints-table t ,lst)
(table default-hints-table t))))
#-acl2-loop-only
(defmacro set-default-hints! (lst)
(declare (ignore lst))
nil)
(defmacro add-default-hints (lst &key at-end)
":Doc-Section switches-parameters-and-modes
add to the default hints~/
~bv[]
Examples:
(add-default-hints '((computed-hint-1 clause)
(computed-hint-2 clause
stable-under-simplificationp)))
(add-default-hints '((computed-hint-3 id clause world))
:at-end t)
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. It is ~ilc[local] to the book or ~ilc[encapsulate] form in which it
occurs (~pl[add-default-hints!] for a corresponding non-~ilc[local] event).~/
~bv[]
General Forms:
(add-default-hints lst)
(add-default-hints lst :at-end flg)
~ev[]
where ~c[lst] is a list. Generally speaking, the elements of
~c[lst] should be suitable for use as ~ilc[computed-hints].
This event is completely analogous to ~ilc[set-default-hints], the difference
being that ~c[add-default-hints] appends the indicated hints to the front of
the list of default hints, so that they are tried first ~-[] or, if ~c[flg]
is supplied and evaluates to other than ~c[nil], at the end of the list, so
that they are tried last ~-[] rather than ~st[replacing] the default hints
with the indicated hints. Each new hint is thus considered after each
existing hints when both are applied to the same goal. Also
~l[set-default-hints], ~pl[remove-default-hints], and ~pl[default-hints].
Finally, note that the effects of ~c[set-default-hints],
~ilc[add-default-hints], and ~ilc[remove-default-hints] are ~ilc[local] to the
book in which they appear. Thus, users who include a book with such forms
will not have their default hints affected by such forms. In order to export
the effect of setting the default hints, use ~ilc[set-default-hints!],
~ilc[add-default-hints!], or ~ilc[remove-default-hints!].
For a related feature, which however is only for advanced system builders,
~pl[override-hints].~/"
`(local (add-default-hints! ,lst :at-end ,at-end)))
#+acl2-loop-only
(defmacro add-default-hints! (lst &key at-end)
":Doc-Section switches-parameters-and-modes
add to the default hints non-~ilc[local]ly~/
Please ~pl[add-default-hints], which is the same as ~c[add-default-hints!]
except that the latter is not ~ilc[local] to the ~ilc[encapsulate] or the book
in which it occurs. Probably ~il[add-default-hints] is to be preferred
unless you have a good reason for wanting to export the effect of this event
outside the enclosing ~ilc[encapsulate] or book.~/~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table default-hints-table t
(if ,at-end
(append (default-hints world) ,lst)
(append ,lst (default-hints world))))
(table default-hints-table t))))
#-acl2-loop-only
(defmacro add-default-hints! (lst)
(declare (ignore lst))
nil)
(defmacro remove-default-hints (lst)
":Doc-Section switches-parameters-and-modes
remove from the default hints~/
~bv[]
Examples:
(remove-default-hints '((computed-hint-1 clause)
(computed-hint-2 clause
stable-under-simplificationp)))
~ev[]
Note: This is an event! It does not print the usual event summary but
nevertheless changes the ACL2 logical ~il[world] and is so recorded. It is
~ilc[local] to the book or ~ilc[encapsulate] form in which it occurs
(~pl[remove-default-hints!] for a corresponding non-~ilc[local] event).~/
~bv[]
General Form:
(remove-default-hints lst)
~ev[]
where ~c[lst] is a list. Generally speaking, the elements of
~c[lst] should be suitable for use as ~ilc[computed-hints]. Also
~pl[add-default-hints].
If some elements of the given list do not belong to the existing default
hints, they will simply be ignored by this event.
Also ~l[set-default-hints], ~pl[add-default-hints], and ~pl[default-hints].
Finally, note that the effects of ~c[set-default-hints],
~ilc[add-default-hints], and ~ilc[remove-default-hints] are ~ilc[local] to the
book in which they appear. Thus, users who include a book with such forms
will not have their default hints affected by such forms. In order to export
the effect of setting the default hints, use ~ilc[set-default-hints!],
~ilc[add-default-hints!], or ~ilc[remove-default-hints!].~/"
`(local (remove-default-hints! ,lst)))
#+acl2-loop-only
(defmacro remove-default-hints! (lst)
":Doc-Section switches-parameters-and-modes
remove from the default hints non-~ilc[local]ly~/
Please ~pl[remove-default-hints], which is the same as ~c[remove-default-hints!]
except that the latter is not ~ilc[local] to the ~ilc[encapsulate] or the book
in which it occurs. Probably ~il[remove-default-hints] is to be preferred
unless you have a good reason for wanting to export the effect of this event
outside the enclosing ~ilc[encapsulate] or book.~/~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table default-hints-table t
(set-difference-equal (default-hints world) ,lst))
(table default-hints-table t))))
#-acl2-loop-only
(defmacro remove-default-hints! (lst)
(declare (ignore lst))
nil)
#+acl2-loop-only
(defmacro set-override-hints-macro (lst at-end ctx)
`(state-global-let*
((inhibit-output-lst (list* 'summary (@ inhibit-output-lst))))
(set-override-hints-fn ,lst ,at-end ,ctx (w state) state)))
#-acl2-loop-only
(defmacro set-override-hints-macro (&rest args)
(declare (ignore args))
nil)
(defmacro add-override-hints! (lst &key at-end)
":Doc-Section switches-parameters-and-modes
add non-~il[local]ly to the ~il[override-hints]~/
~c[Add-override-hints!] is the same as ~ilc[add-override-hints], except that
the former is not ~il[local] to ~il[books] or ~ilc[encapsulate] ~il[events]
in which it occurs. ~l[add-override-hints]; also
~pl[set-override-hints].~/~/"
(declare (xargs :guard (booleanp at-end)))
`(set-override-hints-macro ,lst ,at-end 'add-override-hints!))
(defmacro add-override-hints (lst &key at-end)
":Doc-Section switches-parameters-and-modes
add to the ~il[override-hints]~/
~l[override-hints] for a discussion of override-hints. Here we describe how
to extend the list of override-hints. Note that the effects of
~c[add-override-hints] ~il[events] are ~il[local] to the ~il[books] or
~c[encapsulate] ~il[events] in which they reside; ~pl[add-override-hints!] to
avoid that restriction. Also ~pl[set-override-hints] to set a new list of
override-hints to it, ignoring the present list rather than adding to it.
~bv[]
General Forms:
(add-override-hints form)
(add-override-hints form :at-end t)
(add-override-hints form :at-end nil) ; default for :at-end
~ev[]
where ~c[form] evaluates to a list of computed hint forms. The effect of
this event is to extend the current list of ~il[override-hints] by appending
the result of that evaluation. The default is to append the evaluation
result to the front of the current list of override-hints, but if
~c[:at-end t] is specified, then the evaluation result is appended to the end
of the current list.~/~/"
(declare (xargs :guard (booleanp at-end)))
`(local
(set-override-hints-macro ,lst ,at-end 'add-override-hints)))
(defmacro set-override-hints! (lst)
":Doc-Section switches-parameters-and-modes
set the ~il[override-hints] non-~il[local]ly~/
~c[Set-override-hints!] is the same as ~ilc[set-override-hints], except that
the former is not ~il[local] to ~il[books] or ~ilc[encapsulate] ~il[events]
in which it occurs. ~l[set-override-hints]; also
~pl[add-override-hints].~/~/"
`(set-override-hints-macro ,lst :clear 'set-override-hints!))
(defmacro set-override-hints (lst)
":Doc-Section switches-parameters-and-modes
set the ~il[override-hints]~/
~l[override-hints] for a discussion of override-hints. Here we describe how
to set them. Note that the effects of ~c[set-override-hints] ~il[events] are
~il[local] to the ~il[books] or ~c[encapsulate] ~il[events] in which they
reside; ~pl[set-override-hints!] to avoid that restriction. Also
~pl[add-override-hints] to add to the list of override-hints, rather than
setting a new list and ignoring the present list.
~bv[]
General Form:
(set-override-hints form)
~ev[]
where ~c[form] evaluates to a list of computed hint forms. The effect of
this event is to set the list of ~il[override-hints] to the result of that
evaluation.~/~/"
`(local
(set-override-hints-macro ,lst :clear 'set-override-hints)))
(defmacro remove-override-hints! (lst)
":Doc-Section switches-parameters-and-modes
delete non-~il[local]ly from the list of ~il[override-hints]~/
~c[Remove-override-hints!] is the same as ~ilc[remove-override-hints], except
that the former is not ~il[local] to ~il[books] or ~ilc[encapsulate]
~il[events] in which it occurs. ~l[remove-override-hints]; also
~pl[add-override-hints] and ~pl[set-override-hints].~/~/"
`(set-override-hints-macro ,lst :remove 'remove-override-hints!))
(defmacro remove-override-hints (lst)
":Doc-Section switches-parameters-and-modes
delete from the list of ~il[override-hints]~/
~l[override-hints] for a discussion of override-hints. Here we describe how
to delete from the list of override-hints. Note that the effects of
~c[remove-override-hints] ~il[events] are ~il[local] to the ~il[books] or
~c[encapsulate] ~il[events] in which they reside; ~pl[remove-override-hints!]
to avoid that restriction. Also ~pl[add-override-hints] and
~pl[set-override-hints].
~bv[]
General Form:
(remove-override-hints form)
~ev[]
where ~c[form] should evaluate to a list of computed hint forms. The effect
of this event is to set the list of ~il[override-hints] to the result of
deleting each element of the evaluation result from the ~il[override-hints],
if that element indeed belongs to the override-hints; no check is made that
these elements are actually elements of the existing override-hints.~/~/"
`(local
(set-override-hints-macro ,lst :remove 'remove-override-hints)))
(defmacro set-rw-cache-state (val)
; Essay on Rw-cache
; Introduction
; We cache failed attempts to relieve hypotheses. The basic idea is that
; whenever a hypothesis rewrites to other than true, we store that fact so that
; the rewrite rule is not tried again with the same unify-subst. The failure
; information is stored in tag-trees. Two kinds of failures are stored: those
; for which the unify-subst includes at least one variable bound from an
; earlier free-variable hypothesis (the "free-failure" cases), and the rest
; (the "normal-failure" cases). The free-failure case is stored in a tree
; structure with normal-failures at the leaves; see the definition of record
; rw-cache-entry. Normal-failures are recognized by
; rw-cacheable-failure-reason, which is an attachable function. When cached
; failures are found, they can be ignored if the user attaches to
; relieve-hyp-failure-entry-skip-p.
; When relieve-hyps is called, it looks in the tag-tree for a relevant failure.
; If a normal-failure record is found, then the attempt can quickly fail. If a
; free-failure record is found, then it is passed along through the process of
; relieving the hypotheses, so that after variables are bound by a hypothesis,
; this record can be consulted on subsequent hypotheses to abort rewriting.
; New failure information is recorded upon exit from relieve-hyps; in the
; free-failure case, the information to be recorded was accumulated during the
; process of relieving hypotheses.
; Rw-cache-states: *legal-rw-cache-states* = (t nil :disabled :atom)
; In a preliminary implementation we tried a scheme in which the rw-cache
; persisted through successive literals of a clause. However, we encountered
; dozens of failures in the regression suite, some of them probably because the
; tail-biting heuristic was causing failures whose caching wasn't suitable for
; other literals. Such a scheme, which also allows the rw-cache to persist to
; a single child, is represented by rw-cache-state t. When a clause reaches
; stable-under-simplificationp without any appropriate computed hint, if the
; state is t then it transitions to :disabled so that a pass is made through
; simplify-clause without interference from the rw-cache. (See for example the
; end of waterfall-step-cleanup.) Some failures with rw-cache-state t
; disappear if the rw-cache-state begins at :disabled, so that some preliminary
; simplification occurs before any failure caching.
; But even starting with :disabled, we have seen regression failures.
; Therefore our default rw-cache-state is :atom, which creates a fresh rw-cache
; for each literal of a clause; see rewrite-atm. An advantage of :atom is that
; we do not transition to a disabled state. That transition for rw-cache-state
; t is responsible for larger numbers reported in event summaries for "Prover
; steps counted" in the mini-proveall, presumably because an extra pass must be
; made through the simplifier sometime before going into induction even though
; that rarely helps (probably, never in the mini-proveall).
; Overview of some terminology, data structures, and algorithms
; We store relieve-hyps failures in tag-trees. As we discuss below, there are
; two tags associated with this failure information: 'rw-cache-any-tag and
; 'rw-cache-nil-tag. Each tag is associated with what we also call an
; "rw-cache". Sometimes we refer abstractly the values of both tags as the
; "rw-cache"; we expect that the context will resolve any possible confusion
; between the value of a tag and the entire cache (from both tags). Each tag's
; value is what we call a "psorted symbol-alist": a true list that may have at
; most one occurrence of t, where each non-t element is a cons pair whose car
; is a symbol, and where the tail past the occurrence of t (if any) is sorted
; by car. In general, the notion of "psorted" can be applied to any kind of
; true-list that has a natural notion of "sort" associated with it: then a
; psorted list is one that has at most one occurrence of t as a member, such
; that (cdr (member-equal t s)) is sorted. Indeed, we use a second kind of
; psorted list, which we call an "rw-cache-list": the elements (other than t)
; are rw-cache-entry records, and the sort relation is lexorder. By using
; psorted lists, we defer the cost of sorting until merge-time, where sorting
; is important to avoid quadratic blow-up; the use of t as a marker allows us
; to avoid re-sorting the same list.
; We maintain the invariant that the information in the "nil" cache is also in
; the "any" cache. The "nil" cache is thus more restrictive: it only stores
; cases in which the failure is suitable for a stronger context. It gets its
; name because one such case is when a hypothesis rewrites to nil. But we also
; store syntaxp and bind-free hypotheses that fail (except, we never store such
; failures when extended metafunctions are involved, because of their high
; level of dependence on context beyond the unify-subst). Thus, the "nil"
; cache is preserved when we pass to a branch of an IF term; the "any" cache is
; however replaced in that case by the "nil" cache (which preserves the above
; invariant). On the other hand, when we pop up out of an IF branch, we throw
; away any accumulation into the "nil" cache but we merge the new "any" cache
; into the old "any" cache. See rw-cache-enter-context and
; rw-cache-exit-context.
; The following definitions and trace$ forms can be evaluated in order to do
; some checking of the above invariant during subsequent proofs (e.g., when
; followed by :mini-proveall).
; (defun rw-tagged-objects-subsetp (alist1 alist2)
; (declare (xargs :mode :program))
; (cond ((endp alist1) t)
; (t (and (or (eq (car alist1) t)
; (subsetp-equal (cdar alist1)
; (cdr (assoc-rw-cache (caar alist1)
; alist2))))
; (rw-tagged-objects-subsetp (cdr alist1) alist2)))))
;
; (defun chk-rw-cache-inv (ttree string)
; (declare (xargs :mode :program))
; (or (rw-tagged-objects-subsetp (tagged-objects 'rw-cache-nil-tag ttree)
; (tagged-objects 'rw-cache-any-tag ttree))
; (prog2$ (cw string)
; (break$))))
;
; (trace$ (relieve-hyps
; :entry (chk-rw-cache-inv ttree "Relieve-hyps entry~%")
; :exit (chk-rw-cache-inv (car (last values)) "Relieve-hyps exit~%")
; :evisc-tuple :no-print))
; (trace$ (rewrite
; :entry (chk-rw-cache-inv ttree "Rewrite entry~%")
; :exit (chk-rw-cache-inv (car (last values)) "Rewrite exit~%")
; :evisc-tuple :no-print))
; (trace$ (rewrite-fncall
; :entry (chk-rw-cache-inv ttree "Rewrite-fncall entry~%")
; :exit (chk-rw-cache-inv (car (last values)) "Rewrite-fncall exit~%")
; :evisc-tuple :no-print))
; Our rw-cache-entry records store a unify-subst rather than an instance of a
; rule's left-hand side. One advantage is that the unify-subst may be smaller,
; because of repeated occurrences of a variable on the left-hand side. Another
; advantage is that in the normal-failure case, we restrict the unify-subst to
; the variables occurring in the failed hypothesis; see the call of
; restrict-alist-to-all-vars in note-relieve-hyp-failure. This clearly permits
; more hits in the rw-cache, and of course it may result in less time being
; spent in equality checking (see the comment in restrict-alist-to-all-vars
; about the order being unchanged by restriction).
; Here we record some thoughts on a preliminary implementation, in which we
; kept the "nil" and "any" caches disjoint, rather than including the "nil"
; cache in the "any" cache.
; With that preliminary implementation, we accumulated both the "nil" and
; "any" caches into the "any" cache when popping out of an IF context. We
; experimented a bit with instead ignoring the "nil" cache, even though we
; could lose some cache hits. We saw two potential benefits for such a
; change. For one, it would save the cost of doing the union operation that
; would be required. For another, it would give us a chance to record a hit
; outside that IF context as a bona fide "nil" entry, which is preserved when
; diving into future IF contexts or (for rw-cache-state t) into a unique
; subgoal. Ultimately, though, experiments pointed us to continuing our
; popping of "nil" entries into the "any" cache.
; Finally, we list some possible improvements that could be considered.
; Consider sorting in the free-failure case (see
; combine-free-failure-alists).
; Remove assert$ in split-psorted-list1 (which checks that t doesn't occur
; twice in a list).
; For free-failure case, consider optimizing to avoid checking for equality
; against a suitable tail of unify-subst that know must be equal; see for
; example rw-cache-list-lookup and replace-free-rw-cache-entry1.
; For free-failure case, consider doing a tighter job of assigning the
; failure-reason to a unify-subst. For example, if hypothesis 2 binds free
; variable y and hypothesis 5 binds free variable z, and hypothesis 6 is (foo
; y) and its rewrite fails, then associate the failure with the binding of y
; at hypothesis 2. And in that same scenario, if hypothesis 6 is instead
; (foo x), where x is bound on the left-hand side of the rule, then create a
; normal-failure reason instead of a free-failure reason. If we make any
; such change, then revisit the comments in (defrec rw-cache-entry ...).
; In restrict-alist-to-all-vars, as noted in a comment there,
; we could do a better job of restricting the unify-subst in the case of
; at least one binding hypothesis.
; In accumulate-rw-cache1, consider eliminating a COND branch that can
; require an equality test to save a few conses, as noted in a comment
; there.
; Modify accumulate-rw-cache to be more efficient, by taking advantage of the
; invariant that the "nil" cache is contained in the "any" cache.
; Consider saving a few conses in rw-cache-exit-context by avoiding
; modification of the nil cache if the old and new nil caches are equal,
; indeed, eq. Maybe a new primitive that tests with eq, but has a guard that
; the true and false branches are equal, would help. (Maybe this would
; somehow be implemented using return-last.) It is not sufficient to check
; the lengths of the caches, or even of their elements, because with
; free-vars one can make an extension without changing these lengths.
; Perhaps modify restore-rw-cache-any-tag to extend old "any" cache with the
; new "nil" cache, instead of throwing away new "nil" entries entirely. See
; restore-rw-cache-any-tag.
; Extend debug handling to free case in relieve-hyps, and/or explain in :doc
; (or at least comments) how this works.
; Perhaps we could keep around the "nil" cache longer than we currently do.
; Consider changing functions in the rewrite nest that deal with linear
; arithmetic, such as add-linear-lemma, to use the rw-cache of the input
; ttree rather than ignoring it, and to return a ttree with an extension of
; that rw-cache. A related idea is to take more advantage in such functions
; of rw-caches in intermediate ttrees, such as rw-caches in ttrees of
; irrelevant-pot-lst values in rewrite-with-linear. [The two of us discussed
; this idea. I think we decided that although we can't rule out the value of
; the above, maybe it's not too important. Note that when the pot-lst
; contributes to the proof, the cache entries will then work their way into
; the main tag-tree.] There may be other opportunities to accumulate into
; rw-caches, for example inside simplify-clause1 by passing input ttree0 into
; pts-to-ttree-lst, under the call of setup-simplify-clause-pot-lst.
":Doc-Section switches-parameters-and-modes
set the default rw-cache-state~/
The ACL2 rewriter uses a data structure, called the rw-cache (rewriter
cache), to save failed attempts to apply conditional ~il[rewrite] rules. The
regression suite has taken approximately 11% less time with this mechanism.
The rw-cache is active by default but this event allows it to be turned off
or modified. Note that this event is ~il[local] to its context (from
~ilc[encapsulate] or ~ilc[include-book]). For a non-local version, use
~il[set-rw-cache-state!].
~bv[]
Example forms:
(set-rw-cache-state :atom) ; default: rw-cache cleared for each literal
; (i.e., hypothesis or conclusion of a goal)
(set-rw-cache-state nil) ; rw-cache is inactive
(set-rw-cache-state t) ; rw-cache persists beyond each literal
(set-rw-cache-state :disabled) ; rw-cache is inactive, but the rw-cache-state
; transitions to state t after
; simplification takes place~/
General Form:
(set-rw-cache-state val)
~ev[]
where ~c[val] evaluates to one of the four values shown in ``Example forms''
above. The default is ~c[:atom], which enables the rw-cache but clears it
before rewriting a hypothesis or conclusion of any goal. The value ~c[t] is
provides more aggresive use of the rw-cache, basically preserving the
rw-cache when there is a single subgoal. The value ~c[:disabled] is the same
as ~c[t], except that the rw-cache is initially inactive and only becomes
active when some simplification has taken place. We have seen a few cases
where value ~c[t] will make a proof fail but ~c[:disabled] does not.
The following example illustrates the rw-cache in action. You will see a
break during evaluation of the ~ilc[thm] form. Type ~c[:eval] and you will
see a failed rewriting attempt. Type ~c[:go] to continue, and at the next
break type ~c[:eval] again. This time you will see the same failed rewriting
attempt, but this time labeled with a notation saying that the failure was
cached earlier, which indicates that this time the rewriter did not even
attempt to prove the hypothesis of the ~il[rewrite] rule ~c[f1->f2].
~bv[]
(defstub f1 (x) t)
(defstub f2 (x) t)
(defaxiom f1->f2
(implies (f1 x) (equal (f2 x) t)))
:brr t
:monitor (:rewrite f1->f2) t
(thm (equal (car (f2 a)) (cdr (f2 a))))
~ev[]
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so
recorded. It is ~ilc[local] to the book or ~ilc[encapsulate] form in which it
occurs (~pl[set-rw-cache-state!] for a corresponding non-~ilc[local] event).
We also note that rw-cache-state changes may also be caused at the subgoal
level; ~pl[hints].
We welcome you to experiment with different rw-cache states. If the more
aggressive values of ~c[t] and ~c[:disabled] cause proofs to fail, then you
can revert to the default of ~c[:atom] or even turn off the rw-cache using
~c[(set-rw-cache-state nil)]. We don't expect users to need a deep knowledge
of the rw-cache in order to do such experiments, but readers interested in
details of the rw-cache implementation are invited to read the ``Essay on
Rw-cache'' in the ACL2 source code.~/"
`(local (set-rw-cache-state! ,val)))
#+acl2-loop-only
(defmacro set-rw-cache-state! (val)
":Doc-Section switches-parameters-and-modes
set the default rw-cache-state non-~ilc[local]ly~/
Please ~pl[set-rw-cache-state], which is the same as ~c[set-rw-cache-state!]
except that the latter is not ~ilc[local] to the ~ilc[encapsulate] or the book
in which it occurs.~/~/"
`(state-global-let*
((inhibit-output-lst (list* 'event 'summary (@ inhibit-output-lst))))
(progn (table rw-cache-state-table t ,val)
(table rw-cache-state-table t))))
#-acl2-loop-only
(defmacro set-rw-cache-state! (val)
(declare (ignore val))
nil)
(defconst *legal-rw-cache-states*
'(t nil :disabled :atom))
(table rw-cache-state-table nil nil
:guard
(case key
((t) (member-eq val *legal-rw-cache-states*))
(t nil)))
(defun fix-true-list (x)
":Doc-Section ACL2::ACL2-built-ins
coerce to a true list~/
~c[Fix-true-list] is the identity function on ~ilc[true-listp] objects.
It converts every list to a true list by dropping the final ~ilc[cdr],
and it converts every ~il[atom] to ~c[nil].
To see the ACL2 definition of this function, ~pl[pf].~/~/"
(declare (xargs :guard t))
(if (consp x)
(cons (car x)
(fix-true-list (cdr x)))
nil))
(defthm pairlis$-fix-true-list
(equal (pairlis$ x (fix-true-list y))
(pairlis$ x y)))
(defun boolean-listp (lst)
; We define this in axioms.lisp so that we can use this function in theorems
; whose proof uses BDDs.
(declare (xargs :guard t))
(cond ((atom lst) (eq lst nil))
(t (and (or (eq (car lst) t)
(eq (car lst) nil))
(boolean-listp (cdr lst))))))
(defthm boolean-listp-cons
; This rule is important for simplifying the trivial boolean-listp hypothesis
; of a goal that is given to the OBDD package.
(equal (boolean-listp (cons x y))
(and (booleanp x)
(boolean-listp y))))
(defthm boolean-listp-forward
; We expect this rule to be crucial in many circumstances where a :BDD hint is
; given.
(implies (boolean-listp (cons a lst))
(and (booleanp a)
(boolean-listp lst)))
:rule-classes :forward-chaining)
(defthm boolean-listp-forward-to-symbol-listp
; We expect this rule, in combination with symbol-listp-forward-to-true-listp,
; to be crucial in many circumstances where a :BDD hint is given.
(implies (boolean-listp x)
(symbol-listp x))
:rule-classes :forward-chaining)
; Here we record axioms pertaining to the values returned by primitives on
; inputs violating their guards. These all have :rule-classes nil, and should
; be kept in sync with the defun-*1* definitions in interface-raw.lisp, as
; well as with the documentation that follows them.
; In some of these cases we prove rewrite rules that default "wrong" arguments.
; We think this will help linear arithmetic, among other things, without
; significantly slowing down the rewriter. We'll see.
(defaxiom completion-of-+
(equal (+ x y)
(if (acl2-numberp x)
(if (acl2-numberp y)
(+ x y)
x)
(if (acl2-numberp y)
y
0)))
:rule-classes nil)
(defthm default-+-1
(implies (not (acl2-numberp x))
(equal (+ x y) (fix y)))
:hints (("Goal" :use completion-of-+)))
(defthm default-+-2
(implies (not (acl2-numberp y))
(equal (+ x y) (fix x)))
:hints (("Goal" :use completion-of-+)))
(defaxiom completion-of-*
(equal (* x y)
(if (acl2-numberp x)
(if (acl2-numberp y)
(* x y)
0)
0))
:rule-classes nil)
(defthm default-*-1
(implies (not (acl2-numberp x))
(equal (* x y) 0)))
(defthm default-*-2
(implies (not (acl2-numberp y))
(equal (* x y) 0)))
(defaxiom completion-of-unary-minus
(equal (- x)
(if (acl2-numberp x)
(- x)
0))
:rule-classes nil)
(defthm default-unary-minus
(implies (not (acl2-numberp x))
(equal (- x) 0)))
(defaxiom completion-of-unary-/
(equal (/ x)
(if (and (acl2-numberp x)
(not (equal x 0)))
(/ x)
0))
:rule-classes nil)
(defthm default-unary-/
(implies (or (not (acl2-numberp x))
(equal x 0))
(equal (/ x) 0)))
;; RAG - This axiom was strengthened to include the reals.
(defaxiom completion-of-<
(equal (< x y)
(if (and (real/rationalp x)
(real/rationalp y))
(< x y)
(let ((x1 (if (acl2-numberp x) x 0))
(y1 (if (acl2-numberp y) y 0)))
(or (< (realpart x1) (realpart y1))
(and (equal (realpart x1) (realpart y1))
(< (imagpart x1) (imagpart y1)))))))
:rule-classes nil)
(defthm default-<-1
(implies (not (acl2-numberp x))
(equal (< x y)
(< 0 y)))
:hints (("Goal" :use
(completion-of-<
(:instance completion-of-<
(x 0))))))
(defthm default-<-2
(implies (not (acl2-numberp y))
(equal (< x y)
(< x 0)))
:hints (("Goal" :use
(completion-of-<
(:instance completion-of-<
(y 0))))))
(defaxiom completion-of-car
(equal (car x)
(cond
((consp x)
(car x))
(t nil)))
:rule-classes nil)
(defthm default-car
(implies (not (consp x))
(equal (car x) nil)))
(defaxiom completion-of-cdr
(equal (cdr x)
(cond
((consp x)
(cdr x))
(t nil)))
:rule-classes nil)
(defthm default-cdr
(implies (not (consp x))
(equal (cdr x) nil)))
(defthm cons-car-cdr
(equal (cons (car x) (cdr x))
(if (consp x)
x
(cons nil nil))))
(defaxiom completion-of-char-code
(equal (char-code x)
(if (characterp x)
(char-code x)
0))
:rule-classes nil)
(defthm default-char-code
(implies (not (characterp x))
(equal (char-code x) 0))
:hints (("Goal" :use completion-of-char-code)))
(defaxiom completion-of-code-char
(equal (code-char x)
(if (and (integerp x)
(>= x 0)
(< x 256))
(code-char x)
(code-char 0)))
:rule-classes nil)
; Omitted for now; maybe slows down the rewriter too much.
;
; (defthm default-code-char
; (implies (not (and (integerp x)
; (>= x 0)
; (< x 256)))
; (equal (code-char x)
; (code-char 0)))
; :hints (("Goal" :use completion-of-code-char)))
;; RAG - This axiom was strengthened to include the reals.
(defaxiom completion-of-complex
(equal (complex x y)
(complex (if (real/rationalp x) x 0)
(if (real/rationalp y) y 0)))
:rule-classes nil)
;; RAG - This axiom was weakened to include the reals.
(defthm default-complex-1
(implies (not (real/rationalp x))
(equal (complex x y)
(complex 0 y)))
:hints (("Goal" :use completion-of-complex)))
;; RAG - This axiom was weakened to include the reals.
(defthm default-complex-2
(implies (not (real/rationalp y))
(equal (complex x y)
(if (real/rationalp x) x 0)))
:hints (("Goal" :use ((:instance completion-of-complex)
(:instance complex-definition (y 0))))))
;; RAG - This axiom was modified to include the reals.
(defthm complex-0
(equal (complex x 0)
#+:non-standard-analysis
(realfix x)
#-:non-standard-analysis
(rfix x))
:hints (("Goal" :use ((:instance complex-definition (y 0))))))
(defthm add-def-complex
(equal (+ x y)
(complex (+ (realpart x) (realpart y))
(+ (imagpart x) (imagpart y))))
:hints (("Goal" :use ((:instance complex-definition
(x (+ (realpart x) (realpart y)))
(y (+ (imagpart x) (imagpart y))))
(:instance complex-definition
(x (realpart x))
(y (imagpart x)))
(:instance complex-definition
(x (realpart y))
(y (imagpart y))))))
:rule-classes nil)
(defthm realpart-+
(equal (realpart (+ x y))
(+ (realpart x) (realpart y)))
:hints (("Goal" :use add-def-complex)))
(defthm imagpart-+
(equal (imagpart (+ x y))
(+ (imagpart x) (imagpart y)))
:hints (("Goal" :use add-def-complex)))
(defaxiom completion-of-coerce
(equal (coerce x y)
(cond
((equal y 'list)
(if (stringp x)
(coerce x 'list)
nil))
(t
(coerce (make-character-list x) 'string))))
:rule-classes nil)
(defthm default-coerce-1
(implies (not (stringp x))
(equal (coerce x 'list)
nil))
:hints (("Goal" :use (:instance completion-of-coerce (y 'list)))))
(defthm make-character-list-make-character-list
(equal (make-character-list (make-character-list x))
(make-character-list x)))
(defthm default-coerce-2
(implies (and (syntaxp (not (equal y ''string)))
(not (equal y 'list)))
(equal (coerce x y) (coerce x 'string)))
:hints (("Goal"
:use ((:instance completion-of-coerce)
(:instance completion-of-coerce
(x x)
(y 'string))))))
; This next one is weaker than it could be. If x is not a true list of
; characters it is coerced to one with make-character-list. We deal with only
; the simplest case where x is some atom.
(defthm default-coerce-3
(implies (not (consp x))
(equal (coerce x 'string)
""))
:hints (("Goal" :use (:instance completion-of-coerce (y 'string)))))
(defaxiom completion-of-denominator
(equal (denominator x)
(if (rationalp x)
(denominator x)
1))
:rule-classes nil)
(defthm default-denominator
(implies (not (rationalp x))
(equal (denominator x)
1))
:hints (("Goal" :use completion-of-denominator)))
;; RAG - The following axioms give the rules for working with the
;; undefined predicate floor1. We start with the completion axiom,
;; which says floor1 is only useful for real numbers.
#+:non-standard-analysis
(defaxiom completion-of-floor1
(equal (floor1 x)
(if (realp x)
(floor1 x)
0))
:rule-classes nil)
;; RAG - The second axiom about floor1 is that it returns 0 for any
;; invalid argument.
#+:non-standard-analysis
(defthm default-floor1
(implies (not (realp x))
(equal (floor1 x)
0)))
;; RAG - We also know that floor1 is the identity function for the integers.
#+:non-standard-analysis
(defaxiom floor1-integer-x
(implies (integerp x)
(equal (floor1 x) x)))
;; RAG - And, we know that the floor1 of x is no larger than x itself.
#+:non-standard-analysis
(defaxiom floor1-x-<=-x
(implies (realp x)
(<= (floor1 x) x))
:rule-classes :linear)
;; RAG - Finally, we know that the floor1 of x is larger than x-1.
#+:non-standard-analysis
(defaxiom x-<-add1-floor1-x
(implies (realp x)
(< x (1+ (floor1 x))))
:rule-classes :linear)
;; RAG - This theorem is useful for proving the value of floor1 is a
;; specific value. It is probably only useful when instantiated
;; manually, so we do not make it a rewrite rule.
#+:non-standard-analysis
(defthm floor1-value
(implies (and (realp x)
(integerp fx)
(<= fx x)
(< x (1+ fx)))
(equal (floor1 x) fx))
:rule-classes nil)
(defaxiom completion-of-imagpart
(equal (imagpart x)
(if (acl2-numberp x)
(imagpart x)
0))
:rule-classes nil)
(defthm default-imagpart
(implies (not (acl2-numberp x))
(equal (imagpart x)
0)))
(defaxiom completion-of-intern-in-package-of-symbol
(equal (intern-in-package-of-symbol x y)
(if (and (stringp x)
(symbolp y))
; We avoid calling INTERN here, which might otherwise lead to a guard
; violation. It's certainly OK to lay down the original call at this point!
(intern-in-package-of-symbol x y)
nil))
:rule-classes nil)
; (defthm default-intern-in-package-of-symbol
; (implies (not (and (stringp x)
; (symbolp y)))
; (equal (intern-in-package-of-symbol x y)
; nil))
; :hints (("Goal" :use completion-of-intern-in-package-of-symbol)))
(defaxiom completion-of-numerator
(equal (numerator x)
(if (rationalp x)
(numerator x)
0))
:rule-classes nil)
(defthm default-numerator
(implies (not (rationalp x))
(equal (numerator x)
0)))
(defaxiom completion-of-realpart
(equal (realpart x)
(if (acl2-numberp x)
(realpart x)
0))
:rule-classes nil)
(defthm default-realpart
(implies (not (acl2-numberp x))
(equal (realpart x)
0)))
(defaxiom completion-of-symbol-name
(equal (symbol-name x)
(if (symbolp x)
(symbol-name x)
""))
:rule-classes nil)
(defthm default-symbol-name
(implies (not (symbolp x))
(equal (symbol-name x)
""))
:hints (("Goal" :use completion-of-symbol-name)))
(defaxiom completion-of-symbol-package-name
(equal (symbol-package-name x)
(if (symbolp x)
(symbol-package-name x)
""))
:rule-classes nil)
(defthm default-symbol-package-name
(implies (not (symbolp x))
(equal (symbol-package-name x)
""))
:hints (("Goal" :use completion-of-symbol-package-name)))
;; RAG - Here, I put in the basic theory that we will use for
;; non-standard analysis.
(defdoc i-small
":Doc-Section ACL2::Real
ACL2(r) recognizer for infinitesimal numbers~/
~c[(I-small x)] is true if and only if ~c[x] is an infinitesimal
number (possibly 0). This predicate is only defined in ACL2(r)
(~pl[real]).~/~/")
(defdoc i-close
":Doc-Section ACL2::Real
ACL2(r) test for whether two numbers are infinitesimally close~/
~c[(I-close x y)] is true if and only if ~c[x-y] is an infinitesimal number.
This predicate is only defined in ACL2(r) (~pl[real]).~/~/")
(defdoc i-large
":Doc-Section ACL2::Real
ACL2(r) recognizer for infinitely large numbers~/
~c[(I-large x)] is true if and only if ~c[x] is non-zero and ~c[1/x] is an
infinitesimal number. This predicate is only defined in ACL2(r)
(~pl[real]).~/~/")
(defdoc i-limited
":Doc-Section ACL2::Real
ACL2(r) recognizer for limited numbers~/
~c[(I-limited x)] is true if and only if ~c[x] is a number that is not
infinitely large. This predicate is only defined in ACL2(r)
(~pl[real]).~/~/")
(defdoc standardp
":Doc-Section ACL2::Real
ACL2(r) recognizer for standard objects~/
~c[(Standardp x)] is true if and only if ~c[x] is a ``standard''
object. This notion of ``standard'' comes from non-standard analysis
and is discussed in Ruben Gamboa's dissertation. In brief, all the
familiar objects are standard: e.g., the familiar real numbers are
standard, but non-zero infinitesimals are not standard, and the familiar
integers are standard, but not those that exceed every integer that
you can express in the usual way (1, 2, 3, and so on). Similarly,
the familiar lists are standard, but not so a list that contains a
large number of integers, where ``large'' means more than the standard
integers. The set of standard numbers is closed under the usual
arithmetic operations, hence the sum of a standard number and a
non-zero infinitesimal is not standard, though it is what is called
``limited'' (~pl[i-limited]).
This predicate is only defined in ACL2(r) (~pl[real]).~/~/")
(defdoc standard-part
":Doc-Section ACL2::Real
ACL2(r) function mapping limited numbers to standard numbers~/
~c[(Standard-part x)] is, for a given ~ilc[i-limited] number ~c[x], the unique
real number infinitesimally close (~pl[i-close]) to ~c[x]. This
function is only defined in ACL2(r) (~pl[real]).~/~/")
#+:non-standard-analysis
(progn
(defun i-small (x)
(declare (xargs :guard t))
(and (acl2-numberp x)
(equal (standard-part x) 0)))
(defun i-close (x y)
(declare (xargs :guard t))
(and (acl2-numberp x)
(acl2-numberp y)
(i-small (- x y))))
(defun i-large (x)
(declare (xargs :guard t))
(and (acl2-numberp x)
(not (equal x 0))
(i-small (/ x))))
(defmacro i-limited (x)
`(and (acl2-numberp ,x)
(not (i-large ,x))))
; The first axiom is crucial in the theory. We establish that there
; is at least one non-standard number, namely (i-large-integer).
(defaxiom i-large-integer-is-large
(i-large (i-large-integer)))
; Now, we have some axioms about standardp. Standardp
; behaves reasonably with respect to the arithmetic operators.
; RAGTODO: Some of these are theorems now, and should be introduced
; as theorems instead of axioms.
(defaxiom standardp-plus
(implies (and (standardp x)
(standardp y))
(standardp (+ x y))))
(defaxiom standardp-uminus
(equal (standardp (- x))
(standardp (fix x))))
(defaxiom standardp-times
(implies (and (standardp x)
(standardp y))
(standardp (* x y))))
(defaxiom standardp-udivide
(equal (standardp (/ x))
(standardp (fix x))))
(defaxiom standardp-complex
(equal (standardp (complex x y))
(and (standardp (realfix x))
(standardp (realfix y)))))
; The following should not be needed; in fact, when attempting to interpret
; this terms as a rewrite rule, ACL2(r) will complain because (cons-term
; 'standardp ''1) is *t*.
(defaxiom standardp-one
(standardp 1)
:rule-classes nil)
;; Now, we have some theorems (axioms?) about standard-part.
(defaxiom standard-part-of-standardp
(implies (and (acl2-numberp x)
(standardp x))
(equal (standard-part x) x)))
(defaxiom standardp-standard-part
(implies (i-limited x)
(standardp (standard-part x))))
(defaxiom standard-part-of-reals-is-idempotent
(implies (realp x)
(equal (standard-part (standard-part x))
(standard-part x))))
(defaxiom standard-part-of-complex
(equal (standard-part (complex x y))
(complex (standard-part x) (standard-part y))))
;; We consider the arithmetic operators now.
(defaxiom standard-part-of-plus
(equal (standard-part (+ x y))
(+ (standard-part (fix x))
(standard-part (fix y)))))
(defaxiom standard-part-of-uminus
(equal (standard-part (- x))
(- (standard-part (fix x)))))
(defaxiom standard-part-of-times
(implies (and (i-limited x) (i-limited y))
(equal (standard-part (* x y))
(* (standard-part x) (standard-part y)))))
(defaxiom standard-part-of-udivide
(implies (and (i-limited x)
(not (i-small x)))
(equal (standard-part (/ x))
(/ (standard-part x)))))
(defaxiom standard-part-<=
(implies (and (realp x)
(realp y)
(<= x y))
(<= (standard-part x) (standard-part y))))
(defaxiom small-are-limited
(implies (i-small x)
(i-limited x))
:rule-classes (:forward-chaining :rewrite))
(in-theory (disable (:rewrite small-are-limited)))
(defaxiom standards-are-limited
(implies (and (acl2-numberp x)
(standardp x))
(i-limited x))
:rule-classes (:forward-chaining :rewrite))
(defthm standard-constants-are-limited
(implies (and (syntaxp (and (consp x) (eq (car x) 'quote)))
(acl2-numberp x)
(standardp x))
(i-limited x)))
(in-theory (disable (:rewrite standards-are-limited)))
(defaxiom limited-integers-are-standard
(implies (and (i-limited x)
(integerp x))
(standardp x))
:rule-classes (:forward-chaining :rewrite))
(in-theory (disable (:rewrite limited-integers-are-standard)))
(defaxiom standard+small->i-limited
(implies (and (standardp x)
(i-small eps))
(i-limited (+ x eps))))
(in-theory (disable standard+small->i-limited))
)
(defdoc acl2-numberp
":Doc-Section ACL2::ACL2-built-ins
recognizer for numbers~/
~c[(acl2-numberp x)] is true if and only if ~c[x] is a number, i.e., a
rational or complex rational number.~/~/")
(defdoc +
":Doc-Section ACL2::ACL2-built-ins
addition macro~/
~c[+] is really a macro that expands to calls of the function
~ilc[binary-+]. So for example
~bv[]
(+ x y 4 z)
~ev[]
represents the same term as
~bv[]
(binary-+ x (binary-+ y (binary-+ 4 z))).
~ev[]
~l[binary-+].~/~/")
(defdoc binary-+
":Doc-Section ACL2::ACL2-built-ins
addition function~/
Completion Axiom (~c[completion-of-+]):
~bv[]
(equal (binary-+ x y)
(if (acl2-numberp x)
(if (acl2-numberp y)
(binary-+ x y)
x)
(if (acl2-numberp y)
y
0)))
~ev[]~/
~il[Guard] for ~c[(binary-+ x y)]:
~bv[]
(and (acl2-numberp x) (acl2-numberp y))
~ev[]
Notice that like all arithmetic functions, ~c[binary-+] treats
non-numeric inputs as ~c[0].
Calls of the macro ~ilc[+] expand to calls of ~c[binary-+];
~pl[+].")
(defdoc binary-*
":Doc-Section ACL2::ACL2-built-ins
multiplication function~/
Completion Axiom (~c[completion-of-*]):
~bv[]
(equal (binary-* x y)
(if (acl2-numberp x)
(if (acl2-numberp y)
(binary-* x y)
0)
0))
~ev[]~/
~il[Guard] for ~c[(binary-* x y)]:
~bv[]
(and (acl2-numberp x) (acl2-numberp y))
~ev[]
Notice that like all arithmetic functions, ~c[binary-*] treats
non-numeric inputs as ~c[0].
Calls of the macro ~ilc[*] expand to calls of ~c[binary-*];
~pl[*].")
(defdoc -
":Doc-Section ACL2::ACL2-built-ins
macro for subtraction and negation~/
~l[binary-+] for addition and ~pl[unary--] for negation.~/
Note that ~c[-] represents subtraction as follows:
~bv[]
(- x y)
~ev[]
represents the same term as
~bv[]
(+ x (- y))
~ev[]
which is really
~bv[]
(binary-+ x (unary-- y)).
~ev[]
Also note that ~c[-] represents arithmetic negation as follows:
~bv[]
(- x)
~ev[]
expands to
~bv[]
(unary-- x).
~ev[]
")
(defdoc unary--
":Doc-Section ACL2::ACL2-built-ins
arithmetic negation function~/
Completion Axiom (~c[completion-of-unary-minus]):
~bv[]
(equal (unary-- x)
(if (acl2-numberp x)
(unary-- x)
0))
~ev[]~/
~il[Guard] for ~c[(unary-- x)]:
~bv[]
(acl2-numberp x)
~ev[]
Notice that like all arithmetic functions, ~c[unary--] treats
non-numeric inputs as ~c[0].
Calls of the macro ~ilc[-] on one argument expand to calls of
~c[unary--]; ~pl[-].")
(defdoc unary-/
":Doc-Section ACL2::ACL2-built-ins
reciprocal function~/
Completion Axiom (~c[completion-of-unary-/]):
~bv[]
(equal (unary-/ x)
(if (and (acl2-numberp x)
(not (equal x 0)))
(unary-/ x)
0))
~ev[]~/
~il[Guard] for ~c[(unary-/ x)]:
~bv[]
(and (acl2-numberp x)
(not (equal x 0)))
~ev[]
Notice that like all arithmetic functions, ~c[unary-/] treats
non-numeric inputs as ~c[0].
Calls of the macro ~ilc[/] on one argument expand to calls of
~c[unary-/]; ~pl[/].")
(defdoc <
":Doc-Section ACL2::ACL2-built-ins
less-than~/
Completion Axiom (~c[completion-of-<]):
~bv[]
(equal (< x y)
(if (and (rationalp x)
(rationalp y))
(< x y)
(let ((x1 (if (acl2-numberp x) x 0))
(y1 (if (acl2-numberp y) y 0)))
(or (< (realpart x1) (realpart y1))
(and (equal (realpart x1) (realpart y1))
(< (imagpart x1) (imagpart y1)))))))
~ev[]~/
~il[Guard] for ~c[(< x y)]:
~bv[]
(and (rationalp x) (rationalp y))
~ev[]
Notice that like all arithmetic functions, ~c[<] treats non-numeric
inputs as ~c[0].
This function has the usual meaning on the rational numbers, but is
extended to the complex rational numbers using the lexicographic
order: first the real parts are compared, and if they are equal,
then the imaginary parts are compared.")
(defdoc car
":Doc-Section ACL2::ACL2-built-ins
returns the first element of a non-empty list, else ~c[nil]~/
Completion Axiom (~c[completion-of-car]):
~bv[]
(equal (car x)
(cond
((consp x)
(car x))
(t nil)))
~ev[]~/
~il[Guard]:
~bv[]
(or (consp x) (equal x nil))
~ev[]
Notice that in the ACL2 logic, ~c[car] returns ~c[nil] for every ~il[atom].")
(defdoc cdr
":Doc-Section ACL2::ACL2-built-ins
returns the second element of a ~ilc[cons] pair, else ~c[nil]~/
Completion Axiom (~c[completion-of-cdr]):
~bv[]
(equal (cdr x)
(cond
((consp x)
(cdr x))
(t nil)))
~ev[]~/
~il[Guard]:
~bv[]
(or (consp x) (equal x nil))
~ev[]
Notice that in the ACL2 logic, ~c[cdr] returns ~c[nil] for every ~il[atom].")
(defdoc char-code
":Doc-Section ACL2::ACL2-built-ins
the numeric code for a given character~/
Completion Axiom (~c[completion-of-char-code]):
~bv[]
(equal (char-code x)
(if (characterp x)
(char-code x)
0))
~ev[]~/
~il[Guard] for ~c[(char-code x)]:
~bv[]
(characterp x)
~ev[]
This function maps all non-characters to ~c[0].")
(defdoc characterp
":Doc-Section ACL2::ACL2-built-ins
recognizer for ~il[characters]~/
~c[(characterp x)] is true if and only if ~c[x] is a
character.~/~/")
(defdoc code-char
":Doc-Section ACL2::ACL2-built-ins
the character corresponding to a given numeric code~/
Completion Axiom (~c[completion-of-code-char]):
~bv[]
(equal (code-char x)
(if (and (integerp x)
(>= x 0)
(< x 256))
(code-char x)
(code-char 0)))
~ev[]~/
~il[Guard] for ~c[(code-char x)]:
~bv[]
(and (integerp x)
(>= x 0)
(< x 256))
~ev[]
ACL2 supports 8-bit ~il[characters]. Inputs not between ~c[0] and ~c[255]
are treated as ~c[0].")
(defdoc complex
":Doc-Section ACL2::ACL2-built-ins
create an ACL2 number~/
~bv[]
Examples:
(complex x 3) ; x + 3i, where i is the principal square root of -1
(complex x y) ; x + yi
(complex x 0) ; same as x, for rational numbers x~/
~ev[]
The function ~c[complex] takes two rational number arguments and
returns an ACL2 number. This number will be of type
~c[(complex rational)] [as defined in the Common Lisp language], except
that if the second argument is zero, then ~c[complex] returns its first
argument. The function ~ilc[complex-rationalp] is a recognizer for
complex rational numbers, i.e. for ACL2 numbers that are not
rational numbers.
The reader macro ~c[#C] (which is the same as ~c[#c]) provides a convenient
way for typing in complex numbers. For explicit rational numbers ~c[x]
and ~c[y], ~c[#C(x y)] is read to the same value as ~c[(complex x y)].
The functions ~ilc[realpart] and ~ilc[imagpart] return the real and imaginary
parts (respectively) of a complex (possibly rational) number. So
for example, ~c[(realpart #C(3 4)) = 3], ~c[(imagpart #C(3 4)) = 4],
~c[(realpart 3/4) = 3/4], and ~c[(imagpart 3/4) = 0].
The following built-in axiom may be useful for reasoning about complex
numbers.
~bv[]
(defaxiom complex-definition
(implies (and (real/rationalp x)
(real/rationalp y))
(equal (complex x y)
(+ x (* #c(0 1) y))))
:rule-classes nil)
~ev[]
A completion axiom that shows what ~c[complex] returns on arguments
violating its ~il[guard] (which says that both arguments are rational
numbers) is the following, named ~c[completion-of-complex].
~bv[]
(equal (complex x y)
(complex (if (rationalp x) x 0)
(if (rationalp y) y 0)))
~ev[]
")
(defdoc cons
":Doc-Section ACL2::ACL2-built-ins
pair and list constructor~/
~c[(cons x y)] is a pair whose first component is ~c[x] and second
component is ~c[y]. If ~c[y] is a list, then ~c[(cons x y)] is a list
that has an addtional element ~c[x] on the front.~/~/")
(defdoc consp
":Doc-Section ACL2::ACL2-built-ins
recognizer for ~il[cons] pairs~/
~c[(consp x)] is true if and only if ~c[x] is a ~il[cons] pair.~/~/")
(defdoc coerce
; Jared Davis has written a faster version of coercing a character list to a
; string, which is displayed just below. But we have decided not to try to
; meddle with the underlying Lisp implementation of coerce (though on 2/27/09
; Bob Boyer temporarily added a patch from Gary Byers to hons-raw.lisp to speed
; this up for CCL). Jared adds (6/30/09) that CCL now handles coerce
; efficiently, both to strings and to lists.
; (defun my-coerce (chars)
; (let* ((length (the integer (length (the list chars))))
; (str (the vector (make-string (the integer length))))
; (i (the integer 0)))
; (loop for char in chars
; do
; (setf (aref (the vector str) (the integer i))
; (the character char))
; (incf (the integer i)))
; str))
":Doc-Section ACL2::ACL2-built-ins
coerce a character list to a string and a string to a list~/
Completion Axiom (~c[completion-of-coerce]):
~bv[]
(equal (coerce x y)
(cond
((equal y 'list)
(if (stringp x)
(coerce x 'list)
nil))
(t
(coerce (make-character-list x) 'string))))
~ev[]~/
~il[Guard] for ~c[(coerce x y)]:
~bv[]
(if (equal y 'list)
(stringp x)
(if (equal y 'string)
(character-listp x)
nil))
~ev[]
Also see community book ~c[books/misc/fast-coerce.lisp], contributed by Jared
Davis, for a version of ~c[coerce] that may be faster for Common Lisp
implementations other than CCL 1.3 or later, if the second argument is
~c['list] (for coercing a string to a list). ~/")
(defdoc denominator
":Doc-Section ACL2::ACL2-built-ins
divisor of a ratio in lowest terms~/
Completion Axiom (~c[completion-of-denominator]):
~bv[]
(equal (denominator x)
(if (rationalp x)
(denominator x)
1))
~ev[]~/
~il[Guard] for ~c[(denominator x)]:
~bv[]
(rationalp x)
~ev[]
~/")
(defdoc equal
":Doc-Section ACL2::ACL2-built-ins
true equality~/
~c[(equal x y)] is equal to ~c[t] or ~c[nil], according to whether or
not ~c[x] and ~c[y] are the same value.~/
For a discussion of the various idioms for testing against 0,
~l[zero-test-idioms].~/")
(defdoc if
":Doc-Section ACL2::ACL2-built-ins
if-then-else function~/
~c[(if x y z)] is equal to ~c[y] if ~c[x] is any value
other than ~c[nil], and is equal to ~c[z] if ~c[x] is ~c[nil].~/
Only one of ~c[y], ~c[z] is evaluated when ~c[(if x y z)] is
evaluated.
~c[If] has a ~il[guard] of ~c[t].
~c[If] is part of Common Lisp. See any Common Lisp documentation for
more information.~/")
(defdoc imagpart
":Doc-Section ACL2::ACL2-built-ins
imaginary part of a complex number~/
Completion Axiom (~c[completion-of-imagpart]):
~bv[]
(equal (imagpart x)
(if (acl2-numberp x)
(imagpart x)
0))
~ev[]~/
~il[Guard] for ~c[(imagpart x)]:
~bv[]
(acl2-numberp x)
~ev[]
~/")
(defdoc integerp
":Doc-Section ACL2::ACL2-built-ins
recognizer for whole numbers~/
~c[(integerp x)] is true if and only if ~c[x] is an integer.~/~/")
(defdoc intern-in-package-of-symbol
":Doc-Section ACL2::ACL2-built-ins
create a symbol with a given name~/
Completion Axiom (~c[completion-of-intern-in-package-of-symbol]):
~bv[]
(equal (intern-in-package-of-symbol x y)
(if (and (stringp x)
(symbolp y))
(intern-in-package-of-symbol x y)
nil))
~ev[]~/
~il[Guard] for ~c[(intern-in-package-of-symbol x y)]:
~bv[]
(and (stringp x) (symbolp y))
~ev[]
Intuitively, ~c[(intern-in-package-of-symbol x y)] creates a symbol
with ~ilc[symbol-name] ~c[x] ~il[intern]ed in the package containing ~c[y].
More precisely, suppose ~c[x] is a string, ~c[y] is a symbol with
~ilc[symbol-package-name] pkg and that the ~ilc[defpkg] event creating pkg
had the list of symbols imports as the value of its second argument.
Then ~c[(intern-in-package-of-symbol x y)] returns a symbol, ans, the
~ilc[symbol-name] of ans is ~c[x], and the ~ilc[symbol-package-name] of ans
is pkg, unless ~c[x] is the ~ilc[symbol-name] of some member of imports
with ~ilc[symbol-package-name] ipkg, in which case the
~ilc[symbol-package-name] of ans is ipkg. Because ~ilc[defpkg] requires
that there be no duplications among the ~ilc[symbol-name]s of the
imports, ~c[intern-in-package-of-symbol] is uniquely defined.
For example, suppose ~c[\"MY-PKG\"] was created by
~bv[]
(defpkg \"MY-PKG\" '(ACL2::ABC LISP::CAR)).
~ev[]
Let ~c[w] be ~c['my-pkg::witness]. Observe that
~bv[]
(symbolp w) is t ; w is a symbol
(symbol-name w) is \"WITNESS\" ; w's name is \"WITNESS\"
(symbol-package-name w) is \"MY-PKG\" ; w is in the package \"MY-PKG\"
~ev[]
The construction of ~c[w] illustrates one way to obtain a symbol in a given
package: write it down as a constant using the double-colon notation.
But another way to obtain a symbol in a given package is to create it with
~c[intern-in-package-of-symbol].
~bv[]
(intern-in-package-of-symbol \"XYZ\" w) is MY-PKG::XYZ
(intern-in-package-of-symbol \"ABC\" w) is ACL2::ABC
(intern-in-package-of-symbol \"CAR\" w) is LISP::CAR
(intern-in-package-of-symbol \"car\" w) is MY-PKG::|car|
~ev[]")
(defdoc numerator
":Doc-Section ACL2::ACL2-built-ins
dividend of a ratio in lowest terms~/
Completion Axiom (~c[completion-of-numerator]):
~bv[]
(equal (numerator x)
(if (rationalp x)
(numerator x)
0))
~ev[]~/
~il[Guard] for ~c[(numerator x)]:
~bv[]
(rationalp x)
~ev[]
~/")
(defdoc rationalp
":Doc-Section ACL2::ACL2-built-ins
recognizer for rational numbers (ratios and integers)~/
~c[(rationalp x)] is true if and only if ~c[x] is an rational
number.~/~/")
(defdoc realpart
":Doc-Section ACL2::ACL2-built-ins
real part of a complex number~/
Completion Axiom (~c[completion-of-realpart]):
~bv[]
(equal (realpart x)
(if (acl2-numberp x)
(realpart x)
0))
~ev[]~/
~il[Guard] for ~c[(realpart x)]:
~bv[]
(acl2-numberp x)
~ev[]
~/")
(defdoc stringp
":Doc-Section ACL2::ACL2-built-ins
recognizer for strings~/
~c[(stringp x)] is true if and only if ~c[x] is a string.~/~/")
(defdoc symbol-name
":Doc-Section ACL2::ACL2-built-ins
the name of a symbol (a string)~/
Completion Axiom (~c[completion-of-symbol-name]):
~bv[]
(equal (symbol-name x)
(if (symbolp x)
(symbol-name x)
\"\"))
~ev[]~/
~il[Guard] for ~c[(symbol-name x)]:
~bv[]
(symbolp x)
~ev[]
~/")
(defdoc symbol-package-name
":Doc-Section ACL2::ACL2-built-ins
the name of the package of a symbol (a string)~/
WARNING: While ~c[symbol-package-name] behaves properly on all ACL2 objects,
it may give surprising results when called in raw Lisp. For more details
~pl[pkg-imports], in particular the discussion there of the
~c[\"COMMON-LISP\"] package.
Completion Axiom (~c[completion-of-symbol-package-name]):
~bv[]
(equal (symbol-package-name x)
(if (symbolp x)
(symbol-package-name x)
\"\"))
~ev[]~/
~il[Guard] for ~c[(symbol-package-name x)]:
~bv[]
(symbolp x)
~ev[]
Note: ~c[Symbol-package-name] may diverge from the name of the symbol's
package in raw Lisp, in the case that this package is the main Lisp package.
For example, in GCL ~c[(symbol-package-name 'car)] evaluates to
\"COMMON-LISP\" even though the actual package name for the symbol, ~c[car],
is \"LISP\".~/")
(defdoc symbolp
":Doc-Section ACL2::ACL2-built-ins
recognizer for symbols~/
~c[(symbolp x)] is true if and only if ~c[x] is a symbol.~/~/")
(defdoc quote
":Doc-Section ACL2::ACL2-built-ins
create a constant~/
The form ~c[(quote x)] evaluates to ~c[x]. See any Common Lisp
documentation.~/~/")
(defun double-rewrite (x)
(declare (xargs :guard t))
":Doc-Section Miscellaneous
cause a term to be rewritten twice~/
Logically, ~c[double-rewrite] is the ~ilc[identity] function:
~c[(double-rewrite x)] is equal to ~c[x]. However, the ACL2 rewriter treats
calls of ~c[double-rewrite] in the following special manner. When it
encounters a term ~c[(double-rewrite u)], it first rewrites ~c[u] in the current
context, and then the rewriter rewrites the result.
Such double-rewriting is rarely necessary, but it can be useful when
rewriting under non-trivial equivalence relations (~pl[equivalence]). The
following example will illustrate the issue.
~bv[]
; Define an equivalence relation.
(defun my-equiv (x y)
(equal x y))
(defequiv my-equiv)
; Define a unary function whose argument is preserved by my-equiv.
(defun foo (x)
(declare (ignore x))
t)
(defcong my-equiv equal (foo x) 1)
; Define some other unary functions.
(defun g (x) x)
(defun h1 (x) x)
(defun h2 (x) x)
; Prove some lemmas and then disable the functions above.
(defthm lemma-1
(my-equiv (h1 x) (h2 x)))
(defthm lemma-2
(foo (h2 x)))
(defthm lemma-3
(implies (foo x)
(equal (g x) x)))
(in-theory (union-theories (theory 'minimal-theory)
'(lemma-1 lemma-2 lemma-3
my-equiv-implies-equal-foo-1)))
; Attempt to prove a simple theorem that follows ``obviously'' from the
; events above.
(thm (equal (g (h1 a)) (h1 a)))
~ev[]
We might expect the proof of this final ~c[thm] to succeed by the following
reasoning. It is immediate from ~c[lemma-3] provided we can establish
~c[(foo (h1 a))]. By the ~c[defcong] event above, we know that
~c[(foo (h1 a))] equals ~c[(foo (h2 a))] provided
~c[(my-equiv (h1 a) (h2 a))]; but this is immediate from ~c[lemma-1]. And
finally, ~c[(foo (h2 a))] is true by ~c[lemma-2].
Unfortunately, the proof fails. But fortunately, ACL2 gives the following
useful warning when ~c[lemma-3] is submitted:
~bv[]
ACL2 Warning [Double-rewrite] in ( DEFTHM LEMMA-3 ...): In the :REWRITE
rule generated from LEMMA-3, equivalence relation MY-EQUIV is maintained
at one problematic occurrence of variable X in hypothesis (FOO X),
but not at any binding occurrence of X. Consider replacing that occurrence
of X in this hypothesis with (DOUBLE-REWRITE X). See :doc double-
rewrite for more information on this issue.
~ev[]
We can follow the warning's advice by changing ~c[lemma-3] to the following.
~bv[]
(defthm lemma-3
(implies (foo (double-rewrite x))
(equal (g x) x)))
~ev[]
With this change, the proof succeeds for the final ~c[thm] above.
In practice, it should suffice for users to follow the advice given in the
``~c[Double-rewrite]'' warnings, by adding calls of ~c[double-rewrite] around
certain variable occurrences. But this can cause inefficiency in large proof
efforts. For that reason, and for completeness, it seems prudent to explain
more carefully what is going on; and that is what we do for the remainder of
this ~il[documentation] topic. Optionally, also see the paper ``Double
Rewriting for Equivalential Reasoning in ACL2'' by Matt Kaufmann and J
Strother Moore, in the proceedings of the 2006 ACL2 Workshop
(paper is published in ACM Digital Library,
~url[http://portal.acm.org/toc.cfm?id=1217975]).~/
~st[Suggesting congruence rules.]
Sometimes the best way to respond to a ``~c[Double-rewrite]'' warning may be
to prove a congruence rule. Consider for example this rule.
~bv[]
(defthm insert-sort-is-id
(perm (insert-sort x) x))
~ev[]
Assuming that ~c[perm] has been identified as an ~il[equivalence] relation
(~pl[defequiv]), we will get the following warning.
~bv[]
ACL2 Warning [Double-rewrite] in ( DEFTHM INSERT-SORT-IS-ID ...):
In a :REWRITE rule generated from INSERT-SORT-IS-ID, equivalence relation
PERM is maintained at one problematic occurrence of variable X in the
right-hand side, but not at any binding occurrence of X. Consider
replacing that occurrence of X in the right-hand side with
(DOUBLE-REWRITE X). See :doc double-rewrite for more information on
this issue.
~ev[]
The problem is that the second occurrence of ~c[x] (the right-hand side of
the rule ~c[insert-sort-is-id]) is in a context where ~c[perm] is to be
maintained, yet in this example, the argument ~c[x] of ~c[insert-sort] on the
left-hand side of that rule is in a context where ~c[perm] will not be
maintained. This can lead one to consider the possibility that ~c[perm]
could be maintained in that left-hand side occurrence of ~c[x], and if so, to
prove the following congruence rule.
~bv[]
(defcong perm perm (insert-sort x) 1)
~ev[]
This will eliminate the above warning for ~c[insert-sort-is-id]. More
important, this ~ilc[defcong] event would probably be useful, since it would
allow rewrite rules with equivalence relation ~c[perm] to operate on the
first argument of any call of ~c[insert-sort] whose context calls for
maintaining ~c[perm].
~st[Details on double-rewrite.]
The reader who wants these details may first wish to ~pl[equivalence] for
relevant review.
The ACL2 rewriter takes a number of contextual arguments,
including the generated equivalence relation being maintained
(~pl[congruence]) and an association list that maps variables to terms. We
call the latter alist the ~c[unify-subst] because it is produced by unifying
(actually matching) a pattern against a current term; let us explain this
point by returning to the example above. Consider what happens when the
rewriter is given the top-level goal of the ~c[thm] above.
~bv[]
(equal (g (h1 a)) (h1 a))
~ev[]
This rewrite is performed with the empty alist (~c[unify-subst]), and is
begun by rewriting the first argument (in that same empty ~c[unify-subst]):
~bv[]
(g (h1 a))
~ev[]
Note that the only equivalence relation being maintained at this point is
~c[equal]. Now, the rewriter notices that the left-hand side of ~c[lemma-3],
which is ~c[(g x)], matches ~c[(g (h1 a))]. The rewriter thus creates a
~c[unify-subst] binding ~c[x] to ~c[(h1 a)]: ~c[((x . (h1 a)))]. It now
attempts to rewrite the hypothesis of ~c[lemma-3] to ~c[t] under this
~c[unify-subst].
Consider what happens now if the hypothesis of ~c[lemma-3] is ~c[(foo x)].
To rewrite this hypothesis under a ~c[unify-subst] of ~c[((x . (h1 a)))], it
will first rewrite ~c[x] under this ~c[unify-subst]. The key observation
here is that this rewrite takes place simply by returning the value of ~c[x]
in the ~c[unify-subst], namely ~c[(h1 a)]. No further rewriting is done!
The efficiency of the ACL2 rewriter depends on such caching of previous
rewriting results.
But suppose that, instead, the hypothesis of ~c[lemma-3] is
~c[(foo (double-rewrite x))]. As before, the rewriter dives to the first
argument of this call of ~c[foo]. But this time the rewriter sees the call
~c[(double-rewrite x)], which it handles as follows. First, ~c[x] is
rewritten as before, yielding ~c[(h1 a)]. But now, because of the call of
~c[double-rewrite], the rewriter takes ~c[(h1 a)] and rewrites it under the
empty ~c[unify-subst]. What's more, because of the ~c[defcong] event above,
this rewrite takes place in a context where it suffices to maintain the
equivalence relation ~c[my-equiv]. This allows for the application of
~c[lemma-1], hence ~c[(h1 a)] is rewritten (under ~c[unify-subst] = ~c[nil])
to ~c[(h2 a)]. Popping back up, the rewriter will now rewrite the call of
~c[foo] to ~c[t] using ~c[lemma-2].
The example above explains how the rewriter treats calls of
~c[double-rewrite], but it may leave the unfortunate impression that the user
needs to consider each ~c[:]~ilc[rewrite] or ~c[:]~ilc[linear] rule
carefully, just in case a call of ~c[double-rewrite] may be appropriate.
Fortunately, ACL2 provides a ``[Double-rewrite]'' warning to inform the user
of just this sort of situation. If you don't see this warning when you
submit a (~c[:]~ilc[rewrite] or ~c[:]~ilc[linear]) rule, then the issue
described here shouldn't come up for that rule. Such warnings may appear for
hypotheses or right-hand side of a ~c[:]~ilc[rewrite] rule, and for
hypotheses or full conclusion (as opposed to just the trigger term) of a
~c[:]~ilc[linear] rule.
If you do see a ``[Double-rewrite]'' warning, then should you add the
indicated call(s) of ~c[double-rewrite]? At the time of writing this
~il[documentation], the answer is not clear. Early experiments with double
rewriting suggested that it may be too expensive to call ~c[double-rewrite]
in every instance where a warning indicates that there could be an advantage
to doing so. And at the time of this writing, the ACL2 regression suite has
about 1900 such warnings (but note that books were developed before
~c[double-rewrite] or the ``[Double-rewrite]'' warning were implemented),
which suggests that one can often do fine just ignoring such warnings.
However, it seems advisable to go ahead and add the calls of
~c[double-rewrite] indicated by the warnings unless you run across
efficiency problems caused by doing so. Of course, if you decide to ignore
all such warnings you can execute the event:~nl[]
~c[(]~ilc[set-inhibit-warnings]~c[ \"Double-rewrite\")].
Finally, we note that it is generally not necessary to call
~c[double-rewrite] in order to get its effect in the following case, where
the discussion above might have led one to consider a call of
~c[double-rewrite]: a hypothesis is a variable, or more generally, we are
considering a variable occurrence that is a branch of the top-level ~c[IF]
structure of a hypothesis. The automatic handling of this case, by a form of
double rewriting, was instituted in ACL2 Version_2.9 and remains in place
with the introduction of ~c[double-rewrite]. Here is a simple illustrative
example. Notice that ~c[foo-holds] applies to prove the final ~ilc[thm]
below, even without a call of ~c[double-rewrite] in the hypothesis of
~c[foo-holds], and that there is no ``[Double-rewrite]'' warning when
submitting ~c[foo-holds].
~bv[]
(encapsulate
(((foo *) => *)
((bar *) => *))
(local (defun foo (x) (declare (ignore x)) t))
(local (defun bar (x) (declare (ignore x)) t))
(defthm foo-holds
(implies x
(equal (foo x) t)))
(defthm bar-holds-propositionally
(iff (bar x) t)))
(thm (foo (bar y)))
~ev[]~/"
x)
#-acl2-loop-only
(progn
; The following variables implement time limits. Only bind-acl2-time-limit
; should bind *acl2-time-limit*, as described in a comment in
; bind-acl2-time-limit, where one may find a a discussion of how these
; variables are handled.
(defparameter *acl2-time-limit* nil)
(defparameter *acl2-time-limit-boundp* nil)
)
(defun chk-with-prover-time-limit-arg (time)
(declare (xargs :guard t))
(or (let ((time (if (and (consp time)
(null (cdr time)))
(car time)
time)))
(and (rationalp time)
(< 0 time)
time))
(hard-error 'with-prover-time-limit
"The first argument to ~x0 must evaluate to a non-negative ~
rational number or a list containing such a number, but ~
such an argument has evaluated to ~x1."
(list (cons #\0 'with-prover-time-limit)
(cons #\1 time)))))
#-acl2-loop-only
(defmacro with-prover-time-limit1-raw (time form)
; This macro does not check that time is of a suitable form (see :doc
; with-prover-time-limit). However, with-prover-time-limit lays down a call of
; chk-with-prover-time-limit-arg, which is called before return-last passes
; control to the present macro.
(let ((time-limit-var (gensym)))
`(let* ((,time-limit-var ,time)
(temp (+ (get-internal-time)
(* internal-time-units-per-second
(if (consp ,time-limit-var)
(car ,time-limit-var)
,time-limit-var))))
(*acl2-time-limit* (if (or (consp ,time-limit-var)
(null *acl2-time-limit*))
temp
(min temp *acl2-time-limit*))))
,form)))
(defmacro with-prover-time-limit1 (time form)
`(return-last 'with-prover-time-limit1-raw ,time ,form))
(defmacro with-prover-time-limit (time form)
":Doc-Section Other
limit the time for proofs~/
~bv[]
Examples:
; Limit (mini-proveall) to about 1/4 second:
(with-prover-time-limit 1/4 (mini-proveall))
; Limit (mini-proveall) to about 1/4 second, even if surrounding call of
; with-prover-time-limit provides for a more restrictive bound:
(with-prover-time-limit '(1/4) (mini-proveall))
; Limit the indicated theorem to about 1/50 second, and if the proof does not
; complete or it fails, then put down a label instead.
(mv-let (erp val state)
(with-prover-time-limit
1/50
(thm (equal (append (append x x) x)
(append x x x))))
(if erp
(deflabel foo :doc \"Attempt failed.\")
(value (list :succeeded-with val))))~/
General Form:
(with-prover-time-limit time form)
~ev[]
where ~c[time] evaluates to a positive rational number or to a list
containing such, and ~c[form] is arbitrary. Logically,
~c[(with-prover-time-limit time form)] is equivalent to ~c[form]. However,
if the time for evaluation of ~c[form] exceeds the value specified by
~c[time], and if ACL2 notices this fact during a proof, then that proof will
abort, for example like this:
~bv[]
ACL2 Error in ( DEFTHM PERM-REFLEXIVE ...): Out of time in the rewriter.
~ev[]
If there is already a surrounding call of ~c[with-prover-time-limit] that has
set up an expiration time, the inner ~c[with-prover-time-limit] call is not
allowed to push that time further into the future unless the inner time is
specified as a list containing a rational, rather than as a rational.
Note that by default, the time used is runtime (cpu time); to switch to
realtime (elapsed time), ~pl[get-internal-time].
For a related utility based on prover steps instead of time,
~pl[with-prover-step-limit]; also ~pl[set-prover-step-limit]. Those
utilities have the advantage of having platform-independent behavior, unlike
time limits, which of course are generally less restrictive for faster
processors. But note that the prover steps counted need not correspond
closely to prover time.
Although ~c[with-prover-time-limit] behaves like an ACL2 function in the
sense that it evaluates both its arguments, it is however actually a macro
that behaves as follows. (1) The value of its first (time limit) argument
affects the evaluation of its second argument (by causing an error during
that evaluation if the time for completion is insufficient). (2) The second
argument can return multiple values (~pl[mv]), which are then returned by the
call of ~c[with-prover-time-limit]. (3) Thus, there is not a fixed number of
values returned by ~c[with-prover-time-limit].
If you find that the time limit appears to be implemented too loosely, it may
be because the prover only checks the time elapsed at certain points during
the proof process, for example at entry to the rewriter. For example, if you
write your own ~ilc[clause-processor] that does an expensive computation, the
time is unlikely to be checked during its execution. If however you find the
time limit seems to be ignored even during ordinary prover operation, you are
encouraged to email an example to the ACL2 implementors with instructions on
how to observe the undesirable behavior. This information can perhaps be
used to improve ACL2 by the insertion of more checks for expiration of the
time limit.
The rest of this documentation topic explains the rather subtle logical
story, and is not necessary for understanding how to use
~c[with-prover-time-limit]. The ACL2 ~ilc[state] object logically contains a
field called the ~c[acl2-oracle], which is an arbitrary true list of objects.
This field can be read by a function called ~c[read-acl2-oracle], which
however is untouchable (~pl[push-untouchable]), meaning that it is cannot be
called by ACL2 users. The ~c[acl2-oracle] field is thus ``secret''. Our
claim is that any ACL2 session makes sense for ~st[some] value of
~c[acl2-oracle] in the initial ~c[state] for that session. Logically,
~c[with-prover-time-limit] is a no-op, just returning its second value. But
under the hood, it provides a ``hint'' for the ~c[acl2-oracle], so that
(logically speaking) when its first element (~ilc[car]) is consulted by
ACL2's prover to see if the time limit has expired, it gets the ``right''
answer (specifically, either nil if all is well or else a message to print if
the time limit has expired). Logically, the ~c[acl2-oracle] is then
~ilc[cdr]'ed ~-[] that is, its first element is popped off ~-[] so that
future results from ~c[read-acl2-oracle] are independent of the one just
obtained.~/"
`(with-prover-time-limit1 (chk-with-prover-time-limit-arg ,time)
,form))
#-acl2-loop-only
(defparameter *time-limit-tags* nil)
(defmacro catch-time-limit5 (form)
; Keep in sync with catch-time-limit5@par.
`(mv-let (step-limit x1 x2 x3 x4 ; values that cannot be stobjs
state)
#+acl2-loop-only
,form ; so, except for state, form does not return a stobj
#-acl2-loop-only
(progn
(setq *next-acl2-oracle-value* nil)
(catch 'time-limit5-tag
(let ((*time-limit-tags* (add-to-set-eq 'time-limit5-tag
*time-limit-tags*)))
,form)))
(pprogn
(f-put-global 'last-step-limit step-limit state)
(mv-let (nullp temp state)
(read-acl2-oracle state) ; clears *next-acl2-oracle-value*
(declare (ignore nullp))
(cond (temp (mv step-limit temp nil nil nil nil state))
(t (mv step-limit nil x1 x2 x3 x4 state)))))))
#+acl2-par
(defmacro catch-time-limit5@par (form)
; Keep in sync with catch-time-limit5.
`(mv-let (step-limit x1 x2 x3 x4) ; values that cannot be stobjs
#+acl2-loop-only
,form ; so, form returns neither a stobj nor state
#-acl2-loop-only
(progn
; Parallelism blemish: there is a rare race condition related to
; *next-acl2-oracle-value*. Specifically, a thread might set the value of
; *next-acl2-oracle-value*, throw the 'time-limit5-tag, and the value of
; *next-acl2-oracle-value* wouldn't be read until after that tag was caught.
; In the meantime, maybe another thread would have cleared
; *next-acl2-oracle-value*, and the needed value would be lost.
(setq *next-acl2-oracle-value* nil)
(catch 'time-limit5-tag
(let ((*time-limit-tags* (add-to-set-eq 'time-limit5-tag
*time-limit-tags*)))
,form)))
(pprogn@par
; Parallelism no-fix: we haven't analyzed the code to determine whether the
; following call of (f-put-global@par 'last-step-limit ...) will be overridden
; by another similar call performed by a concurrent thread. But we can live
; with that because step-limits do not affect soundness.
(f-put-global@par 'last-step-limit step-limit state)
(mv-let (nullp temp)
(read-acl2-oracle@par state);clears *next-acl2-oracle-value*
(declare (ignore nullp))
(cond (temp (mv step-limit temp nil nil nil nil))
(t (mv step-limit nil x1 x2 x3 x4)))))))
(defun time-limit5-reached-p (msg)
; Where should we call this function? We want to strike a balance between
; calling it often enough that we get reasonably tight results for
; with-prover-time-limit, yet calling it rarely enough so that we don't slow
; down the prover, in particular from calls of (get-internal-time).
; As of this writing we call this function in add-poly,
; quick-and-dirty-subsumption-replacement-step, subsumption-replacement-loop,
; rewrite, subsumes, and expand-abbreviations. Here are some results for run
; times in Allegro CL with output inhibited. For (verify-guards read-utf8-fast
; ...) in community book books/unicode/read-utf8.lisp, total cpu time went from
; 353.70 to 436.89 seconds when wrapped as (with-prover-time-limit 5000
; (verify-guards read-utf8-fast ...)). That's about 24%. On the other hand,
; (with-prover-time-limit 5000 (mini-proveall)) had total cpu times of 720,
; 750, and 680 while (mini-proveall) had times of 710, 660, and 600, which is
; (very roughly) a 9% drop.
; At one time, including the time at which the above statistics were gathered,
; we also called this function in ev-fncall, ev, ev-lst, and ev-fncall-w (and
; at this writing we also see ev-w-lst and ev-w). But we found an infinite
; loop with ev, as documented there.
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore msg))
#-acl2-loop-only
(when (and *acl2-time-limit*
; The following test isn't currently necessary, strictly speaking. But it's a
; cheap test so we include it for robustness, in case for example someone calls
; rewrite not in the scope of catch-time-limit5.
(member-eq 'time-limit5-tag *time-limit-tags*)
(< *acl2-time-limit* (get-internal-time)))
(setq *next-acl2-oracle-value*
(if (eql *acl2-time-limit* 0)
"Aborting due to an interrupt."
msg))
(throw 'time-limit5-tag
(mv (f-get-global 'last-step-limit *the-live-state*)
nil nil nil nil *the-live-state*)))
nil)
(defmacro catch-step-limit (form)
; Form should evaluate to a result of the form (mv step-limit erp val state).
; Wrap this macro around any form for which you want an error to occur if the
; step-limit transitions from 0 to -1. Search for occurrences of
; *step-limit-error-p* for details of how this works.
#+acl2-loop-only
`(mv-let (step-limit erp val state)
,form
(mv-let (erp2 val2 state)
(read-acl2-oracle state)
(cond ((and (null erp2) (natp val2))
(mv val2 t nil state))
(t (mv step-limit erp val state)))))
#-acl2-loop-only
`(let ((*step-limit-error-p* t))
(assert$
(eq state *the-live-state*)
(let ((sl/erp/val (catch 'step-limit-tag
(mv-let (step-limit erp val ignored-state)
,form
(declare (ignore ignored-state))
(list* step-limit erp val)))))
(cond
((eq *step-limit-error-p* 'error)
(mv -1 t nil state))
(t (mv (car sl/erp/val) (cadr sl/erp/val) (cddr sl/erp/val) state)))))))
(defconst *guard-checking-values*
'(t nil :nowarn :all :none))
(defun chk-with-guard-checking-arg (val)
(declare (xargs :guard t))
(cond ((member-eq val *guard-checking-values*)
val)
(t (hard-error 'with-guard-checking
"The first argument to ~x0 must evaluate to one of ~
~v1. But such an argument has evaluated to ~x2."
(list (cons #\0 'with-guard-checking)
(cons #\1 *guard-checking-values*)
(cons #\2 val))))))
#-acl2-loop-only
(defmacro with-guard-checking1-raw (val form)
; This macro does not check that val is a member of *guard-checking-values*.
; However, with-guard-checking lays down a call of chk-with-guard-checking-arg,
; which is called before return-last passes control to the present macro.
(let ((v (global-symbol 'guard-checking-on)))
`(let ((,v ,val))
(declare (special ,v))
,form)))
(defmacro with-guard-checking1 (val form)
`(return-last 'with-guard-checking1-raw ,val ,form))
(defmacro with-guard-checking (val form)
":Doc-Section switches-parameters-and-modes
suppressing or enable guard-checking for a form~/
~bv[]
Example:
; Turn off all guard-checking for the indicated calls of append and car:
(with-guard-checking :none
(car (append 3 4)))~/
General Form:
(with-guard-checking val form)
~ev[]
where ~c[val] evaluates to a legal guard-checking value
(~pl[set-guard-checking], or evaluate ~c[*guard-checking-values*] to see the
list of such values), and ~c[form] is a form to be evaluated as though we had
first executed ~c[(set-guard-checking val)]. Of course, this gaurd-checking
setting is active only during evaluation of ~c[form], and is ignored once
evaluation passes into raw Lisp functions (~pl[guards-and-evaluation])."
(declare (xargs :guard t))
`(with-guard-checking1 (chk-with-guard-checking-arg ,val)
,form))
(defun abort! ()
":Doc-Section Miscellaneous
to return to the top-level of ACL2's command loop~/
This is an alias for ~c[a!]; ~pl[a!]. For a related feature that only pops
up one level, ~pl[p!].~/~/"
(declare (xargs :guard t))
#-acl2-loop-only
(throw 'local-top-level :abort)
nil)
(defmacro a! ()
":Doc-Section Miscellaneous
to return to the top-level of ACL2's command loop~/
When ~c[(a!)] is evaluated inside of ACL2's command loop, the current
computation is aborted and control returns to the top of the command loop,
exactly as though the user had interrupted and aborted the current
computation. (Note: Versions of ACL2 up to Version_3.4 provided `~c[#.]' for
this purpose, but no longer; ~pl[sharp-dot-reader].)
If you are at an ACL2 prompt (as opposed to a raw Lisp break), then you may
type ~c[:a!] in place of ~c[(a!)]; ~pl[keyword-commands].
For a related feature that only pops up one level, ~pl[p!].~/
Logically speaking, ~c[(a!) = nil]. But imagine that it is defined in such a
way that it causes a stack overflow or other resource exhaustion when
called."
(declare (xargs :guard t))
'(abort!))
(defun p! ()
":Doc-Section Miscellaneous
to pop up (at least) one level of ACL2's command loop~/
Logically speaking, ~c[(p!) = nil]. If you are already at the top level of
the ACL2 command loop, rather than being in a subsidiary call of ~ilc[ld],
then the keyword then a call of ~c[(p!)] returns ~c[nil] and has no other
effect.
Otherwise, ~c[(p!)] is evaluated inside a call of ~ilc[ld] that was made
inside ACL2's command loop. In that case, the current computation is aborted
and treating as causing an error, and control returns to the superior call of
~c[ld].
Here is a more detailed description of the effect of ~c[(p!)] when not at the
top level of the ACL2 command loop. The current call of ~c[LD] is treated as
though ~c[ld-error-action] is ~c[:RETURN!] (the default) and hence
immediately returns control to the superior call of ~ilc[ld]. If all calls
of ~ilc[ld] were made with the default ~c[ld-error-action] of ~c[:RETURN!],
then all superior calls of ~c[ld] will then complete until you are back at
top level of the ACL2 loop. For more information, ~pl[ld-error-action].
If you are at an ACL2 prompt (as opposed to a raw Lisp break), then you may
type ~c[:p!] in place of ~c[(p!)]; ~pl[keyword-commands].~/~/"
(declare (xargs :guard t))
#-acl2-loop-only
(throw 'local-top-level :pop)
nil)
(in-theory (disable abort!
(:executable-counterpart abort!)
p!
(:executable-counterpart p!)
; We could disable (:executable-counterpart hide) earlier, but this is a
; convenient place to do it.
(:executable-counterpart hide)))
#-acl2-loop-only
(defparameter *wormhole-status-alist* nil)
#-acl2-loop-only
(defparameter *inhibit-wormhole-activityp* nil)
(defun wormhole1 (name input form ld-specials)
; Here is the world's fanciest no-op.
; We need a guard to force guard verification to happen. This way, a
; call of wormhole1 will definitely invoke the -acl2-loop-only code
; below, not the logical version.
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore name input form ld-specials))
#+acl2-loop-only
nil
#-acl2-loop-only
(cond
(*inhibit-wormhole-activityp* nil)
((let ((temp (cdr (assoc-equal name *wormhole-status-alist*))))
; Note: Below we inline wormhole-entry-code, to be defined later.
(and (consp temp)
(eq (car temp) :SKIP)))
nil)
(t
(let ((*wormholep* t)
(state *the-live-state*)
(*wormhole-cleanup-form*
; WARNING: The own-cons and the progn form constructed below must be NEW!
; See note below.
(let ((own-cons (cons nil nil)))
(list 'progn
`(cond ((car (quote ,own-cons))
(error "Attempt to execute *wormhole-cleanup-form* ~
twice!"))
(t (setq *wormhole-status-alist*
(put-assoc-equal
',name
(f-get-global 'wormhole-status
*the-live-state*)
*wormhole-status-alist*))))
`(fix-trace ',(f-get-global 'trace-specs *the-live-state*))
`(setf (car (quote ,own-cons)) t)
'state))))
; Note: What's going on above? The cleanup form's spine is new conses because
; we smash them, inserting new formi's between the cond and the setf. When
; the setf is executed it sets a flag owned by this particular form. When
; that flag is set, this form cannot be executed again. Instead it causes an
; error. I am afraid that this form might be executed repeatedly by
; interrupted interrupt processing. One might think that would be ok. But
; inspection of the value of this form reveals that it is not unusual for it
; to contain (MAKUNBOUND-GLOBAL 'WORMHOLE-STATUS *THE-LIVE-STATE*) near the
; bottom and that, in turn, would cause the f-get-global reference to
; wormhole-status in the cond to go astray (with or without an error message).
; So rather than take random luck on whether an error message is printed or an
; ``unbound value'' is returned as a value, we force an error message that
; will cause us to come back here. The likely scenarios are that the cleanup
; form got executed twice because of repeated, rapid ctrl-c inputs or that it
; got executed once by Lisp's unwind-protect and later by our acl2-unwind or
; the eval below.
(cond ((null name) (return-from wormhole1 nil)))
(push-car (cons "Post-hoc unwind-protect for wormhole"
; Robert Krug tells us that CCL complained before we introduced function
; below. We use a non-special lexical variable to capture the current value of
; *wormhole-cleanup-form* (as we formerly did) as we push the function onto the
; stack.
(let ((acl-non-special-var *wormhole-cleanup-form*))
(function
(lambda nil (eval acl-non-special-var)))))
*acl2-unwind-protect-stack*
'wormhole1)
; The f-put-globals about to be performed will be done undoably.
(f-put-global 'wormhole-name name state)
(f-put-global 'wormhole-input input state)
(f-put-global 'wormhole-status
(cdr (assoc-equal name *wormhole-status-alist*))
state)
(ld-fn (append
`((standard-oi . (,form . ,*standard-oi*))
(standard-co . ,*standard-co*)
(proofs-co . ,*standard-co*))
ld-specials)
state
t)
(eval *wormhole-cleanup-form*)
(pop (car *acl2-unwind-protect-stack*))
nil))))
(defun wormhole-p (state)
":Doc-Section Miscellaneous
predicate to determine if you are inside a ~ilc[wormhole]~/
~l[wormhole] for a discussion of wormholes. ~c[(Wormhole-p state)] returns
~c[(mv nil t state)] when evaluated inside a wormhole, else
~c[(mv nil nil state)].~/~/"
(declare (xargs :guard (state-p state)))
#-acl2-loop-only
(when (live-state-p state)
(return-from wormhole-p
(value *wormholep*)))
(read-acl2-oracle state))
(defun duplicates (lst)
(declare (xargs :guard (symbol-listp lst)))
(cond ((endp lst) nil)
((member-eq (car lst) (cdr lst))
(add-to-set-eq (car lst) (duplicates (cdr lst))))
(t (duplicates (cdr lst)))))
(defun evens (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l) nil)
(t (cons (car l)
(evens (cddr l))))))
(defun odds (l)
(declare (xargs :guard (true-listp l)))
(evens (cdr l)))
(defun set-equalp-equal (lst1 lst2)
(declare (xargs :guard (and (true-listp lst1)
(true-listp lst2))))
(and (subsetp-equal lst1 lst2)
(subsetp-equal lst2 lst1)))
; Essay on Metafunction Support, Part 1
; (The second part of this essay is in ld.lisp.)
; Historical Note: Metafunctions have traditionally taken just one argument:
; the term to be simplified. In 1999, Robert Krug, working on arithmetic
; metafunctions, wished to call type-set from within a metafunction. This
; inspired the creation of what were called ``extended metafunctions'' in
; contrast to the ``vanilla metafunctions'' that had gone before. (Originally,
; we used the name ``tutti-frutti metafunctions'' but that seemed too silly.)
; In June, 1999, a patch supporting extended metafunctions in Version_2.4 was
; given to Robert for experimental purposes. He extended it and gave it back
; in July, 2000. It was integrated into Version_2.6 in July, 2000.
; Historical Note 2: Previous to Version_2.7 the functions below could only be
; used in the context of a metafunction. As per a suggestion by Eric Smith,
; and incorporating an implementation provided by Robert Krug, they can now be
; called from within a syntaxp or bind-free hypothesis. We refer to a function
; that appears in one of these three contexts as a meta-level function.
; However, we still continue to use the term metafunction context, even though
; this is somewhat inconsistent.
; We wish to allow the user to call certain theorem proving functions, like
; type-set and rewrite, from within meta-level functions, without defining
; those functions logically. We provide uninterpreted function symbols, e.g.,
; mfc-ts and mfc-rw+, for this purpose and arrange for them to be type-set and
; rewrite within the context of a meta-level function's execution.
; Notes:
; 1. There are two kinds of functions with the prefix ``mfc-''.
; * ordinary defined :logic mode functions used to access parts of
; the ``metafunction context.'' Example: mfc-clause.
; * uninterpreted functions with execution-only-in-meta-level-functions
; semantics. Example: mfc-ts.
; The user may be unaware that these are two different classes of symbols.
; But the first is given explicit axioms and the second is not.
; 2. If a new function is added, functions of the first type are preferred
; because they are what they seem. Such functions are defined here in
; axioms.lisp.
; 3. Functions of the second type are introduced with unknown constraints from
; a define-trusted-clause-processor event, and are defined in raw
; Lisp using the defun-overrides mechanism.
; In the next four paragraphs, we typically refer only to metafunctions, but
; most of the below applies to meta-level functions generally.
; Originally, these uninterpreted functions were essentially defstubs,
; logically, and were only to be used to make heuristic choices between correct
; alternative transformations within the metafunction. That is, practically
; speaking, the metatheorem stating the correctness of a metafunction was
; proved in the absence of any axioms about mfc-tc and mfc-rw+. Now we have
; meta-extract-contextual-fact available for reasoning about these functions;
; see :DOC meta-extract.
; Metafunctions providing this additional capability are called extended
; metafunctions and can be recognized by having more than one argument. We
; still support vanilla flavored, one argument, metafunctions.
; It is necessary to pass ``type-set'' and ``rewrite'' (really, mfc-ts and
; mfc-rw+) additional arguments, arguments not available to vanilla
; metafunctions, like the type-alist, the simplify-clause-pot-lst, etc. To
; make this convenient, we will bundle these arguments up into a record
; structure called the metafunction-context (``mfc''). When an extended
; metafunction is called from within the rewriter, we will construct a suitable
; record and pass it into the metafunction in the appropriate argument
; position. We give the user functions, e.g., mfc-clause, to access parts of
; this structure; we could provide functions for every component but in fact
; only provide the ones Robert Krug has needed so far. But in general the user
; could access the context arbitrarily with cars and cdrs from within the
; metafunction and there is nothing we can do to hide its actual structure.
; Indeed, there is no reason to do so. The required metatheorem does not
; constrain that argument at all, so nothing but heuristic decisions can be
; made on the basis of what we actually pass in.
; The main use of the metafunction-context is to pass into mfc-ts and mfc-rw+
; (and mfc-rw). We execute them only on a live STATE argument, so that
; execution results are explained by the implicit axioms on these functions;
; see the discussion of meta-extract-contextual-fact in the Essay on
; Correctness of Meta Reasoning. Before the introduction of
; meta-extract-contextual-fact, it was necessary to insist on a live state
; argument, for correctness. Now it may well be sufficient to insist only that
; the mfc argument is the raw-Lisp *metafunction-context*, which holds a
; suitable logical world used by these mfc-xx functions. But here is our
; thinking prior to the addition of meta-extract-contextual-fact.
; The live state cannot be a value in a theorem. So these functions are
; uninterpreted there. When a metafunction is called in the theorem prover,
; the live state is passed in, to be used to authorize the functions to
; execute. Thus, these uninterpreted functions must be provided a STATE
; argument even if they would not otherwise need it. Mfc-ts is an example of
; a function that has an otherwise unneeded STATE argument: type-set does not
; need state.
; How do we know that the context passed into the meta-level function will
; permit type-set and rewrite to execute without error? How do we know that
; such complicated components as the world, the type-alist, and
; simplify-clause-pot-lst are well-formed? One way would be to formalize
; guards on all the theorem prover's functions and require guard proofs on
; metafunctions. But the system is not ready for that yet. (We believe we
; know the guards for our functions, but we have never written them down
; formally.)
; To ensure that the metafunction context is well-formed (and also for the
; logical reason mentioned above, where we using implicit axioms on mfc-xx
; functions to justify meta-extract-contextual-fact hypotheses in meta rules),
; we refuse to execute unless the context is EQ to the one created by rewrite
; when it calls the meta-level function. Sensible errors are generated
; otherwise. When rewrite generates a context, it binds the Lisp special
; *metafunction-context* to the context, to permit this check. That special
; has value NIL outside meta-level functions.
#-acl2-loop-only
(defparameter *metafunction-context* nil)
; The ``term'' passed to the type-set and rewrite is checked explicitly to be
; well-formed with respect to the world passed in the context. This gives the
; meta-level function author the freedom to ask type-set questions about
; subterms of what the meta-level function was passed, or even questions about
; newly consed up terms.
; In this section we define the metafunction context accessors, i.e., :logic
; mode functions of the first type noted above. We are free to add more
; functions analogous to mfc-clause to recover components of the
; metafunction-context mfc. If you add more functions to the
; metafunction-context record, be sure to define them below, updating existing
; definitions as necessary due to layout changes for that record.
; First, we define some accessor functions that should really be defined by
; defrec, except that we don't want to go through the effort to move the
; definition of defrec to axioms.lisp.
; The present PROGN form is the result of executing the following forms in an
; ACL2 built without this form -- but be sure to replace the defrec form below
; with the corresponding defrec that appears later in the sources!
(PROGN
; :set-raw-mode-on!
; (cons 'progn
; (er-let* ((form (trans1 '(defrec metafunction-context ...))))
; (loop for x in (cdr (butlast form 2))
; collect (er-let* ((y (trans1 x))) y))))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field RDEPTH|
(RDEPTH)
(LIST 'LET
(LIST (LIST 'RDEPTH RDEPTH))
'(CAR RDEPTH)))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field TYPE-ALIST|
(TYPE-ALIST)
(LIST 'LET
(LIST (LIST 'TYPE-ALIST TYPE-ALIST))
'(CAR (CDR TYPE-ALIST))))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field OBJ|
(OBJ)
(LIST 'LET
(LIST (LIST 'OBJ OBJ))
'(CAR (CDR (CDR OBJ)))))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field GENEQV|
(GENEQV)
(LIST 'LET
(LIST (LIST 'GENEQV GENEQV))
'(CAR (CDR (CDR (CDR GENEQV))))))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field WRLD|
(WRLD)
(LIST 'LET
(LIST (LIST 'WRLD WRLD))
'(CAR (CDR (CDR (CDR (CDR WRLD)))))))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field FNSTACK|
(FNSTACK)
(LIST 'LET
(LIST (LIST 'FNSTACK FNSTACK))
'(CAR (CDR (CDR (CDR (CDR (CDR FNSTACK))))))))
(DEFMACRO |Access METAFUNCTION-CONTEXT record field ANCESTORS|
(ANCESTORS)
(LIST 'LET
(LIST (LIST 'ANCESTORS ANCESTORS))
'(CAR (CDR (CDR (CDR (CDR (CDR (CDR ANCESTORS)))))))))
(DEFMACRO
|Access METAFUNCTION-CONTEXT record field BACKCHAIN-LIMIT|
(BACKCHAIN-LIMIT)
(LIST 'LET
(LIST (LIST 'BACKCHAIN-LIMIT BACKCHAIN-LIMIT))
'(CAR (CDR (CDR (CDR (CDR (CDR (CDR (CDR BACKCHAIN-LIMIT))))))))))
(DEFMACRO
|Access METAFUNCTION-CONTEXT record field SIMPLIFY-CLAUSE-POT-LST|
(SIMPLIFY-CLAUSE-POT-LST)
(LIST
'LET
(LIST (LIST 'SIMPLIFY-CLAUSE-POT-LST
SIMPLIFY-CLAUSE-POT-LST))
'(CAR
(CDR
(CDR (CDR (CDR (CDR (CDR (CDR (CDR SIMPLIFY-CLAUSE-POT-LST)))))))))))
(DEFMACRO
|Access METAFUNCTION-CONTEXT record field RCNST|
(RCNST)
(LIST 'LET
(LIST (LIST 'RCNST RCNST))
'(CAR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR RCNST))))))))))))
(DEFMACRO
|Access METAFUNCTION-CONTEXT record field GSTACK|
(GSTACK)
(LIST
'LET
(LIST (LIST 'GSTACK GSTACK))
'(CAR
(CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR GSTACK)))))))))))))
(DEFMACRO
|Access METAFUNCTION-CONTEXT record field TTREE|
(TTREE)
(LIST
'LET
(LIST (LIST 'TTREE TTREE))
'(CAR
(CDR
(CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR TTREE))))))))))))))
; The present PROGN form is the result of executing the following forms in an
; ACL2 built without this form -- but be sure to replace the defrec form below
; with the corresponding defrec that appears later in the sources!
(DEFMACRO
|Access METAFUNCTION-CONTEXT record field UNIFY-SUBST|
(UNIFY-SUBST)
(LIST
'LET
(LIST (LIST 'UNIFY-SUBST UNIFY-SUBST))
'(CAR
(CDR
(CDR
(CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR (CDR UNIFY-SUBST))))))))))))))))
(DEFMACRO |Access REWRITE-CONSTANT record field CURRENT-CLAUSE|
(CURRENT-CLAUSE)
; WARNING: This definition must be kept in sync with the defrec for
; rewrite-constant!
; This form comes from the definition of the :current-clause accessor of defrec
; rewrite-constant, by using trans1 to eliminate defabbrev in favor of defmacro.
; (access rewrite-constant
; (access metafunction-context mfc :rcnst)
; :current-clause)
(LIST 'LET
(LIST (LIST 'CURRENT-CLAUSE CURRENT-CLAUSE))
'(CDR (CAR (CDR (CDR (CDR (CDR CURRENT-CLAUSE))))))))
(defun record-error (name rec)
(declare (xargs :guard t))
(er hard? 'record-error
"An attempt was made to treat ~x0 as a record of type ~x1."
rec name))
(defun record-accessor-function-name (name field)
(declare (xargs :guard (and (symbolp name)
(symbolp field))))
(intern-in-package-of-symbol
(coerce
(append (coerce "Access " 'list)
(coerce (symbol-name name) 'list)
(coerce " record field " 'list)
(coerce (symbol-name field) 'list))
'string)
name))
(defmacro access (name rec field)
(cond ((keywordp field)
(list (record-accessor-function-name name field)
rec))
(t (er hard 'record-error
"Access was given a non-keyword as a field ~
specifier. The offending form was ~x0."
(list 'access name rec field)))))
(defun mfc-clause (mfc)
(declare (xargs :guard t))
; We protect the access below with a simple guard to make this function
; compliant. We return nil on the false branch, so in fact the acl2-loop-only
; body is equal to rhs. We then add a short-circuit in raw lisp that saves us
; from having to run the guard test in the vast majority of cases. It is
; assumed that *metafunction-context* is either NIL or a proper
; metafunction-context record.
#-acl2-loop-only
(cond ((eq mfc *metafunction-context*)
(return-from mfc-clause
(access rewrite-constant
(access metafunction-context mfc :rcnst)
:current-clause))))
; Note: We check the pseudo-term-listp condition to ensure that
; pseudo-term-listp-mfc-clause (in axioms.lisp) is a theorem.
(if (and (true-listp mfc)
(true-listp (access metafunction-context mfc :rcnst))
; The following case is unfortunate, but necessary for the guard proof.
(consp (nth 4 (access metafunction-context mfc :rcnst)))
(pseudo-term-listp (access rewrite-constant
(access metafunction-context mfc :rcnst)
:current-clause)))
(access rewrite-constant
(access metafunction-context mfc :rcnst)
:current-clause)
nil))
(defun mfc-rdepth (mfc)
(declare (xargs :guard t))
#-acl2-loop-only
(cond ((eq mfc *metafunction-context*)
(return-from mfc-rdepth
(access metafunction-context mfc :rdepth))))
(if (true-listp mfc)
(access metafunction-context mfc :rdepth)
nil))
(defun type-alist-entryp (x)
; (term ts . ttree)
(declare (xargs :guard t))
(and (consp x)
(pseudo-termp (car x))
(consp (cdr x))
(integerp (cadr x))
; We check that (cadr x) is between *min-type-set* and *max-type-set*, which
; are checked by check-built-in-constants.
(<= #-:non-standard-analysis -8192 #+:non-standard-analysis -65536
(cadr x))
(<= (cadr x)
#-:non-standard-analysis 8191 #+:non-standard-analysis 65535)))
(defun type-alistp (x)
(declare (xargs :guard t))
(if (consp x)
(and (type-alist-entryp (car x))
(type-alistp (cdr x)))
(eq x nil)))
(defun mfc-type-alist (mfc)
(declare (xargs :guard t))
; This function is analogous to mfc-clause, above.
#-acl2-loop-only
(cond ((eq mfc *metafunction-context*)
(return-from mfc-type-alist
(access metafunction-context mfc :type-alist))))
(if (and (true-listp mfc)
(type-alistp (access metafunction-context mfc :type-alist)))
(access metafunction-context mfc :type-alist)
nil))
(defun mfc-ancestors (mfc)
(declare (xargs :guard t))
; This function is analogous to mfc-clause, above.
#-acl2-loop-only
(cond ((eq mfc *metafunction-context*)
(return-from mfc-ancestors
(access metafunction-context mfc :ancestors))))
(if (and (true-listp mfc)
(true-listp (access metafunction-context mfc :ancestors)))
(access metafunction-context mfc :ancestors)
nil))
(defun mfc-unify-subst (mfc)
(declare (xargs :guard t))
#-acl2-loop-only
(cond ((eq mfc *metafunction-context*)
(return-from mfc-unify-subst
(access metafunction-context mfc :unify-subst))))
(if (true-listp mfc)
(access metafunction-context mfc :unify-subst)
nil))
(defun mfc-world (mfc)
(declare (xargs :guard t))
#-acl2-loop-only
(cond ((eq mfc *metafunction-context*)
(return-from mfc-world
(access metafunction-context mfc :wrld))))
(if (true-listp mfc)
(access metafunction-context mfc :wrld)
nil))
; When verifying guards on meta-functions, the following two events are
; handy.
(defthm pseudo-term-listp-mfc-clause
(pseudo-term-listp (mfc-clause mfc)))
(defthm type-alistp-mfc-type-alist
(type-alistp (mfc-type-alist mfc)))
; If you add more of these mfc accessor functions, list them in the defrec
; for rewrite-constant.
; See ``Essay on Metafunction Support, Part 2'' for the definitions of the
; uninterpreted mfc functions.
; Essay on a Total Order of the ACL2 Universe
; Pete Manolios has suggested the inclusion a total order of the ACL2 universe.
; He has pointed out that such an order often makes reasoning simpler, in
; particular allowing for sorting of arbitrary lists, canonical forms for sets,
; and nice theorems about records (certain structures sorted by key) that do
; not have hypotheses about the keys. The lemma immediately preceding the
; theorem in Appendix B of the paper "Structured Theory Development for a
; Mechanized Logic" (Journal of Automated Reasoning, vol. 26, no. 2, (2001),
; 161-203) guarantees that it is conservative to add such an order, in fact an
; order isomorphic to ACL2's natural numbers. (That argument is flawed, but we
; fix it in documentation topic conservativity-of-defchoose. But see the
; relevant comment in the acl2-loop-only definition of defchoose for why an
; enumeration is problematic for ACL2(r).)
; Here we add the weakest axiom we can think of that gives a total order of the
; universe, by adding a predicate that orders the non-conses that are not of
; any of the types known to ACL2 (numbers, strings, characters, symbols). We
; then derive a total order from it, lexorder, which uses function alphorder to
; order atoms. These functions have been in ACL2 from perhaps the beginning,
; but starting with Version_2.6, they comprehend the notion of bad-atom --
; atoms that satisfy bad-lisp-objectp -- in particular the primitive ordering
; bad-atom<=. The user is free to develop other total orders besides lexorder.
; We thank Pete Manolios for supplying a version of the events below and Rob
; Sumners for useful discussions and a modification of Pete's events.
(defun bad-atom (x)
; Keep this in sync with good-atom-listp.
(declare (xargs :guard t))
(not (or (consp x)
(acl2-numberp x)
(symbolp x)
(characterp x)
(stringp x))))
(defthm bad-atom-compound-recognizer
(iff (bad-atom x)
(not (or (consp x)
(acl2-numberp x)
(symbolp x)
(characterp x)
(stringp x))))
:rule-classes :compound-recognizer)
(in-theory (disable bad-atom))
#-acl2-loop-only
(defun-one-output bad-atom<= (x y)
(error "We have called bad-atom<= on ~s and ~s, but bad-atom<= has no Common ~
Lisp definition."
x y))
; We now introduce the total ordering on bad-atoms. We keep most of the
; consequences local, because we are interested in exporting facts only about
; lexorder, which is a total order of the universe.
(defaxiom booleanp-bad-atom<=
(or (equal (bad-atom<= x y) t)
(equal (bad-atom<= x y) nil))
:rule-classes :type-prescription)
(defaxiom bad-atom<=-antisymmetric
(implies (and (bad-atom x)
(bad-atom y)
(bad-atom<= x y)
(bad-atom<= y x))
(equal x y))
:rule-classes nil)
(defaxiom bad-atom<=-transitive
(implies (and (bad-atom<= x y)
(bad-atom<= y z)
(bad-atom x)
(bad-atom y)
(bad-atom z))
(bad-atom<= x z))
:rule-classes ((:rewrite :match-free :all)))
(defaxiom bad-atom<=-total
(implies (and (bad-atom x)
(bad-atom y))
(or (bad-atom<= x y)
(bad-atom<= y x)))
:rule-classes nil)
; Now we can introduce a total order on atoms followed by a total order on all
; ACL2 objects.
(defun alphorder (x y)
":Doc-Section ACL2::ACL2-built-ins
total order on atoms~/
~c[Alphorder] is a non-strict total order, a ``less than or equal,'' on
atoms. By ``non-strict total order'' we mean a function that always
returns ~c[t] or ~c[nil] and satisfies the following properties.~bq[]
o Antisymmetry: ~c[XrY & YrX -> X=Y]
o Transitivity: ~c[XrY & YrZ -> XrZ]
o Trichotomy: ~c[XrY v YrX]
~eq[]Also ~pl[lexorder], which extends ~c[alphorder] to all objects.
~c[(Alphorder x y)] has a guard of ~c[(and (atom x) (atom y))].~/
Within a single type: rationals are compared arithmetically, complex
rationals are compared lexicographically, characters are compared
via their char-codes, and strings and symbols are compared with
alphabetic ordering. Across types, rationals come before complexes,
complexes come before characters, characters before strings, and
strings before symbols. We also allow for ``bad atoms,'' i.e.,
atoms that are not legal Lisp objects but make sense in the ACL2
logic; these come at the end, after symbols.
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard (and (atom x) (atom y))))
(cond ((real/rationalp x)
(cond ((real/rationalp y)
(<= x y))
(t t)))
((real/rationalp y) nil)
((complex/complex-rationalp x)
(cond ((complex/complex-rationalp y)
(or (< (realpart x) (realpart y))
(and (= (realpart x) (realpart y))
(<= (imagpart x) (imagpart y)))))
(t t)))
((complex/complex-rationalp y)
nil)
((characterp x)
(cond ((characterp y)
(<= (char-code x)
(char-code y)))
(t t)))
((characterp y) nil)
((stringp x)
(cond ((stringp y)
(and (string<= x y) t))
(t t)))
((stringp y) nil)
(t
; Since we only execute on good ACL2 objects, we know that x and y are
; symbols. However, the logic allows for other kinds of atoms as well, as
; recognized by the predicate bad-atom. The following shortcut avoids any
; potential overhead of accounting for bad atoms.
#-acl2-loop-only
; We'd use (symbol-<= x y) if we had it.
(not (symbol-< y x))
#+acl2-loop-only
(cond ((symbolp x)
(cond ((symbolp y)
(not (symbol-< y x)))
(t t)))
((symbolp y) nil)
(t (bad-atom<= x y))))))
(defun lexorder (x y)
":Doc-Section ACL2::ACL2-built-ins
total order on ACL2 objects~/
~c[Lexorder] is a non-strict total order, a ``less than or equal,'' on
ACL2 objects. Also ~pl[alphorder], the restriction of ~c[lexorder] to
atoms; the notion of ``non-strict total order'' is defined there.
~c[Lexorder] has a guard of ~c[t].~/
For ~c[lexorder], an ~il[atom] and a ~il[cons] are ordered so that
the ~il[atom] comes first, and two ~il[cons]es are ordered so that
the one with the recursively smaller ~ilc[car] comes first, with the
~ilc[cdr]s being compared only if the ~ilc[car]s are equal. ~c[Lexorder]
compares two atoms by using ~ilc[alphorder].
To see the ACL2 definition of this function, ~pl[pf].~/"
(declare (xargs :guard t))
(cond ((atom x)
(cond ((atom y)
; Historical Plaque: Here once was found the comment:
; From the VM one can conclude that ALPHORDER is a
; total ordering when restricted to ATOMs.
; attesting to the Interlisp ancestry of this theorem prover.
(alphorder x y))
(t t)))
((atom y) nil)
((equal (car x) (car y))
(lexorder (cdr x) (cdr y)))
(t (lexorder (car x) (car y)))))
(local
(defthm bad-atom<=-reflexive
(implies (bad-atom x)
(bad-atom<= x x))
:hints (("Goal"
:by (:instance bad-atom<=-total (y x))))))
(local
(defthm bad-atom<=-total-rewrite
(implies (and (not (bad-atom<= y x))
(bad-atom x)
(bad-atom y))
(bad-atom<= x y))
:hints (("Goal"
:by (:instance bad-atom<=-total)))
:rule-classes :forward-chaining))
(local
(defthm equal-coerce
(implies (and (stringp x)
(stringp y))
(equal (equal (coerce x 'list)
(coerce y 'list))
(equal x y)))
:hints (("Goal" :use
((:instance coerce-inverse-2 (x x))
(:instance coerce-inverse-2 (x y)))
:in-theory (disable coerce-inverse-2)))))
(defthm alphorder-reflexive
(implies (not (consp x))
(alphorder x x)))
(local
(defthm string<=-l-transitive-at-0
(implies (and (not (string<-l y x 0))
(not (string<-l z y 0))
(character-listp x)
(character-listp y)
(character-listp z))
(not (string<-l z x 0)))
:rule-classes ((:rewrite :match-free :all))
:hints
(("Goal" :use (:instance string<-l-transitive
(i 0) (j 0) (k 0))))))
(defthm alphorder-transitive
(implies (and (alphorder x y)
(alphorder y z)
(not (consp x))
(not (consp y))
(not (consp z)))
(alphorder x z))
:rule-classes ((:rewrite :match-free :all))
:hints (("Goal"
:in-theory (enable string< symbol-<))))
(defthm alphorder-anti-symmetric
(implies (and (not (consp x))
(not (consp y))
(alphorder x y)
(alphorder y x))
(equal x y))
:hints (("Goal"
:in-theory (union-theories
'(string< symbol-<)
(disable code-char-char-code-is-identity))
:use ((:instance symbol-equality (s1 x) (s2 y))
(:instance bad-atom<=-antisymmetric)
(:instance code-char-char-code-is-identity (c y))
(:instance code-char-char-code-is-identity (c x)))))
:rule-classes
((:forward-chaining :corollary
(implies (and (alphorder x y)
(not (consp x))
(not (consp y)))
(iff (alphorder y x)
(equal x y)))
:hints (("Goal" :in-theory
(disable alphorder))))))
(defthm alphorder-total
(implies (and (not (consp x))
(not (consp y)))
(or (alphorder x y) (alphorder y x)))
:hints (("Goal" :use (:instance bad-atom<=-total)
:in-theory (enable string< symbol-<)))
:rule-classes
((:forward-chaining :corollary
(implies (and (not (alphorder x y))
(not (consp x))
(not (consp y)))
(alphorder y x)))))
(in-theory (disable alphorder))
(defthm lexorder-reflexive
(lexorder x x))
(defthm lexorder-anti-symmetric
(implies (and (lexorder x y) (lexorder y x))
(equal x y))
:rule-classes :forward-chaining)
(defthm lexorder-transitive
(implies (and (lexorder x y) (lexorder y z))
(lexorder x z))
:rule-classes ((:rewrite :match-free :all)))
(defthm lexorder-total
(or (lexorder x y) (lexorder y x))
:rule-classes
((:forward-chaining :corollary
(implies (not (lexorder x y))
(lexorder y x)))))
; Although there is no known harm in leaving lexorder enabled, it seems likely
; that most reasoning about this function will only need the four properties
; proved above.
(in-theory (disable lexorder))
; We introduce merge-sort-lexorder, which is used in
; show-accumulated-persistence but may be generally useful.
(defun merge-lexorder (l1 l2 acc)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2)
(true-listp acc))
:measure (+ (len l1) (len l2))))
(cond ((endp l1) (revappend acc l2))
((endp l2) (revappend acc l1))
((lexorder (car l1) (car l2))
(merge-lexorder (cdr l1) l2 (cons (car l1) acc)))
(t
(merge-lexorder l1 (cdr l2) (cons (car l2) acc)))))
(local
(defthm <=-len-evens
(<= (len (evens l))
(len l))
:rule-classes :linear
:hints (("Goal" :induct (evens l)))))
(local
(defthm <-len-evens
(implies (consp (cdr l))
(< (len (evens l))
(len l)))
:rule-classes :linear))
(defthm true-listp-merge-sort-lexorder
(implies (and (true-listp l1)
(true-listp l2))
(true-listp (merge-lexorder l1 l2 acc)))
:rule-classes :type-prescription)
(defun merge-sort-lexorder (l)
(declare (xargs :guard (true-listp l)
:measure (len l)))
(cond ((endp (cdr l)) l)
(t (merge-lexorder (merge-sort-lexorder (evens l))
(merge-sort-lexorder (odds l))
nil))))
; We move if* to axioms.lisp, so that all :logic mode functions that come with
; the system will be defined in this file. We do not need this property for
; Version 2.5 or earlier, but we may need it later if we modify the way that
; we define *1* functions.
; Since if* is in :Doc-Section Bdd, we move the :doc for bdd here as well.
(defdoc bdd
":Doc-Section Bdd
ordered binary decision diagrams with rewriting~/
Ordered binary decision diagrams (OBDDs, often simply called BDDs)
are a technique, originally published by Randy Bryant, for the
efficient simplification of Boolean expressions. In ACL2 we combine
this technique with rewriting to handle arbitrary ACL2 terms that
can represent not only Boolean values, but non-Boolean values as
well. In particular, we provide a setting for deciding equality of
bit vectors (lists of Boolean values).~/
An introduction to BDDs for the automated reasoning community may
be found in ``Introduction to the OBDD Algorithm for the ATP
Community'' by J Moore, ~i[Journal of Automated Reasoning] (1994),
pp. 33-45. (This paper also appears as Technical Report #84 from
Computational Logic, Inc.)
Further information about BDDs in ACL2 can be found in the
subtopics of this ~il[documentation] section. In particular,
~pl[bdd-introduction] for a good starting place that provides a
number of examples.
~l[hints] for a description of ~c[:bdd] hints. For quick
reference, here is an example; but only the ~c[:vars] part of the
hint is required, as explained in the documentation for ~il[hints].
The values shown are the defaults.
~bv[]
(:vars nil :bdd-constructors (cons) :prove t :literal :all)
~ev[]
We suggest that you next visit the documentation topic
~il[BDD-INTRODUCTION].")
(defun if* (x y z)
":Doc-Section Bdd
for conditional rewriting with BDDs~/
The function ~c[IF*] is defined to be ~ilc[IF], but it is used in a
special way by ACL2's ~il[BDD] package.~/
As explained elsewhere (~pl[bdd-algorithm]), ACL2's ~il[BDD]
algorithm gives special treatment to ~il[term]s of the form
~c[(IF* TEST TBR FBR)]. In such cases, the algorithm simplifies
~c[TEST] first, and the result of that simplification must be a
constant (normally ~c[t] or ~c[nil], but any non-~c[nil] explicit value is
treated like ~c[t] here). Otherwise, the algorithm aborts.
Thus, ~c[IF*] may be used to implement a sort of conditional
rewriting for ACL2's ~il[BDD] package, even though this package only
nominally supports unconditional rewriting. The following contrived
example should make this point clear.
Suppose that we want to prove that ~c[(nthcdr (length x) (append x y))]
is equal to ~c[y], but that we would be happy to prove this only for
lists having length 4. We can state such a theorem as follows.
~bv[]
(let ((x (list x0 x1 x2 x3)))
(equal (nthcdr (length x) (append x y))
y))
~ev[]
If we want to prove this formula with a ~c[:]~ilc[BDD] hint, then we need to
have appropriate rewrite rules around. First, note that ~c[LENGTH] is
defined as follows (try ~c[:]~ilc[PE] ~ilc[LENGTH]):
~bv[]
(length x)
=
(if (stringp x)
(len (coerce x 'list))
(len x))
~ev[]
Since ~il[BDD]-based rewriting is merely very simple unconditional
rewriting (~pl[bdd-algorithm]), we expect to have to prove a
rule reducing ~ilc[STRINGP] of a ~ilc[CONS]:
~bv[]
(defthm stringp-cons
(equal (stringp (cons x y))
nil))
~ev[]
Now we need a rule to compute the ~c[LEN] of ~c[X], because the definition
of ~c[LEN] is recursive and hence not used by the ~il[BDD] package.
~bv[]
(defthm len-cons
(equal (len (cons a x))
(1+ (len x))))
~ev[]
We imagine this rule simplifying ~c[(LEN (LIST X0 X1 X2 X3))] in terms of
~c[(LEN (LIST X1 X2 X3))], and so on, and then finally ~c[(LEN nil)] should
be computed by execution (~pl[bdd-algorithm]).
We also need to imagine simplifying ~c[(APPEND X Y)], where still ~c[X] is
bound to ~c[(LIST X0 X1 X2 X3)]. The following two rules suffice for
this purpose (but are needed, since ~ilc[APPEND], actually ~ilc[BINARY-APPEND],
is recursive).
~bv[]
(defthm append-cons
(equal (append (cons a x) y)
(cons a (append x y))))
(defthm append-nil
(equal (append nil x)
x))
~ev[]
Finally, we imagine needing to simplify calls of ~ilc[NTHCDR], where the
first argument is a number (initially, the length of
~c[(LIST X0 X1 X2 X3)], which is 4). The second lemma below is the
traditional way to accomplish that goal (when not using BDDs), by
proving a conditional rewrite rule. (The first lemma is only proved
in order to assist in the proof of the second lemma.)
~bv[]
(defthm fold-constants-in-+
(implies (and (syntaxp (quotep x))
(syntaxp (quotep y)))
(equal (+ x y z)
(+ (+ x y) z))))
(defthm nthcdr-add1-conditional
(implies (not (zp (1+ n)))
(equal (nthcdr (1+ n) x)
(nthcdr n (cdr x)))))
~ev[]
The problem with this rule is that its hypothesis makes it a
conditional ~il[rewrite] rule, and conditional rewrite rules
are not used by the ~il[BDD] package. (~l[bdd-algorithm] for a
discussion of ``BDD rules.'') (Note that the hypothesis cannot
simply be removed; the resulting formula would be false for ~c[n = -1]
and ~c[x = '(a)], for example.) We can solve this problem by using
~c[IF*], as follows; comments follow.
~bv[]
(defthm nthcdr-add1
(equal (nthcdr (+ 1 n) x)
(if* (zp (1+ n))
x
(nthcdr n (cdr x)))))
~ev[]
How is ~c[nthcdr-add1] applied by the ~il[BDD] package? Suppose that the ~il[BDD]
computation encounters a ~il[term] of the form ~c[(NTHCDR (+ 1 N) X)].
Then the ~il[BDD] package will apply the ~il[rewrite] rule ~c[nthcdr-add1]. The
first thing it will do when attempting to simplify the right hand
side of that rule is to attempt to simplify the term ~c[(ZP (1+ N))].
If ~c[N] is an explicit number (which is the case in the scenario we
envision), this test will reduce (assuming the executable
counterparts of ~ilc[ZP] and ~ilc[BINARY-+] are ~il[enable]d) to ~c[t] or
to ~c[nil]. In fact, the lemmas above (not including the lemma
~c[nthcdr-add1-conditional]) suffice to prove our goal:
~bv[]
(thm (let ((x (list x0 x1 x2 x3)))
(equal (nthcdr (length x) (append x y))
y))
:hints ((\"Goal\" :bdd (:vars nil))))
~ev[]
If we execute the following form that disables the definition and
executable counterpart of the function ~ilc[ZP]
~bv[]
(in-theory (disable zp (zp)))
~ev[]
before attempting the proof of the theorem above, we can see more
clearly the point of using ~c[IF*]. In this case, the prover makes
the following report.
~bv[]
ACL2 Error in ( THM ...): Unable to resolve test of IF* for term
(IF* (ZP (+ 1 N)) X (NTHCDR N (CDR X)))
under the bindings
((X (CONS X0 (CONS X1 (CONS X2 #)))) (N '3))
-- use SHOW-BDD to see a backtrace.
~ev[]
If we follow the advice above, we can see rather clearly what
happened. ~l[show-bdd].
~bv[]
ACL2 !>(show-bdd)
BDD computation on Goal yielded 21 nodes.
==============================
BDD computation was aborted on Goal, and hence there is no
falsifying assignment that can be constructed. Here is a backtrace
of calls, starting with the top-level call and ending with the one
that led to the abort. See :DOC show-bdd.
(LET ((X (LIST X0 X1 X2 X3)))
(EQUAL (NTHCDR (LENGTH X) (APPEND X Y)) Y))
alist: ((Y Y) (X3 X3) (X2 X2) (X1 X1) (X0 X0))
(NTHCDR (LENGTH X) (APPEND X Y))
alist: ((X (LIST X0 X1 X2 X3)) (Y Y))
(IF* (ZP (+ 1 N)) X (NTHCDR N (CDR X)))
alist: ((X (LIST* X0 X1 X2 X3 Y)) (N 3))
ACL2 !>
~ev[]
Each of these term-alist pairs led to the next, and the test of the
last one, namely ~c[(ZP (+ 1 N))] where ~c[N] is bound to ~c[3], was
not simplified to ~c[t] or to ~c[nil].
What would have happened if we had used ~ilc[IF] in place of ~c[IF*] in
the rule ~c[nthcdr-add1]? In that case, if ~c[ZP] and its executable
counterpart were disabled then we would be put into an infinite
loop! For, each time a term of the form ~c[(NTHCDR k V)] is
encountered by the BDD package (where k is an explicit number), it
will be rewritten in terms of ~c[(NTHCDR k-1 (CDR V))]. We would
prefer that if for some reason the term ~c[(ZP (+ 1 N))] cannot be
decided to be ~c[t] or to be ~c[nil], then the BDD computation should
simply abort.
Even if there were no infinite loop, this kind of use of ~c[IF*] is
useful in order to provide feedback of the form shown above whenever
the test of an ~c[IF] term fails to simplify to ~c[t] or to ~c[nil]."
(declare (xargs :mode :logic :verify-guards t))
(if x y z))
(defun resize-list (lst n default-value)
; This function supports stobjs. The documentation is found later, since
; :Doc-Section stobj is not yet defined.
(declare (xargs :guard t))
(if (and (integerp n) (> n 0))
(cons (if (atom lst) default-value (car lst))
(resize-list (if (atom lst) lst (cdr lst))
(1- n)
default-value))
nil))
; Define e/d, adapted with only minor changes from Bishop Brock's community
; book books/ihs/ihs-init.lisp.
(deflabel theory-functions
:doc
":Doc-Section Theories
functions for obtaining or producing ~il[theories]~/
~bv[]
Example Calls of Theory Functions:
(universal-theory :here)
(union-theories th1 th2)
(set-difference-theories th1 th2)
~ev[]
The theory functions are documented individually:~/
The functions (actually, macros) mentioned above are convenient ways
to produce ~il[theories]. (~l[theories].) Some, like
~ilc[universal-theory], take a logical name (~pl[logical-name]) as an
argument and return the relevant theory as of the time that name was
introduced. Others, like ~ilc[union-theories], take two ~il[theories] and
produce a new one. ~l[redundant-events] for a caution about
the use of logical names in theory expressions.
Theory expressions are generally composed of applications of theory
functions. Formally, theory expressions are expressions that
involve, at most, the free variable ~ilc[world] and that when evaluated
with ~ilc[world] bound to the current ACL2 world (~pl[world]) return
~il[theories]. The ``theory functions'' are actually macros that expand
into forms that involve the free variable ~ilc[world]. Thus, for example
~c[(universal-theory :here)] actually expands to
~c[(universal-theory-fn :here world)] and when that form is evaluated
with ~ilc[world] bound to the current ACL2 ~il[world], ~c[universal-theory-fn]
scans the ACL2 property lists and computes the current universal
theory. Because the theory functions all implicitly use ~ilc[world],
the variable does not generally appear in anything the user
types.~/")
(defun e/d-fn (theory e/d-list enable-p)
"Constructs the theory expression for the E/D macro."
(declare (xargs :guard (and (true-list-listp e/d-list)
(or (eq enable-p t)
(eq enable-p nil)))))
(cond ((atom e/d-list) theory)
(enable-p (e/d-fn `(UNION-THEORIES ,theory ',(car e/d-list))
(cdr e/d-list) nil))
(t (e/d-fn `(SET-DIFFERENCE-THEORIES ,theory ',(car e/d-list))
(cdr e/d-list) t))))
(defmacro e/d (&rest theories)
; Warning: The resulting value must be a runic-theoryp. See theory-fn-callp.
":Doc-Section Theories
enable/disable rules~/
The macro ~c[e/d] creates theory expressions for use in ~ilc[in-theory] hints
and events. It provides a convenient way to ~ilc[enable] and ~ilc[disable]
simultaneously, without having to write arcane theory expressions.
~bv[]
Examples:
(e/d (lemma1 lemma2)) ; equivalent to (enable lemma1 lemma2)
(e/d () (lemma)) ; equivalent to (disable lemma)
(e/d (lemma1) (lemma2 lemma3)) ; Enable lemma1 then disable lemma2, lemma3.
(e/d () (lemma1) (lemma2)) ; Disable lemma1 then enable lemma2.~/
General Form:
(e/d enables-0 disables-0 ... enables-n disables-n)
~ev[]
where each ~c[enables-i] and ~c[disables-i] is a list of runic designators;
~pl[theories], ~pl[enable], and ~pl[disable].
The ~c[e/d] macro takes any number of lists suitable for the ~ilc[enable] and
~ilc[disable] macros, and creates a theory that is equal to
~c[(current-theory :here)] after executing the following commands.
(in-theory (enable . enables-0))
(in-theory (disable . disables-0))
[etc.]
(in-theory (enable . enables-n))
(in-theory (disable . disables-n))~/
:cited-by theory-functions"
(declare (xargs :guard (true-list-listp theories)))
(cond
((atom theories) '(CURRENT-THEORY :HERE))
(t (e/d-fn '(CURRENT-THEORY :HERE) theories t))))
; We avoid skipping proofs for the rest of initialization, so that we can do
; the verify-termination-boot-strap proofs below during the first pass. See
; the comment in the encapsulate that follows. Note that preceding in-theory
; events are skipped during pass 1 of the boot-strap, since we are only just
; now entering :logic mode and in-theory events are skipped in :program mode.
#+acl2-loop-only
(f-put-global 'ld-skip-proofsp nil state) ; (set-ld-skip-proofsp nil state)
(encapsulate
()
(logic)
; We verify termination (and guards) for the following functions, in order that
; certain macroexpansions avoid stack overflows during boot-strapping or at
; least are sped up.
(verify-termination-boot-strap alistp)
(verify-termination-boot-strap symbol-alistp)
(verify-termination-boot-strap true-listp)
(verify-termination-boot-strap len)
(verify-termination-boot-strap length)
(verify-termination-boot-strap nth)
(verify-termination-boot-strap char)
(verify-termination-boot-strap eqlable-alistp)
(verify-termination-boot-strap assoc-eql-exec)
(verify-termination-boot-strap assoc-equal)
(verify-termination-boot-strap sublis)
(verify-termination-boot-strap nfix)
(verify-termination-boot-strap ifix)
(verify-termination-boot-strap integer-abs) ; for acl2-count
(verify-termination-boot-strap acl2-count) ; for nonnegative-integer-quotient
(verify-termination-boot-strap nonnegative-integer-quotient)
(verify-termination-boot-strap floor)
(verify-termination-boot-strap symbol-listp)
)
(defun mod-expt (base exp mod)
":Doc-Section ACL2::ACL2-built-ins
exponential function~/
~c[(mod-expt r i m)] is the result of raising the number ~c[r] to the
integer power ~c[i] and then taking the residue mod ~c[m]. That is,
~c[(mod-expt r i m)] is equal to ~c[(mod (expt r i) m)].~/
The ~il[guard] for ~c[(mod-expt r i m)] is that ~c[r] is a rational number
and ~c[i] is an integer; if ~c[r] is ~c[0] then ~c[i] is nonnegative; and
~c[m] is a non-zero rational number.
In some implementations (GCL Version 2.7.0 as of this writing), this function
is highly optimized when ~c[r] and ~c[i] are natural numbers, not both zero,
and ~c[m] is a positive integer. For other Lisp implementations, consider
using function ~c[mod-expt-fast], defined in the community book
~c[arithmetic-3/floor-mod/mod-expt-fast.lisp], which should still provide
significantly improved performance over this function.
To see the ACL2 definition of this function, ~pl[pf].~/"
; This is just an optimized version of (mod (expt base exp) mod).
(declare (xargs :guard (and (real/rationalp base)
(integerp exp)
(not (and (eql base 0) (< exp 0)))
(real/rationalp mod)
(not (eql mod 0)))))
#+(and (not acl2-loop-only) gcl)
(when (and (fboundp 'si::powm)
(natp base)
(natp exp)
(not (and (eql base 0) (eql exp 0)))
(posp mod))
; The restrictions above can be weakened if justified by a clear spec for
; si::powm. Unfortunately, it's not evident whether any available version of
; GCL defines si::powm.
(return-from mod-expt (si::powm base exp mod)))
(mod (expt base exp) mod))
(defmacro fcons-term* (&rest x)
; ; Start experimental code mod, to check that calls of fcons-term are legitimate
; ; shortcuts in place of the corresponding known-correct calls of cons-term.
; #-acl2-loop-only
; `(let* ((fn-used-only-in-fcons-term* ,(car x))
; (args-used-only-in-fcons-term* (list ,@(cdr x)))
; (result (cons fn-used-only-in-fcons-term*
; args-used-only-in-fcons-term*)))
; (assert$ (equal result (cons-term fn-used-only-in-fcons-term*
; args-used-only-in-fcons-term*))
; result))
; #+acl2-loop-only
; ; End experimental code mod.
(cons 'list x))
(defun conjoin2 (t1 t2)
; This function returns a term representing the logical conjunction of
; t1 and t2. The term is IFF-equiv to (AND t1 t2). But, the term is
; not EQUAL to (AND t1 t2) because if t2 is *t* we return t1's value,
; while (AND t1 t2) would return *t* if t1's value were non-NIL.
(declare (xargs :guard t))
(cond ((equal t1 *nil*) *nil*)
((equal t2 *nil*) *nil*)
((equal t1 *t*) t2)
((equal t2 *t*) t1)
(t (fcons-term* 'if t1 t2 *nil*))))
(defun conjoin (l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l) *t*)
((endp (cdr l)) (car l))
(t (conjoin2 (car l) (conjoin (cdr l))))))
(defun conjoin2-untranslated-terms (t1 t2)
; See conjoin2. This function has the analogous spec, but where t1 and t2 need
; not be translated.
(declare (xargs :guard t))
(cond ((or (equal t1 *nil*) (eq t1 nil))
*nil*)
((or (equal t2 *nil*) (eq t2 nil))
*nil*)
((or (equal t1 *t*) (eq t1 t))
t2)
((or (equal t2 *t*) (eq t2 t))
t1)
(t (fcons-term* 'if t1 t2 *nil*))))
(defun conjoin-untranslated-terms (l)
; This function is analogous to conjoin, but where t1 and t2 need not be
; translated.
(declare (xargs :guard (true-listp l)))
(cond ((endp l) *t*)
((endp (cdr l)) (car l))
(t (conjoin2-untranslated-terms
(car l)
(conjoin-untranslated-terms (cdr l))))))
(defun disjoin2 (t1 t2)
; We return a term IFF-equiv (but not EQUAL) to (OR t1 t2). For example,
; if t1 is 'A and t2 is 'T, then we return 'T but (OR t1 t2) is 'A.
(declare (xargs :guard t))
(cond ((equal t1 *t*) *t*)
((equal t2 *t*) *t*)
((equal t1 *nil*) t2)
((equal t2 *nil*) t1)
(t (fcons-term* 'if t1 *t* t2))))
(defun disjoin (lst)
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) *nil*)
((endp (cdr lst)) (car lst))
(t (disjoin2 (car lst) (disjoin (cdr lst))))))
(defun disjoin-lst (clause-list)
(declare (xargs :guard (true-list-listp clause-list)))
(cond ((endp clause-list) nil)
(t (cons (disjoin (car clause-list))
(disjoin-lst (cdr clause-list))))))
(defun conjoin-clauses (clause-list)
(declare (xargs :guard (true-list-listp clause-list)))
(conjoin (disjoin-lst clause-list)))
(defconst *true-clause* (list *t*))
(defconst *false-clause* nil)
(defun clauses-result (tuple)
(declare (xargs :guard (true-listp tuple)))
(cond ((car tuple) (list *false-clause*))
(t (cadr tuple))))
(defdoc sharp-dot-reader
":Doc-Section other
read-time evaluation of constants~/
~bv[]
Example:
ACL2 !>(defconst *a* '(a b c))
Summary
Form: ( DEFCONST *A* ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
*A*
ACL2 !>(quote (1 2 #.*a* 3 4))
(1 2 (A B C) 3 4)
ACL2 !>
~ev[]~/
The ACL2 reader supports the syntax ~c[#.*a*] where ~c[*a*] was defined by
~ilc[defconst]. In this case, the reader treats ~c[#.*a*] as though it were
reading the value of ~c[*a*]. This feature can be useful in conjunction with
the use of ~ilc[evisc-table] to abbreviate large constants, so that the
abbreviation can be read back in; ~pl[evisc-table].
Remarks.
(1) The ACL2 reader only supports `~c[#.]' as described above, unlike Common
Lisp. Older versions (preceding 3.5) used `~c[#.]' to abort, but that
functionality is now carried out by ~c[(a!)]; ~pl[a!]. For a related feature
that only pops up one level, ~pl[p!].
(2) If you call ~ilc[certify-book] on a book that contains a form
`~c[#.*foo*]', the ~c[*foo*] must already be defined in the ~il[world] in
which you issue the ~c[certify-book] command. The reason is that
~c[certify-book] reads the entire book before evaluating its forms.")
(defdoc sharp-comma-reader
":Doc-Section other
DEPRECATED read-time evaluation of constants~/
The use of `~c[#,]' has been deprecated. Please use `~c[#.]' instead;
~pl[sharp-dot-reader].~/~/")
(defdoc sharp-bang-reader
":Doc-Section other
package prefix that is not restricted to symbols~/
~bv[]
Examples:
ACL2 !>(defpkg \"FOO\" nil)
Summary
Form: ( DEFPKG \"FOO\" ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
\"FOO\"
ACL2 !>'#!foo(a b)
(FOO::A FOO::B)
ACL2 !>'#!foo(a #!acl2 b)
(FOO::A B)
ACL2 !>'#!foo(#!acl2 a b)
(A FOO::B)
ACL2 !>'#!foo(#!\"ACL2\" a b)
(A FOO::B)
ACL2 !>
~ev[]~/
The ACL2 reader supports the syntax ~c[#!pkg-name expr] where ~c[pkg-name] is
a string or symbol that names a package known to ACL2. As illustrated above,
this syntax nests as one might expect. In the special case that ~c[expr] is
a symbol, ~c[#!pkg-name expr] is equivalent to ~c[pkg-name::expr].")
(defdoc sharp-u-reader
":Doc-Section other
allow underscore characters in numbers~/
~bv[]
Example:
ACL2 !>#ub1000_1000_1000_
2184
ACL2 !>#b100010001000
2184
ACL2 !>#uo1_1
9
ACL2 !>#o11
9
ACL2 !>#u34_5
345
ACL2 !>#u345
345
ACL2 !>345
345
ACL2 !>#ux12_a
298
ACL2 !>#ux12a
298
ACL2 !>#u x12a
298
ACL2 !>#x12a
298
ACL2 !>#u123_456/7_919
123456/7919
ACL2 !>
~ev[]~/
The ACL2 reader supports the use of ~c[#ub], ~c[#uo], and ~c[#ux] where one
would otherwise write ~c[#b], ~c[#o], and ~c[#x], respectively (for binary,
octal, and hexadecimal numerals), but where underscore characters (`~c[_]')
are allowed but ignored. Also supported is the prefix ~c[#u] in front of a
an expression that is a decimal numeral except that underscore characteres
are allowed but ignored.
The precise specification of ~c[#u] is as follows. The Lisp reader reads one
expression after the ~c[#u]. If the result is a number, then that number is
returned by the reader. Otherwise the result must be a symbol whose name
begins with one of the characters `~c[B]', `~c[O]', or `~c[X]', or else a
decimal digit (one of the characters `~c[0], ~c[1], ..., ~c[9]'). All
underscores are removed from the name of that symbol to obtain a string and
in the first three cases only, a `~c[#]' character is prepended to that
string. The resulting string is then handed to the Lisp reader in order to
obtain the final result, which must be a number or else an error occurs.")
(defdoc evisc-table
":Doc-Section events
support for abbreviated output~/
The ~c[evisc-table] is an ACL2 table (~pl[table]) whose purpose is to modify
the print representations of specified non-~c[nil] objects. When a key (some
object) is associated with a string value, then that string is printed
instead of that key (as an abbreviation). For example, the following log
shows how to abbreviate the key ~c[(a b c)] with the token ~c[<my-abc-list>].
~bv[]
ACL2 !>(table evisc-table '(a b c) \"<my-abc-list>\")
Summary
Form: ( TABLE EVISC-TABLE ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
EVISC-TABLE
ACL2 !>'(a b c)
<my-abc-list>
ACL2 !>'(4 5 a b c)
(4 5 . <my-abc-list>)
ACL2 !>
~ev[]~/
Every value in this ~il[table] must be either a string or ~c[nil], where
~c[nil] eliminates any association of the key with an abbreviation.
Continuing with the log above:
~bv[]
ACL2 !>(table evisc-table '(a b c) nil)
Summary
Form: ( TABLE EVISC-TABLE ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
EVISC-TABLE
ACL2 !>'(a b c)
(A B C)
ACL2 !>'(4 5 a b c)
(4 5 A B C)
ACL2 !>
~ev[]
It can be particularly helpful to use this table to abbreviate a constant
introduced by ~ilc[defconst] by prefixing the constant name with ~c[\"#,\"],
as we now describe. Consider first the following example.
~bv[]
(defconst *abc* '(1 2 3 4 5 6 7 8))
(table evisc-table *abc*
(concatenate 'string \"#,\" (symbol-name '*abc*)))
~ev[]
Then the constant ~c[*abc*] is printed as follows ~-[] very helpful if its
associated structure is significantly larger than the 8-element list of
numbers shown above!
~bv[]
ACL2 !>*abc*
#,*ABC*
ACL2 !>
~ev[]
What's more, the ACL2 reader will replace ~c[#,*C*], where ~c[*C*] is defined by
~ilc[defconst], by its value, regardless of ~c[evisc-table];
~pl[sharp-dot-reader]. Continuing with the example above, we have:
~bv[]
ACL2 !>(cdr (quote #,*ABC*))
(2 3 4 5 6 7 8)
ACL2 !>
~ev[]
Of course, more care needs to be taken if packages are involved
(~pl[defpkg]), as we now illustrate.
~bv[]
ACL2 !>(defpkg \"FOO\" nil)
Summary
Form: ( DEFPKG \"FOO\" ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
\"FOO\"
ACL2 !>(defconst foo::*a* '(1 2 3))
Summary
Form: ( DEFCONST FOO::*A* ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
FOO::*A*
ACL2 !>(table evisc-table foo::*a* \"#,foo::*a*\")
Summary
Form: ( TABLE EVISC-TABLE ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
EVISC-TABLE
ACL2 !>foo::*a*
#,foo::*a*
ACL2 !>'#,foo::*a*
#,foo::*a*
ACL2 !>(cdr '#,foo::*a*)
(2 3)
ACL2 !>
~ev[]
We conclude by an example showing some extra care that may be important to
consider taking. We start with:
~bv[]
(defconst |*BaR*| '(3 4))
~ev[]
Then the following works just fine; but try it without the extra code for the
~c[may-need-slashes] case and you'll see that the sharp-dot printing is
missing. First:
~bv[]
(table evisc-table
|*BaR*|
(let ((x (symbol-name '|*BaR*|)))
(if (may-need-slashes x)
(concatenate 'string \"#.|\" x \"|\")
(concatenate 'string \"#.\" x))))
~ev[]
Then:
~bv[]
ACL2 !>|*BaR*|
#,|*BaR*|
ACL2 !>
~ev[]")
(table evisc-table nil nil
:guard ; we don't want to abbreviate nil
(and (not (null key))
(or (stringp val)
(null val))))
; Essay on the Design of Custom Keyword Hints
; A custom keyword hint is installed by adding a pair to the
; custom-keywords-table using one of the two forms:
; (add-custom-keyword-hint :keyi ugtermi)
; or
; (add-custom-keyword-hint :keyi ugtermi :checker uctermi)
; Restrictions are explained below, but both ugtermi and uctermi are
; untranslated terms and VAL is allowed as a free var in them.
; In the event that no :checker is supplied, uctermi defaults to (value t).
; Add-custom-keyword-hint translates the two terms, to get "generator" term
; gtermi and "checker" term ctermi, and then pairs :keyi with the doublet
; (ctermi gtermi) in the custom-keywords-table. The presence of such a pair
; makes :keyi a custom keyword hint.
; Every custom keyword hint, :keyi, thus has translated checker and generator
; terms and we call them ctermi and gtermi below.
; Here are the restrictions:
; (a) :keyi is not among the primitive hint keywords in *hint-keywords*.
; (b) ctermi is a term involving no free variables other than (VAL WORLD CTX
; STATE) whose output signature is (mv erp val STATE) to be interpreted as a
; standard ACL2 error triple. Note that ctermi can modify state arbitrarily.
; Its non-erroneous value is irrelevant. We are just giving it a chance to
; cause an error.
; (c) gtermi is a term involving no free variables other than (VAL
; KEYWORD-ALIST ID CLAUSE WORLD HIST PSPV CTX STATE), along with
; STABLE-UNDER-SIMPLIFICATIONP except in the context of :backtrack hints, in
; which case PROCESSOR and CLAUSE-LIST are the extra variables. Note that
; these variables, other than VAL, are those for the general case of a computed
; hint. The output signature of gtermi should be an error triple. Again,
; gtermi can modify state arbitrarily. The value component will be treated as
; a normal hint.
; How are custom keyword hints processed?
; Suppose :keyi is such a key, with checker term ctermi and generator term
; gtermi, and suppose the user writes a hint like:
; ("goal-spec" ... :keyi vali ...)
; At hint translate time, ctermi is evaluated, with VAL bound to vali. and
; WORLD, CTX, and STATE bound in the obvious way. The value is ignored! All
; that ctermi does is cause an error if it doesn't like val. The evaluation is
; conducted in a "protected" way that minimizes effects of ctermi on the state!
; Then, when the clause identified by goal-spec arises, the first custom
; keyword hint, :keyi, with (now translated) value vali and generator term
; gtermi is found. We first evaluate ctermi ``again'' on vali. Provided the
; non-erroneous exit is made, we then do a protected evaluation (as above) of
; gtermi with the following bindings:
; val: vali
; keyword-alist: (... :keyi vali ...)
; id: parsed form of goal-spec (see :DOC clause-identifier)
; clause, etc: as appropriate given clause and context
; The value of gtermi, say new-keyword-alist, is then used to replace the
; original hint
; ("goal-spec" ... :keyi vali ...)
; with:
; ("goal-spec" . new-keyword-alist)
; Note carefully: the value returned by a single custom keyword hint replaces
; the ENTIRE list of keywords and values in which it appears. Practically
; speaking, custom keywords should be sensitive to the input keyword-alist and
; return a modified version of it. This can easily be done by using the
; primitive function splice-keyword-alist or more sophisticated functions that
; attempt to merge new hints into old ones.
; Note that the new keyword-alist might contain more custom keyword hints and
; their checkers will not have been run.
; This process is repeated until there are no custom keywords in the list.
; This iteration is limited by a counter that is initially set to
; *custom-keyword-max-iterations*.
; When all custom keywords are eliminated, the hint is translated
; conventionally and applied to the subgoal.
; Thus, if the hint attached to a goal-spec contains any custom keyword, it
; cannot be fully translated until the goal arises. (Typically, custom hints,
; like computed hints, look at the clause itself.) For that reason, if a
; user-supplied hint,
; ("goal-spec" . keyword-alist)
; contains a custom keyword among the keys in the keyword-alist, we translate
; it to a full-fledged computed hint:
; (custom-keyword-hint-interpreter
; 'keyword-alist
; 'parsed-goal-spec
; ID CLAUSE WORLD STABLE-UNDER-SIMPLIFICATIONP HIST PSPV CTX STATE)
; and further evaluation and translation happens when the subgoal arises. (We
; do eagerly evaluate custom keyword hints if their associated gtermi do not
; involve any of the dynamically determined variables, like CLAUSE.)
; Note that gtermi is free to add as many :NO-OP T entries as it wants to
; insure the result is non-empty, if that's a problem.
(defconst *top-hint-keywords*
; WARNING: :use must precede :cases in this list, because
; of its use in the call of first-assoc-eq in apply-top-hints-clause.
; Specifically, if both :use and :cases are present in the hint-settings, then
; apply-top-hints-clause1 expects that call of first-assoc-eq to return the
; :use hint. See apply-top-hints-clause1.
'(:use :cases :by :bdd :clause-processor :or))
(defconst *hint-keywords*
; This constant contains all the legal hint keywords as well as
; :computed-hints-replacement.
(append *top-hint-keywords*
'(:computed-hints-replacement
:error
:no-op
:no-thanks
:expand
:case-split-limitations
:restrict
:do-not
:do-not-induct
:hands-off
:in-theory
:nonlinearp
:backchain-limit-rw
:reorder
:backtrack
:induct
:rw-cache-state)))
(table custom-keywords-table nil nil
:guard
; Val must be of the form (uterm1 uterm2), where uterm1 and uterm2 are
; untranslated terms with certain syntactic properties, including being
; single-threaded in state and with output signatures (mv erp val state). But
; we cannot check that without access to state. So we actually don't check
; those key properties until we use them and we employ trans-eval at that
; point.
; #+ACL2-PAR note: it may be the case that, with waterfall parallelism enabled,
; both uterm1 and uterm2 must not return state.
; As a matter of interest, uterm1 is the untranslated generator term for the
; key and uterm2 is the untranslated checker term.
(and (not (member-eq key *hint-keywords*))
(true-listp val)
(equal (length val) 2)))
#+acl2-loop-only
(defmacro add-custom-keyword-hint (key uterm1 &key (checker '(value t)))
":Doc-Section Events
add a new custom keyword hint~/
~bv[]
Examples:
(add-custom-keyword-hint :my-hint (my-hint-fn val ...))
(add-custom-keyword-hint :my-hint
(my-hint-fn val ...)
:checker (my-hint-checker-fn val ...))
~ev[]
~/
~bv[]
General Form:
(add-custom-keyword-hint :key term1 :checker term2)
~ev[]
where ~c[:key] is a ~ilc[keywordp] not among the primitive keyword hints
listed in ~c[*hint-keywords*], the ~c[:checker] argument is optional, and
~c[term1] and (if supplied) ~c[term2] are terms with certain free-variable
and signature restrictions described below. Henceforth, ~c[:key] is
treated as a custom keyword hint, e.g., the user can employ ~c[:key] in hints
to ~ilc[defthm], such as:
~bv[]
(defthm name ...
:hints ((\"Subgoal *1/1'\" ... :key val ...))).
~ev[]
Custom keyword hints are complicated. To use them you must understand
~ilc[state], multiple values (e.g., ~ilc[mv] and ~ilc[mv-let]), ACL2's notion
of error triples (~pl[programming-with-state]), how to generate ``soft''
errors with ~ilc[er], how to use ~ilc[fmt]-strings to control output, how to
use computed hints (~pl[computed-hints]) and some aspects of ACL2's internal
event processing. Furthermore, it is possible to implement a custom keyword
hint that can make an event non-reproducible! So we recommend that these
hints be developed by ACL2 experts. Basically the custom keyword feature
allows the implementors and other experts to extend the hint facility without
modifying the ACL2 sources.
~c[Term1] is called the ``generator'' term and ~c[term2] is called the
``checker'' term of the custom keyword hint ~c[:key]. Together they specify
the semantics of the new custom keyword hint ~c[:key]. Roughly speaking,
when a custom keyword hint is supplied by the user, as in
~bv[]
(defthm name ...
:hints ((\"Subgoal *1/1'\" ... :my-hint val ...))).
~ev[]
the checker term is evaluated on ~c[val] to check that ~c[val] is of the
expected shape. Provided ~c[val] passes the check, the generator term is
used to compute a standard hint. Like computed hints, the generator of a
custom keyword hint is allowed to inspect the actual clause on which it is
being fired. Indeed, it is allowed to inspect the entire list of hints
(standard and custom) supplied for that clause. Thus, in the most general
case, a custom keyword hint is just a very special kind of computed hint.
The generator, ~c[term1], must have no free variables other than:
~bv[]
(val keyword-alist
id clause world stable-under-simplificationp
hist pspv ctx state).
~ev[]
Moreover, either ~c[term1] must evaluate to a single non-~il[stobj] value, or
else it must be single-threaded in ~c[state] and have the standard
error-triple output signature, ~c[(mv * * state)].
The restrictions on the checker, ~c[term2], are that it be single-threaded in
~c[state], have the standard error-triple output signature,
~c[(mv * * state)], and have no free variables other than:
~bv[]
(val world ctx state).
~ev[]
For examples, see the community books directory ~c[books/hints/], in
particular ~c[basic-tests.lisp].
To delete a previously added custom keyword hint,
~pl[remove-custom-keyword-hint].
The community book ~c[hints/merge-hint.lisp] can be useful in writing
custom keyword hints. See the examples near the of the file.
Note: This is an event! It does not print the usual event summary but
nevertheless changes the ACL2 logical ~il[world] and is so recorded.~/"
`(add-custom-keyword-hint-fn ',key ',uterm1 ',checker state))
#-acl2-loop-only
(defmacro add-custom-keyword-hint (&rest args)
(declare (ignore args))
nil)
(defmacro remove-custom-keyword-hint (keyword)
":Doc-Section Events
remove a custom keyword hint~/
~bv[]
Example Forms:
(remove-custom-keyword-hint :my-hint)
~/
General Form:
(remove-custom-keyword-hint keyword)
~ev[]
where ~c[keyword] is a ~ilc[keywordp].
For an explanation of how custom keyword hints are processed,
~pl[custom-keyword-hints]; also ~pl[add-custom-keyword-hint].
Note: This is an event! It does not print the usual event summary
but nevertheless changes the ACL2 logical ~il[world] and is so recorded.~/"
`(table custom-keywords-table nil
(let ((tbl (table-alist 'custom-keywords-table world)))
(if (assoc-eq ',keyword tbl)
(delete-assoc-eq-exec ',keyword tbl)
(prog2$ (cw "~%NOTE: the name ~x0 did not appear as a key in ~
custom-keywords-table. Consider using :u or :ubt to ~
undo this event, which is harmless but does not ~
change custom-keywords-table.~%"
',keyword)
tbl)))
:clear))
(defun splice-keyword-alist (key new-segment keyword-alist)
(declare (xargs :guard (and (keywordp key)
(keyword-value-listp keyword-alist)
(true-listp new-segment))))
(cond
((endp keyword-alist) nil)
((eq key (car keyword-alist))
(append new-segment (cddr keyword-alist)))
(t (cons (car keyword-alist)
(cons (cadr keyword-alist)
(splice-keyword-alist key new-segment
(cddr keyword-alist)))))))
(deflabel custom-keyword-hints
:doc
":Doc-Section Miscellaneous
user-defined hints~/
~l[add-custom-keyword-hint] for a discussion of how advanced users can define
their own hint keywords. For examples, see the community books directory
~c[books/hints/], in particular ~c[basic-tests.lisp].~/~/")
(defmacro show-custom-keyword-hint-expansion (flg)
":Doc-Section custom-keyword-hints
print out custom keyword hints when they are expanded~/
~bv[]
Examples:
(show-custom-keyword-hint-expansion t)
(show-custom-keyword-hint-expansion nil)
~ev[]
~/
~bv[]
General Form:
(show-custom-keyword-hint-expansion flg)
~ev[]
If the value of ~c[flg] is non-~c[nil], then when custom keyword hints are
expanded, the system prints the results of each expansion. This is sometimes
useful for debugging custom keyword hints and, from time to time, may be
useful in understanding how a custom hint affects some proof attempt.
The default setting is ~c[nil].
For an explanation of how custom keyword hints are processed,
~pl[custom-keyword-hints].~/"
`(f-put-global 'show-custom-keyword-hint-expansion ,flg state))
; Start implementation of search.
(defun search-fn-guard (seq1 seq2 from-end test start1 start2 end1 end2
end1p end2p)
(declare (xargs :guard t)
(ignore from-end))
(and (cond ((not (member-eq test '(equal char-equal)))
(er hard? 'search
"For the macro ~x0, only the :test values ~x1 and ~x2 are ~
supported; ~x3 is not. If you need other tests supported, ~
please contact the ACL2 implementors."
'search 'equal 'char-equal test))
((and (stringp seq1)
(stringp seq2))
(or (eq test 'equal)
(and (standard-char-listp (coerce seq1 'list))
(standard-char-listp (coerce seq2 'list)))
(er hard? 'search
"When ~x0 is called on two strings, they must both ~
consist of standard characters. However, this is not ~
the case for ~x1."
'search
(if (standard-char-listp (coerce seq1 'list))
seq2
seq1))))
((eq test 'char-equal)
(er hard? 'search
"For the macro ~x0, the :test ~x1 is only supported for ~
string arguments. If you need this test supported for ~
true lists, please contact the ACL2 implementors."
'search 'char-equal))
((and (true-listp seq1)
(true-listp seq2))
t)
(t
(er hard? 'search
"The first two arguments of ~x0 must both evaluate to true ~
lists or must both evaluate to strings."
'search)))
(let ((end1 (if end1p end1 (length seq1)))
(end2 (if end2p end2 (length seq2))))
(and (natp start1)
(natp start2)
(natp end1)
(natp end2)
(<= start1 end1)
(<= start2 end2)
(<= end1 (length seq1))
(<= end2 (length seq2))))))
(defun search-from-start (seq1 seq2 start2 end2)
(declare (xargs :measure (nfix (1+ (- end2 start2)))
:guard (and (or (true-listp seq1)
(stringp seq1))
(or (true-listp seq2)
(stringp seq2))
(integerp start2)
(<= 0 start2)
(integerp end2)
(<= end2 (length seq2))
(<= (+ start2 (length seq1)) end2))))
(let ((bound2 (+ start2 (length seq1))))
(cond
((or (not (integerp end2))
(not (integerp start2)))
nil)
((equal seq1 (subseq seq2 start2 bound2))
start2)
((>= bound2 end2)
nil)
(t
(search-from-start seq1 seq2 (1+ start2) end2)))))
(defun search-from-end (seq1 seq2 start2 end2 acc)
(declare (xargs :measure (nfix (1+ (- end2 start2)))
:guard (and (or (true-listp seq1)
(stringp seq1))
(or (true-listp seq2)
(stringp seq2))
(integerp start2)
(<= 0 start2)
(integerp end2)
(<= end2 (length seq2))
(<= (+ start2 (length seq1)) end2))))
(cond
((or (not (integerp end2))
(not (integerp start2)))
nil)
(t
(let* ((bound2 (+ start2 (length seq1)))
(matchp (equal seq1 (subseq seq2 start2 bound2)))
(new-acc (if matchp start2 acc)))
(cond
((>= bound2 end2)
new-acc)
(t
(search-from-end seq1 seq2 (1+ start2) end2 new-acc)))))))
; The following lemmas are needed for guard verification of search-fn.
(encapsulate
()
(local
(defthm len-string-downcase1
(equal (len (string-downcase1 x))
(len x))))
(local
(defthm stringp-subseq
(implies (stringp str)
(stringp (subseq str start end)))))
(local
(defthm standard-char-listp-nthcdr
(implies (standard-char-listp x)
(standard-char-listp (nthcdr n x)))
:hints (("Goal" :in-theory (enable standard-char-listp)))))
(local
(defthm standard-char-listp-revappend
(implies (and (standard-char-listp x)
(standard-char-listp ac))
(standard-char-listp (revappend x ac)))
:hints (("Goal" :in-theory (enable standard-char-listp)))))
(local
(defthm standard-char-listp-first-n-ac
(implies (and (standard-char-listp x)
(standard-char-listp ac)
(<= n (len x)))
(standard-char-listp (first-n-ac n x ac)))
:hints (("Goal" :in-theory (enable standard-char-listp)))))
(local
(defthm character-listp-first-n-ac
(implies (and (character-listp x)
(character-listp ac)
(<= n (len x)))
(character-listp (first-n-ac n x ac)))))
(local
(defthm character-listp-nthcdr
(implies (character-listp x)
(character-listp (nthcdr n x)))))
(local
(defthm nthcdr-nil
(equal (nthcdr n nil)
nil)))
(local
(defthm len-nthcdr
(equal (len (nthcdr n x))
(nfix (- (len x) (nfix n))))))
(local
(defthm subseq-preserves-standard-char-listp
(implies (and (stringp seq)
(natp start)
(natp end)
(<= start end)
(<= end (length seq))
(standard-char-listp (coerce seq 'list)))
(standard-char-listp (coerce (subseq seq start end)
'list)))))
(local
(defthm true-listp-revappend
(equal (true-listp (revappend x y))
(true-listp y))))
(local
(defthm true-listp-first-n-ac
(implies (and (true-listp acc)
(true-listp lst))
(true-listp (first-n-ac n lst acc)))))
(local
(defthm true-listp-nthcdr
(implies (true-listp x)
(true-listp (nthcdr n x)))))
(local
(defthm true-listp-subseq
(implies (true-listp seq)
(true-listp (subseq seq start end)))
:rule-classes (:rewrite :type-prescription)))
(local
(defthm len-revappend
(equal (len (revappend x y))
(+ (len x) (len y)))))
(local
(defthm len-first-n-ac
(implies (true-listp ac)
(equal (len (first-n-ac n lst ac))
(+ (nfix n) (len ac))))))
(local
(defthm len-subseq
(implies (and (true-listp seq)
(natp start)
(natp end)
(<= start end))
(equal (len (subseq seq start end))
(- end start)))))
(local
(defthm len-subseq-string
(implies (and (stringp seq)
(natp start)
(natp end)
(<= start end)
(<= end (len (coerce seq 'list))))
(equal (len (coerce (subseq seq start end)
'list))
(- end start)))
:hints (("Goal" :in-theory (enable subseq)))))
(defun search-fn (seq1 seq2 from-end test start1 start2 end1 end2 end1p end2p)
(declare (xargs
:guard
(search-fn-guard seq1 seq2 from-end test start1 start2 end1 end2
end1p end2p)
:guard-hints (("Goal" :in-theory (disable subseq)))))
#-acl2-loop-only ; only called when the guard is true
(if (or end1p end2p)
(search seq1 seq2
:from-end from-end :test test
:start1 start1 :start2 start2
:end1 (if end1p end1 (length seq1))
:end2 (if end2p end2 (length seq2)))
(search seq1 seq2
:from-end from-end :test test
:start1 start1 :start2 start2))
#+acl2-loop-only
(let* ((end1 (if end1p end1 (length seq1)))
(end2 (if end2p end2 (length seq2)))
(seq1 (subseq seq1 start1 end1)))
(mv-let
(seq1 seq2)
(cond ((eq test 'char-equal) ; hence, both are strings, by the guard
(mv (string-downcase seq1) (string-downcase seq2)))
(t (mv seq1 seq2)))
(and (<= (- end1 start1) (- end2 start2))
(cond (from-end
(search-from-end seq1 seq2 start2 end2 nil))
(t
(search-from-start seq1 seq2 start2 end2)))))))
)
#+acl2-loop-only
(defmacro search (seq1 seq2
&key
from-end (test ''equal)
(start1 '0) (start2 '0)
(end1 'nil end1p) (end2 'nil end2p))
":Doc-Section ACL2::ACL2-built-ins
search for a string or list in another string or list~/
~bv[]
Example Forms:
(search \"cd\" \"Cdabcdefcde\") ; = 4, index of first match
(search \"cd\" \"Cdabcdefcde\" :test 'equal) ; same as above
(search \"cd\" \"Cdabcdefcde\" :from-end t) ; = 8, index of last match
(search \"cd\" \"Cdabcdefcde\" :start1 1) ; = 1
(search \"cd\" \"Cdabcdefcde\" :start2 5) ; = 8
(search \"cd\" \"Cdabcdefcde\" :test 'char-equal) ; = 0 (case-insensitive)
(search \"ac\" \"Cdabcdefcde\") ; = nil
(search '(a b) '(9 8 a b 7 6)) ; = 2~/
General Form:
(search seq1 seq2 &key from-end test start1 start2 end1 end2)
~ev[]
~c[Search] indicates whether one string or list occurs as a (contiguous)
subsequence of another string or list, respectively. It returns ~c[nil] if
no such match is found; otherwise it returns the (zero-based) index of the
first match by default, but a non-~c[nil] value of keyword argument
~c[:from-end] causes it to return the last match. The ~c[:test] is ~c[equal]
by default. The other legal value for ~c[:test] is ~c[char-equal], which can
be given only for two strings, in which case the match is case-insensitive.
Finally, values of ~c[:start1] and ~c[:end1] for the first sequence, and of
~c[:start2] and ~c[:end2] for the second sequence, bound the portion of the
respective sequence used for deciding on a match, though the index returned
is always an index into the second sequence as a whole.
The ~il[guard] for calls of ~c[search] is given by a function,
~c[search-fn-guard], which has the following requirements.~bq[]
o The two arguments much both satisfy ~ilc[true-listp] or else must both be
strings, which must consist of standard characters (~pl[standard-char-p]) if
the ~c[:test] is ~ilc[char-equal].
o The ~c[:test] must evaluate to one of the symbols ~ilc[equal] or
~ilc[char-equal], where the latter is only allowed if the (first) two
arguments are strings.
o The values of ~c[:start1], ~c[:start2], ~c[:end1], and ~c[:end2] must all
be natural numbers, where if omitted they default to 0, 0, the length
~c[len1] of the first argument, and the length ~c[len2] of the second
argument, respectively.
o If ~c[start1] is the value of ~c[:start1], defaulting as described just
above, and similarly for the other start and end keywords and for lengths
~c[len1] and ~c[len2] as described just above, then:
~c[start1 <= end1 <= len1] and ~c[start2 <= end2 <= len2].
~eq[]~c[Search] is a Common Lisp function (actually, a macro in ACL2). See
any Common Lisp documentation for more information.~/"
`(search-fn ,seq1 ,seq2 ,from-end ,test ,start1 ,start2 ,end1 ,end2
,end1p ,end2p))
(defthm eqlablep-nth
(implies (eqlable-listp x)
(eqlablep (nth n x)))
:hints (("Goal" :in-theory (enable nth))))
(defun count-stringp (item x start end)
(declare (xargs :guard (and (stringp x)
(natp start)
(natp end)
(<= end (length x)))
:measure (nfix (- (1+ end) start))))
(cond ((or (not (integerp start))
(not (integerp end))
(<= end start))
0)
((eql item (char x start))
(1+ (count-stringp item x (1+ start) end)))
(t
(count-stringp item x (1+ start) end))))
(defun count-listp (item x end)
(declare (xargs :guard (and (true-listp x)
(natp end))))
(cond ((or (endp x)
(zp end))
0)
((equal item (car x))
(1+ (count-listp item (cdr x) (1- end))))
(t
(count-listp item (cdr x) (1- end)))))
(encapsulate
()
(local (defthm true-listp-nthcdr
(implies (true-listp x)
(true-listp (nthcdr n x)))))
(defun count-fn (item sequence start end)
(declare (xargs :guard (and (if (true-listp sequence)
t
(stringp sequence))
(natp start)
(or (null end)
(and (natp end)
(<= end (length sequence)))))))
(let ((end (or end (length sequence))))
(cond ((<= end start)
0)
((stringp sequence)
(count-stringp item sequence start end))
(t
(count-listp item (nthcdr start sequence) (- end start)))))))
#+acl2-loop-only
(defmacro count (item sequence &key (start '0) end)
":Doc-Section ACL2::ACL2-built-ins
count the number of occurrences of an item in a string or true-list~/
~bv[]
Example Forms:
(count #\\D \"DabcDefcDe\") ; = 3
(count #\\D \"DabcDefcDe\" :start 1) ; = 2
(count #\\D \"DabcDefcDe\" :start 1 :end 5) ; = 1
(count #\\D \"DabcDefcDe\" :start 1 :end 4) ; = 0
(count #\\z \"DabcDefcDe\") ; = 0
(count '(a b) '(17 (a b) 23 (a b) (c d))) ; = 2
General Form:
(count item sequence &key start end)
~ev[]
~c[(Count item sequence)] returns the number of times ~c[item] occurs in
~c[sequence]. The ~il[guard] for calls of ~c[count] (which is actually a
macro in ACL2) specifies that ~c[sequence] is a string or a true-list, and
that ~c[start], which defaults to 0, and ~c[end], which defaults to the
length of ~c[sequence], are valid indices into sequence.
See any Common Lisp documentation for more information about ~c[count], which
is a Common Lisp utility. At this time ACL2 does not support keyword
arguments for ~c[count] other than ~c[:start] and ~c[:end]; we may add
support for the ~c[:from-end] keyword upon request.~/~/"
`(count-fn ,item ,sequence ,start ,end))
; Skipped on first (:program mode) pass:
(verify-termination-boot-strap cpu-core-count)
; We need for sharp-atsign-alist to be compiled before it is called in
; *sharp-atsign-ar*, file basis.lisp. So we put its definition here, along
; with its callee make-sharp-atsign. A nice exercise is to put these functions
; in :logic mode.
(defun make-sharp-atsign (i)
(declare (xargs :guard (natp i) :mode :program))
(concatenate 'string
"#@"
(coerce (explode-nonnegative-integer i 10 nil) 'string)
"#"))
(defun sharp-atsign-alist (i acc)
(declare (xargs :guard (natp i) :mode :program))
(cond ((zp i) acc)
(t (sharp-atsign-alist (1- i) (acons i (make-sharp-atsign i) acc)))))
; Essay on the Implementation of Time$
; It is tempting to define (time$ x ...) to be a macro expanding to x in the
; logic. But then translate will eliminate time$; yet some version of time$
; needs to be a function, so that it is still around for ev-rec to see. If it
; weren't for ev-rec, time$ could be a macro as long as it were left alone by
; oneify, i.e., on the list *macros-for-nonexpansion-in-raw-lisp*.
; So, we need some way to represent time$ as a function in the logic. On the
; other hand, we cannot define time$ as a function in raw Lisp, because then
; its arguments will be evaluated before there is any opportunity to set things
; up to get timing information.
; Consider also the issue of keyword arguments. We want time$ to take keyword
; arguments, but on the other hand, we do not allow functions with keyword
; arguments. So again we see that time$ needs to be a macro.
; Thus, we define time$ to be a macro that expands to a corresponding call of
; time$1, which in turn expands to a call (return-last 'time$1-raw & &).
; Return-last is a function in the logic but is a macro in raw Lisp. Since
; return-last is a function in the logic, it does not take keyword arguments;
; for convenience we define a macro our-time to be the keyword version of the
; raw Lisp macro time$1-raw.
; The following examples make a nice little test suite. Run each form and
; observe whether the output is consistent with the comments attached to the
; form.
; (defun f (n)
; (declare (xargs :guard (natp n) :verify-guards nil))
; (make-list n))
; (time$ (length (f 100))) ; times an ev-rec call
; (time$ (length (f 100)) :mintime 0) ; same as above
; (time$ (length (f 100)) :mintime nil) ; native time output
; (defun g (x native-p)
; (declare (xargs :guard (natp x) :verify-guards nil))
; (if native-p
; (len (time$ (f x) :mintime nil))
; (len (time$ (f x)))))
; (g 100 nil) ; time a *1*f call
; (g 100 t) ; time a *1*f call
; (verify-guards f)
; (g 100 nil) ; still times a *1*f call, since g's guards aren't verified
; (g 100 t) ; still times a *1*f call, since g's guards aren't verified
; (verify-guards g)
; (g 100 nil) ; times a call of f
; (g 100 t) ; times a call of f
; ; Check unnormalized and normalized bodies:
; (assert-event (equal (body 'g nil (w state))
; '(IF NATIVE-P
; (LEN (RETURN-LAST
; 'TIME$1-RAW
; (CONS 'NIL
; (CONS 'NIL
; (CONS 'NIL
; (CONS 'NIL
; (CONS 'NIL 'NIL)))))
; (F X)))
; (LEN (RETURN-LAST
; 'TIME$1-RAW
; (CONS '0
; (CONS 'NIL
; (CONS 'NIL
; (CONS 'NIL
; (CONS 'NIL 'NIL)))))
; (F X))))))
; (assert-event (equal (body 'g t (w state))
; '(LEN (F X))))
; (time$ 3 :mintime nil) ; prints verbose, native timing message
; (time$ 3 :minalloc 0) ; prints usual timing message
; (time$ 3 :mintime 0 :real-mintime 0) ; error
; (time$ 3 :mintime 0 :run-mintime 0) ; prints usual timing message
; (time$ 3 :real-mintime 1) ; no timing output
; (time$ 3 :run-mintime 1) ; no timing output
; (time$ 3 :minalloc 10000) ; no timing output if :minalloc is supported
; (time$ (length (f 100)) ; prints "Howdy"
; :msg "Howdy~%")
; (let ((bar (+ 3 4)))
; (time$ (length (f 100000)) ; prints indicated timing message
; :msg "The execution of ~xf took ~st seconds (in real time; ~sc sec. ~
; run time), and allocated ~sa bytes. In an unrelated note, bar ~
; currently has the value ~x0.~%"
; :args (list bar)))
; (defun h (x real-min run-min alloc msg args)
; (declare (xargs :guard (natp x)))
; (len (time$ (f x)
; :mintime real-min
; :run-mintime run-min
; :minalloc alloc
; :msg msg
; :args args)))
; (h 1000000 nil nil nil nil nil) ; native time msg
; (h 1000000 0 nil nil nil nil) ; usual time msg
; (h 1000000 nil nil nil ; custom time msg, as indicated
; "The execution of ~xf took ~st seconds (in real time; ~sc sec. run time), ~
; and allocated ~sa bytes. In an unrelated note, bar currently has the ~
; value ~x0.~%"
; (list (+ 4 5)))
; End of Essay on the Implementation of Time$
#-acl2-loop-only
(defmacro time$1-raw (val x)
(let ((val-var (gensym))
(real-mintime-var (gensym))
(run-mintime-var (gensym))
(minalloc-var (gensym))
(msg-var (gensym))
(args-var (gensym)))
`(let* ((,val-var ,val)
(,real-mintime-var (pop ,val-var))
(,run-mintime-var (pop ,val-var))
(,minalloc-var (pop ,val-var))
(,msg-var (pop ,val-var))
(,args-var (pop ,val-var)))
(our-time ,x
:real-mintime ,real-mintime-var
:run-mintime ,run-mintime-var
:minalloc ,minalloc-var
:msg ,msg-var
:args ,args-var))))
(defmacro time$1 (val form)
`(return-last 'time$1-raw ,val ,form))
(defmacro time$ (x &key
(mintime '0 mintime-p)
(real-mintime 'nil real-mintime-p)
run-mintime minalloc msg args)
":Doc-Section ACL2::ACL2-built-ins
time an evaluation~/
Semantically, ~c[(time$ x ...)] equals ~c[x]. However, its evaluation may
write timing output to the trace output (which is usually the terminal), as
explained further below.
~bv[]
Examples:
; Basic examples:
(time$ (foo 3 4))
(time$ (mini-proveall))
(defun bar (x) (time$ (f x)))
; Custom examples, which use a custom timing message rather than a built-in
; message from Lisp:
; Report only if real time is at least 1/2 second (two equivalent forms).
(time$ (foo) :mintime 1/2)
(time$ (foo) :real-mintime 1/2)
; Report only if allocation is at least 1000 bytes (and if the Lisp supports
; :minalloc).
(time$ (foo) :minalloc 1000)
; Report only if real time is at least 1/2 second and (if the Lisp supports
; :minalloc) allocation is at least 931 bytes.
(time$ (foo) :real-mintime 1/2 :minalloc 931)
; Print \"Hello Moon, Goodbye World\" instead of any timing data.
(time$ (foo)
:msg \"Hello ~~s0, ~~s1 World.\"
:args (list \"Moon\" \"Goodbye\"))
; Print default custom timing message (same as omitting :mintime 0):
(time$ (foo)
:mintime 0)
; Print supplied custom timing message.
(let ((bar ...))
(time$ (foo)
:msg \"The execution of ~~xf took ~~st seconds of real ~~
time and ~~sc seconds of run time (cpu time), and ~~
allocated ~~sa bytes. In an unrelated note, bar ~~
currently has the value ~~x0.~~%\"
:args (list bar)))~/
General Forms:
(time$ form)
(time$ form ; arguments below are optional
:real-mintime <rational number of seconds>
:run-mintime <rational number of seconds>
:minalloc <number of bytes>
:msg <fmt string>
:args <list of arguments for msg>
)
; Note: :real-mintime can be replaced by :mintime
~ev[]
where ~c[form] is processed as usual except that the host Common Lisp times
its evaluation.
The simplest form is ~c[(time$ x)], which will call the ~c[time] utility in
the underlying Lisp, and will print a small default message. If you want to
see a message printed by the host Lisp, use ~c[(time$ x :mintime nil)]
instead, which may provide detailed, implementation-specific data such as the
amounts of time spent in user and system mode, the gc time, the number of
page faults encountered, and so on. Of you can create a custom message,
configured using the ~c[:msg] and ~c[:args] parameters. ~c[Time$] can also
be made to report timing information only conditionally: the
~c[:real-mintime] (or equivalently, ~c[:mintime]), ~c[:run-mintime], and
~c[:minalloc] arguments can be used to avoid reporting timing information for
computations that take a small amount of time (perhaps as might be expected
in ordinary cases), but to draw the user's attention to computations that
take longer or allocate more memory than expected.
We next document the keyword arguments in some detail.
~bq[]
Keyword arguments ~c[:real-mintime] (or ~c[:mintime]) and ~c[:run-mintime]
can be used to specify a minimum time threshold for time reporting. That is,
no timing information will be printed if the execution of ~c[form] takes less
than the specified number of seconds of real (total) time or run (cpu) time,
respectively. Note that rational numbers like 1/2 may be used to specify a
fractional amount of seconds. It is an error to specify both
~c[:real-mintime] and its synonym, ~c[:mintime].
Keyword argument ~c[:minalloc] is not supported on all Lisps. When it is not
supported, it is ignored. But on supported Lisps, ~c[:minalloc] can be used
to specify a minimum memory allocation threshold. If ~c[form] results in
fewer than this many bytes being allocated, then no timing information will
be reported.
Keyword argument ~c[:msg], when provided, should be a string accepted by the
~c[fmt] family of functions (~pl[fmt]), and it may refer to the elements of
~c[:args] by their positions, just as for ~c[cw] (~pl[cw]).~eq[]
The following directives allow you to report timing information using the
~c[:msg] string. The examples at the top of this documentation topic
illustrate the use of these directives.
~bq[]
~c[~~xf] ~-[] the form that was executed
~c[~~sa] ~-[] the amount of memory allocated, in bytes (in supported Lisps)
~c[~~st] ~-[] the real time taken, in seconds
~c[~~sc] ~-[] the run time (cpu time) taken, in seconds
~eq[]
We turn now to an example that illustrates how ~c[time$] can be called in
function bodies. Consider the following definition of the Fibonacci
function, followed by the definition of a function that times ~c[k] calls of
this function.
~bv[]
(defun fib (n)
(if (zp n)
1
(if (= n 1)
1
(+ (fib (- n 1))
(fib (- n 2))))))
(defun time-fib (k)
(if (zp k)
nil
(prog2$
(time$ (fib k)
:mintime 1/2
:msg \"(fib ~~x0) took ~~st seconds, ~~sa bytes allocated.~~%\"
:args (list k))
(time-fib (1- k)))))
~ev[]
The following log shows a sample execution of the function defined just
above.
~bv[]
ACL2 !>(time-fib 36)
(fib 36) took 3.19 seconds, 1280 bytes allocated.
(fib 35) took 1.97 seconds, 1280 bytes allocated.
(fib 34) took 1.21 seconds, 1280 bytes allocated.
(fib 33) took 0.75 seconds, 1280 bytes allocated.
NIL
ACL2 !>
~ev[]
Notes:
(1) Common Lisp specifies that the ~c[time] utility prints to ``trace
output'', and ~c[time$] follows this convention. Thus, if you have opened a
~il[trace] file (~pl[open-trace-file]), then you can expect to find the
~c[time$] output there.
(2) Unless the ~c[:msg] argument is supplied, an explicit call of ~c[time$]
in the top-level loop will show that the form being timed is a call of the
ACL2 evaluator function ~c[ev-rec]. This is normal; the curious are invited,
at their own risk, to ~pl[return-last] for an explanation.~/
:cited-by ACL2::Programming
:cited-by other"
(declare (xargs :guard t))
(cond
((and real-mintime-p mintime-p)
(er hard 'time$
"It is illegal for a ~x0 form to specify both :real-mintime and ~
:mintime."
'time$))
(t
(let ((real-mintime (or real-mintime mintime)))
`(time$1 (list ,real-mintime ,run-mintime ,minalloc ,msg ,args)
,x)))))
#-acl2-loop-only
(progn
(defmacro our-multiple-value-prog1 (form &rest other-forms)
; WARNING: If other-forms causes any calls to mv, then use protect-mv so that
; when #-acl2-mv-as-values, the multiple values returned by evaluation of form
; are those returned by the call of our-multiple-value-prog1.
`(#+acl2-mv-as-values
multiple-value-prog1
#-acl2-mv-as-values
prog1
,form
,@other-forms))
(eval `(mv ,@(make-list *number-of-return-values* :initial-element 0)))
#-acl2-mv-as-values
(defconst *mv-vars*
(let ((ans nil))
(dotimes (i (1- *number-of-return-values*))
(push (gensym) ans))
ans))
#-acl2-mv-as-values
(defconst *mv-var-values*
(mv-refs-fn (1- *number-of-return-values*)))
#-acl2-mv-as-values
(defconst *mv-extra-var* (gensym))
(defun protect-mv (form &optional multiplicity)
; We assume here that form is evaluated only for side effect and that we don't
; care what is returned by protect-mv. All we care about is that form is
; evaluated and that all values stored by mv will be restored after the
; evaluation of form.
#+acl2-mv-as-values
(declare (ignore multiplicity))
#-acl2-mv-as-values
(when (and multiplicity
(not (and (integerp multiplicity)
(< 0 multiplicity))))
(error "PROTECT-MV must be called with an explicit multiplicity, when ~
supplied, unlike ~s"
multiplicity))
`(progn
#+acl2-mv-as-values
,form
#-acl2-mv-as-values
,(cond
((eql multiplicity 1)
form)
((eql multiplicity 2)
`(let ((,(car *mv-vars*)
,(car *mv-var-values*)))
,form
(mv 0 ,(car *mv-vars*))))
(t (mv-let (mv-vars mv-var-values)
(cond (multiplicity
(mv (nreverse
(let ((ans nil)
(tail *mv-vars*))
(dotimes (i (1- multiplicity))
(push (car tail) ans)
(setq tail (cdr tail)))
ans))
(mv-refs-fn (1- multiplicity))))
(t (mv *mv-vars* *mv-var-values*)))
`(mv-let ,(cons *mv-extra-var* mv-vars)
(mv 0 ,@mv-var-values)
(declare (ignore ,*mv-extra-var*))
(progn ,form
(mv 0 ,@mv-vars))))))
nil))
)
#-acl2-loop-only
(defmacro our-time (x &key real-mintime run-mintime minalloc msg args)
(let ((g-real-mintime (gensym))
(g-run-mintime (gensym))
(g-minalloc (gensym))
(g-msg (gensym))
(g-args (gensym))
(g-start-real-time (gensym))
(g-start-run-time (gensym))
#+ccl
(g-start-alloc (gensym)))
`(let ((,g-real-mintime ,real-mintime)
(,g-run-mintime ,run-mintime)
(,g-minalloc ,minalloc)
(,g-msg ,msg)
(,g-args ,args))
(cond
((not (or ,g-real-mintime ,g-run-mintime ,g-minalloc ,g-msg ,g-args))
#+(or allegro clisp)
; For Allegro and CLISP, the time utilities are such that it can be useful to
; print a newline before printing a top-level result. Note that we can use
; prog1 for these Lisps today (Sept. 2009), but we consider the possibility of
; #+acl2-mv-as-values for these lisps in the future.
(our-multiple-value-prog1
(time ,x)
(when (eq *trace-output* *terminal-io*)
(newline *standard-co* *the-live-state*)))
#-(or allegro clisp)
(time ,x))
((and ,g-real-mintime (not (rationalp ,g-real-mintime)))
(interface-er
"Illegal call of ~x0: :real-mintime must be nil or a rational, but ~
~x1 is neither."
'time$ ,g-real-mintime))
((and ,g-run-mintime (not (rationalp ,g-run-mintime)))
(interface-er
"Illegal call of ~x0: :run-mintime must be nil or a rational, but ~
~x1 is neither."
'time$ ,g-run-mintime))
((and ,g-minalloc (not (rationalp ,g-minalloc)))
(interface-er
"Illegal call of ~x0: :alloc must be nil or a rational, but ~x1 is ~
neither."
'time$ ,g-minalloc))
((and ,g-msg (not (stringp ,g-msg)))
(interface-er
"Illegal call of ~x0: :msg must be nil or a string, but ~x1 is ~
neither."
'time$ ,g-msg))
((not (true-listp ,g-args))
(interface-er
"Illegal call of ~x0: :args must be a true list, but ~x1 is not."
'time$ ,g-args))
(t
(let* ((,g-start-real-time (get-internal-real-time))
(,g-start-run-time (get-internal-run-time))
#+ccl
(,g-start-alloc (CCL::total-bytes-allocated)))
(our-multiple-value-prog1
,x
,(protect-mv
`(let* ((end-run-time (get-internal-run-time))
(end-real-time (get-internal-real-time))
(real-elapsed (/ (- end-real-time ,g-start-real-time)
internal-time-units-per-second))
(run-elapsed (/ (- end-run-time ,g-start-run-time)
internal-time-units-per-second))
(real-elapsed-str (format nil "~,2F" real-elapsed))
(run-elapsed-str (format nil "~,2F" run-elapsed))
#+ccl
(allocated (- (ccl::total-bytes-allocated)
,g-start-alloc)))
(when
(not (or (and ,g-real-mintime
(< real-elapsed ,g-real-mintime))
(and ,g-run-mintime
(< run-elapsed ,g-run-mintime))
#+ccl
(and ,g-minalloc
(< allocated ,g-minalloc))))
(let* ((alist (list* (cons #\t real-elapsed-str)
(cons #\c run-elapsed-str)
(cons #\a
#+ccl
(format nil "~:D" allocated)
#-ccl
"[unknown]")
(cons #\f ',x)
(cons #\e (evisc-tuple
3 2
(world-evisceration-alist
*the-live-state* nil)
nil))
(and ,g-msg
(pairlis$ '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
,g-args))))
(,g-msg (or ,g-msg
#+ccl
"; ~Xfe took ~|; ~st seconds realtime, ~
~sc seconds runtime~|; (~sa bytes ~
allocated).~%"
#-ccl
"; ~Xfe took~|; ~st seconds realtime, ~
~sc seconds runtime.~%")))
(fmt-to-comment-window
,g-msg alist 0
(abbrev-evisc-tuple *the-live-state*)))))))))))))
(encapsulate
()
(local
(defthm true-listp-revappend
(equal (true-listp (revappend x y))
(true-listp y))))
(local
(defthm true-listp-first-n-ac
(implies (and (true-listp acc)
(true-listp lst))
(true-listp (first-n-ac n lst acc)))))
(verify-guards throw-nonexec-error)
(verify-guards defun-nx-fn)
(verify-guards update-mutual-recursion-for-defun-nx-1)
(verify-guards update-mutual-recursion-for-defun-nx)
)
; For some reason, MCL didn't like it when there was a single definition of
; gc$-fn with acl2-loop-only directives in the body. So we define the two
; versions separately.
#-acl2-loop-only
(defun-one-output gc$-fn (args)
; Warning: Keep this in sync with :doc gc$.
; We will add some checks on the arguments as a courtesy, but really, it is up
; to the user to pass in the right arguments.
#+allegro (apply `excl:gc args)
#+ccl (apply 'ccl::gc args) ; no args as per Gary Byers 12/08
#+clisp (apply 'ext:gc args)
#+cmu (apply 'system::gc args)
#+gcl
(if (eql (length args) 1)
(apply 'si::gbc args)
(er hard 'gc$
"In GCL, gc$ requires exactly one argument, typically T."))
#+lispworks (apply 'hcl::gc-generation (or args (list #+lispworks-64bit 7
#-lispworks-64bit 3)))
#+sbcl (apply 'sb-ext:gc args)
#-(or allegro gcl clisp cmu sbcl ccl lispworks)
(illegal 'gc$ "GC$ is not supported in this Common Lisp." nil)
nil)
#+acl2-loop-only
(defun gc$-fn (args)
(declare (ignore args)
(xargs :guard t))
nil)
(defmacro gc$ (&rest args)
":Doc-Section Miscellaneous
invoke the garbage collector~/
This function is provided so that the user can call the garbage collector of
the host Lisp from inside the ACL2 loop. Specifically, a call of ~c[gc$] is
translated into a call of a function below on the same arguments.
~bv[]
Allegro CL: excl:gc
CCL ccl::gc
CLISP ext:gc
CMU Common Lisp system::gc
GCL si::gbc
LispWorks hcl::gc-generation [default argument list:
(7) for 64-bit OS, else (3)]
SBCL sb-ext:gc
~ev[]
The arguments, if any, are as documented in the underlying Common Lisp. It
is up to the user to pass in the right arguments, although we may do some
rudimentary checks.
Also ~pl[gc-verbose].
Evaluation of a call of this macro always returns ~c[nil].~/~/"
`(gc$-fn ',args))
#-acl2-loop-only
(defun-one-output gc-verbose-fn (arg)
; For a related function, see gc$-fn.
(let ((arg (and arg t))) ; coerce to Boolean
(declare (ignorable arg))
#+ccl (ccl::gc-verbose arg arg)
#+cmu (setq ext:*gc-verbose* arg)
#+gcl (si:*notify-gbc* arg)
#-(or ccl cmu gcl)
(format t "GC-VERBOSE is not supported in this Common Lisp.~%Contact the ~
ACL2 developers if you would like to help add such support.")
nil))
#+acl2-loop-only
(defun gc-verbose-fn (arg)
(declare (ignore arg)
(xargs :guard t))
nil)
(defmacro gc-verbose (arg)
":Doc-Section Miscellaneous
control printing from the garbage collector~/
~bv[]
General Form:
(gc-verbose arg)
~ev[]
Garbage collection (gc) is performed by every Lisp implementation; ~pl[gc$].
However, different ACL2 builds might see more or fewer messages. This macro
is intended to provide an interface for controlling the verbosity, which is
off if the argument evaluates to ~c[nil] and otherwise is on.
The above functionality is only supported for the following host Common Lisp
implementations: CCL, CMUCL, and GCL. Otherwise, the only effect of this
macro is to print a notice that it is not supported. You are welcome to
contact the ACL2 developers if you would like to help in adding such support
for another host Common Lisp.
Evaluation of a call of this macro always returns ~c[nil].~/~/"
`(gc-verbose-fn ,arg))
(defun get-wormhole-status (name state)
":Doc-Section Miscellaneous
make a wormhole's status visible outside the wormhole~/
General Form:
(get-wormhole-status name state)
~c[Name] should be the name of a wormhole (~pl[wormhole]). This function
returns an error triple (~pl[error-triples]) of the form
~c[(mv nil s state)], where ~c[s] is the status of the named wormhole. The
status is obtained by reading the oracle in the ACL2 ~ilc[state].~/
This function makes the status of a wormhole visible outside the wormhole.
But since this function takes ~ilc[state] and modifies it, the function may
only be used in contexts in which you may change ~ilc[state]. Otherwise,
the wormhole status may stay in the wormhole. See ~ilc[wormhole-eval] and
~ilc[wormhole].~/"
#+acl2-loop-only
(declare (xargs :guard (state-p state))
(ignore name))
#-acl2-loop-only
(when (live-state-p state)
(return-from get-wormhole-status
(value (cdr (assoc-equal name *wormhole-status-alist*)))))
(read-acl2-oracle state))
(defun file-write-date$ (file state)
(declare (xargs :guard (stringp file)
:stobjs state))
#+acl2-loop-only
(declare (ignore file))
#+(not acl2-loop-only)
(when (live-state-p state)
(return-from file-write-date$
(mv (our-ignore-errors (file-write-date file)) state)))
(mv-let (erp val state)
(read-acl2-oracle state)
(mv (and (null erp)
(posp val)
val)
state)))
; Next: debugger control
(defun debugger-enable (state)
(declare (xargs :guard (and (state-p state)
(boundp-global 'debugger-enable state))))
(f-get-global 'debugger-enable state))
(defun break$ ()
; This function gets around a bug in Allegro CL (at least in Versions 7.0 and
; 8.0), as admitted by Franz support, and in and CMU CL. These Lisps pay
; attention to *debugger-hook* even when (break) is invoked, but they
; shouldn't.
; Keep this in sync with break-on-error-fn.
":Doc-Section ACL2::ACL2-built-ins
cause an immediate Lisp break~/
ACL2 users are generally advised to avoid breaking into raw Lisp. Advanced
users may, on occasion, see the need to do so. Evaluating ~c[(break$)] will
have that effect. (Exception: ~c[break$] is disabled after evaluation of
~c[(set-debugger-enable :never)]; ~pl[set-debugger-enable].) ~c[Break$]
returns ~c[nil].~/~/
:cited-by other"
(declare (xargs :guard t))
#-acl2-loop-only
(and (not (eq (debugger-enable *the-live-state*) :never))
#+(and gcl (not cltl2))
(break)
#-(and gcl (not cltl2))
(let ((*debugger-hook* nil)
#+ccl ; useful for CCL revision 12090 and beyond
(ccl::*break-hook* nil))
#+ccl ; for CCL revisions before 12090
(declare (ignorable ccl::*break-hook*))
(break)))
nil)
#-acl2-loop-only
(defvar *ccl-print-call-history-count*
; This variable is only used by CCL, but we define it for all Lisps so that
; this name is equally unavailable as a name for defconst in all host Lisps.
; The user is welcome to change this in raw Lisp. Perhaps we should advertise
; it and use a state global. We have attempted to choose a value sufficiently
; large to get well into the stack, but not so large as to swamp the system.
; Even with the default for CCL (as of mid-2013) of -Z 2M, the stack without
; this restriction could be much larger. For example, in the ACL2 loop we
; made the definition
; (defun foo (x) (if (atom x) nil (cons (car x) (foo (cdr x)))))
; and then ran (foo (make-list 1000000)), and after 65713 abbreviated stack
; frames CCL just hung. But with this restriction, it took less than 6 seconds
; to evaluate the following in raw Lisp, including printing the stack to the
; terminal (presumably it would be much faster to print to a file):
; (time$ (ignore-errors (ld '((foo (make-list 1000000))))))
10000)
(defun print-call-history ()
; We welcome suggestions from users or Lisp-specific experts for how to improve
; this function, which is intended to give a brief but useful look at the debug
; stack.
(declare (xargs :guard t))
#-acl2-loop-only
(when (global-val 'boot-strap-flg (w *the-live-state*))
; We don't know why SBCL 1.0.37 hung during guard verification of
; maybe-print-call-history during the boot-strap. But we sidestep that issue
; here.
(return-from print-call-history nil))
#+(and ccl (not acl2-loop-only))
(when (fboundp 'ccl::print-call-history)
; See CCL file lib/backtrace.lisp for more options
(eval '(ccl::print-call-history :detailed-p nil
:count *ccl-print-call-history-count*)))
; It seems awkward to deal with GCL, both because of differences in debugger
; handling and because we haven't found documentation on how to get a
; backtrace. For example, (system::ihs-backtrace) seems to give a much smaller
; answer when it's invoked during (our-abort) than when it is invoked directly
; in the debugger.
; #+(and gcl (not acl2-loop-only))
; (when (fboundp 'system::ihs-backtrace)
; (eval '(system::ihs-backtrace)))
#+(and allegro (not acl2-loop-only))
(when (fboundp 'tpl::do-command)
(eval '(tpl:do-command "zoom"
:from-read-eval-print-loop nil
:count t :all t)))
#+(and sbcl (not acl2-loop-only))
(when (fboundp 'sb-debug::backtrace)
(eval '(sb-debug::backtrace)))
#+(and cmucl (not acl2-loop-only))
(when (fboundp 'debug::backtrace)
(eval '(debug::backtrace)))
#+(and clisp (not acl2-loop-only))
(when (fboundp 'system::print-backtrace)
(eval '(catch 'system::debug
(system::print-backtrace))))
#+(and lispworks (not acl2-loop-only))
(when (fboundp 'dbg::output-backtrace)
(eval '(dbg::output-backtrace :verbose)))
nil)
(defun debugger-enabledp (state)
(declare (xargs :guard (and (state-p state)
(boundp-global 'debugger-enable state))))
(let ((val (f-get-global 'debugger-enable state)))
(and (member-eq val '(t :break :break-bt :bt-break))
t)))
(defun maybe-print-call-history (state)
(declare (xargs :guard (and (state-p state)
(boundp-global 'debugger-enable state))))
(and (member-eq (f-get-global 'debugger-enable state)
'(:bt :break-bt :bt-break))
(print-call-history)))
(defmacro with-reckless-readtable (form)
; This macro creates a context in which reading takes place without usual
; checks that #n# is only used after #n= and without the usual restrictions on
; characters (specifically, *old-character-reader* is used rather than the ACL2
; character reader, #'acl2-character-reader). See *reckless-acl2-readtable*.
#+acl2-loop-only
form
#-acl2-loop-only
`(let ((*readtable* *reckless-acl2-readtable*)
; Since print-object$ binds *readtable* to *acl2-readtable*, we bind the latter
; here:
(*acl2-readtable* *reckless-acl2-readtable*))
,form))
(defmacro set-debugger-enable (val)
; WARNING: Keep this documentation in sync with the initial setting of
; 'debugger-enable in *initial-global-table* and with our-abort.
":Doc-Section switches-parameters-and-modes
control whether Lisp errors and breaks invoke the Lisp debugger~/
~bv[]
Forms (see below for explanations and GCL exceptions):
(set-debugger-enable t) ; enable breaks into the raw Lisp debugger
(set-debugger-enable :break) ; same as above
:set-debugger-enable t ; same as above
(set-debugger-enable :break-bt) ; as above, but print a backtrace first
(set-debugger-enable :bt-break) ; as above, but print a backtrace first
(set-debugger-enable :bt) ; print a backtrace but do not enter debugger
(set-debugger-enable :never) ; disable all breaks into the debugger
(set-debugger-enable nil) ; disable debugger except when calling break$
~ev[]
~em[Introduction.] Suppose we define ~c[foo] in ~c[:]~ilc[program] mode to
take the ~ilc[car] of its argument. This can cause a raw Lisp error. ACL2
will then return control to its top-level loop unless you enable the Lisp
debugger, as shown below (except: the error message can take quite a
different form in non-ANSI GCL).
~bv[]
ACL2 !>(defun foo (x) (declare (xargs :mode :program)) (car x))
Summary
Form: ( DEFUN FOO ...)
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
FOO
ACL2 !>(foo 3)
***********************************************
************ ABORTING from raw Lisp ***********
Error: Attempt to take the car of 3 which is not listp.
***********************************************
If you didn't cause an explicit interrupt (Control-C),
then the root cause may be call of a :program mode
function that has the wrong guard specified, or even no
guard specified (i.e., an implicit guard of t).
See :DOC guards.
To enable breaks into the debugger (also see :DOC acl2-customization):
(SET-DEBUGGER-ENABLE T)
ACL2 !>(SET-DEBUGGER-ENABLE T)
<state>
ACL2 !>(foo 3)
Error: Attempt to take the car of 3 which is not listp.
[condition type: TYPE-ERROR]
Restart actions (select using :continue):
0: Abort entirely from this (lisp) process.
[Current process: Initial Lisp Listener]
[1] ACL2(1): [RAW LISP]
~ev[]~/
~em[Details.] ACL2 usage is intended to take place inside the ACL2
read-eval-print loop (~pl[lp]). Indeed, in most Lisp implementations ACL2
comes up inside that loop, as evidenced by the prompt:
~bv[]
ACL2 !>
~ev[]
However, one can occasionally hit a raw Lisp error. Here is the above
example again, this time for a GCL implementation, which unfortunately gives
a slightly less aesthetic report.
~bv[]
ACL2 !>(foo 3)
Error: 3 is not of type LIST.
Fast links are on: do (si::use-fast-links nil) for debugging
Error signalled by CAR.
Backtrace: funcall > system:top-level > lisp:lambda-closure > lp > acl2_*1*_acl2::foo > foo > car > system:universal-error-handler > system::break-level-for-acl2 > let* > UNLESS
ACL2 !>
~ev[]
Here, the user has defined ~c[foo] in ~c[:]~ilc[program] mode, with an
implicit ~il[guard] of ~c[t]. The ACL2 evaluator therefore called the Lisp
evaluator, which expected ~c[nil] or a ~ilc[consp] argument to ~ilc[car].
By default, ACL2 will return to its top-level loop (at the same level of
~ilc[LD]) when there is a raw Lisp error, as though a call of ~ilc[ER] with
flag ~c[HARD] has been evaluated. If instead you want to enter the raw Lisp
debugger in such cases, evaluate the following form.
~bv[]
(set-debugger-enable t)
~ev[]
You can subsequently return to the default behavior with:
~bv[]
(set-debugger-enable nil)
~ev[]
Either way, you can enter the Lisp debugger from within the ACL2 loop by
evaluating ~c[(]~ilc[break$]~c[)]. If you want ~c[break$] disabled, then
evaluate the following, which disables entry to the Lisp debugger not only
for Lisp errors but also when executing ~c[(break$)].
~bv[]
(set-debugger-enable :never)
~ev[]
The discussion above also applies to interrupts (from ~c[Control-C]) in some,
but not all, host Common Lisps.
It remains to discuss options ~c[:break], ~c[:bt], ~c[:break-bt], and
~c[:bt-break]. Option ~c[:break] is synonymous with option ~c[t], while
option ~c[:bt] prints a backtrace. Options ~c[:break-bt] and ~c[:bt-break]
are equivalent, and each has the combined effect of ~c[:bt] and ~c[:break]: a
backtrace is printed and then the debugger is entered.
Note that ~c[set-debugger-enable] applies not only to raw Lisp errors, but
also to ACL2 errors: those affected by ~ilc[break-on-error]. However, for
ACL2 errors, entering the debugger is controlled only by ~c[break-on-error],
not by ~c[set-debugger-enable]. For ACL2 errors encountered after evaluating
~c[(break-on-error t)], the ~c[set-debugger-enable] values of ~c[:bt],
~c[:break-bt], and ~c[:bt-break] will result in the same effect: in many host
LIsps, this effect will be to cause a backtrace to be printed.
Remark for Common Lisp hackers (except for the case that the host Lisp is
non-ANSI GCL). You can customize the form of the backtrace printed by
entering raw Lisp (with ~c[:q]) and then redefining function
~c[print-call-history], whose definition immediately precedes that of
~c[break-on-error] in ACL2 source file ~c[ld.lisp]. Of course, all bets are
off when defining any function in raw Lisp, but as a practical matter you are
probably fine as long as your books are ultimately certified with an
unmodified copy of ACL2. If you come up with improvements to
~c[print-call-history], please pass them along to the ACL2 implementors."
`(set-debugger-enable-fn ,val state))
(defun set-debugger-enable-fn (val state)
(declare (xargs :guard (and (state-p state)
(member-eq val '(t nil :never :break :bt
:break-bt :bt-break)))
:guard-hints (("Goal" :in-theory (enable state-p1)))))
#+(and (not acl2-loop-only)
(and gcl (not cltl2)))
(when (live-state-p state)
(setq lisp::*break-enable* (debugger-enabledp state)))
(pprogn
(f-put-global 'debugger-enable val state)
(if (consp (f-get-global 'dmrp state))
; Then user invoked this function, so avoid having a later stop-dmr change the
; value of 'debugger-enable.
(f-put-global 'dmrp t state)
state)))
; See comment in true-listp-cadr-assoc-eq-for-open-channels-p.
(in-theory (disable true-listp-cadr-assoc-eq-for-open-channels-p))
; See comment in consp-assoc-equal.
(in-theory (disable (:type-prescription consp-assoc-equal)))
; See comment in true-list-listp-forward-to-true-listp-assoc-equal.
(in-theory (disable (:type-prescription
true-list-listp-forward-to-true-listp-assoc-equal)))
; The definitions that follow provide support for the experimental parallelism
; extension, ACL2(p), of ACL2. Also see the Essay on Parallelism, Parallelism
; Warts, Parallelism Blemishes, Parallelism No-fixes, and Parallelism Hazards.
(defun add-@par-suffix (symbol)
(declare (xargs :guard (symbolp symbol)))
(intern (string-append (symbol-name symbol)
"@PAR")
"ACL2"))
(defun generate-@par-mappings (symbols)
(declare (xargs :guard (symbol-listp symbols)))
(cond ((endp symbols)
nil)
(t (cons (cons (add-@par-suffix (car symbols))
(car symbols))
(generate-@par-mappings (cdr symbols))))))
; Parallelism blemish: consider adding a doc topic explaining that if a user
; finds the #+acl2-par version of an "@par" function to be useful, that they
; should contact the authors of ACL2. The authors should then create a version
; of the desired "@par" function, perhaps suffixing it with "@ns" (for "no
; state"). And then the "@par" function could simply call the "@ns" version.
; A good example candidate for this is simple-translate-and-eval@par, which
; could be used inside Sol Swords's GL system to produce computed hints that
; don't modify state.
(defconst *@par-mappings*
; For each symbol SYM in the quoted list below, the #-acl2-par call below of
; define-@par-macros will automatically define a macro SYM@par that expands to
; the corresponding call of SYM. For #+acl2-par, however, SYM@par must be
; defined explicitly. For example, in #-acl2-par, waterfall1-lst@par is
; automatically defined to call waterfall1-lst, but in #+acl2-par we explicitly
; define waterfall1-lst@par.
; Next we consider the role played by the list below in expanding calls of the
; macro defun@par. In #-acl2-par, there actually is no role: a call of
; defun@par simply expands to a call of defun on the same arguments, i.e.,
; defun@par is simply replaced by defun.
; Consider then the #+acl2-par case for a call (defun@par FN . rest). This
; call expands to a progn of two defuns, which we refer to as the "parallel"
; (or "@par") and "serial" (or "non-@par") versions of (the definition on) FN.
; For the parallel version we obtain (defun FN@par . rest). For the serial
; version we obtain (defun FN . rest'), where rest' is the result of replacing
; SYM@par by SYM in rest for each symbol SYM in the list below. Consider for
; example the definition (defun@par waterfall-step formals body); note that we
; are still considering only the #+acl2-par case. This call expands to a progn
; of parallel and serial versions. The parallel version is (defun
; waterfall-step@par formals body), i.e., with no change to the body of the
; given defun@par. The serial version is of the form (defun waterfall-step
; formals body'), where for example the call of waterfall-step1@par in body is
; replaced by a corresponding call of waterfall-step1 in body'.
; Suppose that F is a function that has both a parallel definition (defining
; F@par) and serial definition (defining F), such that F@par is called in the
; body of (defun@par G ...). Then it is useful to include F in the list below.
; To see why, consider the #-acl2-par expansion of (defun@par G ...), which
; still has a call of F@par. By including F in the list below, we ensure that
; F@par is automatically defined as a macro that replaces F@par by F.
; Note that this list does not contain all symbols defined with an @par
; counterpart. For example, the symbol mutual-recursion is omitted from this
; list, and mutual-recursion@par must be defined explicitly in both #+acl2-par
; and #-acl2-par. This works because mutual-recursion@par does not need to be
; called from inside any functions defined with defun@par.
; Also, sometimes we need to create a non-@par version of a macro that is the
; identity macro, just so that we can have an @par version that does something
; important for the parallel case inside a call of defun@par.
; Waterfall1-wrapper is an example of such a macro (and it may be the only
; example). Since waterfall1-wrapper@par is called within functions defined
; with defun@par, waterfall1-wrapper must be included in this list, as
; explained above.
; This list is split into two groups: (1) symbols that have an explicit
; #+acl2-par definition for the parallel (@par) version, and (2) symbols for
; which defun@par is used for defining both the symbol and its @par version.
; Group (1) is further divided into (1a) utilities that are "primitive" in
; nature and (1b) higher-level functions and macros.
(generate-@par-mappings
'(
; Group 1a (see above):
catch-time-limit5
cmp-and-value-to-error-quadruple
cmp-to-error-triple
er
er-let*
er-progn
error-fms
error-in-parallelism-mode
error1
f-put-global
io?
io?-prove
mv
mv-let
parallel-only
pprogn
serial-first-form-parallel-second-form
serial-only
sl-let
state-mac
value
warning$
; Group 1b (see above):
add-custom-keyword-hint
eval-clause-processor
eval-theory-expr
formal-value-triple
increment-timer
simple-translate-and-eval
translate-in-theory-hint
waterfall-print-clause-id
waterfall-print-clause-id-fmt1-call
waterfall-update-gag-state
waterfall1-lst
waterfall1-wrapper
xtrans-eval
; Group 2 (see above):
accumulate-ttree-and-step-limit-into-state
add-custom-keyword-hint-fn
apply-override-hint
apply-override-hint1
apply-override-hints
apply-reorder-hint
apply-top-hints-clause
check-translated-override-hint
chk-arglist
chk-do-not-expr-value
chk-equal-arities
chk-equiv-classicalp
chk-theory-expr-value
chk-theory-expr-value1
chk-theory-invariant
chk-theory-invariant1
custom-keyword-hint-interpreter
custom-keyword-hint-interpreter1
eval-and-translate-hint-expression
find-applicable-hint-settings
find-applicable-hint-settings1
gag-state-exiting-cl-id
load-hint-settings-into-pspv
load-hint-settings-into-rcnst
load-theory-into-enabled-structure
maybe-warn-about-theory
maybe-warn-about-theory-from-rcnsts
maybe-warn-about-theory-simple
maybe-warn-for-use-hint
pair-cl-id-with-hint-setting
process-backtrack-hint
push-clause
put-cl-id-of-custom-keyword-hint-in-computed-hint-form
record-gag-state
thanks-for-the-hint
translate
translate1
translate-backchain-limit-rw-hint
translate-backtrack-hint
translate-bdd-hint
translate-bdd-hint1
translate-by-hint
translate-case-split-limitations-hint
translate-cases-hint
translate-clause-processor-hint
translate-custom-keyword-hint
translate-do-not-hint
translate-do-not-induct-hint
translate-error-hint
translate-expand-hint
translate-expand-hint1
translate-expand-term
translate-expand-term1
translate-functional-substitution
translate-hands-off-hint
translate-hands-off-hint1
translate-hint
translate-hints
translate-hints1
translate-hints2
translate-hints+1
translate-hint-expression
translate-hint-expressions
translate-hint-settings
translate-induct-hint
translate-lmi
translate-lmi/functional-instance
translate-lmi/instance
translate-no-op-hint
translate-no-thanks-hint
translate-nonlinearp-hint
translate-or-hint
translate-reorder-hint
translate-restrict-hint
translate-rw-cache-state-hint
translate-simple-or-error-triple
translate-substitution
translate-substitution-lst
translate-term-lst
translate-use-hint
translate-use-hint1
translate-x-hint-value
warn-on-duplicate-hint-goal-specs
waterfall-msg
waterfall-print-clause
waterfall-step
waterfall-step1
waterfall-step-cleanup
waterfall0
waterfall0-or-hit
waterfall0-with-hint-settings
waterfall1)))
(defun make-identity-for-@par-mappings (mappings)
; Although this is only used for #-acl2-par, we define it unconditionally so
; that its rune is available in both ACL2 and ACL2(p). Robert Krug used
; arithmetic-5, which employs deftheory-static, and hence was bitten when this
; rune was missing.
(declare (xargs :guard (alistp mappings)))
(cond ((endp mappings) nil)
(t (cons `(defmacro ,(caar mappings) (&rest rst)
(cons ',(cdar mappings) rst))
(make-identity-for-@par-mappings (cdr mappings))))))
#-acl2-par
(defmacro define-@par-macros ()
; This macro defines the #-acl2-par version of the @par functions and macros.
`(progn ,@(make-identity-for-@par-mappings *@par-mappings*)))
#-acl2-par
(define-@par-macros)
; To find places where we issue definitions both without the "@par" suffix and
; with the "@par" suffix, one can run the following. (For example, there might
; be a defun@par of foo, but there might instead be both a defun of foo and a
; defun of foo@par. The first line below can catch either of these.)
; grep "@par" *.lisp | grep "defun "
; grep "@par" *.lisp | grep "defmacro "
(defun replace-defun@par-with-defun (forms)
(declare (xargs :guard (alistp forms)))
(cond ((endp forms)
nil)
((eq (caar forms) 'defun@par)
(cons (cons 'defun (cdar forms))
(replace-defun@par-with-defun (cdr forms))))
(t (cons (car forms)
(replace-defun@par-with-defun (cdr forms))))))
#-acl2-par
(defmacro mutual-recursion@par (&rest forms)
`(mutual-recursion ,@(replace-defun@par-with-defun forms)))
#+acl2-par
(defun defun@par-fn (name parallel-version rst)
(declare (xargs :guard (and (symbolp name)
(booleanp parallel-version)
(true-listp rst))))
(let ((serial-function-symbol
(intern (symbol-name name)
"ACL2"))
(parallel-function-symbol
(intern (string-append (symbol-name name)
"@PAR")
"ACL2"))
(serial-definition-args (sublis *@par-mappings* rst))
(parallel-definition-args rst))
(if parallel-version
`(defun ,parallel-function-symbol
,@parallel-definition-args)
`(defun ,serial-function-symbol
,@serial-definition-args))))
#+acl2-par
(defun mutual-recursion@par-guardp (rst)
(declare (xargs :guard t))
(cond ((atom rst) (equal rst nil))
(t (and (consp (car rst))
(true-listp (car rst))
(true-listp (caddr (car rst))) ; formals
(symbolp (cadar rst))
(member-eq (car (car rst)) '(defun defund defun-nx defund-nx
defun@par))
(mutual-recursion@par-guardp (cdr rst))))))
#+acl2-par
(defun mutual-recursion@par-fn (forms serial-and-par)
(declare (xargs :guard (and (mutual-recursion@par-guardp forms)
(booleanp serial-and-par))))
(cond ((endp forms)
nil)
((equal (caar forms) 'defun@par)
(let* ((curr (car forms))
(name (cadr curr))
(rst (cddr curr)))
(cond (serial-and-par
(cons (defun@par-fn name t rst)
(cons (defun@par-fn name nil rst)
(mutual-recursion@par-fn (cdr forms)
serial-and-par))))
(t
(cons (defun@par-fn name nil rst)
(mutual-recursion@par-fn (cdr forms)
serial-and-par))))))
(t (cons (car forms)
(mutual-recursion@par-fn (cdr forms) serial-and-par)))))
#+acl2-par
(defmacro mutual-recursion@par (&rest forms)
(declare (xargs :guard (mutual-recursion@par-guardp forms)))
`(mutual-recursion ,@(mutual-recursion@par-fn forms t)))
(defmacro defun@par (name &rest args)
; See *@par-mappings* for a discussion of this macro. In brief: for
; #-acl2-par, defun@par is just defun. But for #+acl2-par, defun@par defines
; two functions, a "parallel" and a "serial" version. The serial version
; defines the given symbol, but the parallel version defines a corresponding
; symbol with suffix "@PAR".
#+acl2-par
`(progn ,(defun@par-fn name t args)
,(defun@par-fn name nil args))
#-acl2-par
`(defun ,name ,@args))
(defmacro serial-first-form-parallel-second-form (x y)
; Keep in sync with serial-first-form-parallel-second-form@par.
(declare (ignore y))
x)
#+acl2-par
(defmacro serial-first-form-parallel-second-form@par (x y)
; Keep in sync with serial-first-form-parallel-second-form.
(declare (ignore x))
y)
(defmacro serial-only (x)
; Keep in sync with serial-only@par.
x)
#+acl2-par
(defmacro serial-only@par (x)
; Keep in sync with serial-only.
(declare (ignore x))
nil)
(defmacro parallel-only (x)
; Keep in sync with parallel-only@par.
(declare (ignore x))
nil)
#+acl2-par
(defmacro parallel-only@par (x)
; Keep in sync with parallel-only.
x)
#+acl2-par
(defmacro mv@par (&rest rst)
(declare (xargs :guard ; sanity check
(member-eq 'state rst)))
`(mv? ,@(remove1-eq 'state rst)))
#+acl2-par
(defmacro value@par (val)
; Keep in sync with value.
`(mv nil ,val))
(defmacro state-mac ()
; Keep in sync with state-mac@par.
'state)
#+acl2-par
(defmacro state-mac@par ()
; Keep in sync with state-mac.
nil)
#+acl2-par
(defmacro mv-let@par (vars call &rest rst)
(declare (xargs :guard ; sanity check
(member-eq 'state vars)))
`(mv?-let ,(remove1-eq 'state vars) ,call ,@rst))
#+acl2-par
(defmacro warning$@par (&rest rst)
; We do not simply just call warning$-cw, because we actually have state
; available when we use warning$@par.
`(let ((state-vars (default-state-vars t))
(wrld (w state)))
(warning$-cw1 ,@rst)))
(defmacro error-in-parallelism-mode (fake-return-value form)
(declare (ignore fake-return-value))
form)
#+acl2-par
(defmacro error-in-parallelism-mode@par (return-value form)
; We avoid even trying to evaluate form, instead returning a hard error with a
; useful message. Return-value must have the same output signature as that of
; form.
; Any form enwrapped with error-in-parallelism-mode@par is essentially
; disabled. To restore the code to its original form, just remove the wrapper
; error-in-parallelism-mode@par.
`(prog2$
(er hard 'error-in-parallelism-mode@par
"There has been an attempt to evaluate a form that is disallowed in ~
the parallelized evaluation of the waterfall. See :doc ~
set-waterfall-parallelism for how to disable such parallel ~
evaluation. Please let the ACL2 authors know if you see this ~
message, as our intent is that its occurence should be rare. The ~
offending form is: ~x0"
',form)
,return-value))
#+acl2-par
(defun increment-timer@par (name state)
(declare (xargs :guard t)
(ignore name state))
(state-mac@par))
; These constants are needed both in parallel.lisp and boot-strap-pass-2.lisp,
; so we define them here.
(defconst *waterfall-printing-values*
'(:full :limited :very-limited))
(defconst *waterfall-parallelism-values*
'(nil t :full :top-level :resource-based :resource-and-timing-based
:pseudo-parallel))
; This is needed in both boot-strap-pass-2.lisp and parallel.lisp, so we put it
; here.
(defun symbol-constant-fn (prefix sym)
(declare (xargs :guard (and (symbolp prefix)
(symbolp sym))))
(intern (concatenate 'string
(symbol-name prefix)
"-"
(symbol-name sym))
"ACL2"))
; Oracle-funcall, oracle-apply, and oracle-apply-ttag:
(defun stobjs-in (fn w)
; Fn must be a function symbol, not a lambda expression and not an
; undefined symbol. See the Essay on STOBJS-IN and STOBJS-OUT.
(declare (xargs :guard (and (symbolp fn)
(plist-worldp w))))
(if (eq fn 'cons)
; We call this function on cons so often we optimize it.
'(nil nil)
(getprop fn 'stobjs-in nil 'current-acl2-world w)))
(defmacro oracle-funcall (fn &rest args)
":Doc-Section ACL2::ACL2-built-ins
call a function argument on the remaining arguments~/
~c[Oracle-funcall] evaluates its first argument to produce an ACL2 function
symbol, and then applies that function symbol to the values of the rest of
the arguments. The return value is of the form ~c[(mv call-result state)].
~bv[]
Examples:
(oracle-funcall 'cons 3 4) ==> (mv '(3 . 4) <state>)
(oracle-funcall (car '(floor foo bar)) (+ 6 7) 5) ==> (mv 2 <state>)
~ev[]
~c[Oracle-funcall] is a macro; each of its calls macroexpands to a call of
the related utility ~c[oracle-apply] that takes the ACL2 ~ilc[state] as an
argument, as follows:
~bv[]
(oracle-funcall fn x1 x2 .. xk)
~ev[]
macroexpands to
~bv[]
(oracle-apply fn (list x1 x2 .. xk) state)
~ev[]
Note that calls of ~c[oracle-funcall] and ~c[oracle-apply] return two values:
the result of the function application, and a modified ~ilc[state].
~l[oracle-apply] for details, including information about ~il[guard]s.~/~/"
`(oracle-apply ,fn (list ,@args) state))
(defun all-nils (lst)
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) t)
(t (and (eq (car lst) nil)
(all-nils (cdr lst))))))
(defun oracle-apply-guard (fn args state)
(declare (xargs :stobjs state))
(and (symbolp fn)
(not (eq fn 'return-last))
(true-listp args)
(let* ((wrld (w state))
(formals (getprop fn 'formals t 'current-acl2-world wrld))
(stobjs-in (stobjs-in fn wrld)))
(and (not (eq formals t))
(eql (len formals) (len args))
(true-listp stobjs-in) ; needed for guard of all-nils
(all-nils stobjs-in)))))
(defun oracle-apply (fn args state)
; The use of an oracle is important for the logical story. For example, we can
; imagine the following sort of situation without an oracle.
; (encapsulate
; ()
; (local (defun f (x)
; 1))
; (defthm prop-1
; (equal (oracle-funcall 'f) 1)
; :rule-classes nil))
;
; (encapsulate
; ()
; (local (defun f ()
; 2))
; (defthm prop-2
; (equal (oracle-funcall 'f) 2)
; :rule-classes nil))
;
; (defthm contradiction
; nil
; :hints (("Goal" :use (prop-1 prop-2))))
":Doc-Section ACL2::ACL2-built-ins
call a function argument on the given list of arguments~/
~c[Oracle-apply] evaluates its first argument to produce an ACL2 function
symbol, ~c[FN], and then applies ~c[FN] to the value of the second argument,
which should be a true list whose length is the number of inputs for ~c[FN].
The return value is of the form ~c[(mv call-result state)].
~bv[]
Examples:
(oracle-apply 'cons '(3 4) state) = (mv '(3 . 4) <state>)
(oracle-apply (car '(floor foo)) (list (+ 6 7) 5) state) = (mv 2 <state>)
~ev[]
Also ~pl[oracle-funcall] for a related utility.
Note that calls of ~c[oracle-funcall] and ~c[oracle-apply] return two values:
the result of the function application, and a modified ~ilc[state].
~c[Oracle-apply] is defined in ~c[:]~ilc[logic] mode, and in fact is
~il[guard]-verified. However, you will not be able to prove much about this
function, because it is defined in the logic using the ~c[acl2-oracle] field
of the ACL2 ~il[state]. The behavior described above ~-[] i.e., making a
function call ~-[] takes place when the third argument is the ACL2
~ilc[state], so during proofs (when that can never happen), a term
~c[(oracle-apply 'fn '...)] will not simplify using a call of ~c[fn].
The guard for ~c[(oracle-apply fn args state)] is the term
~c[(oracle-apply-guard fn args state)], which says the following: ~c[fn] and
~c[args] must satisfy ~ilc[symbolp] and ~ilc[true-listp], respectively;
~c[fn] must be a known function symbol other than ~ilc[return-last] that is
not untouchable (~pl[push-untouchable]) and has no ~il[stobj] arguments (not
even ~ilc[state]); and the ~il[length] of ~c[args] must equal the arity of
~c[fn] (~pl[signature]). The requirement that ~c[fn] be a known function
symbol may be a bit onerous for guard verification, but this is easily
overcome by using ec-call, for example as follows.
~bv[]
(defun f (x state)
(declare (xargs :stobjs state))
(ec-call (oracle-apply 'car (list x) state)))
~ev[]
This use of ~ilc[ec-call] will, however, cause the ~il[guard] of
~c[oracle-apply] to be checked at runtime.
If the ~il[guard] for ~c[oracle-apply] fails to hold but there is no guard
violation because guard-checking is suppressed (~pl[set-guard-checking]),
then the value returned is computed using its logical definition ~-[] which,
as mentioned above, uses the ACL2 oracle ~-[] and hence the value computed is
unpredictable (indeed, the function argument will not actually be called).
The value returned by ~c[oracle-apply] is always a single value obtained by
calling the executable counterpart of its function argument, as we now
explain. Consider a form ~c[(oracle-apply fn args state)] that evaluates to
~c[(mv VAL state')], where ~c[fn] evaluates to the function symbol ~c[F]. If
~c[F] returns multiple values, then ~c[VAL] is the first value computed by
the call of ~c[F] on the value of ~c[args]. More precisely, ~c[oracle-apply]
actually invokes the executable counterpart of ~c[F]; thus, if ~c[args] is
the expression ~c[(list x1 ... xk)], then ~c[VAL] is the same as (first)
value returned by evaluating ~c[(ec-call (F x1 x2 ... xk))]. ~l[ec-call].
(Remark. If you identify a need for a version of ~c[oracle-apply] to return
multiple values, we can perhaps provide such a utility; feel free to contact
the ACL2 implementors to request it.)
A subtlety is that the evaluation takes place in so-called ``safe mode'',
which avoids raw Lisp errors due to calls of ~c[:]~ilc[program] mode
functions. The use of safe mode is unlikely to be noticed if the value of
the first argument of ~c[oracle-apply] is a ~c[:]~ilc[logic] mode function
symbol. However, for ~c[:program] mode functions with side effects due to
special raw Lisp code, as may be the case for built-in functions or for
custom functions defined with active trust tags (~pl[defttag]), use of the
following function may be preferable:
~l[oracle-apply-raw] for a much less restrictive version of ~c[oracle-apply],
which avoids safe mode and (for example) can apply a function that has a
definition in the host Lisp but not in the ACL2 ~il[world].~/~/"
(declare (xargs :stobjs state
:guard (oracle-apply-guard fn args state)))
#-acl2-loop-only
(when (live-state-p state)
(return-from oracle-apply
(mv (state-free-global-let* ((safe-mode t))
(apply (*1*-symbol fn) args))
state)))
#+acl2-loop-only
(mv-let (erp val state)
(read-acl2-oracle state)
(declare (ignore erp))
; We arrange for the result to depend logically on fn and args. This is
; probably not important to do, but it seems potentially weird for the result
; ot have nothing to do with fn or with args.
(mv (and (true-listp val)
(eq (car val) fn)
(equal (cadr val) args)
(caddr val))
state)))
(defun oracle-apply-raw (fn args state)
":Doc-Section ACL2::ACL2-built-ins
call a function argument on the given list of arguments, no restrictions~/
~l[oracle-apply], as we assume familiarity with that function.
~c[Oracle-apply-raw] is a variant of ~c[oracle-apply] that is untouchable,
and hence requires a trust tag to remove the untouchability (~pl[defttag] and
~pl[remove-untouchable]). Unlike ~c[oracle-apply], ~c[oracle-apply-raw]
simply calls the raw Lisp function ~c[funcall] to compute the result, without
restriction: the specified ~c[:]~ilc[guard] is ~c[t], the function itself is
applied (not its executable counterpart), there is no restriction for
untouchable functions or ~ilc[return-last], and safe mode is not used. Thus,
in general, ~c[oracle-apply-raw] can be dangerous to use: any manner of error
can occur!
As is the case for ~ilc[oracle-apply], the function symbol
~ilc[oracle-apply-raw] is defined in ~c[:]~ilc[logic] mode and is
~il[guard]-verified. ~c[Oracle-apply-raw] is logically defined to be
~ilc[oracle-apply]; more precisely:
~bv[]
(oracle-apply-raw fn args state)
= {logical definition}
(ec-call (oracle-apply fn args state))
~ev[]~/~/"
(declare (xargs :stobjs state :guard t))
#-acl2-loop-only
(when (live-state-p state)
(return-from oracle-apply-raw
(mv (funcall fn args) state)))
#+acl2-loop-only
(ec-call (oracle-apply fn args state)))
(defun time-tracker-fn (tag kwd kwdp times interval min-time msg)
; Do not conditionalize this function on #-acl2-par, even though its only
; intended use is on behalf of the #-acl2-par definition of time-tracker,
; because otherwise theories computed for ACL2 and ACL2(p) may differ, for
; example when including community books under arithmetic-5/.
(declare (xargs :guard t))
(cond
((and (booleanp tag) kwdp)
(er hard? 'time-tracker
"It is illegal to call ~x0 with a Boolean tag and more than one ~
argument. See :DOC time-tracker."
'time-tracker))
((booleanp tag)
#-acl2-loop-only
(setf (symbol-value '*time-tracker-disabled-p*) ; setq gives compiler warning
(not tag))
nil)
#-acl2-loop-only
((symbol-value '*time-tracker-disabled-p*)
nil)
((not (symbolp tag))
(er hard? 'time-tracker
"Illegal first argument for ~x0 (should be a symbol): ~x1. See :DOC ~
time-tracker."
'time-tracker))
((and (not (booleanp tag))
(not (member-eq kwd
'(:init :end :print? :stop :start))))
(er hard? 'time-tracker
"Illegal second argument for ~x0: ~x1. See :DOC time-tracker."
'time-tracker
kwd))
((or (and times
(not (eq kwd :init)))
(and interval
(not (eq kwd :init)))
(and min-time
(not (eq kwd :print?)))
(and msg
(not (or (eq kwd :init)
(eq kwd :print?)))))
(er hard? 'time-tracker
"Illegal call of ~x0: a non-nil keyword argument of ~x1 is illegal ~
for a second argument of ~x2. See :DOC time-tracker."
'time-tracker
(cond ((and times
(not (eq kwd :init)))
:times)
((and interval
(not (eq kwd :init)))
:interval)
((and min-time
(not (eq kwd :print?)))
:min-time)
(t
:msg))
kwd))
(t #-acl2-loop-only
(case kwd
(:init (tt-init tag times interval msg))
(:end (tt-end tag))
(:print? (tt-print? tag min-time msg))
(:stop (tt-stop tag))
(:start (tt-start tag)))
nil)))
#-acl2-par
(defmacro time-tracker (tag &optional (kwd 'nil kwdp)
&key times interval min-time msg)
`(time-tracker-fn ,tag ,kwd ,kwdp ,times ,interval ,min-time ,msg))
#+acl2-par
(defmacro time-tracker (&rest args)
(declare (ignore args))
nil)
(defdoc time-tracker
; This documentation is separated from the defmacro for time-tracker because
; that defmacro has two definitions, one for #-acl2-par and one for
; #+acl2-par. We need this :doc topic present in both kinds of builds, because
; of the :cite of it in :doc trace.
":Doc-Section programming
display time spent during specified evaluation~/
The ~c[time-tracker] macro is a utility for displaying time spent during
specified evaluation. In general, the user provides this specification.
However, ACL2 itself uses this utility for tracking uses of its
~il[tau-system] reasoning utility (~pl[time-tracker-tau]). We discuss that
use as an example before discussing the general form for calls of
~c[time-tracker].
Note that by default, the time being tracked is runtime (cpu time); to switch
to realtime (elapsed time), ~pl[get-internal-time].
Remark for ACL2(p) users (~pl[parallelism]): ~c[time-tracker] is merely a
no-op in ACL2(p).
During the development of the ~il[tau-system], we were concerned about the
possibility that it would slow down proofs without any indication of how one
might avoid the problem. We wanted a utility that would alert the user in
such situations. However, the tau-system code does not return ~il[state], so
we could not track time spent in the state. We developed the
~c[time-tracker] utility to track time and print messages, and we did it in a
general way so that others can use it in their own code. Here is an example
of such a message that could be printed during a proof.
~bv[]
TIME-TRACKER-NOTE [:TAU]: Elapsed runtime in tau is 2.58 secs; see
:DOC time-tracker-tau.
~ev[]
And here is an example of such a message that could be printed at the end of
the proof.
~bv[]
TIME-TRACKER-NOTE [:TAU]: For the proof above, the total time spent
in the tau system was 20.29 seconds. See :DOC time-tracker-tau.
~ev[]
The ~c[time-tracker] utility tracks computation time spent on behalf of a
user-specified ``tag''. In the case of the tau-system, we chose the tag,
~c[:tau]. The first argument of ~c[time-tracker] is the tag, which in our
running example is always ~c[:tau]. Note that although all arguments of
~c[time-tracker] are evaluated, the first argument is typically a keyword and
the second is always a keyword, and such arguments evaluate to themselves.
An ACL2 function invoked at the start of a proof includes approximately the
following code.
~bv[]
(progn$
(time-tracker :tau :end)
(time-tracker :tau :init
:times '(1 2 3 4 5)
:interval 5
:msg \"Elapsed runtime in tau is ~~st secs; see :DOC ~~
time-tracker-tau.~~|~~%\")
...)
~ev[]
The first ~c[time-tracker] call (above) ends any existing time-tracking for
tag ~c[:tau]. One might have expected it be put into code managing the proof
summary, but we decided not to rely on that code being executed, say, in case
of an interrupt. When a given tag is not already being time-tracked, then
~c[:end] is a no-op (rather than an error).
The second ~c[time-tracker] call (above) initiates time-tracking for the tag,
~c[:tau]. Moreover, it specifies the effect of the ~c[:print?] keyword.
Consider the following abbreviated definition from the ACL2 source code.
~bv[]
(defun tau-clausep-lst-rec (clauses ens wrld ans ttree state calist)
(cond
((endp clauses)
(mv (revappend ans nil) ttree calist))
(t (mv-let
(flg1 ttree1 calist)
(tau-clausep (car clauses) ens wrld state calist)
(prog2$ (time-tracker :tau :print?)
(tau-clausep-lst-rec (cdr clauses) ...))))))
~ev[]
Notice that ~c[(time-tracker :tau :print?)] is executed immediately after
~c[tau-clausep] is called. The idea is to check whether the total time
elapsed inside the tau-system justifies printing a message to the user. The
specification of ~c[:times '(1 2 3 4 5)] in the ~c[:init] form above says
that a message should be printed after 1 second, after 2 seconds, ..., and
after 5 seconds. Thereafter, the specification of ~c[:interval 5] in the
~c[:init] form above says that each time we print, at least 5 additional
seconds should have been tracked before ~c[(time-tracker :tau :print?)]
prints again. Finally, the ~c[:msg] keyword above specifies just what should
be printed. If it is omitted, then a reasonable default message is
printed (as discussed below), but in this case we wanted to print a custom
message. The ~c[:msg] string above is what is printed using formatted
printing (~pl[fmt]), where the character ~c[#\\t] is bound to a string giving
a decimal representation with two decimal points of the time tracked so far
for tag ~c[:tau]. (As our general description below points out, ~c[:msg] can
also be a ``message'' list rather than a string.)
But when is time actually tracked for ~c[:tau]? Consider the following
definition from the ACL2 source code.
~bv[]
(defun tau-clausep-lst (clauses ens wrld ans ttree state calist)
(prog2$ (time-tracker :tau :start)
(mv-let
(clauses ttree calist)
(tau-clausep-lst-rec clauses ens wrld ans ttree state calist)
(prog2$ (time-tracker :tau :stop)
(mv clauses ttree calist)))))
~ev[]
The two calls of ~c[time-tracker] above first start, and then stop,
time-tracking for the tag, ~c[:tau]. Thus, time is tracked during evaluation
of the call of ~c[tau-clausep-lst-rec], which is the function (discussed above)
that does the ~il[tau-system]'s work.
Finally, as noted earlier above, ACL2 may print a time-tracking message for
tag ~c[:tau] at the end of a proof. The ACL2 function ~c[print-summary]
contains essentially the following code.
~bv[]
(time-tracker :tau :print?
:min-time 1
:msg \"For the proof above, the total runtime ~~
spent in the tau system was ~~st seconds. ~~
See :DOC time-tracker-tau.~~|~~%\")
~ev[]
The use of ~c[:min-time] says that we are to ignore the ~c[:times] and
~c[:interval] established by the ~c[:init] call described above, and instead,
print a message if and only if at least 1 second (since 1 is the value of
keyword ~c[:min-time]) has been tracked for tag ~c[:tau]. Formatted printing
(~pl[fmt]) is used for the value of ~c[:msg], where the character ~c[#\\t] is
bound to a decimal string representation of the time in seconds, as described
above.
The example above covers all legal values for the second argument of
~c[time-tracker] and discusses all the additional legal keyword arguments.
We conclude with a precise discussion of all arguments. Note that all
arguments are evaluated; thus when we refer to an argument, we are discussing
the value of that argument. All times discussed are runtimes, i.e., cpu
times, unless that default is changed; ~pl[get-internal-time].
~bv[]
General forms:
(time-tracker t) ; enable time-tracking (default)
(time-tracker nil) ; disable time-tracking
(time-tracker tag ; a symbol other than t or nil
option ; :init, :end, :start, :stop, or :print?
;; keyword arguments:
:times ; non-nil if and only if option is :init
:interval ; may only be non-nil with :init option
:min-time ; may only be non-nil with :print? option
:msg ; may only be non-nil with :init and :print? options
~ev[]
Time-tracking is enabled by default. If the first argument is ~c[t] or
~c[nil], then no other arguments are permitted and time-tracking is enabled
or disabled, respectively. When time-tracking is disabled, nothing below
takes place. Thus we assume time-tracking is enabled for the remainder of
this discussion. We also assume below that the first argument is neither
~c[t] nor ~c[nil].
We introduce some basic notions about time-tracking. A given tag, such as
~c[:tau] in the example above, might or might not currently be ``tracked'':
~c[:init] causes the specified tag to be tracked, while ~c[:end] causes the
specified tag not to be tracked. If the tag is being tracked, the tag might
or might not be ``active'': ~c[:start] causes the tag to be in an active
state, whie ~c[:stop] causes the tag not to be active. Note that only
tracked tags can be in an active or inactive state. For a tag that is being
tracked, the ``accumulated time'' is the total time spent in an active state
since the time that the tag most recently started being tracked, and the
``checkpoint list'' is a non-empty list of rational numbers specifying when
printing may take place, as described below.
We now consider each legal value for the second argument, or ``option'', for
a call of ~c[time-tracker] on a given tag.
~c[:Init] specifies that the tag is to be tracked. It also establishes
defaults for the operation of ~c[:print?], as described below, using the
~c[:times], ~c[:interval], and ~c[:msg] keywords. Of these three, only
~c[:times] is required, and its value must be a non-empty list of rational
numbers specifying the initial checkpoint list for the tag. It is an error
to specify ~c[:init] if the tag is already being tracked. (So if you don't
care whether or not the tag is already being tracked and you want to initiate
tracking for that tag, use ~c[:end] first.)
~c[:End] specifies that if the tag is being tracked, then it should nstop
being tracked. If the tag is not being tracked, then ~c[:end] has no effect.
~c[:Start] specifies that the tag is to be active. It is an error to specify
~c[:start] if the tag is not being tracked or is already active.
~c[:Stop] specifies that the tag is to stop being active. It is an error to
specify ~c[:stop] if the tag is not being tracked or is not active.
~c[:Print?] specifies that if the tag is being tracked (not necessarily
active), then a message should be printed if a suitable condition is met.
The nature of that message and that condition depend on the keyword options
supplied with ~c[:print?] as well as those supplied with the ~c[:init] option
that most recently initiated tracking. ~c[:Print?] has no effect if the tag
is not being tracked, except that if certain keyword values are checked if
supplied with ~c[:print?]: ~c[:min-time] must be a rational number or
~c[nil], and ~c[:msg] must be either a string, a true-list whose ~c[car] is a
string, or ~c[nil]. The remainder of this documentation describes the
~c[:print?] option in detail under the assumption that the tag is being
tracked: first, giving the conditions under which it causes a message to be
printed, and second, explaining what is printed.
When ~c[:print?] is supplied a non-~c[nil] value of ~c[:min-time], that value
must be a rational number, in which case a message is printed if the
accumulated time for the tag is at least that value. Otherwise a message is
printed if the accumulated time is greater than or equal to the ~c[car] of
the checkpoint list for the tag. In that case, the tracking state for the
tag is updated in the following two ways. First, the checkpoint list is
scanned from the front and as long as the accumulated time is greater than or
equal to the ~c[car] of the remaining checkpoint list, that ~c[car] is popped
off the checkpoint list. Second, if the checkpoint list has been completely
emptied and a non-~c[nil] ~c[:interval] was supplied when tracking was most
recently initiated with the ~c[:init] option, then the checkpoint list is set
to contain a single element, namely the sum of the accumulated time with that
value of ~c[:interval].
Finally, suppose the above criteria are met, so that ~c[:print?] results in
printing of a message. We describe below the message, ~c[msg], that is
printed. Here is how it is printed (~pl[fmt]), where
~c[seconds-as-decimal-string] is a string denoting the number of seconds of
accumulated time for the tag, with two digits after the decimal point.
~bv[]
(fms \"TIME-TRACKER-NOTE [~~x0]: ~~@1~~|\"
(list (cons #\0 tag)
(cons #\1 msg)
(cons #\t seconds-as-decimal-string))
(proofs-co state) state nil)
~ev[]
The value of ~c[msg] is the value of the ~c[:msg] keyword supplied with
~c[:print?], if non-~c[nil]; else, the value of ~c[:msg] supplied when most
recently initialization with the ~c[:init] option, if non-~c[nil]; and
otherwise, the string ~c[\"~~st s\"] (the final ``s'' abbreviating the word
``seconds''). It is convenient to supply ~c[:msg] as a call
~c[(msg str arg-0 arg-1 ... arg-k)], where ~c[str] is a string and each
~c[arg-i] is the value to be associated with ~c[#\\i] upon formatted
printing (as with ~ilc[fmt]) of the string ~c[str].~/~/")
(defdoc time-tracker-tau
":Doc-Section miscellaneous
messages about expensive use of the ~il[tau-system]~/
This ~il[documentation] topic explains messages printing by the theorem
prover about the ~il[tau-system], as follows.
During a proof you may see a message such as the following.
~bv[]
TIME-TRACKER-NOTE [:TAU]: Elapsed runtime in tau is 4.95 secs; see
:DOC time-tracker-tau.
~ev[]
Just below a proof summary you may see a message such as the following.
~bv[]
TIME-TRACKER-NOTE [:TAU]: For the proof above, the total runtime spent
in the tau system was 30.01 seconds. See :DOC time-tracker-tau.
~ev[]
Both of these messages are intended to let you know that certain prover
heuristics (~pl[tau-system]) may be slowing proofs down more than they are
helping. If you are satisfied with the prover's performance, you may ignore
these messages or even turn them off by disabling time-tracking
entirely (~pl[time-tracker]). Otherwise, here are some actions that you can
take to solve such a performance problem.
The simplest solution is to disable the tau-system, in either of the
following equivalent ways.
~bv[]
(in-theory (disable (:executable-counterpart tau-system)))
(in-theory (disable (tau-system)))
~ev[]
But if you want to leave the tau-system enabled, you could investigate the
possibility is that the tau-system is causing an expensive
~c[:]~ilc[logic]-mode function to be executed. You can diagnose that problem
by observing the rewriter ~-[] ~pl[dmr] ~-[] or by interrupting the system
and getting a backtrace (~pl[set-debugger-enable]). A solution in that case
is to disable the executable-counterpart of that function, for example in
either of these equivalent ways.
~bv[]
(in-theory (disable (:executable-counterpart foo)))
(in-theory (disable (foo)))
~ev[]
As a result, the tau-system will be weakened, but perhaps only negligibly.
In either case above, you may prefer to provide ~c[:]~ilc[in-theory] hints
rather than ~c[:in-theory] ~il[events]; ~pl[hints].
A more sophisticated solution is to record values of the
~c[:]~ilc[logic]-mode function in question, so that the tau-system will look
up the necessary values rather than calling the function, whether or not the
executable-counterpart of that function is enabled. Here is an example of a
lemma that can provide such a solution. ~l[tau-system].
~bv[]
(defthm lemma
(and (foo 0)
(foo 17)
(foo t)
(not (foo '(a b c))))
:rule-classes :tau-system)
~ev[]~/~/")
#-acl2-loop-only
(defg *inside-absstobj-update* #(0))
(defun set-absstobj-debug-fn (val always)
(declare (xargs :guard t))
#+acl2-loop-only
(declare (ignore always))
#-acl2-loop-only
(let ((temp (svref *inside-absstobj-update* 0)))
(cond ((or (null temp)
(eql temp 0)
(and always
(or (ttag (w *the-live-state*))
(er hard 'set-absstobj-debug
"It is illegal to supply a non-nil value for ~
keyword :always, for set-absstobj-debug, unless ~
there is an active trust tag."))))
(setf (aref *inside-absstobj-update* 0)
(cond ((eq val :reset)
(if (natp temp) 0 nil))
(val nil)
(t 0))))
(t (er hard 'set-absstobj-debug
"It is illegal to call set-absstobj-debug in a context where ~
an abstract stobj invariance violation has already occurred ~
but not yet been processed. You can overcome this ~
restriction either by waiting for the top-level prompt, or ~
by evaluating the following form: ~x0."
`(set-abbstobj-debug ,(if (member-eq val '(nil :reset))
nil
t)
:always t)))))
val)
(defmacro set-absstobj-debug (val &key (event-p 't) always on-skip-proofs)
; Here is a book that was certifiable in ACL2 Version_5.0, obtained from Sol
; Swords (shown here with only very trivial changes). It explains why we need
; the :protect keyword for defabsstobj, as explained in :doc note-6-0.
; Community book books/misc/defabsstobj-example-4.lisp is based on this
; example, but focuses on invariance violation and avoids the work Sol did to
; get a proof of nil.
; (in-package "ACL2")
;
; (defstobj const-stobj$c (const-fld$c :type bit :initially 0))
;
; (defstub stop () nil)
;
; ;; Logically preserves the field value as 0, but actually leaves it as 1
; (defun change-fld$c (const-stobj$c)
; (declare (xargs :stobjs const-stobj$c))
; (let ((const-stobj$c (update-const-fld$c 1 const-stobj$c)))
; (prog2$ (stop)
; (update-const-fld$c 0 const-stobj$c))))
;
; (defun get-fld$c (const-stobj$c)
; (declare (xargs :stobjs const-stobj$c))
; (const-fld$c const-stobj$c))
;
; (defun const-stobj$ap (const-stobj$a)
; (declare (xargs :guard t))
; (equal const-stobj$a 0))
;
; (defun change-fld$a (const-stobj$a)
; (declare (xargs :guard t)
; (ignore const-stobj$a))
; 0)
;
; ;; Logically returns 0, exec version returns the field value which should
; ;; always be 0...
; (defun get-fld$a (const-stobj$a)
; (declare (xargs :guard t)
; (ignore const-stobj$a))
; 0)
;
; (defun create-const-stobj$a ()
; (declare (xargs :guard t))
; 0)
;
; (defun-nx const-stobj-corr (const-stobj$c const-stobj$a)
; (and (equal const-stobj$a 0) (equal const-stobj$c '(0))))
;
; (in-theory (disable (const-stobj-corr)
; (change-fld$c)))
;
; (DEFTHM CREATE-CONST-STOBJ{CORRESPONDENCE}
; (CONST-STOBJ-CORR (CREATE-CONST-STOBJ$C)
; (CREATE-CONST-STOBJ$A))
; :RULE-CLASSES NIL)
;
; (DEFTHM CREATE-CONST-STOBJ{PRESERVED}
; (CONST-STOBJ$AP (CREATE-CONST-STOBJ$A))
; :RULE-CLASSES NIL)
;
; (DEFTHM GET-FLD{CORRESPONDENCE}
; (IMPLIES (CONST-STOBJ-CORR CONST-STOBJ$C CONST-STOBJ)
; (EQUAL (GET-FLD$C CONST-STOBJ$C)
; (GET-FLD$A CONST-STOBJ)))
; :RULE-CLASSES NIL)
;
; (DEFTHM CHANGE-FLD{CORRESPONDENCE}
; (IMPLIES (CONST-STOBJ-CORR CONST-STOBJ$C CONST-STOBJ)
; (CONST-STOBJ-CORR (CHANGE-FLD$C CONST-STOBJ$C)
; (CHANGE-FLD$A CONST-STOBJ)))
; :RULE-CLASSES NIL)
;
; (DEFTHM CHANGE-FLD{PRESERVED}
; (IMPLIES (CONST-STOBJ$AP CONST-STOBJ)
; (CONST-STOBJ$AP (CHANGE-FLD$A CONST-STOBJ)))
; :RULE-CLASSES NIL)
;
; (defabsstobj const-stobj
; :concrete const-stobj$c
; :recognizer (const-stobjp :logic const-stobj$ap :exec const-stobj$cp)
; :creator (create-const-stobj :logic create-const-stobj$a :exec
; create-const-stobj$c)
; :corr-fn const-stobj-corr
; :exports ((get-fld :logic get-fld$a :exec get-fld$c)
; (change-fld :logic change-fld$a :exec change-fld$c
; ;; new
; ;; :protect t
; )))
;
; ;; Causes an error and leaves the stobj in an inconsistent state (field
; ;; is 1)
; (make-event
; (mv-let
; (erp val state)
; (trans-eval '(change-fld const-stobj) 'top state t)
; (declare (ignore erp val))
; (value '(value-triple nil))))
;
; (defevaluator my-ev my-ev-lst ((if a b c)))
;
; (defun my-clause-proc (clause hint const-stobj)
; (declare (xargs :stobjs const-stobj
; :guard t)
; (ignore hint))
; (if (= 0 (get-fld const-stobj)) ;; always true by defn. of get-fld
; (mv nil (list clause))
; (mv nil nil))) ;; unsound if this branch is taken
;
; (defthm my-clause-proc-correct
; (implies (and (pseudo-term-listp clause)
; (alistp a)
; (my-ev (conjoin-clauses
; (clauses-result
; (my-clause-proc clause hint const-stobj)))
; a))
; (my-ev (disjoin clause) a))
; :rule-classes :clause-processor)
;
; (defthm foo nil :hints (("goal" :clause-processor
; (my-clause-proc clause nil const-stobj)))
; :rule-classes nil)
":Doc-Section switches-parameters-and-modes
obtain debugging information upon atomicity violation for an abstract stobj~/
This ~il[documentation] topic assumes familiarity with abstract stobjs.
~l[defabsstobj].
Below we explain what is meant by an error message such as the following.
~bv[]
ACL2 Error in CHK-ABSSTOBJ-INVARIANTS: Possible invariance violation
for an abstract stobj! See :DOC set-absstobj-debug, and PROCEED AT
YOUR OWN RISK.
~ev[]
The use of ~c[(set-absstobj-debug t)] will make this error message more
informative, as follows, at the cost of slower execution ~-[] but in
practice, the slowdown may be negligible (more on that below).
~bv[]
ACL2 Error in CHK-ABSSTOBJ-INVARIANTS: Possible invariance violation
for an abstract stobj! See :DOC set-absstobj-debug, and PROCEED AT
YOUR OWN RISK. Evaluation was aborted under a call of abstract stobj
export UPDATE-FLD-NIL-BAD.
~ev[]
You may be best off starting a new ACL2 session if you see one of the errors
above. But you can continue at your own risk. With a trust tag
(~pl[defttag]), you can even fool ACL2 into thinking nothing is wrong, and
perhaps you can fix up the abstract stobj so that indeed, nothing really is
wrong. See the community book ~c[books/misc/defabsstobj-example-4.lisp] for
how to do that. That book also documents the ~c[:always] keyword and a
special value for the first argument, ~c[:RESET].
~bv[]
Examples:
(set-absstobj-debug t) ; obtain extra debug info, as above
(set-absstobj-debug t :event-p t) ; same as above
(set-absstobj-debug t
:on-skip-proofs t) ; as above, but even in include-book
(set-absstobj-debug t :event-p nil) ; returns one value, not error triple
(set-absstobj-debug nil) ; avoid extra debug info (default)~/
General Form:
(set-absstobj-debug val
:event-p event-p ; default t
:always always ; default nil
:on-skip-proofs on-skip-proofs ; default nil
)
~ev[]
where the keyword arguments are optional with defaults as indicated above,
and all supplied arguments are evaluated except for ~c[on-skip-proofsp],
which must be Boolean (if supplied). Keyword arguments are discussed at the
end of this topic.
Recall (~pl[defabsstobj]) that for any exported function whose ~c[:EXEC]
function might (according to ACL2's heuristics) modify the concrete stobj
non-atomically, one must specify ~c[:PROTECT t]. This results in extra code
generated for the exported function, which provides a check that atomicity
was not actually violated by a call of the exported function. The extra code
might slow down execution, but perhaps only negligibly in typical cases. If
you can tolerate a bit extra slow-down, then evaluate the form
~c[(set-absstobj-debug t)]. Subsequent such errors will provide additional
information, as in the example displayed earlier in this documentation topic.
Finally we document the keyword arguments, other than ~c[:ALWAYS], which is
discussed in a book as mentioned above. When the value of ~c[:EVENT-P] is
true, which it is by default, the call of ~c[set-absstobj-debug] will expand
to an event. That event is a call of ~ilc[value-triple]. In that case,
~c[:ON-SKIP-PROOFS] is passed to that call so that ~c[set-absstobj-debug] has
an effect even when proofs are being skipped, as during ~ilc[include-book].
That behavior is the default; that is, ~c[:ON-SKIP-PROOFS] is ~c[nil] by
default. Also ~pl[value-triple]. The value of keyword ~c[:ON-SKIP-PROOFS]
must always be either ~c[t] or ~c[nil], but other than that, it is ignored
when ~c[EVENT-P] is ~c[nil].~/"
(declare (xargs :guard
; We provide this guard as a courtesy: since on-skip-proofs is not evaluated, a
; non-nil form that evaluates to nil (such as 'nil) would otherwise be passed
; without evaluation and hence treated as being true.
(booleanp on-skip-proofs)))
(let ((form `(set-absstobj-debug-fn ,val ,always)))
(cond (event-p `(value-triple ,form :on-skip-proofs ,on-skip-proofs))
(t form))))
; The following functions are defined in logic mode because they will be
; used in tau bounder correctness theorems. We basically define two functions,
; intervalp and in-intervalp, but we also define various subroutines needed to
; make those functions manageable. In tau.lisp we define the record structure:
; (defrec tau-interval (domain (lo-rel . lo) . (hi-rel . hi)) t)
; and this is precisely the structure recognized by intervalp and given meaning
; by in-intervalp. We therefore achieve the goal that the user can prove
; theorems about bounder functions defined in terms of the concepts named here
; and we can run those functions on the actual tau-intervals constructed by the
; tau system. (Of course, those actual intervals could have been constructed
; and accessed by these functions rather than the more efficient record
; expressions, but efficiency matters.)
; In the guard below, we know when both x and y are non-nil then (at least) one
; is a rational. Under that guard, the body below is actually equivalent to the
; more elegant:
; (if (or (null x)
; (null y))
; t
; (if rel (< x y) (<= x y)))
; except the body is guard-verifiable while the elegant one is not, since the
; guard for < (and <=) requires that both arguments be rationals. This is
; proved by the thm following the definition.
(defun <? (rel x y)
(declare (xargs :guard
(implies (and x y)
(or (real/rationalp x)
(real/rationalp y)))))
(if (or (null x) (null y))
t
(let ((x (fix x))
(y (fix y)))
(if (real/rationalp x)
(if (real/rationalp y)
(if rel
(< x y)
(<= x y))
(or (< x (realpart y))
(and (= x (realpart y))
(< 0 (imagpart y)))))
(or (< (realpart x) y)
(and (= (realpart x) y)
(< (imagpart x) 0)))))))
; (thm (implies (implies (and x y)
; (or (real/rationalp x)
; (real/rationalp y)))
; (iff (<? rel x y)
; (if (or (null x)
; (null y))
; t
; (if rel (< x y) (<= x y)))))
; :hints
; (("Goal"
; :use ((:instance completion-of-< (x x) (y y))
; (:instance completion-of-< (x y) (y x))))))
(defun tau-interval-domainp (dom x)
(declare (xargs :guard t))
(cond ((eq dom 'integerp) (integerp x))
((eq dom 'rationalp) (rationalp x))
((eq dom 'acl2-numberp) (acl2-numberp x))
; Domain = nil means no restrictions.
(t t)))
(defun tau-interval-dom (x)
(declare (xargs :guard (consp x)))
":Doc-Section tau-system
access the domain of a tau interval~/
It is the case that
~bv[]
(tau-interval-dom (make-tau-interval dom lo-rel lo hi-rel hi)) = dom
~ev[]
~/
For a well-formed interval, ~c[dom] is one of the symbols ~c[INTEGERP],
~c[RATIONALP], ~c[ACL2-NUMBERP], or ~c[NIL]. When the domain is ~c[NIL]
there is no domain restriction.
When the domain is ~c[INTEGERP], there are additional constraints on the
other components. ~l[make-tau-interval].~/"
(car x))
(defun tau-interval-lo-rel (x)
(declare (xargs :guard (and (consp x) (consp (cdr x)) (consp (cadr x)))))
":Doc-Section tau-system
access the lower bound relation of a tau interval~/
It is the case that
~bv[]
(tau-interval-lo-rel (make-tau-interval dom lo-rel lo hi-rel hi)) = lo-rel
~ev[]
~/
For a well-formed interval, ~c[lo-rel] is a Boolean, where ~c[t]
denotes the ~ilc[<] (strong inequality or ``less-than'') relation and
~c[nil] denotes ~ilc[<=] (weak inequality or ``less-than-or-equal'') relation
between the lower bound and the elements of the interval.
When the domain of an interval is ~c[INTEGERP], there are additional
constraints on the other components. ~l[make-tau-interval].~/"
(car (cadr x)))
(defun tau-interval-lo (x)
(declare (xargs :guard (and (consp x) (consp (cdr x)) (consp (cadr x)))))
":Doc-Section tau-system
access the lower bound of a tau interval~/
It is the case that
~bv[]
(tau-interval-lo (make-tau-interval dom lo-rel lo hi-rel hi)) = lo
~ev[]
~/
For a well-formed interval, ~c[lo] is either ~c[nil], denoting negative
infinity, or a rational number giving the lower bound of the interval.
It must be the case that the lower bound is weakly below the upper bound
of a well-formed interval.
When the domain of an interval is ~c[INTEGERP], there are additional
constraints on the other components. ~l[make-tau-interval].~/"
(cdr (cadr x)))
(defun tau-interval-hi-rel (x)
(declare (xargs :guard (and (consp x) (consp (cdr x)) (consp (cddr x)))))
":Doc-Section tau-system
access the upper bound relation of a tau interval~/
It is the case that
~bv[]
(tau-interval-hi-rel (make-tau-interval dom lo-rel lo hi-rel hi)) = hi-rel
~ev[]
~/
For a well-formed interval, ~c[hi-rel] is a Boolean, where ~c[t]
denotes the ~ilc[<] (strong inequality or ``less-than'') relation and
~c[nil] denotes ~ilc[<=] (weak inequality or ``less-than-or-equal'') relation
between the elements of the interval and the upper bound.
When the domain of an interval is ~c[INTEGERP], there are additional
constraints on the other components. ~l[make-tau-interval].~/"
(car (cddr x)))
(defun tau-interval-hi (x)
(declare (xargs :guard (and (consp x) (consp (cdr x)) (consp (cddr x)))))
":Doc-Section tau-system
access the upper bound of a tau interval~/
It is the case that
~bv[]
(tau-interval-hi (make-tau-interval dom lo-rel lo hi-rel hi)) = hi
~ev[]
~/
For a well-formed interval, ~c[hi] is either ~c[nil], denoting positive
infinity, or a rational number giving the upper bound of the interval.
It must be the case that the upper bound is weakly above the lower bound
of a well-formed interval.
When the domain of an interval is ~c[INTEGERP], there are additional
constraints on the other components. ~l[make-tau-interval].~/"
(cdr (cddr x)))
(defun make-tau-interval (dom lo-rel lo hi-rel hi)
(declare (xargs :guard (and (or (null lo) (rationalp lo))
(or (null hi) (rationalp hi)))))
":Doc-Section tau-system
make a tau interval~/
~bv[]
General Form:
(make-tau-interval doc lo-rel lo hi-rel hi)
~ev[]
An interval is a structure of the form: ~c[(]~i[dom] ~c[(]~i[lo-rel] ~c[.]
~i[lo]~c[)] ~c[.] ~c[(]~i[hi-rel] ~c[.] ~i[hi]~c[))]. Every tau contains an
interval used to represent the domain, the upper, and the lower bounds of the
objects recognized by the tau.~/
~c[make-tau-interval] constructs well-formed intervals only if its five arguments
satisfy certain restrictions given below. When these restrictions are
violated ~c[make-tau-interval] can construct objects that are not intervals!
~c[make-tau-interval] does not attempt to coerce or adjust its arguments to make
well-formed intervals.
For examples of intervals (and non-intervals!) constructed by
~c[make-tau-interval] see ~ilc[tau-intervalp]. For examples of what objects are
contained in certain intervals, see ~ilc[in-tau-intervalp].
The components of an interval are as follows:
~i[dom] (``domain'') -- must be one of four symbols: ~c[INTEGERP],
~c[RATIONALP], ~c[ACL2-NUMBERP], or ~c[NIL] denoting no restriction
on the domain.
The two ``relations,'' ~i[lo-rel] and ~i[hi-rel] are Booleans, where ~c[t]
denotes less-than inequality (~ilc[<]) and ~c[nil] represents
less-than-or-equal inequality (~ilc[<=]). Think of ~c[t] meaning ``strong''
and ~c[nil] meaning ``weak'' inequality.
~i[Lo] and ~i[hi] must be either ~c[nil] or explicit rational numbers. If
~i[lo] is ~c[nil] it denotes negative infinity; if ~i[hi] is ~c[nil] it
denotes positive infinity. ~i[Lo] must be no greater than ~i[hi].
~i[Note]: Even though ~c[ACL2-NUMBERP] intervals may contain complex
rationals, the ~i[lo] and ~i[hi] bounds must be rational. This is an
arbitrary decision made by the implementors to simplify coding.
Finally, if the ~i[dom] is ~c[INTEGERP], then both relations should be weak
and ~i[lo] and ~i[hi] must be integers when they are non-~c[nil].
For ~i[x] to be ``in'' an interval it must be of the type described
by the domain predicate ~i[dom], ~i[lo] must be smaller than ~i[x] in the
strong or weak sense denoted by ~i[lo-rel], and ~i[x] must be smaller than
~i[hi] in the strong or weak sense denoted by ~i[hi-rel].
The components of an interval may be accessed with the functions
~ilc[tau-interval-dom], ~ilc[tau-interval-lo-rel], ~ilc[tau-interval-lo],
~ilc[tau-interval-hi-rel], and ~ilc[tau-interval-hi].~/"
(cons dom (cons (cons lo-rel lo)
(cons hi-rel hi))))
(defun tau-intervalp (int)
(declare (xargs :guard t))
":Doc-Section tau-system
Boolean recognizer for tau intervals~/
~bv[]
General Form:
(tau-intervalp x)
~ev[]
~/
An interval is a structure of the form: ~c[(]~i[dom] ~c[(]~i[lo-rel] ~c[.]
~i[lo]~c[)] ~c[.] ~c[(]~i[hi-rel] ~c[.] ~i[hi]~c[))]. Every tau contains an
interval used to represent the domain and the upper and lower bounds of the
objects recognized by the tau.
Restrictions on the components of an interval are as follows. For an
interpretation of the meaning of the components, see ~ilc[in-tau-intervalp] or
~ilc[make-tau-interval].
~i[dom] (``domain'') -- must be one of four symbols: ~c[INTEGERP],
~c[RATIONALP], ~c[ACL2-NUMBERP], or ~c[NIL].
The two ``relations,'' ~i[lo-rel] and ~i[hi-rel], must be Booleans.
~i[Lo] and ~i[hi] must be either ~c[nil] or explicit rational numbers.
~i[Lo] must be no greater than ~i[hi] (where ~c[nil]s represent negative or
positive infinity for ~i[lo] and ~i[hi] respectively.
Finally, if the ~i[dom] is ~c[INTEGERP], then both relations must ~c[nil]
and ~i[lo] and ~i[hi] must be integers when they are non-~c[nil].
Recall that ~ilc[make-tau-interval] constructs intervals. The intervals it
constructs are well-formed only if the arguments to ~c[make-tau-interval] satisfy
the rules above; ~c[make-tau-interval] does not coerce or adjust its
arguments in any way. Thus, it can be (mis-)used to create non-intervals.
Here are examples of ~c[tau-intervalp] using ~c[make-tau-interval].
~bv[]
; integers: 0 <= x <= 10:
(tau-intervalp (make-tau-interval 'INTEGERP nil 0 nil 10)) = t
; integers: 0 <= x (i.e., the natural numbers):
(tau-intervalp (make-tau-interval 'INTEGERP nil 0 nil nil)) = t
; violations of domain rules:
(tau-intervalp (make-tau-interval 'INTEGERP t 0 t 10)) = nil
(tau-intervalp (make-tau-interval 'INTEGERP nil 0 nil 10/11)) = nil
; violation of rule that bounds must be rational if non-nil:
(tau-intervalp (make-tau-interval 'ACL2-NUMBERP t 0 t #c(3 5))) = nil
; violation of rule that lo <= hi:
(tau-intervalp (make-tau-interval 'ACL2-NUMBERP t 0 t -10)) = nil
; rationals: 0 < x <= 22/7:
(tau-intervalp (make-tau-interval 'RATIONALP t 0 nil 22/7)) = t
; numbers: -10 < x < 10:
(tau-intervalp (make-tau-interval 'ACL2-NUMBERP t -10 t 10)) = t
; any: -10 < x < 10:
(tau-intervalp (make-tau-interval nil t -10 t 10)) = t
: any:
(tau-intervalp (make-tau-interval nil nil nil nil nil)) = t
~ev[]
Note that the second-to-last interval, with domain ~c[nil] contains all
non-numbers as well as numbers strictly between -10 and 10. The reason is
that the interval contains ~c[0] and all non-numbers are coerced to ~c[0] by
the inequality functions.
Note that the last interval contains all ACL2 objects. It is called the
``universal interval.''~/"
(if (and (consp int)
(consp (cdr int))
(consp (cadr int))
(consp (cddr int)))
(let ((dom (tau-interval-dom int))
(lo-rel (tau-interval-lo-rel int))
(lo (tau-interval-lo int))
(hi-rel (tau-interval-hi-rel int))
(hi (tau-interval-hi int)))
(cond
((eq dom 'integerp)
(and (null lo-rel)
(null hi-rel)
(if lo
(and (integerp lo)
(if hi
(and (integerp hi)
(<= lo hi))
t))
(if hi
(integerp hi)
t))))
(t (and (member dom '(rationalp acl2-numberp nil))
(booleanp lo-rel)
(booleanp hi-rel)
(if lo
(and (rationalp lo)
(if hi
(and (rationalp hi)
(<= lo hi))
t))
(if hi
(rationalp hi)
t))))))
nil))
(defun in-tau-intervalp (x int)
(declare (xargs :guard (tau-intervalp int)))
":Doc-Section tau-system
Boolean membership in a tau interval~/
~bv[]
General Form:
(in-tau-intervalp e x)
~ev[]
Here, ~c[x] should be an interval (see ~ilc[tau-intervalp]). This function
returns ~c[t] or ~c[nil] indicating whether ~c[e], which is generally but not
necessarily a number, is an element of interval ~c[x]. By that is meant that
~c[e] satisfies the domain predicate of the interval and lies between the two
bounds.~/
Suppose ~c[x] is an interval with the components ~i[dom], ~i[lo-rel], ~i[lo],
~i[hi-rel] and ~i[hi]. Suppose ~c[(<? ]~i[rel u v]~c[)] means ~c[(< ]~i[u v]~c[)]
when ~i[rel] is true and ~c[(<= ]~i[u v]~c[)] otherwise, with appropriate
treatment of infinities.
Then for ~c[e] to be in interval ~c[x], it must be the case that ~c[e]
satisfies the domain predicate ~i[dom] (where where ~i[dom]=~c[nil] means
there is no restriction on the domain) and ~c[(<? ]~i[lo-rel lo]~c[ e)] and
~c[(<? ]~i[hi-rel]~c[ e ]~i[hi]~c[)]. [Note: ``Appropriate treatment of
infinities'' is slightly awkward if both infinities are represented by the
same object, ~c[nil]. However, this is handled by coercing ~c[e] to a
number ~i[after] checking that it is in the domain. By this trick, ``~c[<?]''
is presented with at most one ``infinity'' and it is always negative
when in the first argument and positive when in the second.]
Note that every element in an ~c[INTEGERP] interval is contained in the
analogous ~c[RATIONALP] interval (i.e., the interval obtained by just
replacing the domain ~c[INTEGERP] by ~c[RATIONALP]). That is because every
integer is a rational. Similarly, every rational is an ACL2 number.
Note that an interval in which the relations are weak and the bounds are
equal rationals is the ``unit'' or ``identity'' interval containing exactly
that rational.
Note that an interval in which the relations are strong and the bounds are
equal rationals is empty: it contains no objects.
Note that the interval ~c[(make-tau-interval nil nil nil nil nil)] is the
``universal interval:'' it contains all ACL2 objects. It contains all
numbers because they statisfy the non-existent domain restriction and lie
between minus infinity and plus infinity. It contains all non-numbers
because the interval contains ~c[0] and ACL2's inequalities coerce
non-numbers to ~c[0]. The universal interval is useful if you are defining a
bounder (~pl[bounders]) for a function and do not wish to address a certain
case: return the universal interval.
Recall that ~ilc[make-tau-interval] constructs intervals. Using ~c[make-tau-interval]
we give several self-explanatory examples of ~c[in-tau-intervalp]:
~bv[]
(in-tau-intervalp 3 (make-tau-interval 'INTEGERP nil 0 nil 10)) = t
(in-tau-intervalp 3 (make-tau-interval 'RATIONALP nil 0 nil 10)) = t
(in-tau-intervalp 3 (make-tau-interval NIL nil 0 nil 10)) = t
(in-tau-intervalp -3 (make-tau-interval 'INTEGERP nil 0 nil 10)) = nil
(in-tau-intervalp 30 (make-tau-interval 'INTEGERP nil 0 nil 10)) = nil
(in-tau-intervalp 3/5 (make-tau-interval 'INTEGERP nil 0 nil 10)) = nil
(in-tau-intervalp 3/5 (make-tau-interval 'RATIONALP nil 0 nil 10)) = t
(in-tau-intervalp #c(3 5) (make-tau-interval 'RATIONALP nil 0 nil 10)) = nil
(in-tau-intervalp #c(3 5) (make-tau-interval 'ACL2-NUMBERP nil 0 nil 10)) = t
(in-tau-intervalp 'ABC (make-tau-interval NIL nil 0 nil 10)) = t
~ev[]
~/"
(and (tau-interval-domainp (tau-interval-dom int) x)
(<? (tau-interval-lo-rel int)
(tau-interval-lo int)
(fix x))
(<? (tau-interval-hi-rel int)
(fix x)
(tau-interval-hi int))))
|