This file is indexed.

/usr/share/calc/chrem.cal is in apcalc-common 2.12.4.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
 * chrem - chinese remainder theorem/problem solver
 *
 * Copyright (C) 1999  Ernest Bowen and Landon Curt Noll
 *
 * Primary author:  Ernest Bowen
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.1 $
 * @(#) $Id: chrem.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
 * @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/chrem.cal,v $
 *
 * Under source code control:	1992/09/26 01:00:47
 * File existed as early as:	1992
 *
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */

/*
 * When possible, chrem finds solutions for x of a set of congruences
 * of the form:
 *
 *			x = r1 (mod m1)
 *			x = r2 (mod m2)
 *			   ...
 *
 * where the residues r1, r2, ... and the moduli m1, m2, ... are
 * given integers.  The Chinese remainder theorem states that if
 * m1, m2, ... are relatively prime in pairs, the above congruences
 * have a unique solution modulo  m1 * m2 * ...	  If m1, m2, ...
 * are not relatively prime in pairs, it is possible that no solution
 * exists.  If solutions exist, the general solution is expressible as:
 *
 *		     x = r (mod m)
 *
 * where m = lcm(m1,m2,...), and if m > 0, 0 <= r < m.	This
 * solution may be interpreted as:
 *
 *		    x = r + k * m			[[NOTE 1]]
 *
 * where k is an arbitrary integer.
 *
 ***
 *
 * usage:
 *
 *	chrem(r1,m1 [,r2,m2, ...])
 *
 *	    r1, r2, ...		remainder integers or null values
 *	    m1, m2, ...		moduli integers
 *
 *	chrem(r_list, [m_list])
 *
 *	    r_list	list (r1,r2, ...)
 *	    m_list	list (m1,m2, ...)
 *
 *	    If m_list is omitted, then 'defaultmlist' is used.
 *	    This default list is a global value that may be changed
 *	    by the user.  Initially it is the first 8 primes.
 *
 * If a remainder is null(), then the corresponding congruence is
 * ignored.  This is useful when working with a fixed list of moduli.
 *
 * If there are more remainders than moduli, then the later moduli are
 * ignored.
 *
 * The moduli may be any integers, not necessarily relatively prime in
 * pairs (as required for the Chinese remainder theorem).  Any moduli
 * may be zero;	 x = r (mod 0) has the meaning of x = r.
 *
 * returns:
 *
 *    If args were integer pairs:
 *
 *	  r		('r' is defined above, see [[NOTE 1]])
 *
 *    If 1 or 2 list args were given:
 *
 *	  (r, m)	('r' and 'm' are defined above, see [[NOTE 1]])
 *
 * NOTE: In all cases, null() is returned if there is no solution.
 *
 ***
 *
 * This function may be used to solve the following historical problems:
 *
 *   Sun-Tsu, 1st century A.D.
 *
 *	To find a number for which the reminders after division by 3, 5, 7
 *	are 2, 3, 2, respectively:
 *
 *	    chrem(2,3,3,5,2,7) ---> 23
 *
 *   Fibonacci, 13th century A.D.
 *
 *	To find a number divisible by 7 which leaves remainder 1 when
 *	divided by 2, 3, 4, 5, or 6:
 *
 *
 *	    chrem(list(0,1,1,1,1,1),list(7,2,3,4,5,6)) ---> (301,420)
 *
 *	i.e., any value that is 301 mod 420.
 */


static defaultmlist = list(2,3,5,7,11,13,17,19); /* The first eight primes */

define chrem()
{
    local argc;		/* number of args given */
    local rlist;	/* reminder list - ri */
    local mlist;	/* modulus list - mi */
    local list_args;	/* true => args given are lists, not r1,m1, ... */
    local m,z,r,y,d,t,x,u,i;

    /*
     * parse args
     */
    argc = param(0);
    if (argc == 0) {
	quit "usage: chrem(r1,m1 [,r2,m2 ...]) or chrem(r_list, m_list)";
    }
    list_args = islist(param(1));
    if (list_args) {
	rlist = param(1);
	mlist = (argc == 1) ? defaultmlist : param(2);
	if (size(rlist) > size(mlist)) {
	    quit "too many residues";
	}
    } else {
	if (argc % 2 == 1) {
	    quit "odd number integers given";
	}
	rlist = list();
	mlist = list();
	for (i=1; i <= argc; i+=2) {
	    push(rlist, param(i));
	    push(mlist, param(i+1));
	}
    }

    /*
     * solve the problem found in rlist & mlist
     */
    m = 1;
    z = 0;
    while (size(rlist)) {
	r=pop(rlist);
	y=abs(pop(mlist));
	if (r==null())
	    continue;
	if (m) {
	    if (y) {
		d = t = z - r;
		m = lcm(x=m, y);
		while (d % y) {
		    u = x;
		    x %= y;
		    swap(x,y);
		    if (y==0)
			return;
		    z += (t *= -u/y);
		}
	    } else {
		if ((r % m) != (z % m))
		    return;
		else {
		    m = 0;
		    z = r;
		}
	    }
	} else if (((y) && (r % y != z % y)) || (r != z))
	    return;
    }
    if (m) {
	z %= m;
	if (z < 0)
	    z += m;
    }

    /*
     * return information as required
     */
    if (list_args) {
	return list(z,m);
    } else {
	return z;
    }
}

if (config("resource_debug") & 3) {
    print "chrem(r1,m1 [,r2,m2 ...]) defined";
    print "chrem(rlist [,mlist]) defined";
}