/usr/share/calc/chrem.cal is in apcalc-common 2.12.4.4-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | /*
* chrem - chinese remainder theorem/problem solver
*
* Copyright (C) 1999 Ernest Bowen and Landon Curt Noll
*
* Primary author: Ernest Bowen
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @(#) $Revision: 30.1 $
* @(#) $Id: chrem.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
* @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/chrem.cal,v $
*
* Under source code control: 1992/09/26 01:00:47
* File existed as early as: 1992
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* When possible, chrem finds solutions for x of a set of congruences
* of the form:
*
* x = r1 (mod m1)
* x = r2 (mod m2)
* ...
*
* where the residues r1, r2, ... and the moduli m1, m2, ... are
* given integers. The Chinese remainder theorem states that if
* m1, m2, ... are relatively prime in pairs, the above congruences
* have a unique solution modulo m1 * m2 * ... If m1, m2, ...
* are not relatively prime in pairs, it is possible that no solution
* exists. If solutions exist, the general solution is expressible as:
*
* x = r (mod m)
*
* where m = lcm(m1,m2,...), and if m > 0, 0 <= r < m. This
* solution may be interpreted as:
*
* x = r + k * m [[NOTE 1]]
*
* where k is an arbitrary integer.
*
***
*
* usage:
*
* chrem(r1,m1 [,r2,m2, ...])
*
* r1, r2, ... remainder integers or null values
* m1, m2, ... moduli integers
*
* chrem(r_list, [m_list])
*
* r_list list (r1,r2, ...)
* m_list list (m1,m2, ...)
*
* If m_list is omitted, then 'defaultmlist' is used.
* This default list is a global value that may be changed
* by the user. Initially it is the first 8 primes.
*
* If a remainder is null(), then the corresponding congruence is
* ignored. This is useful when working with a fixed list of moduli.
*
* If there are more remainders than moduli, then the later moduli are
* ignored.
*
* The moduli may be any integers, not necessarily relatively prime in
* pairs (as required for the Chinese remainder theorem). Any moduli
* may be zero; x = r (mod 0) has the meaning of x = r.
*
* returns:
*
* If args were integer pairs:
*
* r ('r' is defined above, see [[NOTE 1]])
*
* If 1 or 2 list args were given:
*
* (r, m) ('r' and 'm' are defined above, see [[NOTE 1]])
*
* NOTE: In all cases, null() is returned if there is no solution.
*
***
*
* This function may be used to solve the following historical problems:
*
* Sun-Tsu, 1st century A.D.
*
* To find a number for which the reminders after division by 3, 5, 7
* are 2, 3, 2, respectively:
*
* chrem(2,3,3,5,2,7) ---> 23
*
* Fibonacci, 13th century A.D.
*
* To find a number divisible by 7 which leaves remainder 1 when
* divided by 2, 3, 4, 5, or 6:
*
*
* chrem(list(0,1,1,1,1,1),list(7,2,3,4,5,6)) ---> (301,420)
*
* i.e., any value that is 301 mod 420.
*/
static defaultmlist = list(2,3,5,7,11,13,17,19); /* The first eight primes */
define chrem()
{
local argc; /* number of args given */
local rlist; /* reminder list - ri */
local mlist; /* modulus list - mi */
local list_args; /* true => args given are lists, not r1,m1, ... */
local m,z,r,y,d,t,x,u,i;
/*
* parse args
*/
argc = param(0);
if (argc == 0) {
quit "usage: chrem(r1,m1 [,r2,m2 ...]) or chrem(r_list, m_list)";
}
list_args = islist(param(1));
if (list_args) {
rlist = param(1);
mlist = (argc == 1) ? defaultmlist : param(2);
if (size(rlist) > size(mlist)) {
quit "too many residues";
}
} else {
if (argc % 2 == 1) {
quit "odd number integers given";
}
rlist = list();
mlist = list();
for (i=1; i <= argc; i+=2) {
push(rlist, param(i));
push(mlist, param(i+1));
}
}
/*
* solve the problem found in rlist & mlist
*/
m = 1;
z = 0;
while (size(rlist)) {
r=pop(rlist);
y=abs(pop(mlist));
if (r==null())
continue;
if (m) {
if (y) {
d = t = z - r;
m = lcm(x=m, y);
while (d % y) {
u = x;
x %= y;
swap(x,y);
if (y==0)
return;
z += (t *= -u/y);
}
} else {
if ((r % m) != (z % m))
return;
else {
m = 0;
z = r;
}
}
} else if (((y) && (r % y != z % y)) || (r != z))
return;
}
if (m) {
z %= m;
if (z < 0)
z += m;
}
/*
* return information as required
*/
if (list_args) {
return list(z,m);
} else {
return z;
}
}
if (config("resource_debug") & 3) {
print "chrem(r1,m1 [,r2,m2 ...]) defined";
print "chrem(rlist [,mlist]) defined";
}
|