/usr/share/doc/axiom-doc/hypertex/calintegrals.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
<script type="text/javascript">
<![CDATA[
// This is a hash table of the values we've evaluated.
// This is indexed by a string argument.
// A value of 0 means we need to evaluate the expression
// A value of 1 means we have evaluated the expression
Evaled = new Array();
// this says we should modify the page
hiding = 'show';
// and this is the id of the div tag to modify (defaulted)
thediv = 'mathAns';
// commandline will mark that its arg has been evaled so we don't repeat
function commandline(arg) {
Evaled[arg] = 0; // remember that we have set this value
thediv='ans'+arg; // mark where we should put the output
var ans = document.getElementById(arg).value;
return(ans);
}
// the function only modifies the page if when we're showing the
// final result, otherwise it does nothing.
function showanswer(mathString,indiv) {
if (hiding == 'show') { // only do something useful if we're showing
indiv = thediv; // override the argument so we can change it
var mystr = mathString.split("</div>");
for (var i=0; i < mystr.length; i++) {
if (mystr[i].indexOf("mathml") > 0) {
var mymathstr = mystr[i].concat("</div>");
}
}
// this turns the string into a dom fragment
var mathRange = document.createRange();
var mathBox=
document.createElementNS('http://www.w3.org/1999/xhtml','div');
mathRange.selectNodeContents(mathBox);
var mymath = mathRange.createContextualFragment(mymathstr);
mathBox.appendChild(mymath);
// now we need to format it properly
// and we stick the result into the requested div block as a child.
var mathAns = document.getElementById(indiv);
mathAns.removeChild(mathAns.firstChild);
mathAns.appendChild(mathBox);
}
}
// this function takes a list of expressions ids to evaluate
// the list contains a list of "free" expression ids that need to
// be evaluated before the last expression.
// For each expression id, if it has not yet been evaluated we
// evaluate it "hidden" otherwise we can skip the expression.
// Once we have evaluated all of the free expressions we can
// evaluate the final expression and modify the page.
function handleFree(arg) {
var placename = arg.pop(); // last array val is real
var mycnt = arg.length; // remaining free vars
// we handle all of the prerequired expressions quietly
hiding = 'hide';
for (var i=0; i<mycnt; i++) { // for each of the free variables
if (Evaled[arg[i]] == null) { // if we haven't evaled it
Evaled[arg[i]] = 0; // remember we evaled it
makeRequest(arg[i]); // initialize the free values
}
}
// and now we start talking to the page again
hiding = 'show'; // we want to show this
thediv = 'ans'+placename; // at this div id
makeRequest(placename); // and we eval and show it
}
]]>
<![CDATA[
function ignoreResponse() {}
function resetvars() {
http_request = new XMLHttpRequest();
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = ignoreResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command=)clear all");
return(false);
}
]]>
function init() {
}
function makeRequest(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command="+command);
return(false);
}
function lispcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("lispcall="+command);
return(false);
}
function showcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("showcall="+command);
return(false);
}
function interpcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("interpcall="+command);
return(false);
}
function handleResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
showanswer(http_request.responseText,'mathAns');
} else
{
alert('There was a problem with the request.'+ http_request.statusText);
}
}
}
</script>
</head>
<body onload="resetvars();">
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">Integration</div>
<hr/>
Axiom has extensive library facilities for integration.
The first example is the integration of a fraction with a denominator that
factors into a quadratic and a quartic irreducible polynomial. The usual
partial fraction approach used by most other computer algebra systems either
fails or introduces expensive unneeded algebraic numbers.
We use a factorization-free algorithm.
<ul>
<li>
<input type="submit" id="p1" class="subbut"
onclick="makeRequest('p1');"
value="integrate((x^2+2*x+1)/((x+1)^6+1),x)" />
<div id="ansp1"><div></div></div>
</li>
</ul>
When real parameters are present, the form of the integral can depend on the
signs of some expressions.
Rather than query the user or make sign assumptions, Axiom returns all
possible answers.
<ul>
<li>
<input type="submit" id="p2" class="subbut"
onclick="makeRequest('p2');"
value="integrate(1/(x^2+a),x)" />
<div id="ansp2"><div></div></div>
</li>
</ul>
The <a href="dbopintegrate.xhtml">integrate</a> operation generally assumes
that all parameters are real. The only exception is when the integrand has
complex valued quantities.
If the parameter is complex instead of real, then the notion of sign is
undefined and there is a unique answer. You can request this answer by
"prepending" the word "complex" to the command name.
<ul>
<li>
<input type="submit" id="p3" class="subbut"
onclick="makeRequest('p3');"
value="complexIntegrate(1/(x^2+a),x)" />
<div id="ansp3"><div></div></div>
</li>
</ul>
The following two examples illustrate the limitations of table-based
approaches. The two integrands are very similar, but the answer to one of
them requires the addition of two new algebraic numbers.
This is the easy one. The next one looks very similar but the answer is
much more complicated.
<ul>
<li>
<input type="submit" id="p4" class="subbut"
onclick="makeRequest('p4');"
value="integrate(x^3/(a+b*x)^(1/3),x)" />
<div id="ansp4"><div></div></div>
</li>
</ul>
Only an algorithmic approach is guaranteed to find what new constants must
be added in order to find a solution.
<ul>
<li>
<input type="submit" id="p5" class="subbut"
onclick="makeRequest('p5');"
value="integrate(1/(x^3*(a+b*x)^(1/3)),x)" />
<div id="ansp5"><div></div></div>
</li>
</ul>
Some computer algebra systems use heuristics or table-driven approaches to
integration. When these systems cannot determine the answer to an
integration problem, they reply "I don't know". Axiom uses an algorithm
for integration that conclusively proves that an integral cannot be expressed
in terms of elementary functions.
When Axiom returns an integral sign, it has proved that no answer exists as
an elementary function.
<ul>
<li>
<input type="submit" id="p6" class="subbut"
onclick="makeRequest('p6');"
value="integrate(log(1+sqrt(a*x+b))/x,x)" />
<div id="ansp6"><div></div></div>
</li>
</ul>
Axiom can handle complicated mixed functions much beyond what you can find
in tables. Whenever possible, Axiom tries to express the answer using the
functions present in the integrand.
<ul>
<li>
<input type="submit" id="p7" class="subbut"
onclick="makeRequest('p7');"
value="integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b))/(sqrt(x+b)*(x+cosh(1+sqrt(x+b)))),x)" />
<div id="ansp7"><div></div></div>
</li>
</ul>
A strong structure-checking algorithm in Axiom finds hidden algebraic
relationships between functions.
<ul>
<li>
<input type="submit" id="p8" class="subbut"
onclick="makeRequest('p8');"
value="integrate(tan(atan(x)/3),x)" />
<div id="ansp8"><div></div></div>
</li>
</ul>
The discovery of this algebraic relationship is necessary for correct
integration of this function. Here are the details:
<ol>
<li>
If x=tan(t) and g=tan(t/3) then the following algebraic relationship is true:
<pre>
g^3 - 3xg^2 - 3g + x = 0
</pre>
</li>
<li>
Integrate g using this algebraic relation; this produces:
<pre>
((24g^2-8)log(3g^2-1) + (81x^2+24)g^2 + 72xg - 27x^2 - 16) / (54g^2 - 18)
</pre>
</li>
<li>
Rationalize the denominator, producing:
<pre>
(8log(3g^2-1) - 3g^2 + 18xg + 16)/18
</pre>
Replace g by the initial definition g=tan(arctan(x)/3) to produce the
final result.
</li>
</ol>
This is an example of a mixed function where the algebraic layer is over
the transcendental one.
<ul>
<li>
<input type="submit" id="p9" class="subbut"
onclick="makeRequest('p9');"
value="integrate((x+1)/(x*(x+log x)^(3/2)),x)" />
<div id="ansp9"><div></div></div>
</li>
</ul>
While incomplete for non-elementary functions, Axiom can handle some of them.
<ul>
<li>
<input type="submit" id="p10" class="subbut"
onclick="makeRequest('p10');"
value="integrate(exp(-x^2)*erf(x)/(erf(x)^3-erf(x)^2-erf(x)+1),x)" />
<div id="ansp10"><div></div></div>
</li>
</ul>
More examples of Axiom's integration capabilities are discussed in
<a href="axbook/section-8.8.xhtml">Integration</a>.
</body>
</html>
|