This file is indexed.

/usr/share/doc/axiom-doc/hypertex/callimits.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body onload="resetvars();">
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Limits</div>
  <hr/>
To compute a limit, you must specify a functional expression, a variable,
and a limiting value for that variable. If you do not specify a direction,
Axiom attempts to compute a two-sided limit.

Issue this to compute the limit of (x^2-2*x+2)/(x^2-1) as x approaches 1.
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" 
    onclick="makeRequest('p1');"
    value="limit((x^2-3*x+2)/(x^2-1),x=1)" />
  <div id="ansp1"><div></div></div>
 </li>
</ul>
Sometimes the limit when approached from the left is different from the
limit from the right and, in this case, you may wish to ask for a one-sided
limit. Also, if you have a function that is only defined on one side of a
particular value, you can compute a one-sided limit.

The function log(x) is only defined to the right of zero, that is, for
x>0. Thus, when computing limits of functions involving log(x), you probably
want a "right-hand" limit.
<ul>
 <li>
  <input type="submit" id="p2" class="subbut" 
    onclick="makeRequest('p2');"
    value='limit(x*log(x),x=0,"right")' />
  <div id="ansp2"><div></div></div>
 </li>
</ul>
When you do not specify "right" or "left" as the optional fourth argument,
<a href="dboplimit.xhtml">limit</a> tries to compute a two-sided limit.
Here the limit from the left does not exist, as Axiom indicates when you
try to take a two-sided limit.
<ul>
 <li>
  <input type="submit" id="p3" class="subbut" 
    onclick="makeRequest('p3');"
    value="limit(x*log(x),x=0)" />
  <div id="ansp3"><div></div></div>
 </li>
</ul>
A function can be defined on both sides of a particular value, but tend to
different limits as its variable approaches that value from the left and
from the right. We can construct an example of this as follows: Since 
sqrt(y^2) is simply the absolute value of y, the function sqrt(y^2)/y is
simply the sign (+1 or -1) of the nonzero real number y. Therefore,
sqrt(y^2)/y=-1 for y&#60;0 and sqrt(y^2)/y=+1 for y>0. This is what happens 
when we take the limit at y=0. The answer returned by Axiom gives both a
"left-handed" and a "right-handed" limit.
<ul>
 <li>
  <input type="submit" id="p4" class="subbut" 
    onclick="makeRequest('p4');"
    value="limit(sqrt(y^2)/y,y=0)" />
  <div id="ansp4"><div></div></div>
 </li>
</ul>
Here is another example, this time using a more complicated function.
<ul>
 <li>
  <input type="submit" id="p5" class="subbut" 
    onclick="makeRequest('p5');"
    value="limit(sqrt(1-cos(t))/t,t=0)" />
  <div id="ansp5"><div></div></div>
 </li>
</ul>
You can compute limits at infinity by passing either "plus infinity" or
"minus infinity" as the third argument of <a href="dboplimit.xhtml">limit</a>.
To do this, use the constants %plusInfinity and %minusInfinity.
<ul>
 <li>
  <input type="submit" id="p6" class="subbut" 
    onclick="makeRequest('p6');"
    value="limit(sqrt(3*x^2+1)/(5*x),x=%plusInfinity)" />
  <div id="ansp6"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p7" class="subbut" 
    onclick="makeRequest('p7');"
    value="limit(sqrt(3*x^2+1)/(5*x),x=%minusInfinity)" />
  <div id="ansp7"><div></div></div>
 </li>
</ul>
You can take limits of functions with parameters. As you can see, the limit
is expressed in terms of the parameters.
<ul>
 <li>
  <input type="submit" id="p8" class="subbut" 
    onclick="makeRequest('p8');"
    value="limit(sinh(a*x)/tan(b*x),x=0)" />
  <div id="ansp8"><div></div></div>
 </li>
</ul>
When you use <a href="dboplimit.xhtml">limit</a>, you are taking the limit
of a real function of a real variable. When you compute this, Axiom returns
0 because, as a function of a real variable, sin(1/z) is always between -1
and 1, so z*sin(1/z) tends to 0 as z tends to 0.
<ul>
 <li>
  <input type="submit" id="p9" class="subbut" 
    onclick="makeRequest('p9');"
    value="limit(z*sin(1/z),z=0)" />
  <div id="ansp9"><div></div></div>
 </li>
</ul>
However, as a function of a complex variable, sin(1/z) is badly behaved
near 0 (one says that sin(1/z) has an essential singularlity at z=0). When
viewed as a function of a complex variable, z*sin(1/z) does not approach any
limit as z tends to 0 in the complex plane. Axiom indicates this when we
call <a href="dbopcomplexlimit.xhtml">complexLimit</a>.
<ul>
 <li>
  <input type="submit" id="p10" class="subbut" 
    onclick="makeRequest('p10');"
    value="complexLimit(z*sin(1/z),z=0)" />
  <div id="ansp10"><div></div></div>
 </li>
</ul>
You can also take complex limits at infinity, that is, limits of a function
of z as z approaches infinity on the Riemann sphere. Use the symbol
%infinity to denote "complex infinity". As above, to compute complex limits
rather than real limits, use <a href="dbopcomplexlimit.xhtml">complexLimit</a>.
<ul>
 <li>
  <input type="submit" id="p11" class="subbut" 
    onclick="makeRequest('p11');"
    value="complexLimit((2+z)/(1-z),z=%infinity)" />
  <div id="ansp11"><div></div></div>
 </li>
</ul>
In many cases, a limit of a real function of a real variable exists when
the corresponding complex limit does not. This limit exists.
<ul>
 <li>
  <input type="submit" id="p12" class="subbut" 
    onclick="makeRequest('p12');"
    value="limit(sin(x)/x,x=%plusInfinity)" />
  <div id="ansp12"><div></div></div>
 </li>
</ul>
But this limit does not.
<ul>
 <li>
  <input type="submit" id="p13" class="subbut" 
    onclick="makeRequest('p13');"
    value="complexLimit(sin(x)/x,x=%infinity)" />
  <div id="ansp13"><div></div></div>
 </li>
</ul>
 </body>
</html>