/usr/share/doc/axiom-doc/hypertex/calseries5.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
<script type="text/javascript">
<![CDATA[
// This is a hash table of the values we've evaluated.
// This is indexed by a string argument.
// A value of 0 means we need to evaluate the expression
// A value of 1 means we have evaluated the expression
Evaled = new Array();
// this says we should modify the page
hiding = 'show';
// and this is the id of the div tag to modify (defaulted)
thediv = 'mathAns';
// commandline will mark that its arg has been evaled so we don't repeat
function commandline(arg) {
Evaled[arg] = 0; // remember that we have set this value
thediv='ans'+arg; // mark where we should put the output
var ans = document.getElementById(arg).value;
return(ans);
}
// the function only modifies the page if when we're showing the
// final result, otherwise it does nothing.
function showanswer(mathString,indiv) {
if (hiding == 'show') { // only do something useful if we're showing
indiv = thediv; // override the argument so we can change it
var mystr = mathString.split("</div>");
for (var i=0; i < mystr.length; i++) {
if (mystr[i].indexOf("mathml") > 0) {
var mymathstr = mystr[i].concat("</div>");
}
}
// this turns the string into a dom fragment
var mathRange = document.createRange();
var mathBox=
document.createElementNS('http://www.w3.org/1999/xhtml','div');
mathRange.selectNodeContents(mathBox);
var mymath = mathRange.createContextualFragment(mymathstr);
mathBox.appendChild(mymath);
// now we need to format it properly
// and we stick the result into the requested div block as a child.
var mathAns = document.getElementById(indiv);
mathAns.removeChild(mathAns.firstChild);
mathAns.appendChild(mathBox);
}
}
// this function takes a list of expressions ids to evaluate
// the list contains a list of "free" expression ids that need to
// be evaluated before the last expression.
// For each expression id, if it has not yet been evaluated we
// evaluate it "hidden" otherwise we can skip the expression.
// Once we have evaluated all of the free expressions we can
// evaluate the final expression and modify the page.
function handleFree(arg) {
var placename = arg.pop(); // last array val is real
var mycnt = arg.length; // remaining free vars
// we handle all of the prerequired expressions quietly
hiding = 'hide';
for (var i=0; i<mycnt; i++) { // for each of the free variables
if (Evaled[arg[i]] == null) { // if we haven't evaled it
Evaled[arg[i]] = 0; // remember we evaled it
makeRequest(arg[i]); // initialize the free values
}
}
// and now we start talking to the page again
hiding = 'show'; // we want to show this
thediv = 'ans'+placename; // at this div id
makeRequest(placename); // and we eval and show it
}
]]>
<![CDATA[
function ignoreResponse() {}
function resetvars() {
http_request = new XMLHttpRequest();
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = ignoreResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command=)clear all");
return(false);
}
]]>
function init() {
}
function makeRequest(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command="+command);
return(false);
}
function lispcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("lispcall="+command);
return(false);
}
function showcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("showcall="+command);
return(false);
}
function interpcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("interpcall="+command);
return(false);
}
function handleResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
showanswer(http_request.responseText,'mathAns');
} else
{
alert('There was a problem with the request.'+ http_request.statusText);
}
}
}
</script>
</head>
<body onload="resetvars();">
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">Converting to Power Series</div>
<hr/>
The <a href="db.xhtml?ExpressionToUnivariatePowerSeries">
ExpressionToUnivariatePowerSeries</a> package provides operations for
computing series expansions of functions.
Evaluate this to compute the Taylor expansion of sin x about x=0. The first
argument, sin(x), specifies the function whose series expansion is to be
computed and the second argument, x=0, specifies that the series is to be
expanded in powers of (x-0), that is, in powers of x.
<ul>
<li>
<input type="submit" id="p1" class="subbut"
onclick="makeRequest('p1');"
value="taylor(sin(x),x=0)" />
<div id="ansp1"><div></div></div>
</li>
</ul>
Here is the Taylor expansion of sin x about x=%pi/6:
<ul>
<li>
<input type="submit" id="p2" class="subbut"
onclick="makeRequest('p2');"
value="taylor(sin(x),x=%pi/6)" />
<div id="ansp2"><div></div></div>
</li>
</ul>
The function to be expanded into a series may have variables other than the
series variable. For example, we may expand tan(x*y) as a Taylor series in x.
<ul>
<li>
<input type="submit" id="p3" class="subbut"
onclick="makeRequest('p3');"
value="taylor(tan(x*y),x=0)" />
<div id="ansp3"><div></div></div>
</li>
</ul>
or as a Taylor series in y.
<ul>
<li>
<input type="submit" id="p4" class="subbut"
onclick="makeRequest('p4');"
value="taylor(tan(x*y),y=0)" />
<div id="ansp4"><div></div></div>
</li>
</ul>
A more interesting function it (t*%e^(x*t))/(%e^t-1).
When we expand this function as a Taylor series in t the nth order
coefficient is the nth Bernoulli polynomial divided by n!.
<ul>
<li>
<input type="submit" id="p5" class="subbut"
onclick="makeRequest('p5');"
value="bern:=taylor(t*exp(x*t)/(exp(t)-1),t=0)" />
<div id="ansp5"><div></div></div>
</li>
</ul>
Therefore, this and the next expression produce the same result.
<ul>
<li>
<input type="submit" id="p6" class="subbut"
onclick="handleFree(['p5','p6']);"
value="factorial(6)*coefficient(bern,6)" />
<div id="ansp6"><div></div></div>
</li>
<li>
<input type="submit" id="p7" class="subbut"
onclick="handleFree(['p6','p7']);"
value="bernoulliB(6,x)" />
<div id="ansp7"><div></div></div>
</li>
</ul>
Technically, a series with terms of negative degree is not considered to
be a Taylor series, but rather a Laurent series. If you try to compute a
Taylor series expansion of x/log(x) at x=1 via taylor(x/log(x),x=1) you
get an error message. The reason is that the function has a pole at x=1,
meaning that its series expansion about this point has terms of negative
degree. A series with finitely many terms of negative degree is called a
Laurent series. You get the desired series expansion by issuing this.
<ul>
<li>
<input type="submit" id="p8" class="subbut"
onclick="makeRequest('p8');"
value="laurent(x/log(x),x=1)" />
<div id="ansp8"><div></div></div>
</li>
</ul>
Similarly, a series with terms of fractional degree is neither a Taylor
series nor a Laurent series. Such a series is called a Puiseux series. The
expression laurent(sqrt(sec(x)),x=3*%pi/2) results in an error message
because the series expansion about this point has terms of fractional degree.
However, this command produces what you want.
<ul>
<li>
<input type="submit" id="p9" class="subbut"
onclick="makeRequest('p9');"
value="puiseux(sqrt(sec(x)),x=3*%pi/2)" />
<div id="ansp9"><div></div></div>
</li>
</ul>
Finally, consider the case of functions that do not have Puiseux expansions
about certain points. An example of this is x^x about x=0. puiseux(x^x,x=0)
produces an error message because of the type of singularity of the
function at x=0. The general function <a href="dbopseries.xhtml">series</a>
can be used in this case. Notice that the series returned is not, strictly
speaking, a power series because of the log(x) in the expansion.
<ul>
<li>
<input type="submit" id="p10" class="subbut"
onclick="makeRequest('p10');"
value="series(x^x,x=0)" />
<div id="ansp10"><div></div></div>
</li>
</ul>
<hr/>
The operation <a href="dbopseries.xhtml">series</a> returns the most general
type of infinite series. The user who is not interested in distinguishing
between various types of infinite series may wish to use this operation
exclusively.
<hr/>
</body>
</html>
|