This file is indexed.

/usr/share/doc/axiom-doc/hypertex/cryptoclass11.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
<center>
 <h2>RCM3720 Cryptography, Network and Computer Security</h2>
 <h3>Laboratory Class 11: Finite Fields</h3>
</center>
<hr/>

<ul>
 <li> Enter the following definition of the finite field 
<pre>
           3
   Z [x]/(x +x+1)
    2
</pre>
  <ul>
   <li> <span class="cmd">F:=FFP(PF 2,x^3+x+1) </span></li>
  </ul>
 </li>
 <li> To perform field operations, we need to create a generator of the field:
  a symbol which can be used to generate all elements as polynomials:
  <ul>
   <li> <span class="cmd">x:=generator()$F</span>
    <br/> Now field arithmetic is easy:
   </li>
   <li> (x^2+1)(x+1) in the field:
    <ul>
     <li> <span class="cmd">(x^2+1)*(x+1)</span> </li>
    </ul>
   </li>
   <li> 1/(x^2+x):
    <ul>
     <li> <span class="cmd">1/(x^2+x)</span>
      <br/>Note that Axiom returns its answer in terms of a dummy variable.
     </li>
    </ul>
   </li>
   <li> We can also list tables of powers:
    <ul>
     <li> 
      <span class="cmd">
       for i in 0..7 repeat output (i::String, x^i) 
      </span>
     </li>
    </ul>
   </li>
  </ul>
 </li>
 <li> Before we enter a new field, we need to clear <tt>x</tt> and its
  properties:
  <ul>
   <li> <span class="cmd">)cl pr x </span></li>
  </ul>
  Now for a slightly bigger field: 
<pre>
           4  3
   Z [x]/(x +x +1)
    2
</pre>
  <ul>
   <li> <span class="cmd">F2:=FFP(PF 2,x^4+x^3+1)</span> </li>
  </ul>
  <ul>
   <li> Create a list of powers of <tt>x</tt>. </li>
   <li> Evaluate (x^3+x+1)/(x^3+x^2) in this field. </li>
  </ul>
 </li>
 <li> Enter the Rijndael field, 
<pre>
         8  4  3
 Z [x]/(x +x +x +x+1)
  2
</pre>
 and call it <tt>GR</tt>.
 </li>
 <li> Determine whether <tt>x</tt> is a primitive element in this field:
  <ul>
   <li> <span class="cmd">x:=generator()$GR</span> </li>
   <li> <span class="cmd">primitive?(x)</span> </li>
  </ul>
 </li>
 <li>
  Is <tt>x+1</tt> a primitive element?
 </li>
 <li> Investigate the workings of MixColumn.  First create the matrix:
  <ul>
   <li>
    <span class="cmd">
     M:Matrix GR:=matrix([[x,x+1,1,1],[1,x,x+1,1],[1,1,x,x+1],[x+1,1,1,x]])
    </span>
   </li>
  </ul>
 </li>
 <li>
  Instead of multiplying a matrix <tt>C</tt> by <tt>M</tt>, 
  we shall just look at a single column, created randomly:
  <ul>
   <li>
    <span class="cmd">
     C:Matrix GR:=matrix([[random()$FR] for j in 1..4]) 
    </span>
   </li>
  </ul>
 <li>
 </li>
  These can be multiplied directly in Axiom:
  <ul>
   <li> <span class="cmd">D:=M*C</span> </li>
  </ul>
 </li>
 <li> Remarkably enough, Axiom can operate on matrices over a finite field as
      easily as it can operate on numerical matrices.  For example, given that
<pre>
   D=MC 
</pre>
 </li>
 <li>  it follows that
<pre>
      -1
   C=M  D
</pre>
 </li>
 <li> or that
<pre>
    -1
   M  D-C=0
</pre>
 </li>
 <li> To test this, first create the matrix inverse:
  <ul>
   <li> <span class="cmd">MI:=inverse(M)</span> </li>
  </ul>
 </li>
 <li>
  Now multiply by <tt>D</tt> and subtract <tt>C</tt>.  What does the result
  tell you about the truth of the final equation?
 </li>
 <li> To explore MixColumn a bit more, we shall look at the inverse of
      <tt>M</tt>.  First, here's a small function which converts from
      a polynomial to an integer (treating the coefficients of the
      polynomial as digits of a binary number):
  <ul>
   <li>
    <span class="cmd">
      poly2int(p)==(tmp:=reverse(coordinates(p)),return 
          integer wholeRadix(tmp::LIST INT)$RadixExpansion(2))
    </span>
   </li>
  </ul>
 </li>
 <li> First check the matrix <tt>M</tt>:
  <ul>
   <li> <span class="cmd">map((x +-> poly2int(x)::INT), M)</span></li>
  </ul>
 </li>
 <li>
  Is this what you should have?
 </li>
 <li>
  Now apply the same command but to <tt>MI</tt> instead of to <tt>M</tt>.
  What is the result?
 </li>
</ul>
 </body>
</html>