This file is indexed.

/usr/share/doc/axiom-doc/hypertex/cryptoclass3.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
<center>
 <h2>RCM3720 Cryptography, Network and Computer Security</h2>
 <h3>Laboratory Class 3: Number Theory</h3>
</center>
<hr/>

<ul>

 <li> Check out the commands <tt>gcd</tt> and <tt>factor</tt>, and test them
  on different numbers, small and large.
 </li>  
 <li> Axiom provides a few useful commands for taking apart the factors of an
  object:
  <ul>
   <li> <span class="cmd">n:=5040</span></li>
   <li> <span class="cmd">f:=factor(n)</span></li>
   <li> <span class="cmd">numf:=numberOfFactors(f)</span></li>
   <li> <span class="cmd">fs:=[nthFactor(f,i) for i in 1..numf]</span></li>
   <li> <span class="cmd">es:=[nthExponent(f,i) for i in 1..numf]</span></li>
   <li> <span class="cmd">reduce(*,[fs.i^es.i for i in 1..numf])</span></li>
  </ul>
 </li>
 <li> The last command simply multiplies all the factors to their powers.</li>
 
 <li> Check out the commands <tt>prime?</tt>, <tt>nextPrime</tt> and
      <tt>prevPrime</tt>.
 </li>
 <li> To compute the <tt>i</tt>-th prime, we can construct a <i>stream</i>
      (an infinite list) in Axiom:
  <ul>
   <li> 
    <span class="cmd">
     primes:Stream Integer:=[i for i in 2.. | prime? i]
    </span>
   </li>
  </ul>
 </li>
 <li> Now we can find, for example, the 100-th prime, and the 2500-th prime:
  <ul>
   <li> <span class="cmd">primes.100</span></li>
   <li> <span class="cmd">primes.2500</span></li>
  </ul>
 </li>
 <li> Create random 10 digit primes:
  <ul>
   <li> <span class="cmd">p := nextPrime(random(10^10))</span></li>
   <li> <span class="cmd">q := nextPrime(random(10^10))</span></li>
  </ul>
 </li>
 <li> Now multiply them and factor the product.  How long did it take?</li>

 <li> Try the same thing with 12 digit primes and 15 digit primes.</li>
  
 <li> The extended Euclidean algorithm is implemented by the command
  <tt>extendedEuclidean</tt>.  Here's how to use it:
  <ul>
   <li> <span class="cmd">a:=1149</span></li>
   <li> <span class="cmd">b:=3137</span></li>
   <li> <span class="cmd">g:=extendedEuclidean(a,b)</span></li>
   <li> <span class="cmd">s:=g.coef1</span></li>
   <li> <span class="cmd">t:=g.coef2</span></li>
  </ul>
 </li>
 <li> and now test them:
  <ul>
   <li> <span class="cmd">s*a+t*b</span></li>
  </ul>
 </li>
 <li> Try this on a few other numbers.</li>
  
 <li> Axiom uses the command <tt>positiveRemainder</tt> instead of
      <tt>mod</tt> command, so let's define <tt>mod</tt> to be a renaming 
      of the <tt>positiveRemainder</tt> function:
  <ul>
   <li> <span class="cmd">mod ==> positiveRemainder</span></li>
  </ul>
 </li>
 <li> Now the commands <tt>addmod</tt>, <tt>submod</tt>, <tt>mulmod</tt>, and
      <tt>invmod</tt> can be used to perform modular arithmetic.  Here's a few
      examples; first a simple modulus calculation:
  <ul>
   <li> <span class="cmd">-10 mod 3</span></li>
  </ul>
 </li>
 <li> Addition, subtraction and multiplication mod 14:
  <ul>
   <li> <span class="cmd">addmod(10,13,14)</span></li>
   <li> <span class="cmd">submod(17,23,14)</span></li>
   <li> <span class="cmd">mulmod(13,27,14)</span></li>
  </ul>
 </li>
 <li> Powers and inverses:
  <ul>
   <li> <span class="cmd">powmod(19,237,14)</span></li>
   <li> <span class="cmd">invmod(11,14)</span></li>
  </ul>
 </li>
 <li> Find out what happens if you try to take an inverse of a number not
      relatively prime to the modulus:
  <ul>
   <li> <span class="cmd">invmod(12,14)</span></li>
  </ul>
 </li>
 <li> Try these command with a few other numbers, and test out the examples in
  the notes.
 </li>
 <li> The second method, which can be more powerful, is to treat all numbers
  as elements of the residue values 0 to <tt>n-1</tt>.  This can be done with 
  the <tt>IntegerMod</tt> construction, or its abbreviation <tt>ZMOD</tt>.  
  Here's a few examples:
  <ul>
   <li> <span class="cmd">a:=11::ZMOD 14</span></li>
  </ul>
 </li>
 <li> This declares the variable <tt>a</tt> to be a member of the residue 
      class modulo 14.  Now all arithmetic including <tt>a</tt> will be 
      reduced to this same class of values:
  <ul>
   <li> <span class="cmd">a+25</span></li>
   <li> <span class="cmd">a*39</span></li>
   <li> <span class="cmd">a^537</span></li>
  </ul>
 </li>
 <li> Inversion can be done with the <tt>recip</tt> command:
  <ul>
   <li> <span class="cmd">recip(a)</span></li>
  </ul>
 </li>  
 <li> We don't have to define a variable first.  All the above commands could
      be equivalently written as:
  <ul>
   <li> <span class="cmd">(11::ZMOD 14)+25</span></li>
   <li> <span class="cmd">11::ZMOD 14*39</span></li>
   <li> <span class="cmd">11::ZMOD 14^537</span></li>
   <li> <span class="cmd">recip(11::ZMOD 14)</span></li>
  </ul>
 </li>  
 <li> If the modulus is a prime, then division (by non-zero values) is also
      possible.  Axiom provides the alternative construction 
      <tt>PrimeField</tt> or more simply <tt>PF</tt>.  For example:
  <ul>
   <li> <span class="cmd">a:=7::PF 11</span></li>
  </ul>
 </li>
 <li> All the above arithmetic operations of addition, subtraction, 
      multiplication and powers work, but now we also have inversion:
  <ul>
   <li> <span class="cmd">1/a</span></li>
  </ul>
 </li>
 <li> Using any of the methods you like, test out Fermat's theorem for a large
      prime <tt>p</tt> and an integer <tt>a</tt>.
 </li>  
 <li> Euler's totient function is implemented with <tt>eulerPhi</tt>.  Choose
      a large integer <tt>n</tt>, a random <tt>a</tt> with 
      <tt>gcd(a,n)=1</tt> , and test Euler's theorem
 </li>
</ul>
 </body>
</html>