This file is indexed.

/usr/share/doc/axiom-doc/hypertex/dlmfgraphics.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">
   <a href="http://dlmf.nist.gov">
    Digital Library of Mathematical Functions
   </a><br/>
   The Gamma Function -- Graphics
  </div>
  <hr/>
<h3>Graphics</h3>
<h6>Contents</h6>
<ul>
 <li>Real Argument</li>
 <li>The Psi Function</li>
 <li>Complex Argument</li>
</ul>
<h4>Real Argument</h4>
 <img width="403" height="482" src="bitmaps/gammareal3.png"/>
 <br/>
This graph shows the 
 <m:math display="inline">
  <m:mrow>
   <m:mi mathvariant="normal">&#x0393;</m:mi>
   <m:mrow>
    <m:mo>(</m:mo>
    <m:mi>x</m:mi>
    <m:mo>)</m:mo>
   </m:mrow>
  </m:mrow>
 </m:math> and 
 <m:math display="inline">
  <m:mfrac bevelled="true">
   <m:mn>1</m:mn>
   <m:mrow>
    <m:mi mathvariant="normal">&#x0393;</m:mi>
    <m:mrow>
     <m:mo>(</m:mo>
     <m:mi>x</m:mi>
     <m:mo>)</m:mo>
    </m:mrow>
   </m:mrow>
  </m:mfrac>
 </m:math>.

To create these two graphs in Axiom:
<pre>
 -- Draw the first graph in a viewport
 viewport1:=draw(Gamma(i), i=-4.2..4, adaptive==true, unit==[1.0,1.0])
 -- Draw the second graph in a viewport
 viewport2:=draw(1/Gamma(i), i=-4.2..4, adaptive==true, unit==[1.0,1.0])
 -- Get the Gamma graph from the first viewport and layer it on top
 putGraph(viewport2,getGraph(viewport1,1),2)
 -- Remove the points and leave the lines
 points(viewport2,1,"off")
 points(viewport2,2,"off")
 -- Show the combined graph
 makeViewport2D(viewport2)
</pre>

 <img width="300" height="176" alt="" src="bitmaps/loggamma.png"/>
 <br/>
 <m:math display="inline">
  <m:mrow>
   <m:mi>ln</m:mi>
   <m:mrow>
    <m:mi mathvariant="normal">&#x0393;</m:mi>
    <m:mrow>
     <m:mo>(</m:mo>
     <m:mi>x</m:mi>
     <m:mo>)</m:mo>
    </m:mrow>
   </m:mrow>
  </m:mrow>
 </m:math>. This function is convex on 
 <m:math display="inline">
  <m:mrow>
   <m:mo>(</m:mo>
   <m:mrow>
    <m:mn>0</m:mn>
    <m:mo>,</m:mo>
    <m:mi mathvariant="normal">&#x221E;</m:mi>
   </m:mrow>
   <m:mo>)</m:mo>
  </m:mrow>
 </m:math>;
 <br/>
  compare <a href="dlmffunctionalrelations.xhtml#bohrmolleruptheorem">
           Functional Relations</a>
 <p>
You can construct this graph with the Axiom commands:
<pre>
  -- draw the graph of log(Gamma) in a viewport
  viewport1:=draw(log Gamma(i), i=0..8, adaptive==true, unit==[1.0,1.0])
  -- turn off the points and leave the lines
  points(viewport1,1,"off")
</pre>
</p>
 <br/>

 <h4>The Psi Function 
 <m:math display="inline">
  <m:mrow>
   <m:mi>&#x03C8;</m:mi>
   <m:mrow>
    <m:mo>(</m:mo>
    <m:mi>x</m:mi>
    <m:mo>)</m:mo>
   </m:mrow>
  </m:mrow>
 </m:math>
</h4>

<p> This function is a special case of the polygamma function.
In particular, 
 <m:math display="inline">
  <m:mrow>
   <m:mi>&#x03C8;</m:mi>
   <m:mrow>
    <m:mo>(</m:mo>
    <m:mi>x</m:mi>
    <m:mo>)</m:mo>
   </m:mrow>
  </m:mrow>
 </m:math> is equal to polygamma(0,x).
 </p>
 <br/>
 <br/>

 <img width="522" height="556" alt="" src="bitmaps/psi.png"/>
 <br/>
You can reconstruct this graph in Axiom by:
<pre>
  -- first construct the psi function
  psi(x)==polygamma(0,x)
  -- draw the graph in a viewport
  viewport:=draw(psi(y),y=-3.5..4,adaptive==true)
  -- make the gradient obvious
  scale(viewport,1,0.9,22.5)
  -- and recenter the graph
  translate(viewport,1,0,-0.02)
  -- turn off the points and keep the line
  points(viewport,1,"off")
</pre>

 <h4>Complex Argument</h4>

 <img width="400" height="400" alt="" src="bitmaps/gammacomplex.png"/>
 <br/>
 <m:math display="inline">
  <m:mrow>
   <m:mrow>
    <m:mi mathvariant="normal">&#x0393;</m:mi>
    <m:mrow>
     <m:mo>(</m:mo>
     <m:mrow>
      <m:mi>x</m:mi>
      <m:mo>+</m:mo>
      <m:mrow>
       <m:mi mathvariant="normal">&#x2148;</m:mi>
       <m:mi>y</m:mi>
      </m:mrow>
     </m:mrow>
     <m:mo>)</m:mo>
    </m:mrow>
   </m:mrow>
  </m:mrow>
 </m:math>.
 <br/>

You can reconstruct this image in Axiom with:
<pre>
  -- Set up the default viewpoint
  viewPhiDefault(-%pi/4)
  -- define the point set function
  gam(x,y)== 
    g:=Gamma complex(x,y) 
    point [x,y,max(min(real g,4),-4), argument g] 
  -- draw the image and remember the viewport
  viewport:=draw(gam, -4..4,-3..3,var1Steps==100,var2Steps==100)
  -- set the color mapping for the image
  colorDef(viewport,blue(),blue())
  -- and smoothly shade it
  drawStyle(viewport,"smooth")
</pre>
 <img width="400" height="400" src="bitmaps/gammacomplexinverse.png"/>
<br/>
 <m:math display="inline">
  <m:mfrac bevelled="true">
   <m:mn>1</m:mn>
   <m:mrow>
    <m:mrow>
     <m:mi mathvariant="normal">&#x0393;</m:mi>
     <m:mrow>
      <m:mo>(</m:mo>
      <m:mrow>
       <m:mi>x</m:mi>
       <m:mo>+</m:mo>
       <m:mrow>
        <m:mi mathvariant="normal">&#x2148;</m:mi>
        <m:mi>y</m:mi>
       </m:mrow>
      </m:mrow>
      <m:mo>)</m:mo>
     </m:mrow>
    </m:mrow>
   </m:mrow>
  </m:mfrac>
 </m:math>
 <br/>

<p>
You can reproduce this image from Axiom with:
<pre>
  -- Set up the default viewpoint
  viewPhiDefault(-%pi/4)
  -- Define the complex Gamma inverse function
  gaminv(x,y)== 
    g:=1/(Gamma complex(x,y)) 
    point [x,y,max(min(real g,4),-4), argument g]
  -- draw the 3D image and remember the viewport
  viewport:=draw(gaminv, -4..4,-3..3,var1Steps==100,var2Steps==100)
  -- make the image a uniform color
  colorDef(viewport,blue(),blue())
  -- and make it pretty
  drawStyle(viewport,"smooth")
</pre>
</p>


<p>
To get these exact images with the colored background you need
to use GIMP to set the background. The steps I used are:
<ol>
<li>Save the image as a pixmap</li>
<li>Open the saved file in gimp</li>
<li>Dialogs->Colors->ColorPicker button</li>
<li>Eyedrop the color of the web page</li>
<li>Set the color as the foreground on the FG/BG page</li>
<li>Dialogs->Layers</li>
<li>Duplicate Layer</li>
<li>Layer->Stack->Select bottom layer</li>
<li>Edit->Fill with Foreground color</li>
<li>(on Layers panel)Select image</li>
<li>(on Layers panel) Mode->Darken Only</li>
</ol>
Note that you may have to use "lighten only" first before it will
allow you to choose "darken only".
</p>

 </body>
</html>