This file is indexed.

/usr/share/doc/axiom-doc/hypertex/dlmfmethodsofcomputation.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">
   <a href="http://dlmf.nist.gov">
    Digital Library of Mathematical Functions
   </a><br/>
   The Gamma Function -- Methods of Computation
  </div>
  <hr/>
<h3>Methods of Computation</h3>

<p>An effective way of computing 
 <m:math display="inline">
  <m:mrow>
   <m:mi mathvariant="normal">&#x0393;</m:mi>
   <m:mrow>
    <m:mo>(</m:mo>
    <m:mi>z</m:mi>
    <m:mo>)</m:mo>
   </m:mrow>
  </m:mrow>
 </m:math> 
in the right half-plane is backward recurrence, beginning with a value 
generated from the 
<a href="dlmfasymptoticexpansions.xhtml#equation3">
 asymptotic expansion
</a>
Or we can use forward recurrence, with an 
<a href="dlmfseriesexpansions.xhtml#equation3">
 initial value
</a>.
For the left half-plane we can continue the backward recurrence or 
make use of the 
<a href="dlmffunctionrelations.xhtml#equation3">
 reflection formula
</a>.
</p>

<p>Similarly for 
 <m:math display="inline">
  <m:mrow>
   <m:mi>ln</m:mi>
   <m:mrow>
    <m:mi mathvariant="normal">&#x0393;</m:mi>
    <m:mrow>
     <m:mo>(</m:mo>
     <m:mi>z</m:mi>
     <m:mo>)</m:mo>
    </m:mrow>
   </m:mrow>
  </m:mrow>
 </m:math>, 
 <m:math display="inline">
  <m:mrow>
   <m:mi>&#x03C8;</m:mi>
   <m:mrow>
    <m:mo>(</m:mo>
    <m:mi>z</m:mi>
    <m:mo>)</m:mo>
   </m:mrow>
  </m:mrow>
 </m:math>, and the polygamma functions.
</p>

<p>For a comprehensive survey see 
 <a href="http://dlmf.nist.gov/Contents/bib/V#vanderlaan:1984:csf">
  van der Laan and Temme(1984)
 </a>(Chapter III).
 See also 
 <a href="http://dlmf.nist.gov/Contents/bib/B#borwein:1992:feg">
  Borwein and Zucker(1992)
 </a>.
</p>
 </body>
</html>