/usr/share/doc/axiom-doc/hypertex/dlmfmethodsofcomputation.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
</head>
<body>
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">
<a href="http://dlmf.nist.gov">
Digital Library of Mathematical Functions
</a><br/>
The Gamma Function -- Methods of Computation
</div>
<hr/>
<h3>Methods of Computation</h3>
<p>An effective way of computing
<m:math display="inline">
<m:mrow>
<m:mi mathvariant="normal">Γ</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mi>z</m:mi>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
</m:math>
in the right half-plane is backward recurrence, beginning with a value
generated from the
<a href="dlmfasymptoticexpansions.xhtml#equation3">
asymptotic expansion
</a>
Or we can use forward recurrence, with an
<a href="dlmfseriesexpansions.xhtml#equation3">
initial value
</a>.
For the left half-plane we can continue the backward recurrence or
make use of the
<a href="dlmffunctionrelations.xhtml#equation3">
reflection formula
</a>.
</p>
<p>Similarly for
<m:math display="inline">
<m:mrow>
<m:mi>ln</m:mi>
<m:mrow>
<m:mi mathvariant="normal">Γ</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mi>z</m:mi>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
</m:mrow>
</m:math>,
<m:math display="inline">
<m:mrow>
<m:mi>ψ</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mi>z</m:mi>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
</m:math>, and the polygamma functions.
</p>
<p>For a comprehensive survey see
<a href="http://dlmf.nist.gov/Contents/bib/V#vanderlaan:1984:csf">
van der Laan and Temme(1984)
</a>(Chapter III).
See also
<a href="http://dlmf.nist.gov/Contents/bib/B#borwein:1992:feg">
Borwein and Zucker(1992)
</a>.
</p>
</body>
</html>
|