This file is indexed.

/usr/share/doc/axiom-doc/hypertex/equsystemlinear.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body onload="resetvars();">
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Solution of Systems of Linear Equations</div>
  <hr/>
You can use the operation <a href="dbopsolve.xhtml">solve</a> to solve
systems of linear equations.

The operation <a href="dbopsolve.xhtml">solve</a> takes two arguments, the
list of equations and the list of the unknowns to be solved for. A system
of linear equations need not have a unique solution.

To solve the linear system:
<pre>
        x + y + x = 8
    3*x - 2*y + z = 0
    x + 2*y + 2*z = 17
</pre>
evaluate this expression.
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" 
    onclick="makeRequest('p1');"
    value="solve([x+y+x=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])" />
  <div id="ansp1"><div></div></div>
 </li>
</ul>
Parameters are given as new variables starting with a percent sign and
"%" and the variables are expressed in terms of the parameters. If the system
has no solutions then the empty list is returned.

When you solve the linear system
<pre>
      x + 2*y + 3*z = 2
    2*x + 3*y + 4*z = 2
    3*x + 4*y + 5*z = 2
</pre>
with this expression you get a solution involving a parameter.
<ul>
 <li>
  <input type="submit" id="p2" class="subbut" 
    onclick="makeRequest('p2');"
    value="solve([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])" />
  <div id="ansp2"><div></div></div>
 </li>
</ul>
The system can also be presented as a matrix and a vector. The matrix 
contains the coefficients of the linear equations and the vector contains
the numbers appearing on the right-hand sides of the equations. You may 
input the matrix as a list of rows and the vector as a list of its elements.

To solve the system:
<pre>
       x + y + z = 8
   2*x - 2*y + z = 0
   x + 2*y + 2*z = 17
</pre>
in matrix form you would evaluate this expression.
<ul>
 <li>
  <input type="submit" id="p3" class="subbut" 
    onclick="makeRequest('p3');"
    value="solve([[1,1,1],[3,-2,1],[1,2,2]],[8,0,17])" />
  <div id="ansp3"><div></div></div>
 </li>
</ul>
The solutions are presented as a Record with two components: the component
particular contains a particular solution of the given system or the item
"failed" if there are no solutions, the component basis contains a list of
vectors that are a basis for the space of solutions of the corresponding
homogeneous system. If the system of linear equations does not have a unique
solution, then the basis component contains non-trivial vectors.

This happens when you solve the linear system
<pre>
    x + 2*y + 3*z = 2
  2*x + 3*y + 4*z = 2
  3*x + 4*y + 5*z = 2
</pre>
with this command.
<ul>
 <li>
  <input type="submit" id="p4" class="subbut" 
    onclick="makeRequest('p4');"
    value="solve([[1,2,3],[2,3,4],[3,4,5]],[2,2,2])" />
  <div id="ansp4"><div></div></div>
 </li>
</ul>
All solutions of this system are obtained by adding the particular solution
with a linear combination of the basis vectors.

When no solution exists then "failed" is returned as the particular 
component, as follows:
<ul>
 <li>
  <input type="submit" id="p5" class="subbut" 
    onclick="makeRequest('p5');"
    value="solve([[1,2,3],[2,3,4],[3,4,5]],[2,3,2])" />
  <div id="ansp5"><div></div></div>
 </li>
</ul>
When you want to solve a system of homogeneous equations (that is, a system
where the numbers on the right-hand sides of the equations are all zero)
in the matrix form you can omit the second argument and use the 
<a href="dbopnullspace.xhtml">nullSpace</a> operation.

This computes the solutions of the following system of equations:
<pre>
    x + 2*y + 3*z = 0
  2*x + 3*y + 4*z = 0
  3*x + 4*y + 5*z = 0
</pre>
The result is given as a list of vectors and these vectors form a basis for
the solution space.
<ul>
 <li>
  <input type="submit" id="p6" class="subbut" 
    onclick="makeRequest('p6');"
    value="nullSpace([[1,2,3],[2,3,4],[3,4,5]])" />
  <div id="ansp6"><div></div></div>
 </li>
</ul>

 </body>
</html>