This file is indexed.

/usr/share/doc/axiom-doc/hypertex/numbasicfunctions.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Basic Functions</div>
  <hr/>
The size of an integer in Axiom is only limited by the amount of computer
storage you have available. The usual arithmetic operations are available.
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" 
    onclick="makeRequest('p1');"
    value="2^(5678-4856+2*17)" />
  <div id="ansp1"><div></div></div>
 </li>
</ul>
There are a number of ways of working with the sign of an integer. Let's
use the x as an example.
<ul>
 <li>
  <input type="submit" id="p2" class="subbut" 
    onclick="makeRequest('p2');"
    value="x:=-101" />
  <div id="ansp2"><div></div></div>
 </li>
</ul>
First of all, there is the absolute value function.
<ul>
 <li>
  <input type="submit" id="p3" class="subbut" 
    onclick="handleFree(['p2','p3']);"
    value="abs(x)" />
  <div id="ansp3"><div></div></div>
 </li>
</ul>
The <a href="dbopsign.xhtml">sign</a> operation returns -1 if its argument
is negative, 0 if zero and 1 if positive.
<ul>
 <li>
  <input type="submit" id="p4" class="subbut" 
    onclick="handleFree(['p2','p4']);"
    value="sign(x)" />
  <div id="ansp4"><div></div></div>
 </li>
</ul>
You can determine if an integer is negative in several other ways.
<ul>
 <li>
  <input type="submit" id="p5" class="subbut" 
    onclick="handleFree(['p2','p5']);"
    value="x &lt; 0" />
  <div id="ansp5"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p6" class="subbut" 
    onclick="handleFree(['p2','p6']);"
    value="x &lt;= -1" />
  <div id="ansp6"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p7" class="subbut" 
    onclick="handleFree(['p2','p7']);"
    value="negative?(x)" />
  <div id="ansp7"><div></div></div>
 </li>
</ul>
Similarly, you can find out if it is positive.
<ul>
 <li>
  <input type="submit" id="p8" class="subbut" 
    onclick="handleFree(['p2','p8']);"
    value="x > 0" />
  <div id="ansp8"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p9" class="subbut" 
    onclick="handleFree(['p2','p9']);"
    value="x >= 1" />
  <div id="ansp9"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p10" class="subbut" 
    onclick="handleFree(['p2','p10']);"
    value="positive?(x)" />
  <div id="ansp10"><div></div></div>
 </li>
</ul>
This is the recommended way of determining whether an integer is zero.
<ul>
 <li>
  <input type="submit" id="p11" class="subbut" 
    onclick="handleFree(['p1','p11']);"
    value="zero?(x)" />
  <div id="ansp11"><div></div></div>
 </li>
</ul>
<hr/>
Use the <a href="dbopzeroq.xhtml">zero?</a> whenever you are testing any
mathematical object for equality with zero. This is usually more efficient
than using <a href="dbopequal.xhtml">=</a> (think of matrices: it is easier
to tell if a matrix is zero by just checking term by term than constructing
another "zero" amtrix and comparing the two matrices term by term) and also
avoids the problem that <a href="dbopequal.xhtml">=</a> is usually used
for creating equations.
<hr/>
This is the recommended way of determining whether an integer is equal to one.
<ul>
 <li>
  <input type="submit" id="p12" class="subbut" 
    onclick="handleFree(['p2','p12']);"
    value="one?(x)" />
  <div id="ansp12"><div></div></div>
 </li>
</ul>
This syntax is used to test equality using <a href="dbopequal.xhtml">=</a>.
It says that you want a <a href="db.xhtml?Boolean">Boolean</a> (true or false)
answer rather than an equation.
<ul>
 <li>
  <input type="submit" id="p13" class="subbut" 
    onclick="handleFree(['p2','p13']);"
    value="(x=-101)@Boolean" />
  <div id="ansp13"><div></div></div>
 </li>
</ul>
The operations <a href="dbopoddq.xhtml">odd?</a> and 
<a href="dbopevenq.xhtml">even?</a> determine whether an integer is odd
or even, respectively. They each return a 
<a href="db.xhtml?Boolean">Boolean</a>
object.
<ul>
 <li>
  <input type="submit" id="p14" class="subbut" 
    onclick="handleFree(['p2','p14']);"
    value="odd?(x)" />
  <div id="ansp14"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p15" class="subbut" 
    onclick="handleFree(['p2','p15']);"
    value="even?(x)" />
  <div id="ansp15"><div></div></div>
 </li>
</ul>
The operation <a href="dbopgcd.xhtml">gcd</a> computes the greatest common
divisor of two integers.
<ul>
 <li>
  <input type="submit" id="p16" class="subbut" 
    onclick="makeRequest('p16');"
    value="gcd(56788,43688)" />
  <div id="ansp16"><div></div></div>
 </li>
</ul>
The operation <a href="dboplcm.xhtml">lcm</a> computes their least common
multiple.
<ul>
 <li>
  <input type="submit" id="p17" class="subbut" 
    onclick="makeRequest('p17');"
    value="lcm(56788,43688)" />
  <div id="ansp17"><div></div></div>
 </li>
</ul>
To determine the maximum of two integers, use <a href="dbopmax.xhtml">max</a>.
<ul>
 <li>
  <input type="submit" id="p18" class="subbut" 
    onclick="makeRequest('p18');"
    value="max(678,567)" />
  <div id="ansp18"><div></div></div>
 </li>
</ul>
To determine the minimum, use <a href="dbopmin.xhtml">min</a>.
<ul>
 <li>
  <input type="submit" id="p20" class="subbut" 
    onclick="makeRequest('p20');"
    value="min(678,567)" />
  <div id="ansp20"><div></div></div>
 </li>
</ul>
The <a href="dbopreduce.xhtml">reduce</a> operation is used to extend
binary operations to more than two arguments. For example, you can use
<a href="dbopreduce.xhtml">reduce</a> to find the maximum integer in a
list or compute the least common multiple of all integers in a list.
<ul>
 <li>
  <input type="submit" id="p21" class="subbut" 
    onclick="makeRequest('p21');"
    value="reduce(max,[2,45,-89,78,100,-45])" />
  <div id="ansp21"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p22" class="subbut" 
    onclick="makeRequest('p22');"
    value="reduce(min,[2,45,-89,78,100,-45])" />
  <div id="ansp22"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p23" class="subbut" 
    onclick="makeRequest('p23');"
    value="reduce(gcd,[2,45,-89,78,100,-45])" />
  <div id="ansp23"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p24" class="subbut" 
    onclick="makeRequest('p24');"
    value="reduce(lcm,[2,45,-89,78,100,-45])" />
  <div id="ansp24"><div></div></div>
 </li>
</ul>
The infix operator "/" is not used to compute the quotient of integers.
Rather , it is used to create rational numbers as described in
<a href="numintegerfractions.xhtml">Fractions</a>.
<ul>
 <li>
  <input type="submit" id="p25" class="subbut" 
    onclick="makeRequest('p25');"
    value="13/4" />
  <div id="ansp25"><div></div></div>
 </li>
</ul>
The infix operator <a href="dbopquo.xhtml">quo</a> computes the integer
quotient.
<ul>
 <li>
  <input type="submit" id="p26" class="subbut" 
    onclick="makeRequest('p26');"
    value="13 quo 4" />
  <div id="ansp26"><div></div></div>
 </li>
</ul>
The infix operation <a href="dboprem.xhtml">rem</a> computes the integer
remainder.
<ul>
 <li>
  <input type="submit" id="p27" class="subbut" 
    onclick="makeRequest('p27');"
    value="13 rem 4" />
  <div id="ansp27"><div></div></div>
 </li>
</ul>
One integer is evenly divisible by another if the remainder is zero.
The operation <a href="dbopexquo.xhtml">exquo</a> can also be used. See
<a href="axbook/section-2.5.xhtml">Unions</a> for an example.
<ul>
 <li>
  <input type="submit" id="p28" class="subbut" 
    onclick="makeRequest('p28');"
    value="zero?(167604736446952 rem 2003644)" />
  <div id="ansp28"><div></div></div>
 </li>
</ul>
The operation <a href="dbopdivide.xhtml">divide</a> returns a record of
the quotient and remainder and thus is more efficient when both are needed.
<ul>
 <li>
  <input type="submit" id="p29" class="subbut" 
    onclick="makeRequest('p29');"
    value="d:=divide(13,4)" />
  <div id="ansp29"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p30" class="subbut" 
    onclick="handleFree(['p29','p30']);"
    value="d.quotient" />
  <div id="ansp30"><div></div></div>
 </li>
</ul>
Records are discussed in detail in 
<a href="axbook/section-2.4.xhtml">Records</a>.
<ul>
 <li>
  <input type="submit" id="p31" class="subbut" 
    onclick="handleFree(['p29','p31']);"
    value="d.remainder" />
  <div id="ansp31"><div></div></div>
 </li>
</ul>
 </body>
</html>