/usr/share/doc/axiom-doc/hypertex/numcontinuedfractions.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
<script type="text/javascript">
<![CDATA[
// This is a hash table of the values we've evaluated.
// This is indexed by a string argument.
// A value of 0 means we need to evaluate the expression
// A value of 1 means we have evaluated the expression
Evaled = new Array();
// this says we should modify the page
hiding = 'show';
// and this is the id of the div tag to modify (defaulted)
thediv = 'mathAns';
// commandline will mark that its arg has been evaled so we don't repeat
function commandline(arg) {
Evaled[arg] = 0; // remember that we have set this value
thediv='ans'+arg; // mark where we should put the output
var ans = document.getElementById(arg).value;
return(ans);
}
// the function only modifies the page if when we're showing the
// final result, otherwise it does nothing.
function showanswer(mathString,indiv) {
if (hiding == 'show') { // only do something useful if we're showing
indiv = thediv; // override the argument so we can change it
var mystr = mathString.split("</div>");
for (var i=0; i < mystr.length; i++) {
if (mystr[i].indexOf("mathml") > 0) {
var mymathstr = mystr[i].concat("</div>");
}
}
// this turns the string into a dom fragment
var mathRange = document.createRange();
var mathBox=
document.createElementNS('http://www.w3.org/1999/xhtml','div');
mathRange.selectNodeContents(mathBox);
var mymath = mathRange.createContextualFragment(mymathstr);
mathBox.appendChild(mymath);
// now we need to format it properly
// and we stick the result into the requested div block as a child.
var mathAns = document.getElementById(indiv);
mathAns.removeChild(mathAns.firstChild);
mathAns.appendChild(mathBox);
}
}
// this function takes a list of expressions ids to evaluate
// the list contains a list of "free" expression ids that need to
// be evaluated before the last expression.
// For each expression id, if it has not yet been evaluated we
// evaluate it "hidden" otherwise we can skip the expression.
// Once we have evaluated all of the free expressions we can
// evaluate the final expression and modify the page.
function handleFree(arg) {
var placename = arg.pop(); // last array val is real
var mycnt = arg.length; // remaining free vars
// we handle all of the prerequired expressions quietly
hiding = 'hide';
for (var i=0; i<mycnt; i++) { // for each of the free variables
if (Evaled[arg[i]] == null) { // if we haven't evaled it
Evaled[arg[i]] = 0; // remember we evaled it
makeRequest(arg[i]); // initialize the free values
}
}
// and now we start talking to the page again
hiding = 'show'; // we want to show this
thediv = 'ans'+placename; // at this div id
makeRequest(placename); // and we eval and show it
}
]]>
<![CDATA[
function ignoreResponse() {}
function resetvars() {
http_request = new XMLHttpRequest();
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = ignoreResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command=)clear all");
return(false);
}
]]>
function init() {
}
function makeRequest(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command="+command);
return(false);
}
function lispcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("lispcall="+command);
return(false);
}
function showcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("showcall="+command);
return(false);
}
function interpcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("interpcall="+command);
return(false);
}
function handleResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
showanswer(http_request.responseText,'mathAns');
} else
{
alert('There was a problem with the request.'+ http_request.statusText);
}
}
}
</script>
</head>
<body onload="resetvars();">
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">Continued Fractions</div>
<hr/>
Continued fractions have been a fascinating and useful tool in mathematics
for well over three hundred years. Axiom implements continued fractions
for fractions of any Euclidean domain. In practice, this usually means
rational numbers. In this section we demonstrate some of the operations
available for manipulating both finite and infinite continued fractions.
It may be helpful if you review
<a href="db.xhtml?Stream">Stream</a> to remind yourself of some of the
operations with streams.
The <a href="db.xhtml?ContinuedFraction">ContinuedFraction</a> domain is a
field and therefore you can add, subtract, multiply, and divide the
fractions. The
<a href="dbopcontinuedfraction.xhtml">continuedFraction</a> operation
converts its fractional argument to a continued fraction.
<ul>
<li>
<input type="submit" id="p1" class="subbut" onclick="makeRequest('p1');"
value="c:=continuedFraction(314159/100000)" />
<div id="ansp1"><div></div></div>
</li>
</ul>
This display is the compact form of the bulkier
<pre>
3 + 1
---------------------------
7 + 1
-----------------------
15 + 1
------------------
1 + 1
--------------
25 + 1
---------
1 + 1
-----
7 + 1
-
4
</pre>
You can write any rational number in a similar form. The fraction will
be finite and you can always take the "numerators" to be 1. That is, any
rational number can be written as a simple, finite continued fraction of
the form
<pre>
a(1) + 1
---------------------------
a(2) + 1
-----------------------
a(3) + 1
.
.
.
1
-----------------
a(n-1) + 1
---------
a(n)
</pre>
The a(i) are called partial quotients and the operation
<a href="dboppartialquotients.xhtml">partialQuotients</a> creates a
stream of them.
<ul>
<li>
<input type="submit" id="p2" class="subbut"
onclick="handleFree(['p1','p2']);"
value="partialQuotients c" />
<div id="ansp2"><div></div></div>
</li>
</ul>
By considering more and more of the fraction, you get the
<a href="dbopconvergents.xhtml">convergents</a>. For example, the
first convergent is a(1), the second is a(1)+1/a(2) and so on.
<ul>
<li>
<input type="submit" id="p3" class="subbut"
onclick="handleFree(['p1','p3']);"
value="convergents c" />
<div id="ansp3"><div></div></div>
</li>
</ul>
Since this ia a finite continued fraction, the last convergent is the
original rational number, in reduced form. The result of
<a href="dbopapproximants.xhtml">approximants</a> is always an infinite
stream, though it may just repeat the "last" value.
<ul>
<li>
<input type="submit" id="p4" class="subbut"
onclick="handleFree(['p1','p4']);"
value="approximants c" />
<div id="ansp4"><div></div></div>
</li>
</ul>
Inverting c only changes the partial quotients of its fraction by
inserting a 0 at the beginning of the list.
<ul>
<li>
<input type="submit" id="p5" class="subbut"
onclick="handleFree(['p1','p5']);"
value="pq:=partialQuotients(1/c)" />
<div id="ansp5"><div></div></div>
</li>
</ul>
Do this to recover the original continued fraction from this list of
partial quotients. The three argument form of the
<a href="dbopcontinuedfraction.xhtml">continuedFraction</a> operation takes
an element which is the whole part of the fraction, a stream of elements
which are the denominators of the fraction.
<ul>
<li>
<input type="submit" id="p6" class="subbut"
onclick="handleFree(['p1','p5','p6']);"
value="continuedFraction(first pq,repeating [1],rest pq)" />
<div id="ansp6"><div></div></div>
</li>
</ul>
The streams need not be finite for
<a href="dbopcontinuedfraction.xhtml">continuedFraction</a>. Can you guess
which irrational number has the following continued fraction? See the end
of this section for the answer.
<ul>
<li>
<input type="submit" id="p7" class="subbut" onclick="makeRequest('p7');"
value="z:=continuedFraction(3,repeating [1],repeating [3,6])" />
<div id="ansp7"><div></div></div>
</li>
</ul>
In 1737 Euler discovered the infinite continued fraction expansion
<pre>
e - 1 1
----- = ---------------------------
p 2 + 1
-----------------------
6 + 1
------------------
10 + 1
--------------
14 + ...
</pre>
We use this expansion to compute rational and floating point
approximations of e. (For this and other interesting expansions,
see C. D. Olds, Continued Fractions, New Mathematical Library,
Random House, New York, 1963 pp.134-139).
By looking at the above expansion, we see that the whole part is 0
and the numerators are all equal to 1. This constructs the stream of
denominators.
<ul>
<li>
<input type="submit" id="p8" class="subbut" onclick="makeRequest('p8');"
value="dens:Stream Integer:=cons(1,generate((x+->x+4),6))" />
<div id="ansp8"><div></div></div>
</li>
</ul>
Therefore this is the continued fraction expansion for (e-1)/2.
<ul>
<li>
<input type="submit" id="p9" class="subbut"
onclick="handleFree(['p8','p9']);"
value="cf:=continuedFraction(0,repeating [1],dens)" />
<div id="ansp9"><div></div></div>
</li>
</ul>
These are the rational number convergents.
<ul>
<li>
<input type="submit" id="p10" class="subbut"
onclick="handleFree(['p8','p9','p10']);"
value="ccf:=convergents cf" />
<div id="ansp10"><div></div></div>
</li>
</ul>
You can get rational convergents for e by multiplying by 2 and adding 1.
<ul>
<li>
<input type="submit" id="p11" class="subbut"
onclick="handleFree(['p8','p9','p10','p11']);"
value="eConvergents:=[2*e+1 for e in ccf]" />
<div id="ansp11"><div></div></div>
</li>
</ul>
You can also compute the floating point approximations to these convergents.
<ul>
<li>
<input type="submit" id="p12" class="subbut"
onclick="handleFree(['p8','p9','p10','p11','p12']);"
value="eConvergents::Stream Float" />
<div id="ansp12"><div></div></div>
</li>
</ul>
Compare this to the value of e computed by the
<a href="dbopexp.xhtml">exp</a> operation in
<a href="db.xhtml?Float">Float</a>.
<ul>
<li>
<input type="submit" id="p13" class="subbut" onclick="makeRequest('p13');"
value="exp 1.0" />
<div id="ansp13"><div></div></div>
</li>
</ul>
In about 1658, Lord Brouncker established the following expansion for 4/pi.
<pre>
1 + 1
---------------------------
2 + 9
-----------------------
2 + 25
------------------
2 + 49
--------------
2 + 81
---------
2 + ...
</pre>
Let's use this expansion to compute rational and floating point
approximations for pi.
<ul>
<li>
<input type="submit" id="p14" class="subbut" onclick="makeRequest('p14');"
value="cf:=continuedFraction(1,[(2*i+1)^2 for i in 0..],repeating [2])" />
<div id="ansp14"><div></div></div>
</li>
<li>
<input type="submit" id="p15" class="subbut"
onclick="handleFree(['p14','p15']);"
value="ccf:=convergents cf" />
<div id="ansp15"><div></div></div>
</li>
<li>
<input type="submit" id="p16" class="subbut"
onclick="handleFree(['p14','p15','p16']);"
value="piConvergents:=[4/p for p in ccf]" />
<div id="ansp16"><div></div></div>
</li>
</ul>
As you can see, the values are converging to
<pre>
pi = 3.14159265358979323846..., but not very quickly.
</pre>
<ul>
<li>
<input type="submit" id="p17" class="subbut"
onclick="handleFree(['p14','p15','p16','p17']);"
value="piConvergents::Stream Float" />
<div id="ansp17"><div></div></div>
</li>
</ul>
You need not restrict yourself to continued fractions of integers. Here is
an expansion for a quotient of Gaussian integers.
<ul>
<li>
<input type="submit" id="p18" class="subbut" onclick="makeRequest('p18');"
value="continuedFraction((-122+597*%i)/(4-4*%i))" />
<div id="ansp18"><div></div></div>
</li>
</ul>
This is an expansion for a quotient of polynomials in one variable with
rational number coefficients.
<ul>
<li>
<input type="submit" id="p19" class="subbut" onclick="makeRequest('p19');"
value="r:Fraction UnivariatePolynomial(x,Fraction Integer)" />
<div id="ansp19"><div></div></div>
</li>
<li>
<input type="submit" id="p20" class="subbut"
onclick="handleFree(['p19','p20']);"
value="r:=((x-1)*(x-2))/((x-3)*(x-4))" />
<div id="ansp20"><div></div></div>
</li>
<li>
<input type="submit" id="p21" class="subbut"
onclick="handleFree(['p19','p20','p21']);"
value="continuedFraction r" />
<div id="ansp21"><div></div></div>
</li>
</ul>
To conclude this section, we give you evidence that
<pre>
z = 3 + 1
---------------------------
3 + 1
-----------------------
6 + 1
-------------------
3 + 1
--------------
6 + 1
---------
3 + ...
</pre>
is the expansion of the square root of 11.
<ul>
<li>
<input type="submit" id="p22" class="subbut"
onclick="handleFree(['p7','p22']);"
value="[i*i for i in convergents(z)]::Stream Float" />
<div id="ansp22"><div></div></div>
</li>
</ul>
</body>
</html>
|