This file is indexed.

/usr/share/doc/axiom-doc/hypertex/numfinitefields.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
<div align="center">Finite Fields</div>
<hr/>
A <sl>finite field</sl> (also called a <sl>Galois field</sl>) is a finite
algebraic structure where on can add, multiply, and divide under the same
laws (for example, commutativity, associativity, or distributivity) as 
apply to the rational, real, or complex numbers. Unlike those three fields,
for any finite field there exists a positive prime integer p, called the
<a href="dbcharacteristic.xhtml">characteristic</a>, such that p*x=0 for 
any element x in the finite field. In fact, the number of elements in a
finite filed is a power of the characteristic and for each prime p and
positive integer n there exists exactly one finite field with p**n elements,
up to an isomorphism. (For more information about the algebraic structure and
properties of finite fields, see for example, S. Lang <sl>Algebr</sl>, 
Second Edition, New York, Addison-Wesley Publishing Company, Inc. 1984,
ISBN 0 201 05476 6; or R. Lidl, H. Niederreiter, <sl>Finite Fields</sl>,
Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge.
Cambridge Univ. Press, 1983, ISBN 0 521 30240 4)

When n=1, the field has p elements and is called a <sl>prime field</sl>,
discussed in 
<a href="axbook/section-8.11.xhtml#subsec-8.11.1">
Modular Arithmetic and Prime Fields</a>
in section 8.11.1. There are several ways of implementing extensions of
finite fields, and Axiom provides quite a bit of freedom to allow you to
choose the one that is best for your application. Moreover, we provide
operations for converting among the different representations of extensions
and different extensions of a single field. Finally, note that you usually
need to package call operations from finite fields if the operations do not
take as an argument an object of the field. See
<a href="">Package Calling and Target Types</a>
in section 2.9 for more information on package calling.
<ul>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.1">
   Modular Arithmetic and Prime Fields
  </a>
 </li>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.2">
   Extensions of Finite Fields
  </a>
 </li>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.3">
   Irreducible Modulus Polynomial Representations
  </a>
 </li>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.4">
   Cyclic Group Representations
  </a>
 </li>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.5">
   Normal Basis Representations
  </a>
 </li>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.6">
   Conversion Operations for Finite Fields
  </a>
 </li>
 <li>
  <a href="axbook/section-8.11.xhtml#subsec-8.11.7">
   Utility Operations for Finite Fields
  </a>
 </li>
</ul>
 </body>
</html>