/usr/share/doc/axiom-doc/hypertex/numfunctions.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
<script type="text/javascript">
<![CDATA[
// This is a hash table of the values we've evaluated.
// This is indexed by a string argument.
// A value of 0 means we need to evaluate the expression
// A value of 1 means we have evaluated the expression
Evaled = new Array();
// this says we should modify the page
hiding = 'show';
// and this is the id of the div tag to modify (defaulted)
thediv = 'mathAns';
// commandline will mark that its arg has been evaled so we don't repeat
function commandline(arg) {
Evaled[arg] = 0; // remember that we have set this value
thediv='ans'+arg; // mark where we should put the output
var ans = document.getElementById(arg).value;
return(ans);
}
// the function only modifies the page if when we're showing the
// final result, otherwise it does nothing.
function showanswer(mathString,indiv) {
if (hiding == 'show') { // only do something useful if we're showing
indiv = thediv; // override the argument so we can change it
var mystr = mathString.split("</div>");
for (var i=0; i < mystr.length; i++) {
if (mystr[i].indexOf("mathml") > 0) {
var mymathstr = mystr[i].concat("</div>");
}
}
// this turns the string into a dom fragment
var mathRange = document.createRange();
var mathBox=
document.createElementNS('http://www.w3.org/1999/xhtml','div');
mathRange.selectNodeContents(mathBox);
var mymath = mathRange.createContextualFragment(mymathstr);
mathBox.appendChild(mymath);
// now we need to format it properly
// and we stick the result into the requested div block as a child.
var mathAns = document.getElementById(indiv);
mathAns.removeChild(mathAns.firstChild);
mathAns.appendChild(mathBox);
}
}
// this function takes a list of expressions ids to evaluate
// the list contains a list of "free" expression ids that need to
// be evaluated before the last expression.
// For each expression id, if it has not yet been evaluated we
// evaluate it "hidden" otherwise we can skip the expression.
// Once we have evaluated all of the free expressions we can
// evaluate the final expression and modify the page.
function handleFree(arg) {
var placename = arg.pop(); // last array val is real
var mycnt = arg.length; // remaining free vars
// we handle all of the prerequired expressions quietly
hiding = 'hide';
for (var i=0; i<mycnt; i++) { // for each of the free variables
if (Evaled[arg[i]] == null) { // if we haven't evaled it
Evaled[arg[i]] = 0; // remember we evaled it
makeRequest(arg[i]); // initialize the free values
}
}
// and now we start talking to the page again
hiding = 'show'; // we want to show this
thediv = 'ans'+placename; // at this div id
makeRequest(placename); // and we eval and show it
}
]]>
<![CDATA[
function ignoreResponse() {}
function resetvars() {
http_request = new XMLHttpRequest();
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = ignoreResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command=)clear all");
return(false);
}
]]>
function init() {
}
function makeRequest(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command="+command);
return(false);
}
function lispcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("lispcall="+command);
return(false);
}
function showcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("showcall="+command);
return(false);
}
function interpcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("interpcall="+command);
return(false);
}
function handleResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
showanswer(http_request.responseText,'mathAns');
} else
{
alert('There was a problem with the request.'+ http_request.statusText);
}
}
}
</script>
</head>
<body>
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">Integer Number Theory Functions</div>
<hr/>
The <a href="db.xhtml?IntegerNumberTheoryFunctions">
IntegerNumberTheoryFunctions</a> package contains a variety of
operations of interest to number theorists. Many of these operations
deal with divisibility properties of integers (Recall that an integer
a divides an integer b if there is an integer c such that b=a*c.)
The operation <a href="dbopdivisors.xhtml">divisors</a> returns a list
of the divisors of an integer
<ul>
<li>
<input type="submit" id="p1" class="subbut"
onclick="makeRequest('p1');"
value="div144:=divisors(144)" />
<div id="ansp1"><div></div></div>
</li>
</ul>
You can now compute the number of divisors of 144 and the sum of the
divisors of 144 by counting and summing the elements of the list we
just created.
<ul>
<li>
<input type="submit" id="p2" class="subbut"
onclick="handleFree(['p1','p2']);"
value="#(div144)" />
<div id="ansp2"><div></div></div>
</li>
<li>
<input type="submit" id="p3" class="subbut"
onclick="handleFree(['p1','p3']);"
value="reduce(+,div144)" />
<div id="ansp3"><div></div></div>
</li>
</ul>
Of course, you can compute the number of divisors of an integer n,
usually denoted d(n), and the sum of the divisors of an integer n,
usually denoted ς(n), without ever listing the divisors of n.
In Axiom, you can simply call the operations
<ul>
<li>
<input type="submit" id="p4" class="subbut"
onclick="makeRequest('p4');"
value="numberOfDivisors(144)" />
<div id="ansp4"><div></div></div>
</li>
<li>
<input type="submit" id="p5" class="subbut"
onclick="makeRequest('p5');"
value="sumOfDivisors(144)" />
<div id="ansp5"><div></div></div>
</li>
</ul>
The key is that d(n) and ς(n) are "multiplicative functions".
This means that when n and m are relatively prime, that is, when n and
m have no factors in common, then d(nm)=d(n)d(m) and ς(nm)=
ς(n)ς(m). Note that these functions are trivial to
compute when n is a prime power and are computed for general n from
the prime factorization of n. Other examples of multiplicative functions
are ς_k(n), the sum of the k-th powers of the divisors of n and
φ(n), the number of integers between 1 and n which are prime to n.
The corresponding Axiom operations are called
<a href="dbopsumofkthpowerdivisors.xhtml">sumOfKthPowerDivisors</a> and
<a href="dbopeulerphi.xhtml">eulerPhi</a>.
<ul>
<li>
<input type="submit" id="p6" class="subbut"
onclick="makeRequest('p6');"
value="sumOfKthPowerDivisors(144,2)" />
<div id="ansp6"><div></div></div>
</li>
<li>
<input type="submit" id="p7" class="subbut"
onclick="makeRequest('p7');"
value="eulerPhi(144)" />
<div id="ansp7"><div></div></div>
</li>
</ul>
An interesting function is called μ(n), the Moebius mu function,
defined as
<pre>
0 if n has a repeated prime factor
(i.e. is divisible by a square)
μ(n)= 1 if n is 1
(-1)^k if n is the product of k distinct primes
</pre>
The corresponding Axiom operation is
<ul>
<li>
<input type="submit" id="p8" class="subbut"
onclick="makeRequest('p8');"
value="moebiusMu(2*2*2)" />
<div id="ansp8"><div></div></div>
</li>
<li>
<input type="submit" id="p9" class="subbut"
onclick="makeRequest('p9');"
value="moebiusMu(1)" />
<div id="ansp9"><div></div></div>
</li>
<li>
<input type="submit" id="p10" class="subbut"
onclick="makeRequest('p10');"
value="moebiusMu(5*7*13)" />
<div id="ansp10"><div></div></div>
</li>
</ul>
This function occurs in the following theorem:
<br/>
<b>Theorem</b>(Moebius Inversion Formula):<br/>
Let f(n) be a function on the positive integers and let F(n) be defined
by F(n)=sum of f(n) over d | n where the sum is taken over the positive
divisors of n. Then the values of f(n) can be recovered from the values
of F(n):f(n) = sum of μF(n/d) over d|n, where the sum is taken
over the positive divisors of n.
When f(n)=1, the F(n)=d(n). Thus, if you sum μ(d)*d(n/d) over
the positive divisors of d of n, you should always get 1.
<ul>
<li>
<input type="submit" id="p11" class="noresult"
onclick="makeRequest('p11');"
value="f1(n)==reduce(+,[moebiusMu(d)*numberOfDivisors(quo(n,d)) for d in divisors(n)])" />
<div id="ansp11"><div></div></div>
</li>
<li>
<input type="submit" id="p12" class="subbut"
onclick="handleFree(['p11','p12']);"
value="f1(200)" />
<div id="ansp12"><div></div></div>
</li>
<li>
<input type="submit" id="p13" class="subbut"
onclick="handleFree(['p11','p13']);"
value="f1(846)" />
<div id="ansp13"><div></div></div>
</li>
</ul>
Similarly, when f(n)=n, then F(n)=ς(n). Thus, if you sum
μ(d)*ς(n/d) over the positive divisors d of n, you
should always get n.
<ul>
<li>
<input type="submit" id="p14" class="noresult"
onclick="makeRequest('p14');"
value="f2(n)==reduce(+,[moebiusMu(d)*sumOfDivisors(quo(n,d)) for d in divisors(n)])" />
<div id="ansp14"><div></div></div>
</li>
<li>
<input type="submit" id="p15" class="subbut"
onclick="handleFree(['p14','p15']);"
value="f2(200)" />
<div id="ansp15"><div></div></div>
</li>
<li>
<input type="submit" id="p16" class="subbut"
onclick="handleFree(['p14','p16']);"
value="f2(846)" />
<div id="ansp16"><div></div></div>
</li>
</ul>
The Fibonacci numbers are defined by
<pre>
F(1)=1
F(2)=1
F(n)=F(n-1)+F(n-2) for n=3,4,...
</pre>
The operation <a href="dbopfibonacci.xhtml">fibonacci</a> computes the
nth Fibonacci number.
<ul>
<li>
<input type="submit" id="p17" class="subbut"
onclick="makeRequest('p17');"
value="fibonacci(25)" />
<div id="ansp17"><div></div></div>
</li>
<li>
<input type="submit" id="p18" class="subbut"
onclick="makeRequest('p18');"
value="[fibonacci(n) for n in 1..15]" />
<div id="ansp18"><div></div></div>
</li>
</ul>
Fibonacci numbers can also be expressed as sums of binomial
coefficients.
<ul>
<li>
<input type="submit" id="p19" class="noresult"
onclick="makeRequest('p19');"
value="fib(n)==reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])" />
<div id="ansp19"><div></div></div>
</li>
<li>
<input type="submit" id="p20" class="subbut"
onclick="handleFree(['p19','p20']);"
value="fib(25)" />
<div id="ansp20"><div></div></div>
</li>
<li>
<input type="submit" id="p21" class="subbut"
onclick="handleFree(['p19','p21']);"
value="[fib(n) for n in 1..15]" />
<div id="ansp21"><div></div></div>
</li>
</ul>
Quadratic symbols can be computed with the operations
<a href="dboplegendre.xhtml">legendre</a> and
<a href="dbopjacobi.xhtml">jacobi</a>. The Legendre symbol (a/p) is
defined for integers a and p with p an odd prime number. By definition,
<pre>
= -1 when a is not a square (mod p)
(a/p) = 0 when a is divisible by p
= +1 when a is a square (mod p)
</pre>
You compute (a/p) via the command legendre(a,p)
<ul>
<li>
<input type="submit" id="p22" class="subbut"
onclick="makeRequest('p22');"
value="legendre(3,5)" />
<div id="ansp22"><div></div></div>
</li>
<li>
<input type="submit" id="p23" class="subbut"
onclick="makeRequest('p23');"
value="legendre(23,691)" />
<div id="ansp23"><div></div></div>
</li>
</ul>
The Jacobi symbol (a/n) is the usual extension of the Legendre symbol,
where n is an arbitrary integer. The most important property of the
Jacobi symbol is the following: if K is a quadratic field with
discriminant d and quadratic character χ, the χ(n)=(d/n).
Thus, you can use the Jacobi symbol to compute, say, the class numbers
of imaginary quadratic fields from a standard class number formula. This
function computes the class number of the imaginary quadratic field with
discriminant d.
<ul>
<li>
<input type="submit" id="p24" class="noresult"
onclick="makeRequest('p24');"
value="h(d)==quo(reduce(+,[jacobi(d,k) for k in 1..quo(-d,2)]),2-jacobi(d,2))" />
<div id="ansp24"><div></div></div>
</li>
<li>
<input type="submit" id="p25" class="subbut"
onclick="handleFree(['p24','p25']);"
value="h(-163)" />
<div id="ansp25"><div></div></div>
</li>
<li>
<input type="submit" id="p26" class="subbut"
onclick="handleFree(['p24','p26']);"
value="h(-499)" />
<div id="ansp26"><div></div></div>
</li>
<li>
<input type="submit" id="p27" class="subbut"
onclick="handleFree(['p24','p27']);"
value="h(-1832)" />
<div id="ansp27"><div></div></div>
</li>
</ul>
</body>
</html>
|