This file is indexed.

/usr/share/doc/axiom-doc/hypertex/numfunctions.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Integer Number Theory Functions</div>
  <hr/>
The <a href="db.xhtml?IntegerNumberTheoryFunctions">
IntegerNumberTheoryFunctions</a> package contains a variety of
operations of interest to number theorists. Many of these operations
deal with divisibility properties of integers (Recall that an integer
a divides an integer b if there is an integer c such that b=a*c.)

The operation <a href="dbopdivisors.xhtml">divisors</a> returns a list
of the divisors of an integer
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" 
    onclick="makeRequest('p1');"
    value="div144:=divisors(144)" />
  <div id="ansp1"><div></div></div>
 </li>
</ul>
You can now compute the number of divisors of 144 and the sum of the
divisors of 144 by counting and summing the elements of the list we
just created.
<ul>
 <li>
  <input type="submit" id="p2" class="subbut" 
    onclick="handleFree(['p1','p2']);"
    value="#(div144)" />
  <div id="ansp2"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p3" class="subbut" 
    onclick="handleFree(['p1','p3']);"
    value="reduce(+,div144)" />
  <div id="ansp3"><div></div></div>
 </li>
</ul>
Of course, you can compute the number of divisors of an integer n, 
usually denoted d(n), and the sum of the divisors of an integer n,
usually denoted &#x003C2;(n), without ever listing the divisors of n.

In Axiom, you can simply call the operations
<ul>
 <li>
  <input type="submit" id="p4" class="subbut" 
    onclick="makeRequest('p4');"
    value="numberOfDivisors(144)" />
  <div id="ansp4"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p5" class="subbut" 
    onclick="makeRequest('p5');"
    value="sumOfDivisors(144)" />
  <div id="ansp5"><div></div></div>
 </li>
</ul>
The key is that d(n) and &#x003C2;(n) are "multiplicative functions". 
This means that when n and m are relatively prime, that is, when n and
m have no factors in common, then d(nm)=d(n)d(m) and &#x003C2;(nm)=
&#x003C2;(n)&#x003C2;(m). Note that these functions are trivial to 
compute when n is a prime power and are computed for general n from
the prime factorization of n. Other examples of multiplicative functions
are &#x003C2;_k(n), the sum of the k-th powers of the divisors of n and
&#x003C6;(n), the number of integers between 1 and n which are prime to n.
The corresponding Axiom operations are called
<a href="dbopsumofkthpowerdivisors.xhtml">sumOfKthPowerDivisors</a> and
<a href="dbopeulerphi.xhtml">eulerPhi</a>.
<ul>
 <li>
  <input type="submit" id="p6" class="subbut" 
    onclick="makeRequest('p6');"
    value="sumOfKthPowerDivisors(144,2)" />
  <div id="ansp6"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p7" class="subbut" 
    onclick="makeRequest('p7');"
    value="eulerPhi(144)" />
  <div id="ansp7"><div></div></div>
 </li>
</ul>

An interesting function is called &#x003BC;(n), the Moebius mu function,
defined as 
<pre>
        0 if n has a repeated prime factor 
          (i.e. is divisible by a square)
  &#x003BC;(n)= 1 if n is 1
       (-1)^k if n is the product of k distinct primes
</pre>
The corresponding Axiom operation is 
<ul>
 <li>
  <input type="submit" id="p8" class="subbut" 
    onclick="makeRequest('p8');"
    value="moebiusMu(2*2*2)" />
  <div id="ansp8"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p9" class="subbut" 
    onclick="makeRequest('p9');"
    value="moebiusMu(1)" />
  <div id="ansp9"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p10" class="subbut" 
    onclick="makeRequest('p10');"
    value="moebiusMu(5*7*13)" />
  <div id="ansp10"><div></div></div>
 </li>
</ul>
This function occurs in the following theorem:
<br/>
<b>Theorem</b>(Moebius Inversion Formula):<br/>
Let f(n) be a function on the positive integers and let F(n) be defined
by F(n)=sum of f(n) over d | n where the sum is taken over the positive
divisors of n. Then the values of f(n) can be recovered from the values
of F(n):f(n) = sum of &#x003BC;F(n/d) over d|n, where the sum is taken
over the positive divisors of n.

When f(n)=1, the F(n)=d(n). Thus, if you sum &#x003BC;(d)*d(n/d) over 
the positive divisors of d of n, you should always get 1.
<ul>
 <li>
  <input type="submit" id="p11" class="noresult" 
    onclick="makeRequest('p11');"
    value="f1(n)==reduce(+,[moebiusMu(d)*numberOfDivisors(quo(n,d)) for d in divisors(n)])" />
  <div id="ansp11"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p12" class="subbut" 
    onclick="handleFree(['p11','p12']);"
    value="f1(200)" />
  <div id="ansp12"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p13" class="subbut" 
    onclick="handleFree(['p11','p13']);"
    value="f1(846)" />
  <div id="ansp13"><div></div></div>
 </li>
</ul>
Similarly, when f(n)=n, then F(n)=&#x003C2;(n). Thus, if you sum 
&#x003BC;(d)*&#x003C2;(n/d) over the positive divisors d of n, you
should always get n.
<ul>
 <li>
  <input type="submit" id="p14" class="noresult" 
    onclick="makeRequest('p14');"
    value="f2(n)==reduce(+,[moebiusMu(d)*sumOfDivisors(quo(n,d)) for d in divisors(n)])" />
  <div id="ansp14"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p15" class="subbut" 
    onclick="handleFree(['p14','p15']);"
    value="f2(200)" />
  <div id="ansp15"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p16" class="subbut" 
    onclick="handleFree(['p14','p16']);"
    value="f2(846)" />
  <div id="ansp16"><div></div></div>
 </li>
</ul>
The Fibonacci numbers are defined by
<pre>
  F(1)=1
  F(2)=1
  F(n)=F(n-1)+F(n-2) for n=3,4,...
</pre>
The operation <a href="dbopfibonacci.xhtml">fibonacci</a> computes the
nth Fibonacci number.
<ul>
 <li>
  <input type="submit" id="p17" class="subbut" 
    onclick="makeRequest('p17');"
    value="fibonacci(25)" />
  <div id="ansp17"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p18" class="subbut" 
    onclick="makeRequest('p18');"
    value="[fibonacci(n) for n in 1..15]" />
  <div id="ansp18"><div></div></div>
 </li>
</ul>
Fibonacci numbers can also be expressed as sums of binomial
coefficients.
<ul>
 <li>
  <input type="submit" id="p19" class="noresult" 
    onclick="makeRequest('p19');"
    value="fib(n)==reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])" />
  <div id="ansp19"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p20" class="subbut" 
    onclick="handleFree(['p19','p20']);"
    value="fib(25)" />
  <div id="ansp20"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p21" class="subbut" 
    onclick="handleFree(['p19','p21']);"
    value="[fib(n) for n in 1..15]" />
  <div id="ansp21"><div></div></div>
 </li>
</ul>

Quadratic symbols can be computed with the operations
<a href="dboplegendre.xhtml">legendre</a> and
<a href="dbopjacobi.xhtml">jacobi</a>. The Legendre symbol (a/p) is
defined for integers a and p with p an odd prime number. By definition,
<pre>
        = -1 when a is not a square (mod p)
  (a/p) =  0 when a is divisible by p
        = +1 when a is a square (mod p)
</pre>
You compute (a/p) via the command legendre(a,p)
<ul>
 <li>
  <input type="submit" id="p22" class="subbut" 
    onclick="makeRequest('p22');"
    value="legendre(3,5)" />
  <div id="ansp22"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p23" class="subbut" 
    onclick="makeRequest('p23');"
    value="legendre(23,691)" />
  <div id="ansp23"><div></div></div>
 </li>
</ul>

The Jacobi symbol (a/n) is the usual extension of the Legendre symbol,
where n is an arbitrary integer. The most important property of the
Jacobi symbol is the following: if K is a quadratic field with 
discriminant d and quadratic character &#x003C7;, the &#x003C7;(n)=(d/n).
Thus, you can use the Jacobi symbol to compute, say, the class numbers
of imaginary quadratic fields from a standard class number formula. This
function computes the class number of the imaginary quadratic field with
discriminant d.
<ul>
 <li>
  <input type="submit" id="p24" class="noresult" 
    onclick="makeRequest('p24');"
    value="h(d)==quo(reduce(+,[jacobi(d,k) for k in 1..quo(-d,2)]),2-jacobi(d,2))" />
  <div id="ansp24"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p25" class="subbut" 
    onclick="handleFree(['p24','p25']);"
    value="h(-163)" />
  <div id="ansp25"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p26" class="subbut" 
    onclick="handleFree(['p24','p26']);"
    value="h(-499)" />
  <div id="ansp26"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p27" class="subbut" 
    onclick="handleFree(['p24','p27']);"
    value="h(-1832)" />
  <div id="ansp27"><div></div></div>
 </li>
</ul>

 </body>
</html>