This file is indexed.

/usr/share/doc/axiom-doc/hypertex/numnumericfunctions.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body onload="resetvars();">
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Numeric Functions</div>
  <hr/>
Axiom provides two basic floating point types: 
<a href="numfloat.xhtml">Float</a> and
<a href="nummachinefloats.xhtml">DoubleFloat</a>. This section
describes how to use numerical operations defined on these types and
the related complex types. As we mentioned in
<a href="axbook/book-contents.xhtml#chapter1">An Overview of Axiom</a>
in chapter 1., the 
<a href="numfloat.xhtml">Float</a> type is a software implementation of
floating point numbers in which the exponent and the significand may have
any number of digits. See
<a href="numfloat.xhtml">Float</a> for detailed information about this 
domain. The 
<a href="nummachinefloats.xhtml">DoubleFloat</a> is usually a hardware
implementation of floating point numbers, corresponding to machine double
precision. The types 
<a href="dbcomplexfloat.xhtml">Complex Float</a> and 
<a href="dbcomplexdoublefloat.xhtml">Complex DoubleFloat</a> are the
corresponding software implementations of complex floating point numbers.
In this section the term floating point type means any of these four
types. The floating point types immplement the basic elementary functions.
These include (where $ means
<a href="nummachinefloats.xhtml">DoubleFloat</a>,
<a href="numfloat.xhtml">Float</a>,
<a href="dbcomplexfloat.xhtml">Complex Float</a>,
<a href="dbcomplexdoublefloat.xhtml">Complex DoubleFloat</a>):<br/>
<a href="dbopexp.xhtml">exp</a>,
<a href="dboplog.xhtml">log</a>: $ -> $<br/>
<a href="dbopsin.xhtml">sin</a>,
<a href="dbopcos.xhtml">cos</a>,
<a href="dboptan.xhtml">tan</a>,
<a href="dbopcot.xhtml">cot</a>,
<a href="dbopsec.xhtml">sec</a>,
<a href="dbopcsc.xhtml">csc</a>: $ -> $<br/>
<a href="dbopasin.xhtml">asin</a>,
<a href="dbopacos.xhtml">acos</a>,
<a href="dbopatan.xhtml">atan</a>,
<a href="dbopacot.xhtml">acot</a>,
<a href="dbopasec.xhtml">asec</a>,
<a href="dbopacsc.xhtml">acsc</a>: $ -> $<br/>
<a href="dbopsinh.xhtml">sinh</a>,
<a href="dbopcosh.xhtml">cosh</a>,
<a href="dboptanh.xhtml">tanh</a>,
<a href="dbopcoth.xhtml">coth</a>,
<a href="dbopsech.xhtml">sech</a>,
<a href="dbopcsch.xhtml">csch</a>: $ -> $<br/>
<a href="dbopasinh.xhtml">asinh</a>,
<a href="dbopacosh.xhtml">acosh</a>,
<a href="dbopatanh.xhtml">atanh</a>,
<a href="dbopacoth.xhtml">acoth</a>,
<a href="dbopasech.xhtml">asech</a>,
<a href="dbopacsch.xhtml">acsch</a>: $ -> $<br/>
<a href="dboppi.xhtml">pi</a>: () -> $<br/>
<a href="dbopsqrt.xhtml">sqrt</a>: $ -> $<br/>
<a href="dbopnthroot.xhtml">nthRoot</a>: ($,Integer) -> $<br/>
<a href="dbopstarstar.xhtml">**</a>: ($,Fraction Integer) -> $<br/>
<a href="dbopstarstar.xhtml">**</a>: ($,$) -> $<br/>
The handling of roots depends on whether the floating point type is
real or complex: for the real floating point types, 
<a href="nummachinefloats.xhtml">DoubleFloat</a> and
<a href="numfloat.xhtml">Float</a>, if a real root exists the one with 
the same sign as the radicand is returned; for the complex floating
point types, the principal value is returned. Also, for real floating
point types the inverse functions produce errors if the results are not
real. This includes cases such as asin(1.2), log(-3.2), sqrt(-1,1).
The default floating point type is <a href="numfloat.xhtml">Float</a>
or <a href="dbcomplexfloat.xhtml">Complex Float</a>, just use normal
decimal notation.
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" onclick="makeRequest('p1');"
    value="exp(3.1)" />
  <div id="ansp1"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p2" class="subbut" onclick="makeRequest('p2');"
    value="exp(3.1+4.5*%i)" />
  <div id="ansp2"><div></div></div>
 </li>
</ul>
To evaluate functions using 
<a href="nummachinefloats.xhtml">DoubleFloat</a> or 
<a href="dbcomplexdoublefloat.xhtml">Complex DoubleFloat</a>, a 
declaration or conversion is required.
<ul>
 <li>
  <input type="submit" id="p3" class="subbut" onclick="makeRequest('p3');"
    value="(r:DFLOAT:=3.1; t:DFLOAT:=4.5; exp(r+t*%i))" />
  <div id="ansp3"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p4" class="subbut" onclick="makeRequest('p4');"
    value="exp(3.1::DFLOAT+4.5::DFLOAT*%i)" />
  <div id="ansp4"><div></div></div>
 </li>
</ul>
A number of special functions are provided by the package
<a href="db.xhtml?DoubleFloatSpecialFunctions">DoubleFloatSpecialFunctions</a>
for the machine precision floating point types. The special functions
provided are listed below, where F stands for the types
<a href="numfloat.xhtml">Float</a>
or <a href="dbcomplexfloat.xhtml">Complex Float</a>. The real versions
of the functions yield an error if the result is not real.
<ul>
 <li> 
  <a href="dbopgamma.xhtml">Gamma</a>: F -> F<br/>
  Gamma(z) is the Euler gamma
  function, Gamma(Z), defined by<br/>
  Gamma(z) = integrate(t^(z-1)*exp(-t),t=0..%infinity)
 </li>
 <li>
  <a href="dbopbeta.xhtml">Beta</a>: F -> F<br/>
  Beta(u,v) is the Euler Beta
  function B(u,v), defined by <br/>
  Beta(u,v)=integrate(t^(u-1)*(1-t)^(b-1),t=0..1)<br/>
  This is related to Gamma(z) by<br/>
  Beta(u,v)=Gamma(u)*Gamma(v)/Gamma(u+v)
 </li>
 <li>
  <a href="dboploggamma.xhtml">logGamma</a>: F -> F<br/>
  logGamma(z) is the natural logarithm of Gamma(z). This can often be
  computed even if Gamma(z) cannot.
 </li>
 <li>
  <a href="dbopdigamma.xhtml">digamma</a>: F -> F<br/>
  digamma(z), also called psi(z), is the function psi(z), defined by<br/>
  psi(z)=Gamma'(z)/Gamma(z)
 </li>
 <li>
 <a href="dboppolygamma.xhtml">polygamma</a>: (NonNegativeInteger, F) -> F<br/>
  polygamma(n,z) is the n-th derivative of digamma(z)
 </li>
 <li>
  <a href="dbopbesselj.xhtml">besselJ</a>: (F, F) -> F<br/>
  besselJ(v,z) is the Bessel function of the first kind, J(v,z). This 
  function satisfies the differential equation<br/>
  z^(2w)''(z)+zw'(z)+(z^2-v^2)w(z)=0
 </li>
 <li>
  <a href="dbopbessely.xhtml">besselY</a>: (F, F) -> F<br/>
  besselY(v,z) is the Bessel function of the second kind, Y(v,z). This
  function satisfies the same differential equation as 
  <a href="dbopbesselj.xhtml">besselJ</a>. The implementation simply
  uses the relation<br/>
  Y(v,z)=(J(v,z)cos(v*%pi)-J(-v,z))/sin(v*%pi)
 </li>
 <li>
  <a href="dbopbesseli.xhtml">besselI</a>: (F, F) -> F<br/>
  besselI(v,z) if the modifed Bessel function of the first kind, I(v,z).
  This function satisfies the differential equation<br/>
  z^2w''(z)+zw'(z)-(z^2+v^2)w(z)=0
 </li>
 <li>
  <a href="dbopbesselk.xhtml">besselK</a>: (F, F) -> F<br/>
  besselK(v,z) is the modifed Bessel function of the second kind, K(v,z).
  This function satisfies the same differential equation as
  <a href="dbopbesseli.xhtml">besselI</a>. The implementation simply uses
  the relation<br/>
  K(v,z)=%pi*(I(v,z)-I(-v,z))/(2sin(v*%pi))
 </li>
 <li>
  <a href="dbopairyai.xhtml">airyAi</a>: F -> F<br/>
  airyAi(z) is the Airy function Ai(z). This function satisfies the
  differential equation<br/>
  w''(z)-zw(z)=0<br/>
  The implementation simply uses the relation<br/>
  Ai(-z)=1/3*sqrt(z)*(J(-1/3,2/3*z^(3/2))+J(1/3,2/3*z^(3/2)))
 </li>
 <li>
  <a href="dbopairybi.xhtml">airyBi</a>: F -> F<br/>
  airyBi(z) is the Airy function Bi(z). This function satisfies the
  same differential equation as airyAi.
  The implementation simply uses the relation<br/>
  Bi(-z)=1/3*sqrt(3*z)*(J(-1/3,2/3*z^(3/2))-J(1/3,2/3*z^(3/2)))
 </li>
 <li>
  <a href="dbophypergeometric0f1.xhtml">hypergeometric0F1</a>: (F, F) -> F<br/>
  hypergeometric0F1(c,z) is the hypergeometric function 0F1(;c;z). The above
  special functions are defined only for small floating point types. If you
  give <a href="numfloat.xhtml">Float</a> arguments, they are converted to
  <a href="nummachinefloats.xhtml">DoubleFloat</a> by Axiom.
 </li>
 <li>
  <input type="submit" id="p5" class="subbut" onclick="makeRequest('p5');"
    value="Gamma(0.5)^2" />
  <div id="ansp5"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p6" class="subbut" onclick="makeRequest('p6');"
    value="(a:=2.1; b:=1.1; besselI(a+%i*b,b*a+1))" />
  <div id="ansp6"><div></div></div>
 </li>
</ul>
A number of additional operations may be used to compute numerical
values. These are special polynomial functions that can be evaluated
for values in any commutative ring R, and in particular for values in
any floating-point type. The following operations are provided by the
package <a href="db.xhtml?OrthogonalPolynomialFunctions">
OrthogonalPolynomialFunctions</a>:
<ul>
 <li> <a href="dbopchebyshevt.xhtml">chebyshevT</a>:
      (nonNegativeInteger,R) -> R
   <br/>
      chebyshevT(n,z) is the nth Chebyshev polynomial of the first kind,
      T[n](z). These are defined by 
   <br/>
      (1-t*z)/(1-2*t*z*t**2)=sum(T[n](z)*t**n,n=0..)
 </li>
 <li> <a href="dbopchebyshevu.xhtml">chebyshevU</a>:
      (nonNegativeInteger,R) -> R
   <br/>
      chebyshevU(n,z) is the nth Chebyshev polynomial of the second kind,
      U[n](z). These are defined by 
   <br/>
     1/(1-2*t*z+t**2)=sum(U[n](z)*t**n,n=0..)
 </li>
 <li> <a href="dbophermiteh.xhtml">hermiteH</a>:
      (NonNegativeInteger,R) -> R
   <br/>
      hermiteH(n,z) is the nth Hermite polynomial, H[n](z). These are
      defined by
   <br/>
      exp(2*t*z-t**2)=sum(H[n](z)*t**n/n!,n=0..)
 </li>
 <li> <a href="dboplaguerrel.xhtml">laguerreL</a>:
      (NonNegativeInteger,R) -> R
   <br/>
       laguerreL(n,z) is the nth Laguerre polynomial, L[n](z). These are
       defined by      
   <br/>
       (exp(-t*z/(1-t))/(1-t)=sum(L[n](z)*t**n/n!,n=0..)
 </li>
 <li> <a href="dboplaguerrel.xhtml">laguerreL</a>:
      (NonNegativeInteger,NonNegativeInteger,R) -> R
   <br/>
      labuerreL(m,n,2) is the associated Laguerre polynomial, L&lt;m>[n](z).
      This is the nth derivative of L[n](z).
 </li>
 <li> <a href="dboplegendrep.xhtml">legendreP</a>:
      (NonNegativeInteger,R) -> R
   <br/>
      legendreP(n,z) is the nth Legendre polynomial, P[n](z). These are 
      defined by
   <br/>
    1/sqrt(1-2*z*t+t**2)=sum(P[n](z)*t**n,n=0..)
 </li>
</ul>
<br/>
<br/>
These operations require non-negative integers for the indices,
but otherwise the argument can be given as desired.
<ul>
 <li>
  <input type="submit" id="p7" class="subbut" 
    onclick="makeRequest('p7');"
    value="[chebyshevT(i,z) for i in 0..5]" />
  <div id="ansp7"><div></div></div>
 </li>
</ul>
The expression chebyshevT(n,z) evaluates to the nth Chebyshev polynomial
of the first kind.
<ul>
 <li>
  <input type="submit" id="p8" class="subbut" 
    onclick="makeRequest('p8');"
    value="chebyshevT(3,5.0+6.0*%i)" />
  <div id="ansp8"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p9" class="subbut" 
    onclick="makeRequest('p9');"
    value="chebyshevT(3,5.0::DoubleFloat)" />
  <div id="ansp9"><div></div></div>
 </li>
</ul>
The expression chebyshevU(n,z) evaluates to the nth Chebyshev polynomial
of the second kind.
<ul>
 <li>
  <input type="submit" id="p10" class="subbut" 
    onclick="makeRequest('p10');"
    value="[chebyshevU(i,z) for i in 0..5]" />
  <div id="ansp10"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p11" class="subbut" 
    onclick="makeRequest('p11');"
    value="chebyshevU(3,0.2)" />
  <div id="ansp11"><div></div></div>
 </li>
</ul>
The expression hermiteH(n,z) evaluates to the nth Hermite polynomial.
<ul>
 <li>
  <input type="submit" id="p12" class="subbut" 
    onclick="makeRequest('p12');"
    value="[hermiteH(i,z) for i in 0..5]" />
  <div id="ansp12"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p13" class="subbut" 
    onclick="makeRequest('p13');"
    value="hermiteH(100,1.0)" />
  <div id="ansp13"><div></div></div>
 </li>
</ul>
The expression laguerreL(n,z) evaluates to the nth Laguerre polynomial.
<ul>
 <li>
  <input type="submit" id="p14" class="subbut" 
    onclick="makeRequest('p14');"
    value="[laguerreL(i,z) for i in 0..4]" />
  <div id="ansp14"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p15" class="subbut" 
    onclick="makeRequest('p15');"
    value="laguerreL(4,1.2)" />
  <div id="ansp15"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p16" class="subbut" 
    onclick="makeRequest('p16');"
    value="[laguerreL(j,3,z) for j in 0..4]" />
  <div id="ansp16"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p17" class="subbut" 
    onclick="makeRequest('p17');"
    value="laguerreL(1,3,2.1)" />
  <div id="ansp17"><div></div></div>
 </li>
</ul>
The expression legendreP(n,z) evaluates to the nth Legendre polynomial.
<ul>
 <li>
  <input type="submit" id="p18" class="subbut" 
    onclick="makeRequest('p18');"
    value="[legendreP(i,z) for i in 0..5]" />
  <div id="ansp18"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p19" class="subbut" 
    onclick="makeRequest('p19');"
    value="legendreP(3,3.0*%i)" />
  <div id="ansp19"><div></div></div>
 </li>
</ul>
<br/>
<br/>
Finally, three number-theoretic polynomial operations may be evaluated.
The following operations are provided by the package
<a href="db.xhtml?NumberTheoreticPolynomialFunctions">
NumberTheoreticPolynomialFunctions</a>.
<ul>
 <li> <a href="dbopbernoullib.xhtml">bernoulliB</a>:
      (NonNegativeInteger,R) -> R
   <br/>
      bernoulliB(n,z) is the nth Bernoulli polynomial, B[n](z). These are
      defined by
   <br/>
      t*exp(z*t)/(exp t - 1)=sum(B[n](z)*t**n/n! for n=0..)
 </li>
 <li> <a href="dbopeulere.xhtml">eulerE</a>:
      (NonNegativeInteger,R) -> R
   <br/>
      eulerE(n,z) is the nth Euler polynomial, E[n](z). These are defined by
   <br/>
      2*exp(z*t)/(exp t + 1)=sum(E[n](z)*t**n/n! for n=0..)
 </li>
 <li> <a href="dbopcyclotomic.xhtml">cyclotomic</a>:
      (NonNegativeInteger,R) -> R
   <br/>
      cyclotomic(n,z) is the nth cyclotomic polynomial &#x003C6;(n,z).
      This is the polynomial whose roots are precisely the primitive nth
      roots of unity. This polynomial has degree given by the Euler
      totient function &#x003C6;(n).
 </li>
</ul>

The expression bernoulliB(n,z) evaluates to the nth Bernoulli polynomial.
<ul>
 <li>
  <input type="submit" id="p20" class="subbut" 
    onclick="makeRequest('p20');"
    value="bernoulliB(3,z)" />
  <div id="ansp20"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p21" class="subbut" 
    onclick="makeRequest('p21');"
    value="bernoulliB(3,0.7+0.4*%i)" />
  <div id="ansp21"><div></div></div>
 </li>
</ul>
The expression eulerE(n,z) evaluates to the nth Euler polynomial.
<ul>
 <li>
  <input type="submit" id="p22" class="subbut" 
    onclick="makeRequest('p22');"
    value="eulerE(3,z)" />
  <div id="ansp22"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p23" class="subbut" 
    onclick="makeRequest('p23');"
    value="eulerE(3,0.7+0.4*%i)" />
  <div id="ansp23"><div></div></div>
 </li>
</ul>
The expression cyclotomic(n,z) evaluates to the nth cyclotomic polynomial.
<ul>
 <li>
  <input type="submit" id="p24" class="subbut" 
    onclick="makeRequest('p24');"
    value="cyclotomic(3,z)" />
  <div id="ansp24"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p25" class="subbut" 
    onclick="makeRequest('p25');"
    value="cyclotomic(3,(-1.0+0.0*%i)**(2/3))" />
  <div id="ansp25"><div></div></div>
 </li>
</ul>
<br/>
<br/>
Drawing complex functions in Axiom is presently somewhat awkward compared
to drawing real functions. It is necessary to use the 
<a href="dbopdraw.xhtml">draw</a> operations that operate on functions
rather than expressions.

This is the complex exponential function. When this is displayed in color,
the height is the value of the real part of the function and the color is
the imaginary part. Red indicates large negative imaginary values, green
indicates imaginary values near zero and blue/violet indicates large
positive imaginary values.
<ul>
 <li>
  <input type="submit" id="p26" class="subbut" 
    onclick="makeRequest('p26');"
    value='draw((x,y)+->real exp complex(x,y),-2..2,-2*%pi..2*%pi,colorFunction==(x,y)+->imag exp complex(x,y),title=="exp(x+%i*y)",style=="smooth")' />
  <div id="ansp26"><div></div></div>
 </li>
</ul>
This is the complex arctangent function. Again, the height is the real part
of the function value but here the color indicates the function value's phase.
The position of the branch cuts are clearly visible and one can see that the
function is real only for a real argument.
<ul>
 <li>
  <input type="submit" id="p27" class="subbut" 
    onclick="makeRequest('p27');"
    value='vp:=draw((x,y)+->real atan complex(x,y),-%pi..%pi,-%pi..%pi,colorFunction==(x,y)+->argument atan complex(x,y),title=="atan(x+%i*y)",style=="shade"); rotate(vp,-160,-45); vp' />
  <div id="ansp27"><div></div></div>
 </li>
</ul>
This is the complex Gamma function.
<ul>
 <li>
  <input type="submit" id="p28" class="subbut" 
    onclick="makeRequest('p28');"
    value='draw((x,y)+->max(min(real Gamma complex(x,y),4),-4),-%pi..%pi,-%pi..%pi,style=="shade",colorFunction==(x,y)+->argument Gamma complex(x,y),title=="Gamma(x+%i*y)",var1Steps==50,var2Steps==50)' />
  <div id="ansp28"><div></div></div>
 </li>
</ul>
This shows the real Beta function near the origin.
<ul>
 <li>
  <input type="submit" id="p29" class="subbut" 
    onclick="makeRequest('p29');"
    value='draw(Beta(x,y)/100,x=-1.6..1.7,y=-1.6..1.7,style=="shade",title=="Beta(x,y)",var1Steps==40,var2Steps==40)' />
  <div id="ansp29"><div></div></div>
 </li>
</ul>
This is the Bessel function J(alpha,x) for index alpha in the range -6..4 and
argument x in the range 2..14.
<ul>
 <li>
  <input type="submit" id="p30" class="subbut" 
    onclick="makeRequest('p30');"
    value='draw((alpha,x)+->min(max(besselJ(alpha,x+8),-6), 6),-6..4,-6..6,title=="besselJ(alpha,x)",style=="shade",var1Steps==40,var2Steps==40)' />
  <div id="ansp30"><div></div></div>
 </li>
</ul>
This is the modified Bessel function I(alpha,x) evaluated for various real
values of the index alpha and fixed argument x=5.
<ul>
 <li>
  <input type="submit" id="p31" class="subbut" 
    onclick="makeRequest('p31');"
    value="draw(besselI(alpha,5),alpha=-12..12,unit==[5,20])" />
  <div id="ansp31"><div></div></div>
 </li>
</ul>
This is similar to the last example except the index alpha takes on complex
values in a 6x6 rectangle centered on the origin.
<ul>
 <li>
  <input type="submit" id="p32" class="subbut" 
    onclick="makeRequest('p32');"
    value='draw((x,y)+->real besselI(complex(x/20,y/20),5),-60..60,-60..60,colorFunction==(x,y)+->argument besselI(complex(x/20,y/20),5),title=="besselI(x+i*y,5)",style=="shade")' />
  <div id="ansp32"><div></div></div>
 </li>
</ul>
 </body>
</html>