/usr/share/doc/axiom-doc/hypertex/numpartialfractions.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
<script type="text/javascript">
<![CDATA[
// This is a hash table of the values we've evaluated.
// This is indexed by a string argument.
// A value of 0 means we need to evaluate the expression
// A value of 1 means we have evaluated the expression
Evaled = new Array();
// this says we should modify the page
hiding = 'show';
// and this is the id of the div tag to modify (defaulted)
thediv = 'mathAns';
// commandline will mark that its arg has been evaled so we don't repeat
function commandline(arg) {
Evaled[arg] = 0; // remember that we have set this value
thediv='ans'+arg; // mark where we should put the output
var ans = document.getElementById(arg).value;
return(ans);
}
// the function only modifies the page if when we're showing the
// final result, otherwise it does nothing.
function showanswer(mathString,indiv) {
if (hiding == 'show') { // only do something useful if we're showing
indiv = thediv; // override the argument so we can change it
var mystr = mathString.split("</div>");
for (var i=0; i < mystr.length; i++) {
if (mystr[i].indexOf("mathml") > 0) {
var mymathstr = mystr[i].concat("</div>");
}
}
// this turns the string into a dom fragment
var mathRange = document.createRange();
var mathBox=
document.createElementNS('http://www.w3.org/1999/xhtml','div');
mathRange.selectNodeContents(mathBox);
var mymath = mathRange.createContextualFragment(mymathstr);
mathBox.appendChild(mymath);
// now we need to format it properly
// and we stick the result into the requested div block as a child.
var mathAns = document.getElementById(indiv);
mathAns.removeChild(mathAns.firstChild);
mathAns.appendChild(mathBox);
}
}
// this function takes a list of expressions ids to evaluate
// the list contains a list of "free" expression ids that need to
// be evaluated before the last expression.
// For each expression id, if it has not yet been evaluated we
// evaluate it "hidden" otherwise we can skip the expression.
// Once we have evaluated all of the free expressions we can
// evaluate the final expression and modify the page.
function handleFree(arg) {
var placename = arg.pop(); // last array val is real
var mycnt = arg.length; // remaining free vars
// we handle all of the prerequired expressions quietly
hiding = 'hide';
for (var i=0; i<mycnt; i++) { // for each of the free variables
if (Evaled[arg[i]] == null) { // if we haven't evaled it
Evaled[arg[i]] = 0; // remember we evaled it
makeRequest(arg[i]); // initialize the free values
}
}
// and now we start talking to the page again
hiding = 'show'; // we want to show this
thediv = 'ans'+placename; // at this div id
makeRequest(placename); // and we eval and show it
}
]]>
<![CDATA[
function ignoreResponse() {}
function resetvars() {
http_request = new XMLHttpRequest();
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = ignoreResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command=)clear all");
return(false);
}
]]>
function init() {
}
function makeRequest(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command="+command);
return(false);
}
function lispcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("lispcall="+command);
return(false);
}
function showcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("showcall="+command);
return(false);
}
function interpcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("interpcall="+command);
return(false);
}
function handleResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
showanswer(http_request.responseText,'mathAns');
} else
{
alert('There was a problem with the request.'+ http_request.statusText);
}
}
}
</script>
</head>
<body onload="resetvars();">
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">Partial Fractions</div>
<hr/>
A partial fraction is a decomposition of a quotient into a sum of quotients
where the denominators of the summand are powers of primes. (Most people
first encounter partial fractions when they are learning integral calculus.
For a technical discussion of partial fractions see, for example, Lang's
Algebra.) For example, the rational number 1/6 is decomposed into 1/2-1/3.
You can compute partial fractions of quotients of objects from domains
belonging to the category
<a href="db.xhtml?EuclideanDomain">EuclideanDomain</a>. For example,
<a href="db.xhtml?Integer">Integer</a>,
<a href="dbcomplexinteger.xhtml">Complex Integer</a>, and
<a href="db.xhtml?UnivariatePolynomial">
UnivariatePolynomial(x,Fraction Integer)</a>
all belong to
<a href="db.xhtml?EuclideanDomain">EuclideanDomain</a>.
In the examples following, we demonstrate how to decompose quotients of
each of these kinds of objects into partial fractions.
It is necessary that we know how to factor the denominator when we want to
compute a partial fraction. Although the interpreter can often do this
automatically, it may be necessary for you to include a call to
<a href="dbopfactor.xhtml">factor</a>. In these examples, it is not
necessary to factor the denominators explicitly. The main operation for
computing partial fractions is called
<a href="dboppartialfraction.xhtml">partialFraction</a> and we use this
to compute a decomposition of 1/10!. The first argument top
<a href="dboppartialfraction.xhtml">partialFraction</a> is the numerator
of the quotient and the second argument is the factored denominator.
<ul>
<li>
<input type="submit" id="p1" class="subbut" onclick="makeRequest('p1');"
value="partialFraction(1,factorial 10)" />
<div id="ansp1"><div></div></div>
</li>
</ul>
Since the denominators are powers of primes, it may be possible to expand
the numerators further with respect to those primes. Use the operation
<a href="dboppadicfraction.xhtml">padicFraction</a> to do this.
<ul>
<li>
<input type="submit" id="p2" class="subbut" onclick="makeRequest('p2');"
value="f:=padicFraction(%)" />
<div id="ansp2"><div></div></div>
</li>
</ul>
The operation <a href="dbopcompactfraction.xhtml">compactFraction</a>
returns an expanded fraction into the usual form. The compacted version
is used internally for computational efficiency.
<ul>
<li>
<input type="submit" id="p3" class="subbut"
onclick="handleFree(['p2','p3']);"
value="compactFraction(f)" />
<div id="ansp3"><div></div></div>
</li>
</ul>
You can add, subtract, multiply, and divide partial fractions. In addition,
you can extract the parts of the decomposition.
<a href="dbopnumberoffractionalterms.xhtml">numberOfFractionalTerms</a>
computes the number of terms in the fractional part. This does not include
the whole part of the fraction, which you get by calling
<a href="dbopwholepart.xhtml">wholePart</a>. In this example, the whole part
is 0.
<ul>
<li>
<input type="submit" id="p4" class="subbut"
onclick="handleFree(['p2','p4']);"
value="numberOfFractionalTerms(f)" />
<div id="ansp4"><div></div></div>
</li>
</ul>
The operation
<a href="dbopnthfractionalterm.xhtml">nthFractionalTerm</a>
returns the individual terms in the decomposition. Notice that the object
returned is a partial fraction itself.
<a href="dbopfirstnumer.xhtml">firstNumer</a> and
<a href="dbopfirstdenom.xhtml">firstDenom</a> extract the numerator and
denominator of the first term of the fraction.
<ul>
<li>
<input type="submit" id="p5" class="subbut"
onclick="handleFree(['p2','p5']);"
value="nthFractionalTerm(f,3)" />
<div id="ansp5"><div></div></div>
</li>
</ul>
Given two gaussian integers (see <a href="db.xhtml?Complex">Complex</a>),
you can decompose their quotient into a partial fraction.
<ul>
<li>
<input type="submit" id="p6" class="subbut" onclick="makeRequest('p6');"
value="g:=partialFraction(1,-13+14*%i)" />
<div id="ansp6"><div></div></div>
</li>
</ul>
To convert back to a quotient, simply use the conversion
<ul>
<li>
<input type="submit" id="p7" class="subbut"
onclick="handleFree(['p6','p7']);"
value="g::Fraction Complex Integer" />
<div id="ansp7"><div></div></div>
</li>
</ul>
To conclude this section, we compute the decomposition of
<pre>
1
-------------------------------
2 3 4
(x + 1)(x + 2) (a + 3) (x + 4)
</pre>
The polynomials in this object have type
<a href="db.xhtml?UnivariatePolynomial">
UnivariatePolynomial(x,Fraction Integer)</a>.
We use the <a href="dbopprimefactor.xhtml">primeFactor</a> operation
(see <a href="db.xhtml?Factored">Factored</a>) to create the denominator
in factored form directly.
<ul>
<li>
<input type="submit" id="p8" class="subbut" onclick="makeRequest('p8');"
value="u:FR UP(x,FRAC INT):=reduce(*,[primeFactor(x+i,i) for i in 1..4])"/>
<div id="ansp8"><div></div></div>
</li>
</ul>
These are the compact and expanded partial fractions for the quotient.
<ul>
<li>
<input type="submit" id="p9" class="subbut"
onclick="handleFree(['p8','p9']);"
value="pu:=partialFraction(1,u)" />
<div id="ansp9"><div></div></div>
</li>
<li>
<input type="submit" id="p10" class="subbut"
onclick="handleFree(['p8','p9','p10']);"
value="padicFraction pu" />
<div id="ansp10"><div></div></div>
</li>
</ul>
Also see
<a href="db.xhtml?FullPartialFractionExpansion">
FullPartialFractionExpansion</a> for examples of factor-free conversion of
quotients to full partial fractions.
Issue the system
command
<ul>
<li>
<input type="submit" id="p11" class="subbut"
onclick="showcall('p11');"
value=")show PartialFraction"/>
<div id="ansp11"><div></div></div>
</li>
</ul>
to display the full list of operations defined by
<a href="db.xhtml?PartialFraction">PartialFraction</a>.
</body>
</html>
|