This file is indexed.

/usr/share/doc/axiom-doc/hypertex/polyroots4.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body onload="resetvars();">
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Solution of Systems of Polynomial Equations</div>
  <hr/>
Given a system of equations of rational functions with exact coefficients
<pre>
     p1(x1,...,xn)
         .
         .
     pm(x1,...,xn)
</pre>
Axiom can find numeric or symbolic solutions. The system is first split 
into irreducible components, then for each component, a triangular system
of equations is found that reduces the problem to sequential solutions of
univariate polynomials resulting from substitution of partial solutions
from the previous stage.
<pre>
     q1(x1,...,xn)
         .
         .
     qm(xn)
</pre>
Symbolic solutions can be presented using "implicit" algebraic numbers
defined as roots of irreducible polynomials or in terms of radicals. Axiom
can also find approximations to the real or complex roots of a system of
polynomial equations to any user specified accuracy.

The operation <a href="dbopsolve.xhtml">solve</a> for systems is used in
a way similar to <a href="dbopsolve.xhtml">solve</a> for single equations.
Instead of a polynomial equation, one has to give a list of equations and
instead of a single variable to solve for, a list of variables. For 
solutions of single equations see
<a href="axbook/section-8.5.xhtml#subsec-8.5.2">
Solution of a Single Polynomial Equation</a>

Use the operation <a href="dbopsolve.xhtml">solve</a> if you want
implicitly presented solutions.
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" 
    onclick="makeRequest('p1');"
    value="solve([3*x^2+y+1,y^2-4],[x,y])" />
  <div id="ansp1"><div></div></div>
 </li>
 <li>
  <input type="submit" id="p2" class="subbut" 
    onclick="makeRequest('p2');"
    value="solve([x=y^2-19,y=z^2+x+3,z=3*x],[x,y,z])" />
  <div id="ansp2"><div></div></div>
 </li>
</ul>
Use <a href="dbopradialsolve.xhtml">radicalSolve</a> if you want your
solutions expressed in terms of radicals.
<ul>
 <li>
  <input type="submit" id="p3" class="subbut" 
    onclick="makeRequest('p3');"
    value="radicalSolve([3*x^3+y+1,y^2-4],[x,y])" />
  <div id="ansp3"><div></div></div>
 </li>
</ul>
To get numeric solutions you only need to give the list of equations and
the precision desired. The list of variables would be redundant information
since there can be no parameters for the numerical solver.

If the precision is expressed as a floating point number you get results
expressed as floats.
<ul>
 <li>
  <input type="submit" id="p4" class="subbut" 
    onclick="makeRequest('p4');"
    value="solve([x^2*y-1,x*y^2-2],.01)" />
  <div id="ansp4"><div></div></div>
 </li>
</ul>
To get complex numeric solutions, use the operation
<a href="dbopcomplexsolve.xhtml">complexSolve</a>, which takes the same
arguments as in the real case.
<ul>
 <li>
  <input type="submit" id="p5" class="subbut" 
    onclick="makeRequest('p5');"
    value="complexSolve([x^2*y-1,x*y^2-2],1/1000)" />
  <div id="ansp5"><div></div></div>
 </li>
</ul>
It is also possible to solve systems of equations in rational functions
over the rational numbers. Note that [x=0.0,a=0.0] is not returned as
a solution since the denominator vanishes there.
<ul>
 <li>
  <input type="submit" id="p6" class="subbut" 
    onclick="makeRequest('p6');"
    value="solve([x^2/a=a,a=a*x],.001)" />
  <div id="ansp6"><div></div></div>
 </li>
</ul>
When solving equations with denominators, all solutions where the 
denominator vanishes are discarded.
<ul>
 <li>
  <input type="submit" id="p7" class="subbut" 
    onclick="makeRequest('p7');"
    value="radicalSolve([x^2/a+a+y^3-1,a*y+a+1],[x,y])" />
  <div id="ansp7"><div></div></div>
 </li>
</ul>
 </body>
</html>