This file is indexed.

/usr/share/axiom-20120501/input/hilbert.as is in axiom-test 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
--     - Redistributions of source code must retain the above copyright
--       notice, this list of conditions and the following disclaimer.
--
--     - Redistributions in binary form must reproduce the above copyright
--       notice, this list of conditions and the following disclaimer in
--       the documentation and/or other materials provided with the
--       distribution.
--
--     - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--       names of its contributors may be used to endorse or promote products
--       derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


)compile hilbert.as
mon1 := monom(4,0,0,0)
mon2:= monom(3,3,0,0)
mon3 := monom(3,2,1,0)
mon4 := monom(3,1,2,0)
mon5 := monom(0,2,0,1)
mon6 := monom(0,1,0,5)
l := [mon1, mon2, mon3, mon4, mon5, mon6]
Hilbert l
idA := varMonomsPower(6,5);
#idA
Hilbert idA
idB := varMonomsPower(6,6);
#idB
Hilbert idB
idC := varMonomsPower(12,3);
#idC
Hilbert idC
idD:=[monom(2,0,0,0),monom(1,1,0,0),monom(1,0,1,0),monom(1,0,0,1),_
 monom(0,3,0,0),monom(0,2,1,0)]^4;
#idD
Hilbert idD

#include "axiom.as"
#pile

-- This file computes hilbert functions for monomial ideals
-- ref: "On the Computation of Hilbert-Poincare Series", 
-- Bigatti, Caboara, Robbiano,
-- AAECC vol 2 #1 (1991) pp 21-33

macro
  Monom == Monomial
  L == List
  SI == SingleInteger
  B == Boolean
  POLY == SparseUnivariatePolynomial Integer
  Array == Vector

import from NonNegativeInteger
import from SingleInteger
import from Segment SI
import from Integer

Monomial : OrderedSet with
      totalDegree: % -> SI
      divides?: (%, %) -> B
      homogLess: (%, %) -> B
      quo: (%, %) -> %
      quo: (%, SI) -> %
      *: (%, %) -> %
      varMonom: (i:SI,n:SI, deg:SI) -> %
      variables: L % -> L SI
      apply: (%, SI) -> SI
      #: % -> SI
      monom: Tuple SI -> %
   == Array(SingleInteger) add
      Rep ==> Array(SingleInteger)
      import from Rep

      monom(t:Tuple SI):% == per [ t ]

      totalDegree(m:%):SI ==
        sum:SI := 0
        for e in rep m repeat sum := sum  + e
        sum

      divides?(m1:%, m2:%):B ==
        for e1 in rep m1 for e2 in rep m2 repeat
          if e1 > e2 then return false
        true

      (m1:%) < (m2:%):B ==
        for e1 in rep m1 for e2 in rep m2 repeat
          if e1 < e2 then return true
          if e1 > e2 then return false
        false

--      (m1:%) > (m2:%):B == m2 < m1

      homogLess(m1:%, m2:%):B ==
        (d1:=totalDegree(m1)) < (d2:=totalDegree(m2)) => true
        d1 > d2 => false
        ( m1 < m2)

      (m:%) quo (v:SI):% == --remove vth variable
--         per [((if i=v then 0 else (rep m).i) for i in 1..#rep m)]
           m2:= copy rep m
           m2.v := 0
           per m2

      (m1:%) quo (m2:%):% ==
         per [(max(a1-a2,0) for a1 in rep m1 for a2 in rep m2)]

      (m1:%) * (m2:%):% == per [(a1+a2 for a1 in rep m1 for a2 in rep m2)]

      varMonom(i:SI,n:SI, deg:SI):% ==
--         per [((if j=i then deg else 0$SI) for j in 1..n)]
           m:Rep := new(n, 0)
           m.i := deg
           per m

      variables(I:L %) :L SI ==
        empty? I => nil
        n:SI:=# rep first I
        ans : L SI := nil
        v:SI:=0
        while (v:=v+1)<=n repeat
--      for v in 1..n repeat
           for m in I repeat
              (rep m).v ~= 0 =>
                 ans := cons(v, ans)
                 break
        ans


HilbertFunctionPackage: with
          Hilbert: L Monom -> POLY
          adjoin: (Monom, L Monom) -> L Monom
   == add

      adjoin(m:Monom, lm:L Monom):L Monom ==
        empty?(lm) => cons(m, nil)
        ris1:L Monom:= empty()
        ris2:L Monom:= empty()
        while not empty? lm repeat
          m1:Monom := first lm
          lm := rest lm
          if m <= m1 then
             if not divides?(m,m1) then (ris1 := cons(m1, ris1))
             iterate
          ris2 := cons(m1, ris2)
          if divides?(m1, m) then
             return concat!(reverse!(ris1), concat!(reverse! ris2, lm))
        concat!(reverse!(ris1), cons(m, reverse! ris2))

      reduce(lm:L Monom):L Monom ==
        lm := sortHomogRemDup(lm)
        empty? lm => lm
        ris :L Monom := nil
        risd:L Monom := list first lm
        d := totalDegree first lm
        for m in rest lm repeat
          if totalDegree(m)=d then risd := cons(m, risd)
             else
               ris := mergeDiv(ris, risd)
               d := totalDegree m
               risd := [m]
        mergeDiv(ris, risd)

      mergeDiv( small:L Monom, big:L Monom): L Monom ==
        ans : L Monom := small
        for m in big repeat
          if not contained?(m,small) then ans := cons(m, ans)
        ans

      contained?(m:Monom, id: L Monom) : B ==
        for mm in id repeat
          divides?(mm, m) => return true
        false

      (I:L Monom) quo (m:Monom):L Monom ==
        reduce [mm quo m for mm in I]

      sort(I:L Monom, v:SI):L Monom ==
        sort((a:Monom,b:Monom):B+->(a.v < b.v), I)

      sortHomogRemDup(l:L Monom):L Monom ==
        l:=sort(homogLess, l)
        empty? l => l
        ans:L Monom := list first l
        for m in rest l repeat
           if m ~= first(ans) then ans:=cons(m, ans)
        reverse! ans

      decompose(I:L Monom, v:SI):Record(size:SI, ideals:L L Monom, degs:L SI) ==
        I := sort(I, v)
        idlist: L L Monom := nil
        deglist : L SI := nil
        size : SI := 0
        J: L Monom := nil
        while not empty? I repeat
          d := first(I).v
          tj : L Monom := nil
          local m:Monom
          while not empty? I and d=(m:=first I).v repeat
             tj := cons(m quo v, tj)
             I := rest I
          J := mergeDiv(tj, J)
          idlist := cons(J, idlist)
          deglist := cons(d, deglist)
          size := size + ((#J)::Integer::SI)
        [size, idlist, deglist]


      var(n:SI) : SparseUnivariatePolynomial Integer ==
          monomial(1$Integer, n::Integer::NonNegativeInteger)


      Hilbert(I:L Monom):POLY ==
        empty? I => 1 -- no non-zero generators = 0 ideal
        empty? rest I => var(0) - var(totalDegree first I)
        lvar :L SI := variables I
        import from Record(size:SI, ideals:L L Monom, degs:L SI)
        Jbest := decompose(I, first lvar)
        for v in rest lvar while (#I)::Integer::SI < Jbest.size repeat
           JJ := decompose(I, v)
           JJ.size < Jbest.size => Jbest := JJ
        import from L L Monom
        import from L SI
        Jold:List Monom := first(Jbest.ideals)
        dold:SI := first(Jbest.degs)
        f:SparseUnivariatePolynomial Integer:=var(dold)*Hilbert(Jold)
        for J:List Monom in rest Jbest.ideals for d:SI in rest Jbest.degs repeat
           f := f + (var(d) - var(dold)) * Hilbert(J)
           dold := d
        var(0) - var(dold) + f

MonomialIdealPackage: with
    varMonomsPower: (SI, SI) -> L Monom
    *: (L Monom, L Monom) -> L Monom
    ^: (L Monom, SI) -> L Monom
  == add

      varMonoms(n:SI):L Monom ==
--       [varMonom(i,n,1) for i in 1..n]
         i:SI:=0
         [varMonom(i,n,1) while {free i; (i:=i+1)<=n}]

      varMonomsPower(n:SI, deg:SI):L Monom ==
         n = 1 => [ monom(deg)]
         ans : L Monom := nil
--       for j in 0..deg repeat
         j:SI:=-1
         while (j:=j+1)<=deg repeat
            ans := concat(varMonomMult(j,varMonomsPower(n-1,deg-j)), ans)
         ans

      varMonomMult(i:SI, mlist : L Monom) : L Monom ==
        [varMonomMult(i, m) for m in mlist]

      varMonomMult(i:SI, m:Monom) : Monom ==
        nm:Array SI := new(#m + 1, i)
--      for k in 1..#m repeat nm.k :=m.k
        k:SI:=0
        while (k:=k+1)<=#m repeat nm.k :=m.k
        nm pretend Monom

      (i1:L Monom) * (i2:L Monom):L Monom ==
          import from HilbertFunctionPackage
          ans : L Monom := nil
          for m1 in i1 repeat for m2 in i2 repeat
               ans := adjoin(m1*m2, ans)
          ans

      (i:L Monom) ^ (n:SI) : L Monom ==
          n = 1 => i
          odd? n => i * (i*i)^shift(n, -1)
          (i*i)^shift(n,-1)