This file is indexed.

/usr/share/axiom-20120501/input/lupfact.input is in axiom-test 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
)set break resume
)spool lupfact.output
)set message test on
)set message auto off
)clear all
 
--S 1 of 18
field := Fraction Integer
--R 
--R
--R   (1)  Fraction(Integer)
--R                                                                 Type: Domain
--E 1

--S 2 of 18
permMat: (INT, INT, INT) -> Matrix field
--R 
--R                                                                   Type: Void
--E 2
 
--S 3 of 18
permMat(dim, i, j) ==
  m : Matrix field :=
    diagonalMatrix [(if i = k or j = k then 0 else 1) for k in 1..dim]
  m(i,j) := 1
  m(j,i) := 1
  m
--R 
--R                                                                   Type: Void
--E 3

--S 4 of 18
nonZeroCol: Matrix field -> INT
--R 
--R                                                                   Type: Void
--E 4

--S 5 of 18
nonZeroCol(m) ==
  foundit := false
  col := 1
  for i in 1..ncols(m) while not foundit repeat
    for j in 1..nrows(m) while not foundit repeat
      if not(m(j,i) = 0) then
        col := i
        foundit := true
  col
--R 
--R                                                                   Type: Void
--E 5

--S 6 of 18
embedMatrix: (Matrix field,NNI,NNI) -> Matrix field
--R 
--R                                                                   Type: Void
--E 6
 
--S 7 of 18
embedMatrix(m, oldDim, newDim) ==
  n := diagonalMatrix([1 for i in 1..newDim])$(Matrix(field))
  setsubMatrix!(n,1,1,m)
  n
--R 
--R                                                                   Type: Void
--E 7
 
--S 8 of 18
lupFactorEngine: (Matrix field, INT, INT)  -> List Matrix field
--R 
--R                                                                   Type: Void
--E 8

--S 9 of 18
lupFactorEngine(a, m, p) ==
  m = 1 =>
    l : Matrix field := diagonalMatrix [1]
    pm : Matrix field := permMat(p,1,nonZeroCol a)
    [l,a*pm,pm]
  m2 : NNI := m quo 2
  b : Matrix field := subMatrix(a,1,m2,1,p)
  c : Matrix field := subMatrix(a,m2+1,m,1,p)
  lup := lupFactorEngine(b,m2,p)
  l1 := lup.1
  u1 := lup.2
  pm1 := lup.3
  d : Matrix field := c * (inverse(pm1) :: Matrix(field))
  e : Matrix field := subMatrix(u1,1,m2,1,m2)
  f : Matrix field := subMatrix(d,1,m2,1,m2)
  g : Matrix field := d - f * (inverse(e) :: Matrix(field)) * u1
  pmin2 : NNI := p - m2
  g' : Matrix field := subMatrix(g,1,nrows(g),p - pmin2 + 1,p)
  lup := lupFactorEngine(g',m2,pmin2)
  l2 := lup.1
  u2 := lup.2
  pm2 := lup.3
  pm3 := horizConcat(zero(pmin2,m2)$(Matrix field), pm2)
  pm3 := vertConcat(horizConcat(diagonalMatrix [1 for i in 1..m2],
    zero(m2,pmin2)$(Matrix field)),pm3)
  h : Matrix field := u1 * (inverse(pm3) :: Matrix(field))
  l : Matrix field := horizConcat(l1, zero(m2,m2)$(Matrix field))
  l := vertConcat(l,horizConcat(f * (inverse(e) :: Matrix(field)), l2))
  u : Matrix field := horizConcat(zero(m2,m2)$(Matrix field), u2)
  u := vertConcat(h,u)
  pm := pm3 * pm1
  [l,u,pm]
--R 
--R                                                                   Type: Void
--E 9
 
--S 10 of 18
intLog2: NNI -> NNI
--R 
--R                                                                   Type: Void
--E 10
 
--S 11 of 18
intLog2 n == if n = 1 then 0 else 1 + intLog2(n quo 2)
--R 
--R                                                                   Type: Void
--E 11
 
--S 12 of 18
lupFactor: Matrix field -> Union(List Matrix field,"failed")
--R 
--R                                                                   Type: Void
--E 12
 
--S 13 of 18
lupFactor m ==
  not((r := nrows m) = ncols m) =>
    messagePrint("Matrix must be square")$OUTFORM
    "failed"
  ilog := intLog2(2)
  not(r = 2 ** ilog) =>
    m := embedMatrix(m,r,(n := 2 ** (ilog + 1)))
    l := lupFactorEngine(m,n,n)
    [subMatrix(l.1,1,r,1,r),subMatrix(l.2,1,r,1,r),
      subMatrix(l.3,1,r,1,r)]
  lupFactorEngine(m,r,r)
--R 
--R                                                                   Type: Void
--E 13
 
--S 14 of 18
m : Matrix field := zero(4,4)
--R 
--R
--R         +0  0  0  0+
--R         |          |
--R         |0  0  0  0|
--R   (14)  |          |
--R         |0  0  0  0|
--R         |          |
--R         +0  0  0  0+
--R                                              Type: Matrix(Fraction(Integer))
--E 14

--S 15 of 18
for i in 4..1 by -1 repeat m(5-i,i) := i
--R 
--R                                                                   Type: Void
--E 15

--S 16 of 18
m
--R 
--R
--R         +0  0  0  4+
--R         |          |
--R         |0  0  3  0|
--R   (16)  |          |
--R         |0  2  0  0|
--R         |          |
--R         +1  0  0  0+
--R                                              Type: Matrix(Fraction(Integer))
--E 16
 
--S 17 of 18
lupFactor m
--R 
--R   Compiling function intLog2 with type NonNegativeInteger -> 
--R      NonNegativeInteger 
--R   Compiling function embedMatrix with type (Matrix(Fraction(Integer)),
--R      NonNegativeInteger,NonNegativeInteger) -> Matrix(Fraction(Integer
--R      )) 
--R   Compiling function nonZeroCol with type Matrix(Fraction(Integer))
--R       -> Integer 
--R   Compiling function permMat with type (Integer,Integer,Integer) -> 
--R      Matrix(Fraction(Integer)) 
--R   Compiling function lupFactorEngine with type (Matrix(Fraction(
--R      Integer)),Integer,Integer) -> List(Matrix(Fraction(Integer))) 
--R   Compiling function lupFactor with type Matrix(Fraction(Integer)) -> 
--R      Union(List(Matrix(Fraction(Integer))),"failed") 
--I   Compiling function G7376 with type Integer -> Boolean 
--R
--R          +1  0  0  0+ +4  0  0  0+ +0  0  0  1+
--R          |          | |          | |          |
--R          |0  1  0  0| |0  3  0  0| |0  0  1  0|
--R   (17)  [|          |,|          |,|          |]
--R          |0  0  1  0| |0  0  2  0| |0  1  0  0|
--R          |          | |          | |          |
--R          +0  0  0  1+ +0  0  0  1+ +1  0  0  0+
--R                             Type: Union(List(Matrix(Fraction(Integer))),...)
--E 17

--S 18 of 18
m := [[1,2,3],[2,3,1],[3,1,2]]
--R 
--R
--R         +1  2  3+
--R         |       |
--R   (18)  |2  3  1|
--R         |       |
--R         +3  1  2+
--R                                              Type: Matrix(Fraction(Integer))
--E 18
)spool 
)lisp (bye)