/usr/share/axiom-20120501/input/numericgamma.input is in axiom-test 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | )set break resume
)sys rm -f numericgamma.output
)spool numericgamma.output
)set message test on
)set message auto off
)clear all
)sys cp $AXIOM/../../src/input/numericgamma.input.pamphlet .
)lisp (tangle "numericgamma.input.pamphlet" "sfx.spad" "sfx.spad")
)co sfx.spad
--S 1 of 36
Gam(a:Float,x:Float):Float ==
if x < 0.0 or a < 0.0 then error "Invalid arguments"
if x = 0.0 then return Gamma(a)
ITMAX ==> 100 -- Maximum allowed number of iterations
FPMIN ==> 1.0e-1000 -- near the smallest representable number
-- (there is no smallest representable float)
EPS := (10.0^(-digits()$Float+1))$Float -- Relative accuracy
an: Float
del: Float
b:Float:=x+1.0-a -- Set up for evaluating continued fractions
c:Float:=1.0/FPMIN -- by modified Lentz's method
d:Float:=1.0/b -- with b_0 = 0
h:Float:=d
i:=1
repeat -- iterate to convergence
an:=-i*(i-a)
b:=b+2.0
d:=an*d+b
if abs(d) < FPMIN then d:=FPMIN
c:=b+an/c;
if abs(c) < FPMIN then c:=FPMIN
d:=1.0/d
del:=d*c
h:=h*del
if i > ITMAX or abs(del-1.0) < EPS then break
i:=i+1
if i > ITMAX then error("a too large, ITMAX too small")
exp(-x)*x^a*h -- put factors in front
--R
--R Function declaration Gam : (Float,Float) -> Float has been added to
--R workspace.
--R Type: Void
--E 1
--S 2 of 36
Gam(0,1)
--R
--R Compiling function Gam with type (Float,Float) -> Float
--R
--RDaly Bug
--R Error signalled from user code in function Gam:
--R a too large, ITMAX too small
--E 2
--S 3 of 36
Gam(1.1.1)
--R
--R There are 1 exposed and 1 unexposed library operations named elt
--R having 1 argument(s) but none was determined to be applicable.
--R Use HyperDoc Browse, or issue
--R )display op elt
--R to learn more about the available operations. Perhaps
--R package-calling the operation or using coercions on the arguments
--R will allow you to apply the operation.
--R
--RDaly Bug
--R Cannot find application of object of type Float to argument(s) of
--R type(s)
--R Float
--R
--E 3
--S 4 of 36
Gam(5,10)
--R
--R
--R (2) 0.7020645138 4706574415
--R Type: Float
--E 4
--S 5 of 36
Gam(5,11)
--R
--R
--R (3) 0.3625104156 5228203538
--R Type: Float
--E 5
--S 6 of 36
Gam(7,0)
--R
--R
--R (4) 720.0000000000 0011369
--R Type: Float
--E 6
--S 7 of 36
digits 100
--R
--R
--R (5) 20
--R Type: PositiveInteger
--E 7
--S 8 of 36
Gam(0,1)
--R
--R
--RDaly Bug
--R Error signalled from user code in function Gam:
--R a too large, ITMAX too small
--E 8
--S 9 of 36
Gam(1,1.1)
--R
--R
--R (6)
--R 0.3328710836 9807955328 8846906431 3155216124 7952156921 2491793331 386750747
--R 0 8541284431 1612617072 7005478519
--R Type: Float
--E 9
--S 10 of 36
Gam(1,1)
--R
--R
--R (7)
--R 0.3678794411 7144232159 5523770161 4608674458 1113103176 7834507836 801697461
--R 4 9574489980 3357147274 3459196437
--R Type: Float
--E 10
--S 11 of 36
Gam(1,1.1)
--R
--R
--R (8)
--R 0.3328710836 9807955328 8846906431 3155216124 7952156921 2491793331 386750747
--R 0 8541284431 1612617072 7005478519
--R Type: Float
--E 11
--S 12 of 36
Gam(5,10)
--R
--R
--R (9)
--R 0.7020645138 4706574414 6387196628 3546367191 6532623256 0684622278 670587055
--R 0 5584357048 3474646670 2985365058
--R Type: Float
--E 12
--S 13 of 36
Gam(5,11)
--R
--R
--R (10)
--R 0.3625104156 5228203538 0753904311 4079803866 4530925132 7036797697 419049037
--R 4 2658968752 0305953551 1648548436
--R Type: Float
--E 13
--S 14 of 36
Gam(7,0)
--R
--R
--R (11) 720.0000000000 0011368683 7721616029 7393798828 125
--R Type: Float
--E 14
--S 15 of 36
Gam(7,0.1)
--R
--R
--R (12)
--R 719.9999999869 1035963050 9717349089 5137595484 2683243460 6577519316 5312727
--R 417 6619922456 9102294155 8764196
--R Type: Float
--E 15
--S 16 of 36
Gam(7,0.2)
--R
--R
--R (13)
--R 719.9999984646 1597708521 8246915701 3222705579 4693807497 2229652513 6047137
--R 980 7138425860 0596921944 0451807
--R Type: Float
--E 16
--S 17 of 36
NGamma(a,x)
--R
--R There are 1 exposed and 0 unexposed library operations named NGamma
--R having 2 argument(s) but none was determined to be applicable.
--R Use HyperDoc Browse, or issue
--R )display op NGamma
--R to learn more about the available operations. Perhaps
--R package-calling the operation or using coercions on the arguments
--R will allow you to apply the operation.
--R
--RDaly Bug
--R Cannot find a definition or applicable library operation named
--R NGamma with argument type(s)
--R Variable(a)
--R Variable(x)
--R
--R Perhaps you should use "@" to indicate the required return type,
--R or "$" to specify which version of the function you need.
--E 17
--S 18 of 36
machineFraction(NGamma(0,1))
--R
--R 7904139241557877
--R (14) -----------------
--R 36028797018963968
--R Type: Fraction(Integer)
--E 18
--S 19 of 36
machineFraction(NGamma(0,2))
--R
--R 7047306297697619
--R (15) ------------------
--R 144115188075855872
--R Type: Fraction(Integer)
--E 19
--S 20 of 36
machineFraction(NGamma(1,1))
--R
--R 828390857088487
--R (16) ----------------
--R 2251799813685248
--R Type: Fraction(Integer)
--E 20
--S 21 of 36
machineFraction(NGamma(1,1.1))
--R
--R
--R 5996472354020337
--R (17) -----------------
--R 18014398509481984
--R Type: Fraction(Integer)
--E 21
--S 22 of 36
machineFraction(NGamma(5,10))
--R
--R 197613592684481
--R (18) ---------------
--R 281474976710656
--R Type: Fraction(Integer)
--E 22
--S 23 of 36
machineFraction(NGamma(5,11))
--R
--R 3265203545699083
--R (19) ----------------
--R 9007199254740992
--R Type: Fraction(Integer)
--E 23
--S 24 of 36
machineFraction(NGamma(7,0))
--R
--R 6333186975989761
--R (20) ----------------
--R 8796093022208
--R Type: Fraction(Integer)
--E 24
--S 25 of 36
machineFraction(NGamma(7,0.1))
--R
--R
--R 6333190201121973
--R (21) ----------------
--R 8796093022208
--R Type: Fraction(Integer)
--E 25
--S 26 of 36
machineFraction(NGamma(7,0.2))
--R
--R
--R 6333187094743041
--R (22) ----------------
--R 8796093022208
--R Type: Fraction(Integer)
--E 26
)set functions compile on
--S 27 of 36
j:=120
--R
--R
--R (23) 120
--R Type: PositiveInteger
--E 27
--S 28 of 36
nume(a) == cons(1::Float,[((a-i)*i)::Float for i in 1..])
--R
--R Type: Void
--E 28
--S 29 of 36
dene(a,x) == [(x+2*i+1-a)::Float for i in 0..]
--R
--R Type: Void
--E 29
--S 30 of 36
cfe(a,x) == continuedFraction(0,nume(a),dene(a,x))
--R
--R Type: Void
--E 30
--S 31 of 36
ccfe(a,x) == convergents cfe(a,x)
--R
--R Type: Void
--E 31
--S 32 of 36
gamcfe(a,x) == exp(-x)*x^a*(ccfe(a,x).j)::Float
--R
--R Type: Void
--E 32
--S 33 of 36
gamcfe(2,3)
--R
--R Compiling function nume with type PositiveInteger -> Stream(Float)
--R Compiling function dene with type (PositiveInteger,PositiveInteger)
--R -> Stream(Float)
--R Compiling function cfe with type (PositiveInteger,PositiveInteger)
--R -> ContinuedFraction(Float)
--R Compiling function ccfe with type (PositiveInteger,PositiveInteger)
--R -> Stream(Fraction(Float))
--R Compiling function gamcfe with type (PositiveInteger,PositiveInteger
--R ) -> Expression(Float)
--R
--R (29)
--R 0.1991482734 7145577191 7369662600 2471065267 9836875369 2862270510 910424242
--R 6 7092079820 0616216976 9465333782
--R Type: Expression(Float)
--E 33
--S 34 of 36
E1fun(x) == gamcfe(0,x)
--R
--R Type: Void
--E 34
--S 35 of 36
E1fun(2.0)
--R
--R Compiling function nume with type NonNegativeInteger -> Stream(Float
--R )
--R Compiling function dene with type (NonNegativeInteger,Float) ->
--R Stream(Float)
--R Compiling function cfe with type (NonNegativeInteger,Float) ->
--R ContinuedFraction(Float)
--R Compiling function ccfe with type (NonNegativeInteger,Float) ->
--R Stream(Fraction(Float))
--R Compiling function gamcfe with type (NonNegativeInteger,Float) ->
--R Float
--R Compiling function E1fun with type Float -> Float
--R
--R (31)
--R 0.0489005107 0806111956 7239826914 3472898212 1544510421 3277251841 716377988
--R 0 9149832755 9949235928 1965882172 4
--R Type: Float
--E 35
--S 36 of 36
E1fun(2.0)-E1(2.0)
--R
--R
--R (32) 1.1102230246251565E-16
--R Type: OnePointCompletion(DoubleFloat)
--E 36
)spool
)lisp (bye)
|