This file is indexed.

/usr/share/axiom-20120501/input/opalg.input is in axiom-test 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
)set break resume
)spool opalg.output
)set message test on
)set message auto off
)clear all
 
--S 1 of 9
L n ==
  n = 0 => 1
  n = 1 => x
  (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
--R 
--R                                                                   Type: Void
--E 1

--S 2 of 9
L 5
--R 
--R   Compiling function L with type Integer -> Polynomial(Fraction(
--R      Integer)) 
--R   Compiling function L as a recurrence relation.
--R
--R        63  5   35  3   15
--R   (2)  -- x  - -- x  + -- x
--R         8       4       8
--R                                          Type: Polynomial(Fraction(Integer))
--E 2

--S 3 of 9
dx := operator("D")::OP(POLY FRAC INT)
--R 
--R
--R   (3)  D
--R                                Type: Operator(Polynomial(Fraction(Integer)))
--E 3

--S 4 of 9
evaluate(dx, p +-> differentiate(p, 'x))$OP(POLY FRAC INT)
--R 
--R
--R   (4)  D
--R                                Type: Operator(Polynomial(Fraction(Integer)))
--E 4

--S 5 of 9
E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)
--R 
--R                                                                   Type: Void
--E 5

--S 6 of 9
E 5
--R 
--R   Compiling function E with type PositiveInteger -> Operator(
--R      Polynomial(Fraction(Integer))) 
--R
--R                      2      2
--R   (6)  30 - 2x D - (x  - 1)D
--R                                Type: Operator(Polynomial(Fraction(Integer)))
--E 6

--S 7 of 9
[L i for i in 1..10]
--R 
--R
--R   (7)
--R       3  2   1  5  3   3    35  4   15  2   3  63  5   35  3   15
--R   [x, - x  - -, - x  - - x, -- x  - -- x  + -, -- x  - -- x  + -- x,
--R       2      2  2      2     8       4      8   8       4       8
--R    231  6   315  4   105  2    5  429  7   693  5   315  3   35
--R    --- x  - --- x  + --- x  - --, --- x  - --- x  + --- x  - -- x,
--R     16       16       16      16   16       16       16      16
--R    6435  8   3003  6   3465  4   315  2    35
--R    ---- x  - ---- x  + ---- x  - --- x  + ---,
--R     128       32        64        32      128
--R    12155  9   6435  7   9009  5   1155  3   315
--R    ----- x  - ---- x  + ---- x  - ---- x  + --- x,
--R     128        32        64        32       128
--R    46189  10   109395  8   45045  6   15015  4   3465  2    63
--R    ----- x   - ------ x  + ----- x  - ----- x  + ---- x  - ---]
--R     256          256        128        128        256      256
--R                                    Type: List(Polynomial(Fraction(Integer)))
--E 7

--S 8 of 9
[E i for i in 1..10]
--R 
--R
--R   (8)
--R                 2      2               2      2                2      2
--R   [2 - 2x D - (x  - 1)D , 6 - 2x D - (x  - 1)D , 12 - 2x D - (x  - 1)D ,
--R                  2      2                2      2                2      2
--R    20 - 2x D - (x  - 1)D , 30 - 2x D - (x  - 1)D , 42 - 2x D - (x  - 1)D ,
--R                  2      2                2      2                2      2
--R    56 - 2x D - (x  - 1)D , 72 - 2x D - (x  - 1)D , 90 - 2x D - (x  - 1)D ,
--R                   2      2
--R    110 - 2x D - (x  - 1)D ]
--R                          Type: List(Operator(Polynomial(Fraction(Integer))))
--E 8

--S 9 of 9
[(E i)(L i) for i in 1..10]
--R 
--R
--R   (9)  [0,0,0,0,0,0,0,0,0,0]
--R                                    Type: List(Polynomial(Fraction(Integer)))
--E 9
)spool 
)lisp (bye)