This file is indexed.

/usr/src/castle-game-engine-4.1.1/3d/castle3d.pas is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
{
  Copyright 2010-2013 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Base 3D objects (T3D, T3DList, T3DTransform, T3DOrient, T3DMoving). }
unit Castle3D;

interface

uses Classes, Math, CastleVectors, CastleFrustum, CastleBoxes, CastleClassUtils, CastleKeysMouse,
  CastleUtils, FGL, CastleGenericLists, CastleTimeUtils,
  CastleSoundEngine, CastleSectors, CastleCameras, CastleTriangles;

type
  T3D = class;
  T3DList = class;
  T3DWorld = class;
  T3DOrient = class;
  T3DAlive = class;

  TRenderFromViewFunction = procedure of object;

  { Describe what visible thing changed
    for T3D.VisibleChangeHere. }
  TVisibleChange = (
    { Something visible in the geometry changed.
      "Geometry" means that this is applicable only to actual 3D shape
      changes. (Think about "does depth buffer from some point in space
      changes" --- this is actually why we have separate vcVisibleGeometry
      and vcVisibleNonGeometry for now, as GeneratedShadowMap
      does need to be updated only on geometry changes.) So it's not applicable
      when only light conditions, materials, textures and such change. }
    vcVisibleGeometry,

    { Something visible changed, but not geometry.
      For example, material or texture on visible surface changed. }
    vcVisibleNonGeometry,

    { Camera view (the settings passed to TCastleSceneCore.CameraChanged) changed. }
    vcCamera);
  TVisibleChanges = set of TVisibleChange;

  TVisibleChangeEvent = procedure (Sender: T3D; Changes: TVisibleChanges) of object;

  { Various things that T3D.PrepareResources may prepare. }
  TPrepareResourcesOption = (prRender, prBackground, prBoundingBox,
    prTrianglesListShadowCasters,
    prManifoldAndBorderEdges,
    { Prepare octrees (determined by things like TCastleSceneCore.Spatial). }
    prSpatial,
    prScreenEffects);
  TPrepareResourcesOptions = set of TPrepareResourcesOption;

  { Shadow volumes helper, not depending on OpenGL. }
  TBaseShadowVolumeRenderer = class
  end;

  T3DListCore = class;

  { Information about ray collision with a single 3D object.
    Everything (Point, RayOrigin, RayDirection) is expressed in the
    local coordinates of given 3D object (in @link(Item)). }
  TRayCollisionNode = object
  public
    { Colliding 3D object. }
    Item: T3D;

    { Position, in local coordinate system of this 3D object,
      of the picked 3D point.

      If the ray hit empty space, this is undefined.
      Note that only MainScene is informed about pointing device events
      when the ray hit empty space. }
    Point: TVector3Single;

    { Triangle that was hit. This triangle is always a part of @link(Item).

      If the ray hit empty space, this is @nil.
      Note that only MainScene is informed about pointing device events
      when the ray hit empty space.

      May also be @nil if RayCollision for the 3D object simply left it @nil.
      Right now, only TCastleScene sets Triangle at all. }
    Triangle: P3DTriangle;

    { Ray used to cause the collision. }
    RayOrigin, RayDirection: TVector3Single;
  end;
  PRayCollisionNode = ^TRayCollisionNode;

  { Represents a collision with a 3D objects (T3D descendants) tree.

    This list is a path in the 3D objects tree leading from the
    final colliding 3D object to the root of the tree.

    For example, your 3D tree may be a list (like T3DList), and within
    this list is a transformed list (T3DTransform),
    and within is your final colliding object (like TCastleScene).
    We will contain in this case these three items, in reverse order
    (TCastleScene, T3DTransform, T3DList).
    This allows you to track the containers that contain given collision.

    This is never an empty list when returned by RayCollision. }
  TRayCollision = class(specialize TGenericStructList<TRayCollisionNode>)
  public
    { Distance, in world coordinate system, from the current
      camera to the picked point. The suggested usage is to decide if player
      is close enough to reach the 3D object --- for example, you may not
      want to allow player to open a door by clicking on it from a far distance.

      If the ray hit empty space, the distance is MaxSingle.
      Note that only MainScene is informed about pointing device events
      when the ray hit empty space. }
    Distance: Single;

    { Index of node with given Item. }
    function IndexOfItem(const Item: T3D): Integer;
  end;

  { Statistics about what was rendered during last frame.
    You will usually access this by scene manager property,
    see @link(TCastleAbstractViewport.Statistics). }
  TRenderStatistics = record
    { How many shapes were rendered (send to OpenGL)
      versus all shapes that were potentially visible.
      Potentially visible shapes are the ones with
      TShape.Visible inside a 3D object with T3D.GetExists.

      When ShapesRendered is much smaller than ShapesVisible,
      it means that the algorithm for removing invisible scene parts
      works good. This includes frustum culling (automatically
      used by TCastleScene), or occlusion culling (see
      TSceneRenderingAttributes.UseOcclusionQuery),
      or any custom algorithm you implement by using TTestShapeVisibility
      callback with @link(TCastleScene.Render). }
    ShapesRendered, ShapesVisible: Cardinal;

    { The number of shapes that were not rendered,
      but their bounding box was rendered to check with occlusion query.
      This is always zero when not using occlusion query (see
      TSceneRenderingAttributes.UseOcclusionQuery).
      Basically, this measures the "invisible overhead" of occlusion query. }
    BoxesOcclusionQueriedCount: Cardinal;
  end;

  { List of lights. Always TLightInstancesList, but we cannot declare it here
    as such. }
  TAbstractLightInstancesList = TFPSList;

  TRenderingPass = 0..1;

  { Information that 3D object needs to render.
    Read-only for T3D.Render (except Statistics, which should be updated
    by T3D.Render). }
  TRenderParams = class
    { Which parts should be rendered: opaque (@false) or transparent (@true). }
    Transparent: boolean;

    { Should we render parts that may receive shadow volumes, or ones that don't.
      During rendering, simply check does it match TCastleScene.ReceiveShadowVolumes. }
    ShadowVolumesReceivers: boolean;

    { If @true, means that we're using multi-pass
      shadowing technique (like shadow volumes),
      and currently doing the "shadowed" pass.

      Which means that most lights (ones with shadowVolumes = TRUE)
      should be turned off, see [http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_shadows].) }
    InShadow: boolean;

    { Value > 0 means we're inside some stencil test (like for
      InShadow = @false pass of shadow volumes). }
    StencilTest: Cardinal;

    { Rendering pass number, for multi-pass rendering, like for shadow volumes. }
    Pass: TRenderingPass;

    { Transformation that should be applied to the rendered result.
      If RenderTransformIdentity, then RenderTransform is always identity.
      @groupBegin }
    RenderTransform: TMatrix4Single;
    RenderTransformIdentity: boolean;
    { @groupEnd }

    Statistics: TRenderStatistics;

    constructor Create;

    { Lights that shine on given 3D object. }
    function BaseLights(Scene: T3D): TAbstractLightInstancesList; virtual; abstract;
  end;

  TRemoveType = (rtNone, rtRemove, rtRemoveAndFree);

  { Base 3D object, that can be managed by TCastleSceneManager.
    All 3D objects should descend from this, this way we can easily
    insert them into the TCastleSceneManager.

    Default implementations of collision methods in this class work
    with our BoundingBox:

    @unorderedList(
      @item(Wall-sliding MoveCollision version simply calls
        non-wall-sliding version (without separate ProposedNewPos
        and NewPos).)
      @item(Non-wall-sliding MoveCollision version,
        SegmentCollision, SphereCollision, BoxCollision and RayCollision
        and HeightCollision check for collisions with our BoundingBox,
        using TBox3D methods:
        @link(TBox3D.TryRayClosestIntersection),
        @link(TBox3D.TryRayEntrance),
        @link(TBox3D.SegmentCollision),
        @link(TBox3D.SphereCollision) and
        @link(TBox3D.Collision).)
    )

    The idea is that by default everything simply uses BoundingBox,
    and that is the only method that you really @italic(have) to override.
    You do not have to (in fact, usually you should not) call "inherited"
    when overriding collision methods mentioned above. }
  T3D = class(TComponent)
  private
    FCastShadowVolumes: boolean;
    FExists: boolean;
    FCollides: boolean;
    FParent: T3DList;
    FCursor: TMouseCursor;
    FCollidesWithMoving: boolean;
    Disabled: Cardinal;
    procedure SetCursor(const Value: TMouseCursor);
  protected
    { In T3D class, just calls Parent.CursorChange. }
    procedure CursorChange; virtual;

    { Does item really exist, see @link(Exists) and @link(Enable),
      @link(Disable).
      It T3D class, returns @true if @link(Exists) and not disabled.
      May be modified in subclasses, to return something more complicated. }
    function GetExists: boolean; virtual;

    { Does item really collide, see @link(Collides).
      It T3D class, returns @link(Collides) and @link(GetExists).
      May be modified in subclasses, to return something more complicated. }
    function GetCollides: boolean; virtual;

    { Height of a point above the 3D model.
      This checks ray collision, from Position along the negated GravityUp vector.
      Measures distance to the nearest scene item (called "ground" here).

      @returns(If the 3D scene is hit.
        @false means that Position floats above an empty space.
        That is, if you turn gravity on, it will fall down forever,
        as far as this 3D scene is concerned.)

      @param(AboveHeight Height above the ground.
        @italic(One height unit equals one GravityUp vector).
        Always use normalized GravityUp vector if you expect
        to receive here a normal distance.

        AboveHeight is always set to MaxSingle when returned result is @false
        (this guarantee simplifies some code).)

      @param(AboveGround Pointer to P3DTriangle representing the ground.
        Must be @nil if returned result is @false.
        @bold(May) be @nil even if we returned @true (not all 3D
        objects may be able to generate P3DTriangle information about collision).

        This may be useful for example to make a footsteps sound dependent
        on texture of the ground.
        Or to decrease player life points for walking on hot lava.
        See "The Castle" game for examples.)
    }
    function HeightCollision(const Position, GravityUp: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      out AboveHeight: Single; out AboveGround: P3DTriangle): boolean; virtual;

    { Can other 3D object (maybe a player) move without colliding with this object.

      If IsRadius, then you should prefer to perform exact collision with sphere
      of given radius (must be > 0).
      At the very least, this checks that the line segment
      between OldPos and NewPos doesn't collide,
      @bold(and) that sphere with given Radius centered around NewPos
      doesn't collide.

      If not IsRadius, or if checking for collisions with sphere is not possible
      for some reasons, then you can check for collisions with boxes.
      OldBox should usually be ignored (it can be useful when collision-checking
      has to be approximate in some corner cases, see TCreature.MoveCollision).
      NewBox plays the same role as "sphere centered around NewPos" in paragraph
      above.

      Overloaded version with separate ProposedNewPos and NewPos parameters
      allows you to accept the move, but for NewPos (that should be some slightly
      modified version of ProposedNewPos). This allows to implement wall-sliding:
      when camera tries to walk into the wall, we will change movement
      to move alongside the wall (instead of just completely blocking the move).
      When this version returns @false, it's undefined what is the NewPos.

      @groupBegin }
    function MoveCollision(
      const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual;
    function MoveCollision(
      const OldPos, NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual;
    { @groupEnd }

    function SegmentCollision(const Pos1, Pos2: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      const ALineOfSight: boolean): boolean; virtual;
    function SphereCollision(const Pos: TVector3Single; const Radius: Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual;
    function BoxCollision(const Box: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; virtual;

    { Check collision with a ray, building a TRayCollision result.
      Returns a collision as TRayCollision instance, or @nil if no collision.
      Caller is responsible for freeing the returned TRayCollision instance.

      Contrary to other collision routines, this should @italic(ignore
      the @link(Collides) property). The @link(Collides) property
      specifies whether item collides with camera. And this method is used
      for picking (pointing) 3D stuff --- everything visible can be picked,
      collidable or not.

      This always returns the first collision with the 3D world, that is
      the one with smallest TRayCollision.Distance. For example, when
      implemented in T3DList, this checks collisions for all list items,
      and chooses the closest one. }
    function RayCollision(const RayOrigin, RayDirection: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision; virtual;
  public
    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;

    { Is this object visible and colliding.

      Setting this to @false pretty much turns everything of this 3D object
      to "off". This is useful for objects that disappear completely from
      the level when something happens. You could just as well remove
      this object from TCastleSceneManager.Items tree, but sometimes it's more
      comfortable to simply turn this property to @false.

      Descendants may also override GetExists method.

      @noAutoLinkHere }
    property Exists: boolean read FExists write FExists default true;

    { Items that are at least once disabled are treated like not existing.
      Every @link(Disable) call should always be paired with @link(Enable) call
      (usually using @code(try ... finally .... end) block).
      Internally, we keep a counter of how many times the object is disabled,
      and if this counter is <> 0 then GetExists returns @false.
      Using this is useful for taming collisions, especially to avoid self-collisions
      (when a creature moves, it doesn't want to collide with other creatures,
      but obviously it doesn't collide with it's own bounding volume).
      @groupBegin }
    procedure Disable;
    procedure Enable;
    { @groupEnd }

    { Should this 3D object participate in collision detection.
      You can turn this off, useful to make e.g. "fake" walls
      (to some secret places on level).

      This describes collision resolution with almost everything --- camera,
      player (in third-person perspective, camera may differ from player),
      other creatures. That is because everything
      resolves collisions through our methods MoveCollision and HeightCollision
      (high-level) or SegmentCollision, SphereCollision, BoxCollision
      (low-level). (Note that RayCollision is excluded from this,
      it exceptionally ignores Collides value, as it's primarily used for picking.
      Same for SegmentCollision with LineOfSight=true.)

      The only exception are the collisions with T3DMoving instances
      (movable world parts like elevators and doors) that have their own
      detection routines and look at CollidesWithMoving property of other objects.
      That is, the T3DMoving instance itself must still have Collides = @true,
      but it interacts with @italic(other) objects if and only if they have
      CollidesWithMoving = @true (ignoring their Collides value).
      This allows items to be moved by elevators, but still player and creatures
      can pass through them.

      Note that if not @link(Exists) then this doesn't matter
      (not existing objects never participate in collision detection).

      Descendants may also override GetCollides method. Sometimes it's more
      comfortable than changing the property value.

      @noAutoLinkHere }
    property Collides: boolean read FCollides write FCollides default true;

    { Bounding box of the 3D object.

      Should take into account both collidable and visible objects.
      For examples, invisible walls (not visible) and fake walls (not collidable)
      should all be accounted here.

      As it's a @italic(bounding) volume, it may naturally be slightly too large
      (although, for the same of various optimizations, you should try
      to make it as tight as reasonably possible.) For now, it's also OK
      to make it a little too small (nothing bad will happen).
      Although all currently implemented descendants (TCastleSceneCore, TCastlePrecalculatedAnimationCore,
      more) guarantee it's never too small. }
    function BoundingBox: TBox3D; virtual; abstract;

    { Render given object.
      Should check and immediately exit when @link(Exists) is @false.
      Should render only parts with matching Params.Transparency
      and Params.ShadowVolumesReceivers values (it may be called
      more than once to render frame).

      @param(Frustum May be used to optimize rendering, to not
        render the parts outside the Frustum.)

      @param(Params Other parameters helpful for rendering.)
    }
    procedure Render(const Frustum: TFrustum; const Params: TRenderParams); virtual;

    { Does the 3D object cast shadows by shadow volumes.
      See also TCastleScene.ReceiveShadowVolumes. }
    property CastShadowVolumes: boolean
      read FCastShadowVolumes write FCastShadowVolumes default true;

    { Render shadow quads for all the things rendered by @link(Render).
      This is done only if @link(Exists) and @link(CastShadowVolumes).

      It does shadow volumes culling inside (so ShadowVolumeRenderer should
      have FrustumCullingInit already initialized).

      ParentTransform and ParentTransformIsIdentity describe the transformation
      of this object in the 3D world.
      T3D objects may be organized in a hierarchy when
      parent transforms it's children. When ParentTransformIsIdentity,
      ParentTransform must be IdentityMatrix4Single (it's not guaranteed
      that when ParentTransformIsIdentity = @true, Transform value will be
      ignored !).

      @italic(Implementation note:) In @link(Render), it is usually possible
      to implement ParentTransform* by glPush/PopMatrix and Frustum.Move tricks.
      But RenderShadowVolume needs actual transformation explicitly:
      ShadowMaybeVisible needs actual box position in world coordinates,
      so bounding box has to be transformed by ParentTransform.
      And TCastleScene.RenderShadowVolumeCore needs explicit ParentTransform
      to correctly detect front/back sides (for silhouette edges and
      volume capping). }
    procedure RenderShadowVolume(
      ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
      const ParentTransformIsIdentity: boolean;
      const ParentTransform: TMatrix4Single); virtual;

    { Prepare resources, making various methods (like rendering and such)
      to execute fast.

      This makes sure that appropriate methods execute as fast as possible.
      It's never required to call this method
      --- everything will be prepared "as needed" anyway.
      But if you allow everything to be prepared "as needed",
      then e.g. the first @link(Render) call may take a long time because it may
      have to prepare resources that will be reused in next @link(Render) calls.
      This is bad, as your program will seem very slow at the beginning
      (when rendering resources are prepared, so a first frame,
      or a couple of first frames, if it's something
      like a precalculated animation). To avoid this, call this method,
      showing the user something like "now we're preparing
      the resources --- please wait".

      For OpenGL rendered objects, this method ties this object
      to the current OpenGL context.
      But it doesn't change any OpenGL state or buffers contents
      (at most, it allocates some texture and display list names).

      @param(Options What features should be prepared to execute fast.
        See TPrepareResourcesOption,
        the names should be self-explanatory (they refer to appropriate
        methods of T3D, TCastleSceneCore or TCastleScene).)

      @param(ProgressStep Says that we should make this many Progress.Step calls
        during preparation.
        Useful to show progress bar to the user during long preparation.

        TODO: for now, do not include prSpatial if you use ProgressStep.
        Reason: octree preparations have a separate mechanism
        that may want to show progress.)

      @param(BaseLights Used if Options contains prRender.
        A list of base lights (always TLightInstancesList, although
        cannot be declated as such) used for rendering.
        May be @nil (equivalent to empty).) }
    procedure PrepareResources(
      Options: TPrepareResourcesOptions;
      ProgressStep: boolean;
      BaseLights: TAbstractLightInstancesList); virtual;

    { How many times PrepareResources will call Progress.Step.
      Useful only if you want to pass ProgressStep = @true to PrepareResources.
      In the base class T3D this just returns 0.  }
    function PrepareResourcesSteps: Cardinal; virtual;

    { Press and release events of key and mouse. Return @true if you handled them.
      See also TUIControl analogous events.
      @groupBegin }
    function Press(const Event: TInputPressRelease): boolean; virtual;
    function Release(const Event: TInputPressRelease): boolean; virtual;
    { @groupEnd }

    { Pointing device (usually mouse) events.
      Return @true if you handled the event.

      @unorderedList(
        @item(PointingDeviceActivate signals that the picking button (usually,
          left mouse button) is pressed or released (depending on Active parameter).

          Note that the exact key or mouse responsible for this is configurable
          in our engine by Input_Interact. By default it's the left mouse button,
          as is usual for VRML/X3D browsers. But it can be configured to be other
          mouse button or a key, for example most 3D games use "e" key to interact.)

        @item(PointingDeviceMove signals that pointer moves over this 3D object.)
      )

      PointingDeviceMove receives Pick information about what exactly is hit
      by the 3D ray corresponding to the current mouse position.
      It contains the detailed information about 3D point, triangle
      and ray (all in local coordinate system) that are indicated by the mouse.
      PointingDeviceActivate does not receive this information now
      (because it may happen in obscure situations when ray direction is not known;
      this is all related to our "fallback to MainScene" mechanism).

      They also receive Distance to the collision,
      in world coordinates. See TRayCollision.Distance.

      The pointing device event (activation,
      deactivation or move) is send first to the innermost 3D object.
      That is, we first send this event to the first item on
      TRayCollision list corresponding to the current ray.
      This way, the innermost ("most local") 3D object has the chance
      to handle this event first. If the event is not handled, it is passed
      to other 3D objects (we simply iterate over the TRayCollision list).
      If nothing on TRayCollision list
      handled the item, it is eventually passed to main 3D scene
      (TCastleSceneManager.MainScene), if it wasn't already present on
      TRayCollision list.

      Note that when passing this event to TCastleSceneManager.MainScene,
      it is possible that 3D ray simply didn't hit anything (mouse pointer
      is over the background). In this case, TRayCollisionNode.Point
      is undefined, TRayCollisionNode.Triangle is @nil
      and Distance is MaxSingle.

      This event should be handled only if GetExists.
      Usually, 3D objects with GetExists = @false will not be returned
      by RayCollision, so they will not receive this event anyway.
      However, if 3D object may be equal to TCastleSceneManager.MainScene,
      then it should be secured and check for GetExists
      inside PointingDeviceActivate and PointingDeviceMove.

      @groupBegin }
    function PointingDeviceActivate(const Active: boolean;
      const Distance: Single): boolean; virtual;
    function PointingDeviceMove(const Pick: TRayCollisionNode;
      const Distance: Single): boolean; virtual;
    { @groupEnd }

    { Continously occuring event, for various tasks.
      @param(RemoveMe Set this to rtRemove or rtRemoveAndFree to remove
        this item from 3D world (parent list) after Update finished.
        rtRemoveAndFree additionally will free this item.
        Initially it's rtNone when this method is called.) }
    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); virtual;

    { Something visible changed inside @italic(this) 3D object.
      This is usually called by implementation of this 3D object,
      to notify others that it changed.

      Changes is a set describing what changes occurred.
      It can be [], meaning "something else", we'll
      still broadcast VisibleChangeNotification then. See TVisibleChange
      docs for possible values. It must specify all things that possibly
      changed.

      The information about visibility changed is passed upward,
      to the Parent, and eventually to the TCastleSceneManager,
      that broadcasts this to all 3D objects
      by VisibleChangeNotification. If you want to @italic(react) to visibility
      changes, you should override VisibleChangeNotification,
      not this method.

      Be careful when handling this, various changes may cause this,
      so be prepared to handle this at every time. }
    procedure VisibleChangeHere(const Changes: TVisibleChanges); virtual;

    { Containing 3D list. }
    property Parent: T3DList read FParent;

    { World containing this 3D object. In other words, the root of 3D objects
      tree containing this object. @nil if we are not part of a hierarchy rooted
      in T3DWorld. }
    function World: T3DWorld; virtual;

    { Something visible changed in the 3D world.
      This is usually called by our container (like TCastleSceneManager),
      to allow this 3D object to react (e.g. by regenerating mirror textures)
      to changes in the 3D world (not necessarily in this 3D object,
      maybe in some other T3D instance).

      If you want to @italic(react) to visibility
      changes, you should override this. }
    procedure VisibleChangeNotification(const Changes: TVisibleChanges); virtual;

    { Mouse cursor over this object. }
    property Cursor: TMouseCursor read FCursor write SetCursor default mcDefault;

    { Called when OpenGL context of the window is destroyed.
      This will be also automatically called from destructor.

      Control should clear here any resources that are tied to the GL context. }
    procedure GLContextClose; virtual;

    procedure UpdateGeneratedTextures(
      const RenderFunc: TRenderFromViewFunction;
      const ProjectionNear, ProjectionFar: Single;
      const OriginalViewportX, OriginalViewportY: LongInt;
      const OriginalViewportWidth, OriginalViewportHeight: Cardinal); virtual;

    { Are we in the middle of dragging something by moving the mouse.

      This should be set to @true to disable camera navigation
      methods that also use mouse move. In practice, to disable TExamineCamera
      view rotation/movement by moving the mouse, as it makes (comfortable)
      dragging practically impossible (at each mouse move, view changes...).

      In particular, when you operate on active X3D pointing-device sensors
      (like drag sensors, e.g. PlaneSensor, but also TouchSensor may
      use it). }
    function Dragging: boolean; virtual;

    { Unconditionally move this 3D object by given vector.
      You usually don't want to use this directly, instead use @link(Move)
      method to move checking collisions (and with optional wall sliding).

      By default, in T3D class, this does nothing, because the bare T3D
      class doesn't know how to move itself.
      But descendants like T3DTransform and T3DOrient (and their
      descendants like TPlayer, TCreature, TItemOnWorld) override this
      and can be moved using this. }
    procedure Translate(const T: TVector3Single); virtual;

    { Middle point, usually "eye point", of the 3D model.
      This is used for sphere center (if overriden Sphere returns @true)
      and is the central point from which collisions of this object
      are checked (Move, MoveAllowed, Height, LineOfSight).
      For 3D things like level scene this is mostly useless (as you will leave
      Sphere at default @false then, and the scene itself doesn't move),
      but it's crucial for dynamic 3D things like player and moving creatures.

      In short, it's usually most comfortable to think about this as
      a position of the eye, or the middle of the creature's head.

      In an ideal situation, it should not be based on anything dynamic.
      For example, when this is based on the current bounding box of the animation,
      there is a risk that a large and sudden change in animation
      box could make the Middle point to jump to the other side of
      the wall (breaking collisions, as it changes Middle without a chance
      to check for collisions by MoveAllowed).
      Ideally, it should remain constant even when the shape of the object changes,
      and be possible to change only when MoveAllowed is checked
      (so only when T3DOrient.Position or T3DTransform.Translation can change).

      In this class this is simply zero. In the descendant
      T3DCustomTransform (ancestor of T3DTransform, T3DOrient
      that in turn are ancestors of normal creatures, items etc.)
      this is overriden to return something sensible above the bottom
      of the box. See T3DCustomTransform.MiddleHeight. }
    function Middle: TVector3Single; virtual;

    { Sector where the middle of this 3D object is.
      Used for AI. @nil if none (maybe because we're not part of any world,
      maybe because sectors of the world were not initialized,
      or maybe simply because we're outside of all sectors). }
    function Sector: TSector;

    { Can the approximate sphere (around Middle point)
      be used for some collision-detection
      tasks. If @true then Radius (and Middle point) determine the approximate
      sphere surrounding the 3D object (it does not have to be a perfect
      bounding sphere around the object), and it may be used for some
      collisions instead of BoundingBox.
      See @link(CollidesWithMoving) and @link(MoveAllowed) for when it may happen.

      Must return @false when not GetExists (because we can't express
      "empty sphere" by @link(Sphere) method for now, but BoundingBox can express
      EmptyBox3D).

      By default, in T3D class, this always returns @false
      and @link(Sphere) is undefined.

      The advantages of using a sphere, that does not have to be a perfect
      bounding sphere (it may be smaller than necessary, and only
      account e.g. for upper body part of the creature), are:

      @unorderedList(
        @item(It can have constant radius, even though the actual
          creature animates. This allows us to perfectly, reliably guarantee
          that sphere absolutely never collides with level and such.

          In case of a tight bounding volume (box or sphere) that animates,
          this guarantee is not really possible. Simply increasing time changes
          the animation to the next frame, which may be slightly larger
          in one dimension because e.g. creature moves a hand in this direction.
          This means that simply increasing time may change the non-collidable
          creature into a collidable one, if creature stands close to a wall/other
          creature and such. And we cannot simply stop/reverse an arbitrary animation
          at an arbitrary time (to avoid collision), this would look weird
          for some animations and would require some additional work
          at preparing animations and designing AI (as then "every action can
          be interrupted").

          Also using a bounding volume large enough to account for all
          possible positions is not doable, as it would be too large.
          Consider that for humanoid creatures, walking animation usually
          has tall and thin bounding box (creature stands) but dead/lying animation
          usually has flat and wide bounding box.

          So, only a bounding volume (like a sphere) that
          @italic(may be smaller than bounding volume) can remain constant
          and easily guarantee the assertion "it never collides".

          This means that using such sphere results in simpler collision
          detection routines, as they may assume that collision doesn't occur.
          In contrast, detection routines looking at our (possibly animated)
          BoundingBox must take into account that collision may already be happening,
          and they must incorporate code to allow creatures/players to "get unstruck".)

        @item(Using smaller sphere also allows to naturally ascend the stairs
          and upward slopes. Sphere can move forward slightly, and then creature
          may raise up, to reach it's preferred height. Then sphere can move
          further forward, and so on. This alllows to allow stair climbing
          for creatures without any extra effort in the code.

          The downside is that creature legs will temporarily "sink into the floor"
          when climbing up the stairs. But it's not noticeable if "growing up"
          mechanism works fast enough.)
      )

      Sphere disadvantage:

      @unorderedList(
        @item(Sphere is far from perfect as a bounding volume --- it's too small,
          sometimes also too large, sometimes both at the same time...

          Since the Sphere radius remains always the same, it must be good
          for many creature animation frames. In cases where the sphere
          isn't suitable, and you don't need advantages above --- you can
          make @name return @false.
          E.g. a dead creature may be stuck in a wall,
          and it doesn't have to climb stairs. So you don't really need
          sphere advantages listed above, and @name may return @false
          when creature is in dying state.

          But still it may be a problem sometimes, if some creature states
          have entirely different animations and bounding boxes. Then you
          will be forced to choose one universal Radius for all creature
          states. And you need constant radius to keep the advantage above
          of "guarantee".

          1. Obviously you can't set radius too small, because if it's much smaller
          than actual creature's geometry then the creature will noticeably collide
          with level geometry and other creatures.

          2. On the other hand, you can't set radius too large
          (or move sphere center, Middle, much lower).
          This would block stair climbing.
        )
      ) }
    function Sphere(out Radius: Single): boolean; virtual;

    { Can this object be pushed by (or block movement of) doors, elevators
      and other moving level parts (T3DMoving instances).

      Some 3D moving objects may try to avoid crushing this item.
      Like an automatic door that stops it's closing animation
      to not crush things standing in the doorway.

      Some other 3D moving objects may push this object.
      Like elevators (vertical, or horizontal moving platforms).
      We may use sphere (see @link(T3D.Sphere)) for checking
      collisions, or bounding box (@link(T3D.BoundingBox)), depending on need.
      The item is moved using @link(T3D.Translate), so make sure it
      actually does something (for example, by descending from T3DTransform,
      that provides natural @link(T3D.Translate) implementation). }
    property CollidesWithMoving: boolean read FCollidesWithMoving write FCollidesWithMoving default false;

    { Get height of my point above the rest of the 3D world.

      This ignores the geometry of this 3D object (to not accidentaly collide
      with your own geometry), and checks collisions with the rest of the world.
      @groupBegin }
    function Height(const MyPosition: TVector3Single;
      out AboveHeight: Single): boolean;
    function Height(const MyPosition: TVector3Single;
      out AboveHeight: Single; out AboveGround: P3DTriangle): boolean;
    { @groupEnd }

    function LineOfSight(const Pos1, Pos2: TVector3Single): boolean;

    { Is the move from OldPos to ProposedNewPos possible for me.
      Returns true and sets NewPos if some move is allowed.
      Overloaded version without ProposedNewPos doesn't do wall-sliding,
      and only answers if exactly this move is allowed.

      If this 3D object allows to use sphere as the bounding volume (see @link(Sphere)),
      then this sphere must be centered around OldPos, not some other point.
      That is, we assume that @link(Sphere) returns Center that is equal to OldPos.

      This ignores the geometry of this 3D object (to not accidentaly collide
      with your own geometry), and checks collisions with the rest of the world.
      @groupBegin }
    function MoveAllowed(const OldPos, ProposedNewPos: TVector3Single;
      out NewPos: TVector3Single;
      const BecauseOfGravity: boolean): boolean;
    function MoveAllowed(const OldPos, NewPos: TVector3Single;
      const BecauseOfGravity: boolean): boolean;
    { @groupEnd }

    { Move, if possible (no collisions). This is the simplest way to move
      a 3D object, and a basic building block for artificial intelligence
      of creatures.

      Checks move possibility by MoveAllowed, using @link(Middle) point.
      Actual move is done using @link(Translate). }
    function Move(const Translation: TVector3Single;
      const BecauseOfGravity: boolean;
      const EnableWallSliding: boolean = true): boolean;

    { Cast a ray from myself to the world, see what is hit.

      This ignores the geometry of this 3D object (to not accidentaly collide
      with your own geometry), and checks collisions with the rest of the world. }
    function Ray(const RayOrigin, RayDirection: TVector3Single): TRayCollision;

    { In case this scene shares lights with other scenes,
      this is the source scene. In usual circumstances, this method
      simply returns @code(Self), which means "no sharing".
      In case of scenes that are children of TCastlePrecalculatedAnimation,
      their Shared methods all point to the 1st animation scene. }
    function Shared: T3D; virtual;
  end;

  { List of 3D objects (T3D instances).

    This inherits from TCastleObjectList, getting many
    features like TList notification mechanism (useful in some situations).
    Usually you want to use T3DList instead, which is a wrapper around
    this class. }
  T3DListCore = class(TCastleObjectList)
  private
    FOwner: T3DList;

    function GetItem(const I: Integer): T3D;
    procedure SetItem(const I: Integer; const Item: T3D);
  public
    constructor Create(const FreeObjects: boolean; const AOwner: T3DList);
    procedure Notify(Ptr: Pointer; Action: TListNotification); override;
    property Items[I: Integer]: T3D read GetItem write SetItem; default;

    function First: T3D;
    function Last: T3D;

    { T3DList instance that owns this list.
      May be @nil, for example when this list is used by TRayCollision. }
    property Owner: T3DList read FOwner;
  end;

  { List of 3D objects (T3D instances), that can be treated like another,
    larger 3D object.

    It inherits from T3D class, so this list is itself
    a 3D object, representing a sum of all it's children 3D objects.
    This allows you to group many 3D objects, and treat them as one T3D
    descendant. }
  T3DList = class(T3D)
  private
    FList: T3DListCore;
    function GetItem(const I: Integer): T3D;
    procedure SetItem(const I: Integer; const Item: T3D);
  protected
    { Additional child inside the list, always processed before all children
      on the @link(Items) list. By default this method returns @nil,
      indicating no additional child exists.
      The presence of this child can be calculated in overriden
      method using any condition, which is sometimes more comfortable
      than adding item to Items.

      This item cannot be removed by methods like @link(T3DList,Delete)
      or by setting RemoveMe in it's @link(T3D.Update) implementation.
      Presence of this item is completely determined by GetChild implementation. }
    function GetChild: T3D; virtual;
    procedure Notification(AComponent: TComponent; Operation: TOperation); override;
    function HeightCollision(const Position, GravityUp: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      out AboveHeight: Single; out AboveGround: P3DTriangle): boolean; override;
    function MoveCollision(
      const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function MoveCollision(
      const OldPos, NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function SegmentCollision(const Pos1, Pos2: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      const ALineOfSight: boolean): boolean; override;
    function SphereCollision(const Pos: TVector3Single; const Radius: Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function BoxCollision(const Box: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function RayCollision(const RayOrigin, RayDirection: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision; override;
  public
    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;

    { Operate on 3D objects contained in the list.
      You can also operate directly on @link(List) instance.
      @groupBegin }
    procedure Add(const Item: T3D);
    procedure Insert(const Index: Integer; const Item: T3D);
    procedure Remove(const Item: T3D);
    property Items[I: Integer]: T3D read GetItem write SetItem; default;
    function Count: Integer;
    procedure Clear;
    { @groupEnd }

    function BoundingBox: TBox3D; override;
    procedure Render(const Frustum: TFrustum; const Params: TRenderParams); override;
    procedure RenderShadowVolume(
      ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
      const ParentTransformIsIdentity: boolean;
      const ParentTransform: TMatrix4Single); override;
    procedure PrepareResources(
      Options: TPrepareResourcesOptions;
      ProgressStep: boolean;
      BaseLights: TAbstractLightInstancesList); override;
    function PrepareResourcesSteps: Cardinal; override;
    function Press(const Event: TInputPressRelease): boolean; override;
    function Release(const Event: TInputPressRelease): boolean; override;
    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); override;
    procedure GLContextClose; override;
    procedure UpdateGeneratedTextures(
      const RenderFunc: TRenderFromViewFunction;
      const ProjectionNear, ProjectionFar: Single;
      const OriginalViewportX, OriginalViewportY: LongInt;
      const OriginalViewportWidth, OriginalViewportHeight: Cardinal); override;
    procedure VisibleChangeNotification(const Changes: TVisibleChanges); override;
    function Dragging: boolean; override;
  published
    { 3D objects inside.
      Freeing these items automatically removes them from this list. }
    property List: T3DListCore read FList;
  end;

  { 3D world. List of 3D objects, with some central properties. }
  T3DWorld = class(T3DList)
  public
    function World: T3DWorld; override;
    { See TCastleSceneManager.CollisionIgnoreItem. }
    function CollisionIgnoreItem(const Sender: TObject;
      const Triangle: P3DTriangle): boolean; virtual; abstract;
    { Up vector, according to gravity. Gravity force pulls in -GravityUp direction. }
    function GravityUp: TVector3Single; virtual; abstract;
    { The major axis of gravity vector: 0, 1 or 2.
      This is derived from GravityUp value. It can only truly express
      GravityUp vector values (1,0,0) or (0,1,0) or (0,0,1),
      although in practice this is enough for normal games (normal 3D scenes
      use up either +Y or +Z).

      We try to avoid using it in
      the engine, and use full GravityUp vector wherever possible.
      Full GravityUp vector may allow for more fun with weird gravity
      in future games. }
    function GravityCoordinate: Integer;
    { Player, see TCastleSceneManager.Player. }
    function Player: T3DAlive; virtual; abstract;
    { Base lights, see TCastleSceneManager.BaseLights. }
    function BaseLights: TAbstractLightInstancesList; virtual; abstract;
    { Sectors in the world, for AI. See TCastleSceneManager.Sectors. }
    function Sectors: TSectorList; virtual; abstract;
    { Water volume. See TCastleSceneManager.Water. }
    function Water: TBox3D; virtual; abstract;

    { Collisions with world. They call corresponding methods without the World
      prefix, automatically taking into account some knowledge about this
      3D world.

      Outside code should prefer calling MyXxx methods of Colliders,
      like T3D.MoveAllowed, instead of these WorldXxx methods.
      Calling these WorldXxx methods directly still makes sense if your query
      is not initiated by any 3D object that is part of this 3D world.
      @groupBegin }
    function WorldMoveAllowed(
      const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const BecauseOfGravity: boolean): boolean; virtual; abstract;
    function WorldMoveAllowed(
      const OldPos, NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const BecauseOfGravity: boolean): boolean; virtual; abstract;
    function WorldHeight(const Position: TVector3Single;
      out AboveHeight: Single; out AboveGround: P3DTriangle): boolean; virtual; abstract;
    function WorldLineOfSight(const Pos1, Pos2: TVector3Single): boolean; virtual; abstract;
    function WorldRay(const RayOrigin, RayDirection: TVector3Single): TRayCollision; virtual; abstract;
    { @groupEnd }
  end;

  { Transform (move, rotate, scale) other T3D objects.
    Descends from T3DList, transforming all it's children.
    Also adds gravity and related features.

    T3DCustomTransform is an abstract class, that doesn't define
    how the transformation is stored and accessed.
    Descendants define it by overriding protected virtual
    methods like GetTranslation and GetRotation (in this class they return zeros).
    Use T3DTransform to have simple T3DTransform.Translation and such properties.
    Use T3DOrient to have camera-like transformation vectors. }
  T3DCustomTransform = class(T3DList)
  private
    FGravity: boolean;
    FFallingStartMiddle: TVector3Single;
    FFalling: boolean;
    FFallSpeed: Single;
    FGrowSpeed: Single;
    FMiddleHeight: Single;
  protected
    { Workaround for descendants where BoundingBox may suddenly change
      but their logic depends on stable (not suddenly changing) Middle.
      If MiddleForceBox then we will use given MiddleForceBoxValue
      instead of LocalBoundingBox for Middle and PreferredHeight
      calculation. Descendants that deal with this should usually have
      some timeout when they restore MiddleForceBox to false.

      This is quite internal hack and you should not use this in your own programs.
      This is used only by TWalkAttackCreature.
      @exclude
      @groupBegin }
    MiddleForceBox: boolean;
    { @exclude }
    MiddleForceBoxValue: TBox3D;
    { @groupEnd }

    { The GetXxx methods below determine the transformation returned
      by default TransformMatricesMult implementation in this class.
      Simple descendants need only to override these, and OnlyTranslation,
      and the TransformMatricesMult will automatically work correctly already.

      More complicated descendants may override TransformMatricesMult,
      and then GetCenter, GetRotation etc. methods can be ignored
      (if your TransformMatricesMult will not use it, then GetCenter, GetRotation
      will not be used at all and there's no point in overriding them).
      You still need to override

      @unorderedList(
        @item OnlyTranslation
        @item(GetTranslation (it's used by default Middle implementation,
          and it's also used in case OnlyTranslation returns @true),)
        @item(And make sure AverageScale is correct
          (if you want it to be <> 1, that is: if your transformation
          may make some scale, then you need to override GetScale).)
      )

      @groupBegin }
    function GetTranslation: TVector3Single; virtual;
    function GetCenter: TVector3Single; virtual;
    function GetRotation: TVector4Single; virtual;
    function GetScale: TVector3Single; virtual;
    function GetScaleOrientation: TVector4Single; virtual;
    { @groupEnd }

    { Can we use simple GetTranslation instead of full TransformMatricesMult.
      Returning @true allows optimization in some cases. }
    function OnlyTranslation: boolean; virtual;
    function Transform: TMatrix4Single;
    function TransformInverse: TMatrix4Single;

    { Transformation matrix.
      You can override this to derive transformation using anything,
      not necessarily GetTranslation / GetCenter etc. methods.

      This method must produce matrices that preserve points as points
      and directions as directions in homegeneous space.
      In other words, using MatrixMultPoint or MatrixMultDirection
      with these matrices must never raise ETransformedResultInvalid.
      For example, a combination of translations, rotations, scaling is Ok. }
    procedure TransformMatricesMult(var M, MInverse: TMatrix4Single); virtual;
    procedure TransformMatrices(out M, MInverse: TMatrix4Single);
    function AverageScale: Single;

    function HeightCollision(const Position, GravityUp: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      out AboveHeight: Single; out AboveGround: P3DTriangle): boolean; override;
    function MoveCollision(
      const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function MoveCollision(
      const OldPos, NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function SegmentCollision(const Pos1, Pos2: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      const ALineOfSight: boolean): boolean; override;
    function SphereCollision(const Pos: TVector3Single; const Radius: Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function BoxCollision(const Box: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function RayCollision(const RayOrigin, RayDirection: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision; override;

    { Called when fall ended. You can use FallHeight to decrease creature
      life or such. }
    procedure Fall(const FallHeight: Single); virtual;

    { Untransformed bounding box value. }
    function LocalBoundingBox: TBox3D;
  public
    const
      DefaultMiddleHeight = 0.5;

    constructor Create(AOwner: TComponent); override;
    function BoundingBox: TBox3D; override;
    procedure Render(const Frustum: TFrustum; const Params: TRenderParams); override;
    procedure RenderShadowVolume(
      ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
      const ParentTransformIsIdentity: boolean;
      const ParentTransform: TMatrix4Single); override;
    function Middle: TVector3Single; override;
    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); override;

    { Gravity may make this object fall down (see FallSpeed)
      or grow up (see GrowSpeed). See also PreferredHeight.

      Special notes for TPlayer: player doesn't use this (TPlayer.Gravity
      should remain @false), instead player relies on
      TPlayer.Camera.Gravity = @true, that does a similar thing (with some
      extras, to make camera effects). This will change in the future,
      to merge these two gravity implementations.
      Although the TPlayer.Fall method still works as expected
      (it's linked to TWalkCamera.OnFall in this case). }
    property Gravity: boolean read FGravity write FGravity default false;

    { Falling speed, in units per second, for @link(Gravity).
      TODO: this will be replaced with more physically-based approach.

      This is relevant only if @link(Gravity) and PreferredHeight <> 0.
      0 means no falling. }
    property FallSpeed: Single read FFallSpeed write FFallSpeed default 0;

    { Growing (raising from crouching to normal standing position)
      speed, in units per second.
      This is used by non-flying creatures when climbing up stairs,
      in which case GetTranslation ("legs positon") may be sometimes under
      the ground while Middle ("eyes position") will be always above the ground
      and will try to grow to be at PreferredHeight above the ground.

      This is relevant only if @link(Gravity) and PreferredHeight <> 0.
      0 means no growing. }
    property GrowSpeed: Single read FGrowSpeed write FGrowSpeed default 0;

    { The preferred height of the object @link(Middle) above the ground,
      when the object is standing on the ground firmly.
      This is used by objects affected by gravity (like non-flying creatures
      and items) to know how far they should fall down or grow up.

      The default implementation in this class looks at MiddleHeight property,
      see the algorithm described there.
      This may be dynamic (may change during creature lifetime,
      so you can make the creature duck or grow if you want). }
    function PreferredHeight: Single; virtual;

    { How high are creature eyes in the model.
      Value 0 means that eyes are at the bottom of the model,
      0.5 means the middle, 1 means top.

      The @italic(top) is always considered to be at the top of the bounding box.

      Definition of @italic(bottom) depends on @link(Gravity):

      @unorderedList(
        @item(
          When Gravity is @true, then the @italic(bottom) is considered to be
          the plane where World.GravityCoordinate (like Z or Y axis) is zero.
          The actual bottom (lowest point) of the bounding box doesn't matter.
          This means that things placed below zero plane (like a creature tentacle
          or leg) will sink into the ground, instead of causing whole creature
          to move up. It also means that the creature can easily float above
          the ground, just model it a little above the zero plane.

          In other words, this allows you to model the creature
          with respect to the ground (zero plane), which is comfortable.

          Note that setting MiddleHeight to exact 0 means that gravity will not work,
          as it means that the PreferredHeight above the ground
          is to be stuck right at the ground level.

          For gravity to work right, the MiddleHeight should be large enough
          to cause PreferredHeight to be > @link(Sphere) radius,
          for all possible animation states (for all possible bounding box values).
        )

        @item(
          When Gravity is @false, then the @italic(bottom) is considered
          at the bottom of the bounding box.

          This way it works regardless of where (0,0,0) is in your model
          (regardless if (0,0,0) represents legs, or middle of your creature),
          since we adjust to the BoundingBox position.
        )
      )

      This property determines how the T3DCustomTransform
      handles the @link(Middle) implementation
      (this is the point used for various collision detection routines)
      and @link(PreferredHeight) (this is the preferred height of @link(Middle)
      above the ground). You can override these two methods to use a different
      approach, and then ignore MiddleHeight completely. }
    property MiddleHeight: Single read FMiddleHeight write FMiddleHeight
      default DefaultMiddleHeight;
  end;

  { Transform (move, rotate, scale) other T3D objects.
    Descends from T3DList, transforming all it's children.
    Defines simple properties like @link(Translation). }
  T3DTransform = class(T3DCustomTransform)
  private
    FCenter: TVector3Single;
    FRotation: TVector4Single;
    FScale: TVector3Single;
    FScaleOrientation: TVector4Single;
    FTranslation: TVector3Single;
    FOnlyTranslation: boolean;
  protected
    procedure SetCenter(const Value: TVector3Single);
    procedure SetRotation(const Value: TVector4Single);
    procedure SetScale(const Value: TVector3Single);
    procedure SetScaleOrientation(const Value: TVector4Single);
    procedure SetTranslation(const Value: TVector3Single);

    function OnlyTranslation: boolean; override;

    function GetCenter: TVector3Single; override;
    function GetRotation: TVector4Single; override;
    function GetScale: TVector3Single; override;
    function GetScaleOrientation: TVector4Single; override;
    function GetTranslation: TVector3Single; override;
  public
    constructor Create(AOwner: TComponent); override;

    { Transformation is a combined Translation, and Rotation around Center point,
      and Scale around Center and with orientation given by ScaleOrientation.
      For precise order of these operations, see X3D Transform node.

      Default values of these fields indicate no transformation.
      So everything is zero, except Scale which is (1,1,1).
      Scale must always have all components > 0 (some operations depend
      that scale here is invertible and doesn't flip sides).
      Non-uniform scale (e.g. when you scale along X coordinate 2 times,
      but you scale along Y coordinate 3 times) works... to some extent,
      that is collisions with spheres (including camera radius) are not perfect
      in this case. For perfect results, keep your scale uniform.

      @groupBegin }
    property Center: TVector3Single read FCenter write SetCenter;
    property Rotation: TVector4Single read FRotation write SetRotation;
    property Scale: TVector3Single read FScale write SetScale;
    property ScaleOrientation: TVector4Single read FScaleOrientation write SetScaleOrientation;
    property Translation: TVector3Single read FTranslation write SetTranslation;
    { @groupEnd }

    procedure Translate(const T: TVector3Single); override;
  end;

  TOrientationType = (
    { Sensible for worlds oriented around Y axis.
      That is when gravity pulls in -Y and GravityUp vector is +Y.
      Transformation makes -Z and +Y match (respectively) Direction and Up.

      This matches default direction/up of OpenGL and VRML/X3D cameras.

      For example, using this value for T3DOrient.Orientation (or even
      T3DOrient.DefaultOrientation) is sensible if you use default
      Blender X3D exporter, and you let the exporter to make
      a transformation (to make +Z up into +Y up). This is the default setting.
      Then you can follow the standard Blender view names
      ("front", "top" and such) when modelling, and Blender tools like
      "X-axis mirror" will work best. }
    otUpYDirectionMinusZ,

    { Sensible for worlds oriented around Z axis.
      Transformation makes -Y and +Z match (respectively) Direction and Up.

      Using this value for T3DOrient.Orientation (or even
      T3DOrient.DefaultOrientation) is sensible if you export your models
      from Blender @italic(without transforming them during export).
      Note that @italic(this is not the default Blender X3D exporter behavior).
      But you can configure the exporter to work like this (not transform),
      and then you can follow the standard Blender view names
      ("front", "top" and such) when modelling. }
    otUpZDirectionMinusY,

    { @deprecated Up in +Z (like otUpZDirectionMinusY) and direction
      in +X. Should not be used in new models. }
    otUpZDirectionX
  );

  { Transform other 3D objects by changing their orientation.

    The rotation of objects depends on given Direction and Up vectors,
    see @link(Orientation) for details.
    The translation of objects is just taken from @link(Position),
    and works just like normal T3DTransform.Translation.
    There is no scaling of 3D objects, ever. }
  T3DOrient = class(T3DCustomTransform)
  private
    FCamera: TWalkCamera;
    FOrientation: TOrientationType;
    function GetPosition: TVector3Single;
    function GetDirection: TVector3Single;
    function GetUp: TVector3Single;
    procedure SetPosition(const Value: TVector3Single);
    procedure SetDirection(const Value: TVector3Single);
    procedure SetUp(const Value: TVector3Single);
  protected
    procedure TransformMatricesMult(var M, MInverse: TMatrix4Single); override;
    function OnlyTranslation: boolean; override;
    { T3DOrient overrides GetTranslation to return Position, this will be used
      by T3DCustomTransform.Middle. }
    function GetTranslation: TVector3Single; override;
  public
    { Default value of T3DOrient.Orientation, for new instances of T3DOrient
      (creatures, items, player etc.). }
    DefaultOrientation: TOrientationType; static;

    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;

    { Position (translation) of this 3D object. }
    property Position: TVector3Single read GetPosition write SetPosition;

    { Direction the creature is facing, and up vector.

      The @link(Direction) and @link(Up) vectors should always be normalized
      (have length 1). When setting them by these properties, we will normalize
      them automatically.

      They must also always be orthogonal.
      When setting @link(Direction), @link(Up) will always be automatically
      adjusted to be orthogonal to @link(Direction). And vice versa ---
      when setting @link(Up), @link(Direction) will be adjusted.

      Initially, they follow VRML/X3D standard vectors suitable for gravity along
      the Y axis. So direction is -Z (DefaultCameraDirection),
      up is +Y (DefaultCameraUp).

      @groupBegin }
    property Direction: TVector3Single read GetDirection write SetDirection;
    property Up: TVector3Single read GetUp write SetUp;
    { @groupEnd }

    { Set at once vectors: position, direction, up.

      ADir and AUp given here do not have to be normalized
      (they will be normalized if needed).
      They will be automatically fixed to be orthogonal, if necessary:
      when AdjustUp = @true (the default) we will adjust the up vector
      (preserving the given direction value),
      otherwise we will adjust the direction (preserving the given up value). }
    procedure SetView(const APos, ADir, AUp: TVector3Single;
      const AdjustUp: boolean = true);
    procedure SetView(const ADir, AUp: TVector3Single;
      const AdjustUp: boolean = true);

    { Change up vector, keeping the direction unchanged.
      If necessary, the up vector provided here will be fixed to be orthogonal
      to direction.

      This is similar to assigning @link(Up) vector using it's property setter,
      but different behavior happens when we need to fix vectors to have
      direction orthogonal to up (which must be always true).
      In case of assigning @link(Up) by property setter,
      the @link(Direction) vector is changed (if necessary, to be orthogonal to up).
      In case of this method, the up vector is changed (if necessary,
      to be orthogonal to direction).

      It's good to use this if you have a preferred up vector for creatures,
      but still preserving the direction vector has the highest priority. }
    procedure UpPrefer(const AUp: TVector3Single);

    procedure Translate(const T: TVector3Single); override;

    { How the direction and up vectors determine transformation.
      See TOrientationType for values documentation.

      The default value of this is determined by static variable
      DefaultOrientation, this is usually comfortable (because almost
      always you use the same Orientation throughout your game).
      By default it's otUpYDirectionMinusZ (matching default cameras
      of OpenGL and VRML/X3D).

      This value determines how you should model your 3D models,
      like the creatures, the items, and the player weapons.
      Generally, it applies to every 3D model that is used as
      a child of this T3DOrient instance. }
    property Orientation: TOrientationType read FOrientation write FOrientation;

    { Camera, with view vectors (position, direction and up)
      always synchronized with this T3DOrient instance.
      You should not set Camera vectors (by TWalkCamera.Position,
      TWalkCamera.SetView and such) directly, instead use this
      object's properties (T3DOrient.Position, T3DOrient.SetView),
      as we will call proper VisibleChangeHere method.

      We don't deal with any other camera properties in T3DOrient.
      If you want, you can ignore this camera (you will probably do this
      if you use T3DOrient for creature like TCastleCreature;
      although camera may still have a fun usage then, for observing world from
      a creature view).
      Or you can use this camera, taking care of all it's settings,
      even asssigning this camera to TCastleSceneManager.Camera
      to allow user to directly control it (you will probably
      do this if you use T3DOrient for player like TPlayer;
      in fact, TGameSceneManager.LoadLevel does this automatically for you). }
    property Camera: TWalkCamera read FCamera;
  end;

  { Deprecated name for T3DCustomTransform. @deprecated @exclude }
  T3DCustomTranslated = T3DCustomTransform deprecated;

  { Deprecated name for T3DTransform. @deprecated @exclude }
  T3DTranslated = T3DTransform deprecated;

  { 3D object moving and potentially pushing other 3D objects.
    Good for elevators, doors and such.

    Other 3D objects may be pushed, if @link(Pushes).
    There are two methods of pushing available, see @link(PushesEverythingInside).
    Only the 3D objects with @link(T3D.CollidesWithMoving) are ever pushed by
    this object (the rest of 3D world is treated as static, does not interact with
    elevators / doors or such).

    You can also stop/reverse the move to prevent some collisions
    from occuring at all. This way you can e.g. prevent the door
    from automatically closing, if someone/something blocks the way.
    You do this by overriding BeforeTimeIncrease.
    See TDoomLevelDoor.BeforeTimeIncrease in "The Castle" for example how to
    do this. }
  T3DMoving = class(T3DCustomTransform)
  private
    FPushes: boolean;
    FPushesEverythingInside: boolean;
    FAnimationTime: TFloatTime;
  protected
    { Local object time, always increasing, used to track animations. }
    property AnimationTime: TFloatTime read FAnimationTime;

    { Implements T3D.GetTranslation by always calling
      GetTranslationFromTime(AnimationTime).
      Descendants should only override GetTranslationFromTime. }
    function GetTranslation: TVector3Single; override;
    function OnlyTranslation: boolean; override;

    function GetTranslationFromTime(const AnAnimationTime: TFloatTime):
      TVector3Single; virtual; abstract;

    { Do something right before animation progresses.
      Called at the beginning of our @link(Update),
      @italic(right before) AnimationTime changes to NewAnimationTime.

      Useful for taking care of collision detection issues,
      as our assumption always is that "nothing collides". Which means
      that if you don't want your T3DMoving to collide
      with e.g. player or creatures or items, then you should
      prevent the collision @italic(before it happens).
      This is the place to do it. }
    procedure BeforeTimeIncrease(const NewAnimationTime: TFloatTime); virtual;
  public
    constructor Create(AOwner: TComponent); override;
    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); override;
  published
    { Are other 3D objects pushed when this object moves.
      Only the 3D objects with @link(T3D.CollidesWithMoving) are ever pushed by this object
      (the rest of 3D world is treated as static, does not interact with
      elevators / doors or such).

      Only relevant if GetCollides. Non-colliding objects never push others. }
    property Pushes: boolean read FPushes write FPushes default true;

    { If @link(Pushes) is @true, this determines how pushing actually works.
      There two methods:

      @orderedList(
        @item(PushesEverythingInside = @true: We move every
          3D object that is inside our bounding box and has CollidesWithMoving=@true.
          This is sensible if we can reasonably assume that things
          inside our box are standing. For example if this is
          a (vertical or horizontal) elevator, then creatures/items
          are usually standing/lying inside, and naturally move with
          the same speed (and direction) as the elevator.)

        @item(When PushesEverythingInside = @false: We check precise
          collision between 3D objects with CollidesWithMoving=@true
          and our triangle mesh.
          Actually, we use T3DList.BoxCollision / T3DList.SphereCollsion,
          that will use children's T3D.BoxCollision / T3D.SphereCollsion;
          they check collisions with triangle mesh in case of TCastleScene
          with Spatial containing e.g. ssDynamicCollisions.)
      )

      Neither method is really perfect.

      PushesEverythingInside = @false seems like a more precise check,
      as it actually compares the triangle mesh, taking into account
      the interior of (this) moving 3D object. PushesEverythingInside = @true
      just approximates the moving 3D object by it's bounding box.

      On the other hand, PushesEverythingInside = @true makes the elevator
      more "sticky". With PushesEverythingInside = @false,
      when player hits the floor, it takes them some time to raise up.
      This creates a "bouncing camera" effect when the elevator goes up
      quickly: player constantly falls to the ground, tries to get up,
      but elevator moves up and player falls to it's ground again.
      When the elevator goes down, the player/creature constantly falls
      down on it because of gravity, which again causes artifacts
      as gravity may work significantly slower/faster than elavator moving speed.
      When the elevator is a horizontal moving platform, it will "slip"
      from under the player/creature, leaving the poor fella suddenly hanging
      in the air, and falling down because of gravity in the next second.

      In practice: PushesEverythingInside should be @true for small
      containers, when you can reasonably assume that things (creatures,
      player, items) stand inside, and when you intend to use it for transport
      of 3D stuff. For very large moving stuff, that possibly
      interacts with flying players/creatures in some creative way,
      PushesEverythingInside may be @false. }
    property PushesEverythingInside: boolean
      read FPushesEverythingInside write FPushesEverythingInside default true;
  end;

  { 3D moving with constant speed between 2 points.
    Moves with a constant speed from (0, 0, 0) to TranslationEnd.
    They are called @italic(begin position) and @italic(end position).

    This is a simplified, more comfortable descendant of T3DMoving.
    You get easy to use GoBeginPosition, GoEndPosition
    properties, you can easily set sounds by SoundGoBeginPosition and
    SoundGoEndPosition and such. }
  T3DLinearMoving = class(T3DMoving)
  private
    FEndPosition: boolean;
    FEndPositionStateChangeTime: Single;

    FSoundGoBeginPosition: TSoundType;
    FSoundGoEndPosition: TSoundType;
    FSoundGoBeginPositionLooping: boolean;
    FSoundGoEndPositionLooping: boolean;
    FSoundTracksCurrentPosition: boolean;

    UsedSound: TSound;
    procedure SoundRelease(Sender: TSound);
    function SoundPosition: TVector3Single;
    procedure PlaySound(SoundType: TSoundType; Looping: boolean);
  public
    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;

    { Is this object in @italic(end position), or going to it.
      If @false, then this object is in @italic(begin position)
      or going to it. See also CompletelyEndPosion and CompletelyBeginPosition.

      Initially this is @false, and EndPositionStateChangeTime is set such that
      we're sure that we're in CompletelyBeginPosion, }
    property EndPosition: boolean read FEndPosition;

    { Last time EndPosition changed. }
    property EndPositionStateChangeTime: Single read FEndPositionStateChangeTime;

    function CompletelyEndPosition: boolean;
    function CompletelyBeginPosition: boolean;

    { Start going to @italic(begin position), assuming that
      currently we're in @italic(end position) (i.e. CompletelyEndPosion). }
    procedure GoBeginPosition;

    { Start going to @italic(end position), assuming that
      currently we're in @italic(begin position) (i.e. CompletelyBeginPosion). }
    procedure GoEndPosition;

    { Stop going from @italic(end position) to @italic(begin position)
      and go back to @italic(end position). Call this only when currently
      EndPosition is @false and we were in the middle of going to
      @italic(begin position).

      As an example, this is what happens when door on DOOM level gets blocked.
      In the middle of closing (which ig going to @italic(begin position))
      it will realize that something blocks it, and open back
      (go back to @italic(end position)).  }
    procedure RevertGoEndPosition;

    { Just like RevertGoEndPosition, but this should be used in the middle
      of the move from @italic(begin position) to @italic(end position),
      to go back to @italic(begin position). }
    procedure RevertGoBeginPosition;

    { This goes to the @italic(other) position.
      Which means that if we're completely in @italic(end position)
      or in the middle of move to @italic(end position), this goes
      back to @italic(begin position). And if we're in @italic(begin position),
      this goes back to @italic(end position). }
    procedure GoOtherPosition;

    property SoundGoBeginPosition: TSoundType
      read FSoundGoBeginPosition write FSoundGoBeginPosition default stNone;
    property SoundGoEndPosition: TSoundType
      read FSoundGoEndPosition write FSoundGoEndPosition default stNone;

    property SoundGoBeginPositionLooping: boolean
      read FSoundGoBeginPositionLooping write FSoundGoBeginPositionLooping
      default false;
    property SoundGoEndPositionLooping: boolean
      read FSoundGoEndPositionLooping write FSoundGoEndPositionLooping
      default false;

    { If @true then the sound (set by SoundGoBeginPosition or
      SoundGoEndPosition) 3D position changes as the 3D position of the object
      changes.

      Otherwise (default) sound is initially made at initial
      3D position of this object, and then the sound position doesn't change
      (even if the position of the object changes). }
    property SoundTracksCurrentPosition: boolean
      read FSoundTracksCurrentPosition write FSoundTracksCurrentPosition
      default false;
  public
    MoveTime: Single;
    TranslationEnd: TVector3Single;

    function GetTranslationFromTime(const AnAnimationTime: TFloatTime):
      TVector3Single; override;

    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); override;
  end;

  { Alive, oriented 3D object. Basis for players, creatures and everything
    else that has some position, direction and that can be killed.

    Note that the T3DAlive doesn't remove dead objects, doesn't make any
    dead animations or such. T3DAlive class merely keeps track of
    @link(Life), @link(Dead) and such properties,
    and allows you to call @link(Hurt) doing eventual knockback.
    If your own code doesn't call @link(Hurt),
    or even doesn't look at @link(Life) value, then they have no implication
    for given 3D object, so it may be indestructible just like other 3D objects. }
  T3DAlive = class(T3DOrient)
  private
    FLifeTime: Single;
    FDieTime: Single;
    FLife: Single;
    FMaxLife: Single;
    { FKnockbackDistance <= 0 means "no knockback currently" }
    FKnockbackDistance: Single;
    FLastHurtDirection: TVector3Single;
    { Same as LastHurtDirection but (for things with Gravity) flattened
      to be orthogonal to World.Gravity. This prevents from "pushing" creatures
      into the floor by hitting them in downward direction, which is often
      too easy for non-flying creatures that have Sphere with Middle point high. }
    FLastHurtDirectionGround: TVector3Single;
    FKnockBackSpeed: Single;
  protected
    procedure SetLife(const Value: Single); virtual;
    procedure CancelKnockback;
  public
    const
      DefaultKnockBackSpeed = 1.0;

    constructor Create(AOwner: TComponent); override;

    { Shortcut for checking Life <= 0. }
    function Dead: boolean;

    { Hurt given creature, decreasing it's life by LifeLoss,
      setting last attack direction (used by knockback and some other effects),
      optionally doing a knockback.
      If all you want to do is to decrease Life, you can also just set @link(Life)
      property. Unless your code depends on LastHurtDirection being always updated
      (only TCreature in CastleCreatures unit depends on it now).

      HurtDirection should be a normalized vector indicating direction
      in which the attack came.

      AKnockbackDistance, if non-zero, indicates to push creature by given
      length in the direction given by HurtDirection.
      Ignored if HurtDirection is zero.

      Attacker is the other alive creature that caused this damage. It may be @nil
      if no other T3DAlive is directly responsible for this damage. This may
      be useful for various purposes, for example the victim may become aware
      of attacker presence when it's attacked. }
    procedure Hurt(const LifeLoss: Single;
      const HurtDirection: TVector3Single;
      const AKnockbackDistance: Single; const Attacker: T3DAlive); virtual;

    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); override;

    { Direction from where the attack came.
      Zero if there was no specific direction of last attack,
      otherwise a normalized (length 1) vector. }
    property LastHurtDirection: TVector3Single read FLastHurtDirection;

    property LifeTime: Single read FLifeTime;

    { Time of death, only valid if @link(Dead), taken from LifeTime. }
    property DieTime: Single read FDieTime;
  published
    { Current Life. We're dead when this is <= 0. }
    property Life: Single read FLife write SetLife;

    { Maximum amount of life. Used as default value for Life when sensible.
      Can be also used for information (to display on player HUDs and such).

      It's not really a limit, that is you can set Life
      to something larger than MaxLife if you want. It's normal in some games,
      where you can get some "magic life boost" that makes your health temporarily
      larger than normal. Whether it's sensible in your game (and whether your
      HUD will display it sensibly) is up to you. }
    property MaxLife: Single read FMaxLife write FMaxLife;

    { Scales how far the knockback effect pushes this creature/player. }
    property KnockBackSpeed: Single read FKnockBackSpeed write FKnockBackSpeed
      default DefaultKnockBackSpeed;
  end;

  T3DExistsEvent = function(const Item: T3D): boolean of object;

const
  MaxSingle = Math.MaxSingle;

  { Default values common to TPlayer and TCreature classes.

    Note that FallMinHeightToSound is usually better to be larger for player,
    to avoid making "fall" sound when player merely jumps or walks down a steep
    hill. No such need for creature.

    @groupBegin }
  DefaultFallMinHeightToDamage = 5.0;
  DefaultFallDamageScaleMin = 0.8;
  DefaultFallDamageScaleMax = 1.2;
  DefaultCreatureFallMinHeightToSound = 1.0;
  DefaultPlayerFallMinHeightToSound = 4.0;
  DefaultCreatureFallSoundName = 'creature_fall';
  DefaultPlayerFallSoundName = 'player_fall';
  { @groupEnd }

  DirectionFromOrientation: array [TOrientationType] of TVector3Single =
  ( (0, 0, -1),
    (0, -1, 0),
    (1, 0, 0) );
  UpFromOrientation: array [TOrientationType] of TVector3Single =
  ( (0, 1, 0),
    (0, 0, 1),
    (0, 0, 1) );

{ Apply transformation to a matrix.
  Calculates at the same time transformation matrix, and it's inverse,
  and multiplies given Transform, TransformInverse appropriately.
  The precise meaning of Center, Translation and such parameters
  follows exactly the X3D Transform node definition (see
  http://www.web3d.org/files/specifications/19775-1/V3.2/Part01/components/group.html#Transform ). }
procedure TransformMatricesMult(var Transform, TransformInverse: TMatrix4Single;
  const Center: TVector3Single;
  const Rotation: TVector4Single;
  const Scale: TVector3Single;
  const ScaleOrientation: TVector4Single;
  const Translation: TVector3Single);

var
  { Creatures, items and possibly other 3D stuff may look at these variables
    to display additional features of 3D objects, helpful to debug collisions,
    AI and other things.
    @groupBegin }
  RenderDebug3D: boolean = false;
  RenderDebugCaptions: boolean = false;
  { @groupEnd }

  { Log shadow volume information.

    Meaningful only if you initialized log (see CastleLog unit) by InitializeLog first. }
  LogShadowVolumes: boolean = false;

implementation

uses SysUtils, CastleWarnings;

{ TRayCollision --------------------------------------------------------------- }

function TRayCollision.IndexOfItem(const Item: T3D): Integer;
begin
  for Result := 0 to Count - 1 do
    if L[Result].Item = Item then Exit;
  Result := -1;
end;

{ TRenderParams -------------------------------------------------------------- }

constructor TRenderParams.Create;
begin
  inherited;
  RenderTransform := IdentityMatrix4Single;
  RenderTransformIdentity := true;
end;

{ T3D -------------------------------------------------------------------- }

constructor T3D.Create(AOwner: TComponent);
begin
  inherited;
  FCastShadowVolumes := true;
  FExists := true;
  FCollides := true;
  FCursor := mcDefault;
end;

destructor T3D.Destroy;
begin
  GLContextClose;
  inherited;
end;

procedure T3D.Render(const Frustum: TFrustum; const Params: TRenderParams);
begin
end;

procedure T3D.RenderShadowVolume(
  ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
  const ParentTransformIsIdentity: boolean;
  const ParentTransform: TMatrix4Single);
begin
end;

procedure T3D.PrepareResources(Options: TPrepareResourcesOptions;
  ProgressStep: boolean; BaseLights: TAbstractLightInstancesList);
begin
end;

function T3D.PrepareResourcesSteps: Cardinal;
begin
  Result := 0;
end;

function T3D.Press(const Event: TInputPressRelease): boolean;
begin
  Result := false;
end;

function T3D.Release(const Event: TInputPressRelease): boolean;
begin
  Result := false;
end;

function T3D.PointingDeviceActivate(const Active: boolean;
  const Distance: Single): boolean;
begin
  Result := false;
end;

function T3D.PointingDeviceMove(const Pick: TRayCollisionNode;
  const Distance: Single): boolean;
begin
  Result := false;
end;

procedure T3D.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);
begin
end;

procedure T3D.VisibleChangeHere(const Changes: TVisibleChanges);
begin
  if Parent <> nil then
    Parent.VisibleChangeHere(Changes);
end;

procedure T3D.VisibleChangeNotification(const Changes: TVisibleChanges);
begin
end;

procedure T3D.SetCursor(const Value: TMouseCursor);
begin
  if FCursor <> Value then
  begin
    FCursor := Value;
    CursorChange;
  end;
end;

procedure T3D.CursorChange;
begin
  { pass CursorChange event up the tree (eventually, to the scenemanager, that will
    pass it by TUIControl similar OnCursorChange mechanism to the container). }
  if Parent <> nil then Parent.CursorChange;
end;

procedure T3D.GLContextClose;
begin
end;

function T3D.HeightCollision(const Position, GravityUp: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  out AboveHeight: Single; out AboveGround: P3DTriangle): boolean;
var
  Intersection: TVector3Single;
  IntersectionDistance: Single;
begin
  AboveHeight := MaxSingle;
  AboveGround := nil;

  Result := GetCollides and
    { Using TryRayEntrance here would also be sensible, but sometimes too eager:
      In case creature walks over an item, it would cause the item to go upward
      (because the creature is collidable (item is not), so item's gravity
      would cause it to grow). Sometimes also the creatures would too easily
      climb on top of each other.
      It may be changed in the future back into TryRayEntrance? Item problems
      could be solved by using GrowSpeed = 0 for items. }
    BoundingBox.TryRayClosestIntersection(Intersection, IntersectionDistance, Position, -GravityUp);
  if Result then
    AboveHeight := IntersectionDistance;
end;

function T3D.MoveCollision(
  const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  { A simple implementation, just don't do wall-sliding. }
  Result := MoveCollision(OldPos, ProposedNewPos, IsRadius, Radius, OldBox, NewBox,
    TrianglesToIgnoreFunc);
  if Result then
    NewPos := ProposedNewPos;
end;

function T3D.MoveCollision(
  const OldPos, NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  MyBox: TBox3D;

  { P1 is closer to our middle than P2. }
  function CloserToMiddle(const P1, P2: TVector3Single): boolean;
  var
    M: TVector3Single;
  begin
    M := Middle;
    Result := PointsDistanceSqr(M, P1) < PointsDistanceSqr(M, P2);
  end;

var
  OldCollision, NewCollision: boolean;
begin
  { check collision with our bounding box.

    We do not look here at our own sphere. When other objects move,
    it's better to treat ourself as larger (not smaller), to prevent
    collisions rather then allow them in case of uncertainty.
    So we ignore Self.Sphere method.

    But we do take into account that other (moving) object may prefer to
    be treated as a sphere, so we take into account IsRadius, Radius parameters.
    This allows a player to climb on top of dead corpses (with flat
    bbox), since player's sphere is slightly above the ground.
    And it allows the missiles (like arrow) to use their spheres
    for determining what is hit, which is good because e.g. arrow
    has a very large bbox, sphere is much better (otherwise it may be too easy
    to hit with arrow). }

  Result := true;

  if GetCollides then
  begin
    MyBox := BoundingBox;

    if IsRadius then
    begin
      OldCollision := MyBox.SphereCollision(OldPos, Radius);
      NewCollision := MyBox.SphereCollision(NewPos, Radius);
    end else
    begin
      OldCollision := MyBox.Collision(OldBox);
      NewCollision := MyBox.Collision(NewBox);
    end;

    if NewCollision then
    begin
      { We now know that we have a collision with new position.
        Strictly thinking, move should be disallowed
        (we should exit with false). But it's not that simple.

        There is a weakness in collision checking with dynamic objects,
        like creatures, because when LifeTime changes then effectively
        BoundingBox changes, and there is no way how I can prevent collisions
        from occuring (we cannot stop/reverse an arbitrary animation,
        this would look bad and require AI preparations, see @link(Sphere) comments).

        So we must allow some moves, to allow player/creature that is already
        stuck (already collidable with Self) to get out of the collision.
        To do this, we are going to enable a move, only if *old position
        was already collidable (so the other object is stuck with us already)
        and new position is further from us (so the other object tries
        to get unstuck)". }
      if (not OldCollision) or CloserToMiddle(NewPos, OldPos) then
        Exit(false);
    end else
    if (not OldCollision) and
       { new and old positions are Ok (not collidable), so check also
         line segment. Otherwise fast moving player could run through slim
         creature. }
       MyBox.SegmentCollision(OldPos, NewPos) then
      Exit(false);
  end;

{ Simpler implementation that doesn't allow others to become "unstuck".
  It's also slightly less optimal, as internally BoundingBox and GetCollides
  will be calculated many times (although they should be lighting-fast,
  still their time matters, as this is the basis of our AI and may be called
  many times per frame).
  OTOH, this simpler version is a little cleaner: it delegates work
  to other methods, they may use BoundingBox or something else.

  if IsRadius then
    Result := not ( GetCollides and
      ( SegmentCollision(OldPos, ProposedNewPos, TrianglesToIgnoreFunc, false) or
        SphereCollision(ProposedNewPos, Radius, TrianglesToIgnoreFunc) ) ) else
    Result := not ( GetCollides and
      ( SegmentCollision(OldPos, ProposedNewPos, TrianglesToIgnoreFunc, false) or
        BoxCollision(NewBox, TrianglesToIgnoreFunc) ) );
}
end;

function T3D.SegmentCollision(const Pos1, Pos2: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  const ALineOfSight: boolean): boolean;
begin
  Result := (GetCollides or (ALineOfSight and GetExists)) and
    BoundingBox.SegmentCollision(Pos1, Pos2);
end;

function T3D.SphereCollision(const Pos: TVector3Single; const Radius: Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := GetCollides and BoundingBox.SphereCollision(Pos, Radius);
end;

function T3D.BoxCollision(const Box: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := GetCollides and BoundingBox.Collision(Box);
end;

function T3D.RayCollision(const RayOrigin, RayDirection: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision;
var
  Intersection: TVector3Single;
  IntersectionDistance: Single;
  NewNode: PRayCollisionNode;
begin
  if GetExists and
    BoundingBox.TryRayEntrance(Intersection, IntersectionDistance, RayOrigin, RayDirection) then
  begin
    Result := TRayCollision.Create;
    Result.Distance := IntersectionDistance;

    NewNode := Result.Add;
    NewNode^.Item := Self;
    NewNode^.Point := Intersection;
    { better T3D implementation could assign here something nice to NewNode^.Triangle,
      to inform T3D.PointingDeviceMove/Activate about the intersected material. }
    NewNode^.Triangle := nil;
    NewNode^.RayOrigin := RayOrigin;
    NewNode^.RayDirection := RayDirection;
  end else
    Result := nil;
end;

procedure T3D.UpdateGeneratedTextures(
  const RenderFunc: TRenderFromViewFunction;
  const ProjectionNear, ProjectionFar: Single;
  const OriginalViewportX, OriginalViewportY: LongInt;
  const OriginalViewportWidth, OriginalViewportHeight: Cardinal);
begin
end;

function T3D.Dragging: boolean;
begin
  Result := false;
end;

function T3D.GetExists: boolean;
begin
  Result := FExists and (Disabled = 0);
end;

function T3D.GetCollides: boolean;
begin
  Result := FCollides and GetExists;
end;

procedure T3D.Translate(const T: TVector3Single);
begin
end;

function T3D.Middle: TVector3Single;
begin
  Result := ZeroVector3Single;
end;

function T3D.Sector: TSector;
begin
  if (World <> nil) and (World.Sectors <> nil) then
    Result := World.Sectors.SectorWithPoint(Middle) else
    Result := nil;
end;

function T3D.Sphere(out Radius: Single): boolean;
begin
  Result := false;
  Radius := 0;
end;

procedure T3D.Disable;
begin
  Inc(Disabled);
end;

procedure T3D.Enable;
begin
  Dec(Disabled);
end;

function T3D.World: T3DWorld;
begin
  if Parent <> nil then
    Result := Parent.World else
    Result := nil;
end;

function T3D.Height(const MyPosition: TVector3Single;
  out AboveHeight: Single): boolean;
var
  AboveGroundIgnored: P3DTriangle;
begin
  Result := Height(MyPosition, AboveHeight, AboveGroundIgnored);
end;

function T3D.Height(const MyPosition: TVector3Single;
  out AboveHeight: Single; out AboveGround: P3DTriangle): boolean;
begin
  Disable;
  try
    Result := World.WorldHeight(MyPosition, AboveHeight, AboveGround);
  finally Enable end;
end;

function T3D.LineOfSight(const Pos1, Pos2: TVector3Single): boolean;
begin
  Disable;
  try
    Result := World.WorldLineOfSight(Pos1, Pos2);
  finally Enable end;
end;

function T3D.MoveAllowed(
  const OldPos, ProposedNewPos: TVector3Single;
  out NewPos: TVector3Single;
  const BecauseOfGravity: boolean): boolean;
var
  Sp: boolean;
  SpRadius: Single;
  OldBox, NewBox: TBox3D;
begin
  { save bounding volume information before calling Disable, as Disable makes
    bounding volume empty }
  Sp := Sphere(SpRadius);
  if not Sp then
    SpRadius := 0; { something predictable, for safety }
  OldBox := BoundingBox;
  NewBox := OldBox.Translate(ProposedNewPos - OldPos);

  Disable;
  try
    Result := World.WorldMoveAllowed(OldPos, ProposedNewPos, NewPos,
      Sp, SpRadius, OldBox, NewBox, BecauseOfGravity);
  finally Enable end;
end;

function T3D.MoveAllowed(
  const OldPos, NewPos: TVector3Single;
  const BecauseOfGravity: boolean): boolean;
var
  Sp: boolean;
  SpRadius: Single;
  OldBox, NewBox: TBox3D;
begin
  { save bounding volume information before calling Disable, as Disable makes
    bounding volume empty }
  Sp := Sphere(SpRadius);
  if not Sp then
    SpRadius := 0; { something predictable, for safety }
  OldBox := BoundingBox;
  NewBox := OldBox.Translate(NewPos - OldPos);

  Disable;
  try
    Result := World.WorldMoveAllowed(OldPos, NewPos,
      Sp, SpRadius, OldBox, NewBox, BecauseOfGravity);
  finally Enable end;
end;

function T3D.Ray(
  const RayOrigin, RayDirection: TVector3Single): TRayCollision;
begin
  Disable;
  try
    Result := World.WorldRay(RayOrigin, RayDirection);
  finally Enable end;
end;

function T3D.Move(const Translation: TVector3Single;
  const BecauseOfGravity, EnableWallSliding: boolean): boolean;
var
  OldMiddle, ProposedNewMiddle, NewMiddle: TVector3Single;
begin
  OldMiddle := Middle;

  if EnableWallSliding then
  begin
    ProposedNewMiddle := OldMiddle + Translation;
    Result := MoveAllowed(OldMiddle, ProposedNewMiddle, NewMiddle, BecauseOfGravity);
  end else
  begin
    NewMiddle := OldMiddle + Translation;
    Result := MoveAllowed(OldMiddle, NewMiddle, BecauseOfGravity);
  end;

  if Result then
    Translate(NewMiddle - OldMiddle);
end;

function T3D.Shared: T3D;
begin
  Result := Self;
end;

{ T3DListCore ------------------------------------------------------------ }

constructor T3DListCore.Create(const FreeObjects: boolean; const AOwner: T3DList);
begin
  inherited Create(FreeObjects);
  FOwner := AOwner;
end;

procedure T3DListCore.Notify(Ptr: Pointer; Action: TListNotification);
var
  B: T3D;
begin
  inherited;

  if Owner <> nil then
  begin
    B := T3D(Ptr);

    case Action of
      lnAdded:
        begin
          if B.FParent = nil then
            B.FParent := Owner;
          { Register Owner to be notified of item destruction. }
          B.FreeNotification(Owner);
        end;
      lnExtracted, lnDeleted:
        begin
          if B.FParent = Owner then
            B.FParent := nil;
          B.RemoveFreeNotification(Owner);
        end;
      else raise EInternalError.Create('T3DListCore.Notify action?');
    end;

    { This notification may get called during FreeAndNil(FList)
      in T3DList.Destroy. Then FList is already nil (as FreeAndNil
      first sets object to nil), and Owner.CursorChange
      may not be ready for this. }
    if Owner.FList <> nil then
      Owner.CursorChange;
  end;
end;

function T3DListCore.GetItem(const I: Integer): T3D;
begin
  Result := T3D(inherited Items[I]);
end;

procedure T3DListCore.SetItem(const I: Integer; const Item: T3D);
begin
  inherited Items[I] := Item;
end;

function T3DListCore.First: T3D;
begin
  Result := (inherited First) as T3D;
end;

function T3DListCore.Last: T3D;
begin
  Result := (inherited Last) as T3D;
end;

{ T3DList ---------------------------------------------------------------- }

constructor T3DList.Create(AOwner: TComponent);
begin
  inherited;
  FList := T3DListCore.Create(false, Self);
end;

destructor T3DList.Destroy;
begin
  FreeAndNil(FList);
  inherited;
end;

function T3DList.GetChild: T3D;
begin
  Result := nil;
end;

procedure T3DList.Add(const Item: T3D);
begin
  List.Add(Item);
end;

procedure T3DList.Insert(const Index: Integer; const Item: T3D);
begin
  List.Insert(Index, Item);
end;

function T3DList.GetItem(const I: Integer): T3D;
begin
  Result := List[I];
end;

procedure T3DList.SetItem(const I: Integer; const Item: T3D);
begin
  List[I] := Item;
end;

function T3DList.Count: Integer;
begin
  Result := List.Count;
end;

procedure T3DList.Remove(const Item: T3D);
begin
  List.Remove(Item);
end;

procedure T3DList.Clear;
begin
  List.Clear;
end;

function T3DList.BoundingBox: TBox3D;
var
  I: Integer;
begin
  Result := EmptyBox3D;
  if GetExists then
  begin
    if GetChild <> nil then
      Result.Add(GetChild.BoundingBox);
    for I := 0 to List.Count - 1 do
      Result.Add(List[I].BoundingBox);
  end;
end;

procedure T3DList.Render(const Frustum: TFrustum; const Params: TRenderParams);
var
  I: Integer;
begin
  inherited;
  if GetExists then
  begin
    if GetChild <> nil then
      GetChild.Render(Frustum, Params);
    for I := 0 to List.Count - 1 do
      List[I].Render(Frustum, Params);
  end;
end;

procedure T3DList.RenderShadowVolume(
  ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
  const ParentTransformIsIdentity: boolean;
  const ParentTransform: TMatrix4Single);
var
  I: Integer;
begin
  inherited;
  if GetExists and CastShadowVolumes then
  begin
    if GetChild <> nil then
      GetChild.RenderShadowVolume(ShadowVolumeRenderer,
        ParentTransformIsIdentity, ParentTransform);
    for I := 0 to List.Count - 1 do
      List[I].RenderShadowVolume(ShadowVolumeRenderer,
        ParentTransformIsIdentity, ParentTransform);
  end;
end;

procedure T3DList.PrepareResources(Options: TPrepareResourcesOptions;
  ProgressStep: boolean; BaseLights: TAbstractLightInstancesList);
var
  I: Integer;
begin
  inherited;
  if GetChild <> nil then
    GetChild.PrepareResources(Options, ProgressStep, BaseLights);
  for I := 0 to List.Count - 1 do
    List[I].PrepareResources(Options, ProgressStep, BaseLights);
end;

function T3DList.PrepareResourcesSteps: Cardinal;
var
  I: Integer;
begin
  Result := inherited;
  if GetChild <> nil then
    Result += GetChild.PrepareResourcesSteps;
  for I := 0 to List.Count - 1 do
    Result += List[I].PrepareResourcesSteps;
end;

function T3DList.Press(const Event: TInputPressRelease): boolean;
var
  I: Integer;
begin
  Result := inherited;
  if Result or (not GetExists) then Exit;

  if GetChild <> nil then
    if GetChild.Press(Event) then Exit(true);
  for I := 0 to List.Count - 1 do
    if List[I].Press(Event) then Exit(true);
end;

function T3DList.Release(const Event: TInputPressRelease): boolean;
var
  I: Integer;
begin
  Result := inherited;
  if Result or (not GetExists) then Exit;

  if GetChild <> nil then
    if GetChild.Release(Event) then Exit(true);
  for I := 0 to List.Count - 1 do
    if List[I].Release(Event) then Exit(true);
end;

procedure T3DList.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);
var
  I: Integer;
  Item: T3D;
  RemoveItem: TRemoveType;
begin
  inherited;
  if GetExists then
  begin
    if GetChild <> nil then
    begin
      RemoveItem := rtNone;
      GetChild.Update(SecondsPassed, RemoveItem);
      { resulting RemoveItem is ignored, GetChild cannot be removed }
    end;

    I := 0;
    while I < List.Count do
    begin
      Item := List[I];
      RemoveItem := rtNone;
      Item.Update(SecondsPassed, RemoveItem);
      if RemoveItem in [rtRemove, rtRemoveAndFree] then
      begin
        List.Delete(I);
        if RemoveItem = rtRemoveAndFree then
          FreeAndNil(Item);
      end else
        Inc(I);
    end;
  end;
end;

procedure T3DList.GLContextClose;
var
  I: Integer;
begin
  if GetChild <> nil then
    GetChild.GLContextClose;
  { this is called from inherited destructor, so check <> nil carefully }
  if FList <> nil then
  begin
    for I := 0 to List.Count - 1 do
      List[I].GLContextClose;
  end;

  inherited;
end;

procedure T3DList.Notification(AComponent: TComponent; Operation: TOperation);
begin
  inherited;

  { We have to remove a reference to the object from the List.
    This is crucial: T3DListCore.Notify,
    and e.g. GLContextClose call, assume that all objects on
    the List are always valid objects (no invalid references,
    even for a short time). }

  { About List <> nil check:

    How situation with List = nil may happen? When our List is destroyed,
    it calls B.FreeNotification on all it's items, so it (falsely) seems we will
    not get any more notifications.

    It turns out that we may get notifications,
    and they are notifications about our own destruction (AComponent = Self).
    That is because TComponent.Notification passes down the notification to
    all it's FComponents, that is rtl/objpas/classes/compon.inc
    (in FPC sources) contains code

    Procedure TComponent.Notification(AComponent: TComponent; Operation: TOperation);
    begin
      ...
      For Runner:=0 To FComponents.Count-1 do
        TComponent(FComponents.Items[Runner]).Notification(AComponent,Operation);
    end;

    And FComponents contain all components that are owned.
    So we are informed when something is removed from the owner,
    including about our own removal. (And in this case, we are a T3D descendant
    ourselves, just like our children; so check "AComponent is T3D" doesn't
    protect us.)
    Practical situation when it happens is in testcases
    TTestCastle3D.TestNotifications and TTestCastle3D.TestNotificationsSceneManager. }

  if (Operation = opRemove) and (AComponent is T3D) and (List <> nil) then
    List.DeleteAll(AComponent);
end;

function T3DList.HeightCollision(const Position, GravityUp: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  out AboveHeight: Single; out AboveGround: P3DTriangle): boolean;
var
  I: Integer;
  NewResult: boolean;
  NewAboveHeight: Single;
  NewAboveGround: P3DTriangle;
begin
  Result := false;
  AboveHeight := MaxSingle;
  AboveGround := nil;

  if GetCollides then
  begin
    if GetChild <> nil then
    begin
      NewResult := GetChild.HeightCollision(Position, GravityUp, TrianglesToIgnoreFunc,
        NewAboveHeight, NewAboveGround);

      if NewAboveHeight < AboveHeight then
      begin
        Result := NewResult;
        AboveHeight := NewAboveHeight;
        AboveGround := NewAboveGround;
      end;
    end;

    for I := 0 to List.Count - 1 do
    begin
      NewResult := List[I].HeightCollision(Position, GravityUp, TrianglesToIgnoreFunc,
        NewAboveHeight, NewAboveGround);

      if NewAboveHeight < AboveHeight then
      begin
        Result := NewResult;
        AboveHeight := NewAboveHeight;
        AboveGround := NewAboveGround;
      end;
    end;
  end;
end;

function T3DList.MoveCollision(
  const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  I: Integer;
begin
  if GetCollides then
  begin
    { We call MoveCollision with separate ProposedNewPos and NewPos
      only on the first scene (or GetChild, if exists).
      This means that only first scene collisions provide wall sliding.
      Collisions with other 3D objects will simply block the player.

      Otherwise, various MoveCollision could modify NewPos
      making it colliding with other items, already checked. This would
      be wrong.

      TODO: this could be improved, to call MoveCollision
      with separate ProposedNewPos and NewPos
      on the first scene
      where the simple move is not allowed. This would make it more general,
      although also slower. Is there any way to make it as fast and
      more general? }

    if GetChild <> nil then
    begin
      Result := GetChild.MoveCollision(OldPos, ProposedNewPos, NewPos,
        IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
      if not Result then Exit;

      for I := 0 to List.Count - 1 do
      begin
        Result := List[I].MoveCollision(OldPos, NewPos,
          IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
        if not Result then Exit;
      end;
    end else
    if List.Count <> 0 then
    begin
      Result := List[0].MoveCollision(OldPos, ProposedNewPos, NewPos,
        IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
      if not Result then Exit;

      for I := 1 to List.Count - 1 do
      begin
        Result := List[I].MoveCollision(OldPos, NewPos,
          IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
        if not Result then Exit;
      end;
    end;
  end else
  begin
    Result := true;
    NewPos := ProposedNewPos;
  end;
end;

function T3DList.MoveCollision(
  const OldPos, NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  I: Integer;
begin
  Result := true;

  if GetCollides then
  begin
    if GetChild <> nil then
    begin
      Result := GetChild.MoveCollision(OldPos, NewPos,
        IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
      if not Result then Exit;
    end;

    for I := 0 to List.Count - 1 do
    begin
      Result := List[I].MoveCollision(OldPos, NewPos,
        IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
      if not Result then Exit;
    end;
  end;
end;

function T3DList.SegmentCollision(const Pos1, Pos2: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  const ALineOfSight: boolean): boolean;
var
  I: Integer;
begin
  Result := false;

  if GetCollides or (ALineOfSight and GetExists) then
  begin
    if GetChild <> nil then
    begin
      Result := GetChild.SegmentCollision(Pos1, Pos2, TrianglesToIgnoreFunc, ALineOfSight);
      if Result then Exit;
    end;

    for I := 0 to List.Count - 1 do
    begin
      Result := List[I].SegmentCollision(Pos1, Pos2, TrianglesToIgnoreFunc, ALineOfSight);
      if Result then Exit;
    end;
  end;
end;

function T3DList.SphereCollision(const Pos: TVector3Single; const Radius: Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  I: Integer;
begin
  Result := false;

  if GetCollides then
  begin
    if GetChild <> nil then
    begin
      Result := GetChild.SphereCollision(Pos, Radius, TrianglesToIgnoreFunc);
      if Result then Exit;
    end;

    for I := 0 to List.Count - 1 do
    begin
      Result := List[I].SphereCollision(Pos, Radius, TrianglesToIgnoreFunc);
      if Result then Exit;
    end;
  end;
end;

function T3DList.BoxCollision(const Box: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  I: Integer;
begin
  Result := false;

  if GetCollides then
  begin
    if GetChild <> nil then
    begin
      Result := GetChild.BoxCollision(Box, TrianglesToIgnoreFunc);
      if Result then Exit;
    end;

    for I := 0 to List.Count - 1 do
    begin
      Result := List[I].BoxCollision(Box, TrianglesToIgnoreFunc);
      if Result then Exit;
    end;
  end;
end;

function T3DList.RayCollision(const RayOrigin, RayDirection: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision;

  procedure AddNewResult(NewResult: TRayCollision);
  begin
    if NewResult <> nil then
    begin
      if (Result = nil) or (NewResult.Distance < Result.Distance) then
      begin
        SysUtils.FreeAndNil(Result);
        Result := NewResult;
      end else
        FreeAndNil(NewResult);
    end;
  end;

var
  I: Integer;

  NewNode, PreviousNode: PRayCollisionNode;
begin
  Result := nil;

  if GetExists then
  begin
    if GetChild <> nil then
      AddNewResult(GetChild.RayCollision(RayOrigin, RayDirection, TrianglesToIgnoreFunc));
    for I := 0 to List.Count - 1 do
      AddNewResult(List[I].RayCollision(RayOrigin, RayDirection, TrianglesToIgnoreFunc));

    if Result <> nil then
    begin
      NewNode := Result.Add;
      PreviousNode := @(Result.List^[Result.Count - 2]);
      NewNode^.Item := Self;
      NewNode^.Point := PreviousNode^.Point;
      NewNode^.Triangle := nil;
      NewNode^.RayOrigin := RayOrigin;
      NewNode^.RayDirection := RayDirection;
    end;
  end;
end;

procedure T3DList.UpdateGeneratedTextures(
  const RenderFunc: TRenderFromViewFunction;
  const ProjectionNear, ProjectionFar: Single;
  const OriginalViewportX, OriginalViewportY: LongInt;
  const OriginalViewportWidth, OriginalViewportHeight: Cardinal);
var
  I: Integer;
begin
  inherited;
  if GetChild <> nil then
    GetChild.UpdateGeneratedTextures(
      RenderFunc, ProjectionNear, ProjectionFar,
      OriginalViewportX, OriginalViewportY,
      OriginalViewportWidth, OriginalViewportHeight);
  for I := 0 to List.Count - 1 do
    List[I].UpdateGeneratedTextures(
      RenderFunc, ProjectionNear, ProjectionFar,
      OriginalViewportX, OriginalViewportY,
      OriginalViewportWidth, OriginalViewportHeight);
end;

procedure T3DList.VisibleChangeNotification(const Changes: TVisibleChanges);
var
  I: Integer;
begin
  inherited;
  if GetChild <> nil then
    GetChild.VisibleChangeNotification(Changes);
  for I := 0 to List.Count - 1 do
    List[I].VisibleChangeNotification(Changes);
end;

function T3DList.Dragging: boolean;
var
  I: Integer;
begin
  Result := inherited;
  if Result then Exit;

  if GetChild <> nil then
  begin
    Result := GetChild.Dragging;
    if Result then Exit;
  end;

  for I := 0 to List.Count - 1 do
  begin
    Result := List[I].Dragging;
    if Result then Exit;
  end;
end;

{ TransformMatricesMult ------------------------------------------------------ }

procedure TransformMatricesMult(var Transform, TransformInverse: TMatrix4Single;
  const Center: TVector3Single;
  const Rotation: TVector4Single;
  const Scale: TVector3Single;
  const ScaleOrientation: TVector4Single;
  const Translation: TVector3Single);
var
  M, IM: TMatrix4Single;
  MRotateScaleOrient, IMRotateScaleOrient: TMatrix4Single;
begin
  { To make TransformInverse, we multiply inverted matrices in inverted order
    below. }

  MultMatricesTranslation(Transform, TransformInverse,
    VectorAdd(Translation, Center));

  { We avoid using RotationMatricesRad when angle = 0, since this
    is often the case, and it makes TransformState much faster
    (which is important --- TransformState is important for traversing state). }
  if Rotation[3] <> 0 then
  begin
    { Note that even rotation Axis = zero is OK, both M and IM will be
      identity in this case. }
    RotationMatricesRad(Rotation, M, IM);
    Transform := MatrixMult(Transform, M);
    TransformInverse := MatrixMult(IM, TransformInverse);
  end;

  if (Scale[0] <> 1) or
     (Scale[1] <> 1) or
     (Scale[2] <> 1) then
  begin
    if ScaleOrientation[3] <> 0 then
    begin
      RotationMatricesRad(ScaleOrientation, MRotateScaleOrient, IMRotateScaleOrient);
      Transform := MatrixMult(Transform, MRotateScaleOrient);
      TransformInverse := MatrixMult(IMRotateScaleOrient, TransformInverse);
    end;

    { For scaling, we explicitly request that if ScalingFactor contains
      zero, IM will be forced to be identity (the 2nd param to ScalingMatrices
      is "true"). That's because VRML allows
      scaling factor to have 0 components (we need TransformInverse only
      for special tricks). }

    ScalingMatrices(Scale, true, M, IM);
    Transform := MatrixMult(Transform, M);
    TransformInverse := MatrixMult(IM, TransformInverse);

    if ScaleOrientation[3] <> 0 then
    begin
      { That's right, we reuse MRotateScaleOrient and IMRotateScaleOrient
        matrices below. Since we want to reverse them now, so normal
        Transform is multiplied by IM and TransformInverse is multiplied by M. }
      Transform := MatrixMult(Transform, IMRotateScaleOrient);
      TransformInverse := MatrixMult(MRotateScaleOrient, TransformInverse);
    end;
  end;

  MultMatricesTranslation(Transform, TransformInverse, VectorNegate(Center));
end;

{ T3DWorld ------------------------------------------------------------------- }

function T3DWorld.World: T3DWorld;
begin
  Result := Self;
end;

function T3DWorld.GravityCoordinate: Integer;
begin
  Result := MaxAbsVectorCoord(GravityUp);
end;

{ T3DCustomTransform -------------------------------------------------------- }

constructor T3DCustomTransform.Create(AOwner: TComponent);
begin
  inherited;
  FMiddleHeight := DefaultMiddleHeight;
end;

function T3DCustomTransform.GetTranslation: TVector3Single;
begin
  Result := ZeroVector3Single;
end;

function T3DCustomTransform.GetCenter: TVector3Single;
begin
  Result := ZeroVector3Single;
end;

function T3DCustomTransform.GetRotation: TVector4Single;
begin
  Result := ZeroVector4Single;
end;

const
  NoScale: TVector3Single = (1, 1, 1);

function T3DCustomTransform.GetScale: TVector3Single;
begin
  Result := NoScale;
end;

function T3DCustomTransform.GetScaleOrientation: TVector4Single;
begin
  Result := ZeroVector4Single;
end;

function T3DCustomTransform.OnlyTranslation: boolean;
begin
  Result := false; { safer but slower default }
end;

function T3DCustomTransform.Transform: TMatrix4Single;
var
  Dummy: TMatrix4Single;
begin
  TransformMatrices(Result, Dummy); // TODO: optimize, if needed?
end;

function T3DCustomTransform.TransformInverse: TMatrix4Single;
var
  Dummy: TMatrix4Single;
begin
  TransformMatrices(Dummy, Result); // TODO: optimize, if needed?
end;

procedure T3DCustomTransform.TransformMatricesMult(
  var M, MInverse: TMatrix4Single);
begin
  Castle3D.TransformMatricesMult(M, MInverse,
    GetCenter, GetRotation, GetScale, GetScaleOrientation, GetTranslation);
end;

procedure T3DCustomTransform.TransformMatrices(
  out M, MInverse: TMatrix4Single);
begin
  M := IdentityMatrix4Single;
  MInverse := IdentityMatrix4Single;
  TransformMatricesMult(M, MInverse); // TODO: optimize, if needed?
end;

function T3DCustomTransform.AverageScale: Single;
var
  S: TVector3Single;
begin
  S := GetScale;
  Result := (S[0] + S[1] + S[2]) / 3;
end;

{ We assume in all methods below that OnlyTranslation is the most common case,
  and then that GetTranslation = 0,0,0 is the most common case.
  This is true for many 3D objects. And for only translation,
  we can calculate result much faster (and for translation = zero,
  we don't have to do anything besides calling inherited).

  For some simplest operations, we do not check for GetTranslation = 0,0,0
  case --- if applying GetTranslation is very fast, then checking for
  zero translation would be a waste of time. }

function T3DCustomTransform.BoundingBox: TBox3D;
begin
  if OnlyTranslation then
    Result := LocalBoundingBox.Translate(GetTranslation) else
    Result := LocalBoundingBox.Transform(Transform);
end;

procedure T3DCustomTransform.Render(const Frustum: TFrustum; const Params: TRenderParams);
var
  T: TVector3Single;
  OldRenderTransform, Inverse: TMatrix4Single;
  OldRenderTransformIdentity: boolean;
begin
  T := GetTranslation;
  if OnlyTranslation and ZeroVector(T) then
    inherited Render(Frustum, Params) else
    begin
      { inherited Render expects Frustum in local coordinates (without
        transformation), so we subtract transformation here. }

      OldRenderTransform         := Params.RenderTransform;
      OldRenderTransformIdentity := Params.RenderTransformIdentity;
      Params.RenderTransformIdentity := false;

      if OnlyTranslation then
      begin
        MultMatrixTranslation(Params.RenderTransform, T);
        inherited Render(Frustum.Move(-T), Params);
      end else
      begin
        Inverse := IdentityMatrix4Single;
        TransformMatricesMult(Params.RenderTransform, Inverse);
        inherited Render(Frustum.Transform(Inverse), Params);
      end;

      Params.RenderTransform         := OldRenderTransform;
      Params.RenderTransformIdentity := OldRenderTransformIdentity;
    end;
end;

procedure T3DCustomTransform.RenderShadowVolume(
  ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
  const ParentTransformIsIdentity: boolean;
  const ParentTransform: TMatrix4Single);
var
  T: TVector3Single;
begin
  if OnlyTranslation then
  begin
    T := GetTranslation;
    if ZeroVector(T) then
      inherited RenderShadowVolume(ShadowVolumeRenderer,
        ParentTransformIsIdentity, ParentTransform) else
      inherited RenderShadowVolume(ShadowVolumeRenderer,
        false, MatrixMult(TranslationMatrix(T), ParentTransform));
  end else
    inherited RenderShadowVolume(ShadowVolumeRenderer,
      false, MatrixMult(Transform, ParentTransform));
end;

function T3DCustomTransform.HeightCollision(const Position, GravityUp: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  out AboveHeight: Single; out AboveGround: P3DTriangle): boolean;
var
  MInverse: TMatrix4Single;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not GetCollides then
  begin
    Result := false;
    AboveHeight := MaxSingle;
    AboveGround := nil;
    Exit;
  end;

  if OnlyTranslation then
    Result := inherited HeightCollision(
      Position - GetTranslation, GravityUp, TrianglesToIgnoreFunc,
      AboveHeight, AboveGround) else
  begin
    MInverse := TransformInverse;
    Result := inherited HeightCollision(
      MatrixMultPoint(MInverse, Position),
      MatrixMultDirection(MInverse, GravityUp), TrianglesToIgnoreFunc,
        AboveHeight, AboveGround);
    { Note that we should not scale resulting AboveHeight by AverageScale.
      That is because AboveHeight is relative to GravityUp length,
      so it's automatically correct. }
  end;
end;

function T3DCustomTransform.MoveCollision(
  const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  T: TVector3Single;
  M, MInverse: TMatrix4Single;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not GetCollides then
  begin
    NewPos := ProposedNewPos;
    Exit(true);
  end;

  if OnlyTranslation then
  begin
    T := GetTranslation;
    Result := inherited MoveCollision(
      OldPos         - T,
      ProposedNewPos - T, NewPos,
      IsRadius, Radius,
      OldBox.AntiTranslate(T),
      NewBox.AntiTranslate(T), TrianglesToIgnoreFunc);
    { translate calculated NewPos back }
    if Result then
      NewPos += T;
  end else
  begin
    TransformMatrices(M, MInverse);
    Result := inherited MoveCollision(
      MatrixMultPoint(MInverse, OldPos),
      MatrixMultPoint(MInverse, ProposedNewPos), NewPos,
      IsRadius, Radius / AverageScale,
      OldBox.Transform(MInverse),
      NewBox.Transform(MInverse), TrianglesToIgnoreFunc);
    { transform calculated NewPos back }
    if Result then
      NewPos := MatrixMultPoint(M, NewPos);
  end;
end;

function T3DCustomTransform.MoveCollision(
  const OldPos, NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
var
  T: TVector3Single;
  MInverse: TMatrix4Single;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not GetCollides then Exit(true);

  if OnlyTranslation then
  begin
    { I have to check collision between
        Items + Translation and (OldPos, NewPos).
      So it's equivalent to checking for collision between
        Items and (OldPos, NewPos) - Translation
      And this way I can use inherited MoveCollision. }
    T := GetTranslation;
    Result := inherited MoveCollision(
      OldPos - T,
      NewPos - T,
      IsRadius, Radius,
      OldBox.AntiTranslate(T),
      NewBox.AntiTranslate(T), TrianglesToIgnoreFunc);
  end else
  begin
    MInverse := TransformInverse;
    Result := inherited MoveCollision(
      MatrixMultPoint(MInverse, OldPos),
      MatrixMultPoint(MInverse, NewPos),
      IsRadius, Radius / AverageScale,
      OldBox.Transform(MInverse),
      NewBox.Transform(MInverse), TrianglesToIgnoreFunc);
  end;
end;

function T3DCustomTransform.SegmentCollision(const Pos1, Pos2: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  const ALineOfSight: boolean): boolean;
var
  T: TVector3Single;
  MInverse: TMatrix4Single;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not (GetCollides or (ALineOfSight and GetExists)) then Exit(false);

  if OnlyTranslation then
  begin
    T := GetTranslation;
    Result := inherited SegmentCollision(Pos1 - T, Pos2 - T, TrianglesToIgnoreFunc, ALineOfSight);
  end else
  begin
    MInverse := TransformInverse;
    Result := inherited SegmentCollision(
      MatrixMultPoint(MInverse, Pos1),
      MatrixMultPoint(MInverse, Pos2), TrianglesToIgnoreFunc, ALineOfSight);
  end;
end;

function T3DCustomTransform.SphereCollision(
  const Pos: TVector3Single; const Radius: Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not GetCollides then Exit(false);

  if OnlyTranslation then
    Result := inherited SphereCollision(
      Pos - GetTranslation, Radius, TrianglesToIgnoreFunc) else
    Result := inherited SphereCollision(
      MatrixMultPoint(TransformInverse, Pos), Radius / AverageScale, TrianglesToIgnoreFunc);
end;

function T3DCustomTransform.BoxCollision(
  const Box: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not GetCollides then Exit(false);

  if OnlyTranslation then
    Result := inherited BoxCollision(
      Box.AntiTranslate(GetTranslation), TrianglesToIgnoreFunc) else
    Result := inherited BoxCollision(
      Box.Transform(TransformInverse), TrianglesToIgnoreFunc);
end;

function T3DCustomTransform.RayCollision(const RayOrigin, RayDirection: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision;
var
  T: TVector3Single;
  M, MInverse: TMatrix4Single;
  LastNode: PRayCollisionNode;
begin
  { inherited will check these anyway. But by checking them here,
    we can potentially avoid the cost of transforming into local space. }
  if not GetExists then Exit(nil);

  if OnlyTranslation then
  begin
    T := GetTranslation;
    Result := inherited RayCollision(RayOrigin - T, RayDirection, TrianglesToIgnoreFunc);
    if Result <> nil then
    begin
      LastNode := @(Result.List^[Result.Count - 1]);
      LastNode^.Point += T;
      { untransform the ray }
      LastNode^.RayOrigin := RayOrigin;
      LastNode^.RayDirection := RayDirection;
    end;
  end else
  begin
    TransformMatrices(M, MInverse);
    Result := inherited RayCollision(
      MatrixMultPoint(MInverse, RayOrigin),
      MatrixMultDirection(MInverse, RayDirection), TrianglesToIgnoreFunc);
    if Result <> nil then
    begin
      LastNode := @(Result.List^[Result.Count - 1]);
      LastNode^.Point := MatrixMultPoint(M, LastNode^.Point);
      { untransform the ray }
      LastNode^.RayOrigin := RayOrigin;
      LastNode^.RayDirection := RayDirection;

      { Note that we should not scale Result.Distance by AverageScale.
        That is because Result.Distance is relative to RayDirection length,
        so it's automatically correct. }
    end;
  end;
end;

function Bottom(const Gravity: boolean; const GravityCoordinate: Integer;
  const BoundingBox: TBox3D): Single;
begin
  if Gravity then
    Result := 0 else
    Result := BoundingBox.Data[0, GravityCoordinate];
end;

function T3DCustomTransform.Middle: TVector3Single;
var
  GC: Integer;
  B: TBox3D;
begin
  GC := World.GravityCoordinate;
  if MiddleForceBox then
    B := MiddleForceBoxValue else
    B := LocalBoundingBox;

  { More correct version would be to take B bottom point, add PreferredHeight,
    and transform this point just like T3DCustomTransform transforms everything
    else. Optimized implementation below assumes that instead
    of transforming we can add GetTranslation, so we assume that
    transformations do not change this middle point
    (which is Ok if you think e.g. about a non-flying creature that,
    besides moving, only rotates around it's own up axis). }

  Result := GetTranslation;
  Result[GC] += Bottom(Gravity, GC, B) + PreferredHeight;
end;

function T3DCustomTransform.PreferredHeight: Single;
var
  GC: Integer;
  B: TBox3D;
  { $define CHECK_HEIGHT_VS_RADIUS}
  {$ifdef CHECK_HEIGHT_VS_RADIUS} R: Single; {$endif}
begin
  GC := World.GravityCoordinate;
  if MiddleForceBox then
    B := MiddleForceBoxValue else
    B := LocalBoundingBox;
  Result := MiddleHeight * (B.Data[1, GC] - Bottom(Gravity, GC, B));

  {$ifdef CHECK_HEIGHT_VS_RADIUS}
  if Sphere(R) and (R > Result) then
  begin
    OnWarning(wtMajor, '3D Radius',
      Format('PreferredHeight %f is smaller than radius %f. Gravity may work weird for this 3D object.',
      [Result, R]));
  end;
  {$endif}
end;

procedure T3DCustomTransform.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);

  procedure DoGravity(const PreferredHeight: Single);
  var
    GravityUp: TVector3Single;

    { TODO: this is a duplicate of similar TWalkCamera method }
    procedure DoFall;
    var
      BeginPos, EndPos, FallVector: TVector3Single;
    begin
      { Project Middle and FFallingStartMiddle
        onto GravityUp vector to calculate fall height. }
      BeginPos := PointOnLineClosestToPoint(ZeroVector3Single, GravityUp, FFallingStartMiddle);
      EndPos   := PointOnLineClosestToPoint(ZeroVector3Single, GravityUp, Middle);
      FallVector := BeginPos - EndPos;

      { Because of various growing and jumping effects (imagine you jump up
        onto a taller pillar) it may turn out that we're higher at the end
        at the end of fall. Do not report it to Fall event in this case. }
      if VectorDotProduct(GravityUp, Normalized(FallVector)) <= 0 then
        Exit;

      Fall(VectorLen(FallVector));
    end;

  const
    { HeightMargin is used to safeguard against floating point inaccuracy.
      Without this, creature would too often be considered "falling down"
      or "growing up". }
    HeightMargin = 1.01;
  var
    IsAbove: boolean;
    AboveHeight, RadiusIgnored: Single;
    OldFalling: boolean;
    FallingDistance, MaximumFallingDistance: Single;
  begin
    { calculate and save GravityUp once, it's used quite often in this procedure }
    GravityUp := World.GravityUp;

    OldFalling := FFalling;

    IsAbove := Height(Middle, AboveHeight);

    if (FallSpeed <> 0) and
       (AboveHeight > PreferredHeight * HeightMargin) then
    begin
      { Fall down }
      if not FFalling then
        FFallingStartMiddle := Middle;

      FFalling := true;

      FallingDistance := FallSpeed * SecondsPassed;
      if IsAbove then
      begin
        MaximumFallingDistance := AboveHeight - PreferredHeight;

        { If you will fall down by exactly
          AboveHeight - PreferredHeight,
          then you will get exatly into collision with the ground.
          So actually this is too large MaximumFallingDistance.

          But actually it's OK when Sphere is used, because then wall-sliding
          in MoveCollision can correct new position,
          so actually it will be slightly above the ground. So falling
          down will work.

          But when Sphere is not used, the situation is worse,
          because then MoveCollision doesn't do wall-sliding.
          And it will always simply reject such move
          with MaximumFallingDistance.
          If FPS is low (so we would like to fall down at once
          by large distance), this is noticeable: in such case, instead
          of falling down, creature hangs over the ground,
          because MoveCollision simply doesn't allow it fall
          exactly by AboveHeight - PreferredHeight.
          So MaximumFallingDistance has to be a little smaller in this case.
          In particular, this was noticeable for the initially dead alien
          creature on "Doom" level, when shadows were on (when shadows were on,
          FPS is low, that's why the bug was noticeable only with shadows = on).

          TODO: the better version would be to improve
          MoveCollision for Sphere=false case, instead of
          workarounding it here with this epsilon.
          See TBaseTrianglesOctree.MoveCollision. }
        if not Sphere(RadiusIgnored) then
          MaximumFallingDistance -= 0.01;
        MinTo1st(FallingDistance, MaximumFallingDistance);
      end;

      if not Move(GravityUp * -FallingDistance, true) then
        FFalling := false;
    end else
    begin
      FFalling := false;

      if (GrowSpeed <> 0) and
         (AboveHeight < PreferredHeight / HeightMargin) then
      begin
        { Growing up }
        Move(GravityUp * Min(GrowSpeed * SecondsPassed,
          PreferredHeight - AboveHeight), false);
      end;
    end;

    if OldFalling and (not FFalling) then
      DoFall;
  end;

var
  PH: Single;
begin
  inherited;

  if GetExists and Gravity then
  begin
    PH := PreferredHeight;
    if (PH <> 0) and
       ((FallSpeed <> 0) or (GrowSpeed <> 0)) then
      { calculate and save PreferredHeight once,
        as it's used quite often in the DoGravity procedure }
      DoGravity(PH);
  end;
end;

procedure T3DCustomTransform.Fall(const FallHeight: Single);
begin
  { Nothing to do in this class }
end;

function T3DCustomTransform.LocalBoundingBox: TBox3D;
begin
  Result := inherited BoundingBox;
end;

{ T3DTransform -------------------------------------------------------------- }

constructor T3DTransform.Create(AOwner: TComponent);
begin
  inherited;
  FOnlyTranslation := true;
  FScale := NoScale;
end;

function T3DTransform.GetCenter: TVector3Single;
begin
  Result := FCenter;
end;

function T3DTransform.GetRotation: TVector4Single;
begin
  Result := FRotation;
end;

function T3DTransform.GetScale: TVector3Single;
begin
  Result := FScale;
end;

function T3DTransform.GetScaleOrientation: TVector4Single;
begin
  Result := FScaleOrientation;
end;

function T3DTransform.GetTranslation: TVector3Single;
begin
  Result := FTranslation;
end;

{ We try hard to keep OnlyTranslation return fast, and return with true.
  This will allow T3DCustomTransform to be optimized and accurate
  for often case of pure translation. }

procedure T3DTransform.SetCenter(const Value: TVector3Single);
begin
  FCenter := Value;
  FOnlyTranslation := FOnlyTranslation and
    (Value[0] = 0) and (Value[1] = 0) and (Value[2] = 0);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DTransform.SetRotation(const Value: TVector4Single);
begin
  FRotation := Value;
  FOnlyTranslation := FOnlyTranslation and (Value[3] = 0);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DTransform.SetScale(const Value: TVector3Single);
begin
  FScale := Value;
  FOnlyTranslation := FOnlyTranslation and
    (Value[0] = 1) and (Value[1] = 1) and (Value[2] = 1);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DTransform.SetScaleOrientation(const Value: TVector4Single);
begin
  FScaleOrientation := Value;
  FOnlyTranslation := FOnlyTranslation and (Value[3] = 0);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DTransform.SetTranslation(const Value: TVector3Single);
begin
  FTranslation := Value;
  VisibleChangeHere([vcVisibleGeometry]);
end;

function T3DTransform.OnlyTranslation: boolean;
begin
  Result := FOnlyTranslation;
end;

procedure T3DTransform.Translate(const T: TVector3Single);
begin
  Translation := Translation + T;
end;

{ T3DOrient ------------------------------------------------------------------ }

constructor T3DOrient.Create(AOwner: TComponent);
begin
  inherited;
  FCamera := TWalkCamera.Create(nil);
  FOrientation := DefaultOrientation;
end;

destructor T3DOrient.Destroy;
begin
  FreeAndNil(FCamera);
  inherited;
end;

procedure T3DOrient.TransformMatricesMult(var M, MInverse: TMatrix4Single);
var
  NewM, NewMInverse: TMatrix4Single;
var
  P, D, U, Side: TVector3Single;
begin
  { Note that actually I could do here TransformToCoordsNoScaleMatrix,
    as obviously I don't want any scaling. But in this case I know
    that Direction and Up lengths = 1 (so their product
    length is also = 1), so no need to do
    TransformToCoordsNoScaleMatrix here (and I can avoid wasting my time
    on Sqrts needed inside TransformToCoordsNoScaleMatrix). }

  Camera.GetView(P, D, U);

  case Orientation of
    otUpYDirectionMinusZ:
      begin
        Side := VectorProduct(U, -D);
        NewM := TransformToCoordsMatrix         (P, Side, U, -D);
        NewMInverse := TransformFromCoordsMatrix(P, Side, U, -D);
      end;
    otUpZDirectionMinusY:
      begin
        Side := VectorProduct(-D, U);
        NewM := TransformToCoordsMatrix         (P, Side, -D, U);
        NewMInverse := TransformFromCoordsMatrix(P, Side, -D, U);
      end;
    otUpZDirectionX:
      begin
        Side := VectorProduct(U, D);
        NewM := TransformToCoordsMatrix         (P, D, Side, U);
        NewMInverse := TransformFromCoordsMatrix(P, D, Side, U);
      end;
    else raise EInternalError.Create('T3DOrient.TransformMatricesMult Orientation?');
  end;

  M := M * NewM;
  MInverse := NewMInverse * MInverse;
end;

function T3DOrient.OnlyTranslation: boolean;
begin
  Result := false;
end;

function T3DOrient.GetPosition: TVector3Single;
begin
  Result := Camera.Position;
end;

function T3DOrient.GetDirection: TVector3Single;
begin
  Result := Camera.Direction;
end;

function T3DOrient.GetUp: TVector3Single;
begin
  Result := Camera.Up;
end;

procedure T3DOrient.SetPosition(const Value: TVector3Single);
begin
  Camera.Position := Value;
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DOrient.SetDirection(const Value: TVector3Single);
begin
  Camera.Direction := Value;
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DOrient.SetUp(const Value: TVector3Single);
begin
  Camera.Up := Value;
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DOrient.UpPrefer(const AUp: TVector3Single);
begin
  Camera.UpPrefer(AUp);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DOrient.SetView(const APos, ADir, AUp: TVector3Single;
  const AdjustUp: boolean);
begin
  Camera.SetView(APos, ADir, AUp, AdjustUp);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DOrient.SetView(const ADir, AUp: TVector3Single;
  const AdjustUp: boolean);
begin
  Camera.SetView(ADir, AUp, AdjustUp);
  VisibleChangeHere([vcVisibleGeometry]);
end;

procedure T3DOrient.Translate(const T: TVector3Single);
begin
  Camera.Position := Camera.Position + T;
  VisibleChangeHere([vcVisibleGeometry]);
end;

function T3DOrient.GetTranslation: TVector3Single;
begin
  Result := Camera.Position;
end;

{ T3DMoving --------------------------------------------------------- }

{ TODO: this browses World list, doesn't take into acount CollidesWithMoving items
  that may be inside a sublist. }

constructor T3DMoving.Create(AOwner: TComponent);
begin
  inherited;
  FPushes := true;
  FPushesEverythingInside := true;
  FAnimationTime := 0;
end;

function T3DMoving.GetTranslation: TVector3Single;
begin
  Result := GetTranslationFromTime(AnimationTime);
end;

function T3DMoving.OnlyTranslation: boolean;
begin
  Result := true; { T3DMoving always uses only translation }
end;

{ Note: When pushing the creature/player/item, right now
  we don't check whether the creature/player/item will not be
  pushed into collision with something else.

  For now, design your level to minimize the chance that it will ever happen.
  Although in theory you cannot design your level to guarantee
  that it will never happen (because e.g. a creature may be pushed
  into collision with other creature, and since creatures move
  on their own they can arrange themselves (in theory) in all manners of
  funny configurations...). But in practice it's not so difficult,
  just make sure that there is enough space on the way of move.
}

procedure T3DMoving.BeforeTimeIncrease(
  const NewAnimationTime: TFloatTime);

  function BoundingBoxAssumeTranslation(
    const AssumeTranslation: TVector3Single): TBox3D;
  begin
    if GetCollides then
      Result := (inherited BoundingBox).Translate(AssumeTranslation) else
      Result := EmptyBox3D;
  end;

  function SphereCollisionAssumeTranslation(
    const AssumeTranslation: TVector3Single;
    const Pos: TVector3Single; const Radius: Single;
    const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
  begin
    Result := GetCollides;
    if Result then
    begin
      { We use the same trick as in T3DCustomTransform.MoveCollision to
        use "inherited SphereCollsion" with Translation. }

      Result := inherited SphereCollision(
        Pos - AssumeTranslation, Radius, TrianglesToIgnoreFunc);
    end;
  end;

  function BoxCollisionAssumeTranslation(
    const AssumeTranslation: TVector3Single;
    const Box: TBox3D;
    const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
  begin
    Result := GetCollides;
    if Result then
    begin
      { We use the same trick as in T3DCustomTransform.MoveCollision to
        use "inherited BoxCollision" with Translation. }

      Result := inherited BoxCollision(
        Box.AntiTranslate(AssumeTranslation), TrianglesToIgnoreFunc);
    end;
  end;

var
  CurrentBox, NewBox, Box: TBox3D;
  I: Integer;
  Translation: TVector3Single;
  CurrentTranslation, NewTranslation: TVector3Single;
  SphereRadius: Single;
  Item: T3D;
begin
  if GetCollides and Pushes then
  begin
    CurrentTranslation := GetTranslationFromTime(AnimationTime);
    NewTranslation := GetTranslationFromTime(NewAnimationTime);

    { It often happens that T3DMoving doesn't move at all,
      and then Translation doesn't change at all
      (even when compared precisely, without usual epsilon used to compare
      floats). So the check below may be worth the time, we expect
      it will avoid doing actual work. }

    if not VectorsPerfectlyEqual(CurrentTranslation, NewTranslation) then
    begin
      Translation := NewTranslation - CurrentTranslation;

      { TODO: it may be sensible to add a pushing method when we compare
        other object's bounding box (never a sphere, and be sure to use
        the "tall" box for player, including it's legs) with octree
        (that is, using inherited BoxCollision).
        This can have the advantages of both PushesEverythingInside=true
        (reacts more sticky, more eager to move colliding stuff with
        the same speed as elevator)
        and PushesEverythingInside=false (takes into account triangle mesh,
        not just our bounding volume). }

      if PushesEverythingInside then
      begin
        CurrentBox := BoundingBox;
        NewBox := BoundingBoxAssumeTranslation(NewTranslation);
        for I := 0 to World.Count - 1 do
        begin
          Item := World[I];
          if Item.CollidesWithMoving then
          begin
            { This case doesn't really use Item.Sphere. But it's not really
              terribly important design decision, we may use Item.Sphere
              one day here. It's most comfortable to just use
              here Item.BoundingBox, as we perform collisions with our box. }
            Box := Item.BoundingBox;
            if Box.Collision(NewBox) or
               Box.Collision(CurrentBox) then
              Item.Translate(Translation);
          end;
        end;
      end else
      begin
        for I := 0 to World.Count - 1 do
        begin
          Item := World[I];
          if Item.CollidesWithMoving then
            if Item.Sphere(SphereRadius) then
            begin
              if SphereCollisionAssumeTranslation(NewTranslation,
                Item.Middle, SphereRadius,
                @World.CollisionIgnoreItem) then
                Item.Translate(Translation);
            end else
            begin
              if BoxCollisionAssumeTranslation(NewTranslation,
                Item.BoundingBox,
                @World.CollisionIgnoreItem) then
                Item.Translate(Translation);
            end;
        end;
      end;
    end;
  end;
end;

procedure T3DMoving.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);
var
  NewAnimationTime: TFloatTime;
begin
  inherited;

  NewAnimationTime := AnimationTime + SecondsPassed;
  BeforeTimeIncrease(NewAnimationTime);
  FAnimationTime := NewAnimationTime;
end;

{ T3DLinearMoving --------------------------------------------------- }

constructor T3DLinearMoving.Create(AOwner: TComponent);
begin
  inherited;

  FSoundGoEndPosition := stNone;
  FSoundGoBeginPosition := stNone;

  FEndPosition := false;

  { We set FEndPositionStateChangeTime to a past time, to be sure
    that we don't treat the door as "closing right now". }
  FEndPositionStateChangeTime := -1000.0; { TODO: should be implemented better... }

  UsedSound := nil;
end;

destructor T3DLinearMoving.Destroy;
begin
  { Otherwise, if you exit from the game while some sound was played,
    and the sound was e.g. looping (like the elevator on "Tower" level),
    the sound will never get stopped. }
  if UsedSound <> nil then
    UsedSound.Release;

  inherited;
end;

procedure T3DLinearMoving.SoundRelease(Sender: TSound);
begin
  Assert(Sender = UsedSound);
  UsedSound := nil;
end;

function T3DLinearMoving.SoundPosition: TVector3Single;
begin
  Result := BoundingBox.Middle;
end;

procedure T3DLinearMoving.PlaySound(SoundType: TSoundType;
  Looping: boolean);
begin
  { The object can play only one sound (going to begin or end position)
    at a time. }
  if UsedSound <> nil then
    UsedSound.Release;
  UsedSound := SoundEngine.Sound3d(SoundType, SoundPosition, Looping);

  if UsedSound <> nil then
    UsedSound.OnRelease := @SoundRelease;
end;

procedure T3DLinearMoving.GoEndPosition;
begin
  FEndPosition := true;
  FEndPositionStateChangeTime := AnimationTime;
  PlaySound(SoundGoEndPosition, SoundGoEndPositionLooping);
end;

procedure T3DLinearMoving.GoBeginPosition;
begin
  FEndPosition := false;
  FEndPositionStateChangeTime := AnimationTime;
  PlaySound(SoundGoBeginPosition, SoundGoBeginPositionLooping);
end;

procedure T3DLinearMoving.RevertGoEndPosition;
begin
  FEndPosition := true;
  FEndPositionStateChangeTime := { AnimationTime -
    (MoveTime - (AnimationTime - EndPositionStateChangeTime)) }
    { simplified : }
    2 * AnimationTime - MoveTime - EndPositionStateChangeTime;
  PlaySound(SoundGoEndPosition, SoundGoEndPositionLooping);
end;

procedure T3DLinearMoving.RevertGoBeginPosition;
begin
  FEndPosition := false;
  FEndPositionStateChangeTime := { AnimationTime -
    (MoveTime - (AnimationTime - EndPositionStateChangeTime)) }
    { simplified : }
    2 * AnimationTime - MoveTime - EndPositionStateChangeTime;
  PlaySound(SoundGoEndPosition, SoundGoBeginPositionLooping);
end;

procedure T3DLinearMoving.GoOtherPosition;
begin
  if CompletelyEndPosition then
    GoBeginPosition else
  if CompletelyBeginPosition then
    GoEndPosition else
  begin
    if EndPosition then
      RevertGoBeginPosition else
      RevertGoEndPosition;
  end;
end;

function T3DLinearMoving.GetTranslationFromTime(
  const AnAnimationTime: TFloatTime): TVector3Single;
begin
  if not EndPosition then
  begin
    if AnAnimationTime - EndPositionStateChangeTime > MoveTime then
      { Completely closed. }
      Result := ZeroVector3Single else
      { During closing. }
      Result := TranslationEnd *
        (1 - (AnAnimationTime - EndPositionStateChangeTime) / MoveTime);
  end else
  begin
    if AnAnimationTime - EndPositionStateChangeTime > MoveTime then
      { Completely open. }
      Result := TranslationEnd else
      { During opening. }
      Result := TranslationEnd *
        ((AnAnimationTime - EndPositionStateChangeTime) / MoveTime);
  end;
end;

function T3DLinearMoving.CompletelyEndPosition: boolean;
begin
  Result := EndPosition and
    (AnimationTime - EndPositionStateChangeTime > MoveTime);
end;

function T3DLinearMoving.CompletelyBeginPosition: boolean;
begin
  Result := (not EndPosition) and
    (AnimationTime - EndPositionStateChangeTime > MoveTime);
end;

procedure T3DLinearMoving.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);
begin
  inherited;

  { Update sound position when object is moving }
  if (UsedSound <> nil) and SoundTracksCurrentPosition then
    UsedSound.Position := SoundPosition;

  { If the SoundGoBegin/EndPosition is longer than the MoveTime
    (or it's looping),
    stop this sound once we're completely in Begin/EndPosition. }
  if (AnimationTime - EndPositionStateChangeTime > MoveTime) and
    (UsedSound <> nil) then
    UsedSound.Release;
end;

{ T3DAlive ------------------------------------------------------------------- }

constructor T3DAlive.Create(AOwner: TComponent);
begin
  inherited;
  KnockBackSpeed := 1.0;
  { at the beginning we are Dead (Life = 0) and DieTime = LifeTime,
    so everything is already in the correct state. }
end;

procedure T3DAlive.SetLife(const Value: Single);
begin
  if (FLife > 0) and (Value <= 0) then
    FDieTime := LifeTime;
  FLife := Value;
end;

function T3DAlive.Dead: boolean;
begin
  Result := Life <= 0;
end;

procedure T3DAlive.Hurt(const LifeLoss: Single;
  const HurtDirection: TVector3Single;
  const AKnockbackDistance: Single; const Attacker: T3DAlive);
begin
  Life := Life - LifeLoss;
  FKnockbackDistance := AKnockbackDistance;
  FLastHurtDirection := HurtDirection;

  { calculate FLastHurtDirectionGround }
  FLastHurtDirectionGround := FLastHurtDirection;
  if Gravity then
    MakeVectorsOrthoOnTheirPlane(FLastHurtDirectionGround, World.GravityUp);
end;

procedure T3DAlive.CancelKnockback;
begin
  FKnockbackDistance := 0;
end;

procedure T3DAlive.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);
{ Do the knockback effect, if it's currently active, by pushing
  creature along last attack direction. }
var
  CurrentKnockBackDistance: Single;
begin
  inherited;
  if not GetExists then Exit;

  FLifeTime += SecondsPassed;

  if FKnockbackDistance > 0 then
  begin
    { Calculate CurrentKnockBackDistance, update FKnockbackDistance }
    CurrentKnockBackDistance := KnockBackSpeed * SecondsPassed;
    if FKnockbackDistance < CurrentKnockBackDistance then
    begin
      CurrentKnockBackDistance := FKnockbackDistance;
      FKnockbackDistance := 0;
    end else
      FKnockbackDistance -= CurrentKnockBackDistance;

    Move(FLastHurtDirectionGround * CurrentKnockBackDistance, false);
  end;
end;

end.