This file is indexed.

/usr/src/castle-game-engine-4.1.1/x3d/x3d_pointingdevicesensor.inc is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
{
  Copyright 2007-2013 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{$ifdef read_interface}
  { List of pointing device sensors. Only nodes descending from
    X3DPointingDeviceSensorNode, and additionally an Anchor node. }
  TPointingDeviceSensorList = class(TX3DNodeList)
  public
    { Transformation (and inverse) of all the sensors on this list.
      VRML/X3D specification guarantees that all sensors within a single state
      have the same transform. }
    Transform, InvertedTransform: TMatrix4Single;

    function EnabledCount: Integer;
    function Enabled(Index: Integer): boolean;

    procedure Assign(Source: TPointingDeviceSensorList);
  end;

  { }
  TAbstractPointingDeviceSensorNode = class(TAbstractSensorNode)
  public
    procedure CreateNode; override;

    private FFdDescription: TSFString;
    public property FdDescription: TSFString read FFdDescription;

    { Event: SFBool, out } { }
    private FEventIsOver: TX3DEvent;
    public property EventIsOver: TX3DEvent read FEventIsOver;

    { Activate pointing device sensor. Used by the events engine
      (like TCastleSceneCore) to notify this sensor.

      OverPoint indicates 3D point (in global, that is TCastleSceneCore, coordinates)
      pointed by the mouse.

      In TAbstractPointingDeviceSensorNode class,
      this simply sends isActive := TRUE event. }
    procedure Activate(const Time: TX3DTime;
      const ATransform, AInvertedTransform: TMatrix4Single;
      const OverPoint: TVector3Single); virtual;

    { Deactivate pointing device sensor. Used by the events engine
      (like TCastleSceneCore) to notify this sensor.

      In TAbstractPointingDeviceSensorNode class,
      this simply sends isActive := FALSE event. }
    procedure Deactivate(const Time: TX3DTime); virtual;
  end;

  TAbstractDragSensorNode = class(TAbstractPointingDeviceSensorNode)
  public
    procedure CreateNode; override;

    private FFdAutoOffset: TSFBool;
    public property FdAutoOffset: TSFBool read FFdAutoOffset;

    { Event: SFVec3f, out } { }
    private FEventTrackPoint_changed: TX3DEvent;
    public property EventTrackPoint_changed: TX3DEvent read FEventTrackPoint_changed;

    { Called by events engine (like TCastleSceneCore) when you move your mouse
      over the @italic(active) drag sensor. }
    procedure Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single); virtual;
  end;

  TAbstractTouchSensorNode = class(TAbstractPointingDeviceSensorNode)
  public
    procedure CreateNode; override;

    { Event: SFTime, out } { }
    private FEventTouchTime: TX3DEvent;
    public property EventTouchTime: TX3DEvent read FEventTouchTime;
  end;

  TCylinderSensorNode = class(TAbstractDragSensorNode)
  private
    { Are we in caps mode or cylinder mode (determined at activation) }
    Caps: boolean;
    { If Caps, then this is a plane parallel to Y=0 and coincident with
      original intersection, in global coordinates }
    CapsPlane: TVector4Single;

    { If not Caps, then these describe (infinitely tall) cylinder
      used for dragging, in global coordinates }
    CylinderAxisOrigin, CylinderAxis: TVector3Single;
    CylinderRadius: Single;

    { First intersection (at activation), in local coordinates,
      additionally with Y component set to 0. }
    OriginalIntersection: TVector3Single;

    { Transformation from global coords to the local sensor coords. }
    InvertedTransform: TMatrix4Single;

    { Was a rotation_changed send during this activation of sensor. }
    WasRotation: boolean;
    { Last value of rotation_changed send, meaningful only if WasRotation. }
    RotationAngle: Single;
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;
    class function URNMatching(const URN: string): boolean; override;

    private FFdAxisRotation: TSFRotation;
    public property FdAxisRotation: TSFRotation read FFdAxisRotation;

    private FFdDiskAngle: TSFFloat;
    public property FdDiskAngle: TSFFloat read FFdDiskAngle;

    private FFdMaxAngle: TSFFloat;
    public property FdMaxAngle: TSFFloat read FFdMaxAngle;

    private FFdMinAngle: TSFFloat;
    public property FdMinAngle: TSFFloat read FFdMinAngle;

    private FFdOffset: TSFFloat;
    public property FdOffset: TSFFloat read FFdOffset;

    { Event: SFRotation, out } { }
    private FEventRotation_changed: TX3DEvent;
    public property EventRotation_changed: TX3DEvent read FEventRotation_changed;

    procedure Activate(const Time: TX3DTime;
      const ATransform, AInvertedTransform: TMatrix4Single;
      const OverPoint: TVector3Single); override;
    procedure Deactivate(const Time: TX3DTime); override;
    procedure Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single); override;
  end;

  TPlaneSensorNode = class(TAbstractDragSensorNode)
  private
    { Plane* stuff is in global (VRML scene) coordinates. }
    { Plane of the activated sensor. }
    Plane: TVector4Single;
    { Vectors indicating X and Y axis on the plane.
      Always normalized (do not really have to be strictly orthogonal,
      in case plane was transformed by some shearing; this is Ok). }
    PlaneX, PlaneY: TVector3Single;
    { Initial intersection point at activation. Always lies on Plane. }
    PlaneOrigin: TVector3Single;

    { Transformation from global coords to the local sensor coords. }
    InvertedTransform: TMatrix4Single;

    { Was a translation_changed send during this activation of sensor. }
    WasTranslation: boolean;
    { Last value of translation_changed send, meaningful only if WasTranslation. }
    Translation: TVector3Single;
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;
    class function URNMatching(const URN: string): boolean; override;

    private FFdAxisRotation: TSFRotation;
    public property FdAxisRotation: TSFRotation read FFdAxisRotation;

    private FFdMaxPosition: TSFVec2f;
    public property FdMaxPosition: TSFVec2f read FFdMaxPosition;

    private FFdMinPosition: TSFVec2f;
    public property FdMinPosition: TSFVec2f read FFdMinPosition;

    private FFdOffset: TSFVec3f;
    public property FdOffset: TSFVec3f read FFdOffset;

    { Event: SFVec3f, out } { }
    private FEventTranslation_changed: TX3DEvent;
    public property EventTranslation_changed: TX3DEvent read FEventTranslation_changed;

    procedure Activate(const Time: TX3DTime;
      const ATransform, AInvertedTransform: TMatrix4Single;
      const OverPoint: TVector3Single); override;
    procedure Deactivate(const Time: TX3DTime); override;
    procedure Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single); override;
  end;

  TSphereSensorNode = class(TAbstractDragSensorNode)
  private
    { Sphere center and radius, in world coordinates. }
    SphereCenter: TVector3Single;
    SphereRadius: Single;
    { First intersection (at activation), in local coordinates. }
    OriginalIntersection: TVector3Single;

    { Transformation from global coords to the local sensor coords. }
    InvertedTransform: TMatrix4Single;

    { Was a rotation_changed send during this activation of sensor. }
    WasRotation: boolean;
    { Last value of rotation_changed send, meaningful only if WasRotation. }
    Rotation: TVector4Single;
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;
    class function URNMatching(const URN: string): boolean; override;

    private FFdOffset: TSFRotation;
    public property FdOffset: TSFRotation read FFdOffset;

    { Event: SFRotation, out } { }
    private FEventRotation_changed: TX3DEvent;
    public property EventRotation_changed: TX3DEvent read FEventRotation_changed;

    procedure Activate(const Time: TX3DTime;
      const ATransform, AInvertedTransform: TMatrix4Single;
      const OverPoint: TVector3Single); override;
    procedure Deactivate(const Time: TX3DTime); override;
    procedure Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single); override;
  end;

  TTouchSensorNode = class(TAbstractTouchSensorNode)
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;
    class function URNMatching(const URN: string): boolean; override;

    { Event: SFVec3f, out } { }
    private FEventHitNormal_changed: TX3DEvent;
    public property EventHitNormal_changed: TX3DEvent read FEventHitNormal_changed;

    { Event: SFVec3f, out } { }
    private FEventHitPoint_changed: TX3DEvent;
    public property EventHitPoint_changed: TX3DEvent read FEventHitPoint_changed;

    { Event: SFVec2f, out } { }
    private FEventHitTexCoord_changed: TX3DEvent;
    public property EventHitTexCoord_changed: TX3DEvent read FEventHitTexCoord_changed;
  end;

{$endif read_interface}

{$ifdef read_implementation}

{ TPointingDeviceSensorList ------------------------------------------------- }

function TPointingDeviceSensorList.EnabledCount: Integer;
var
  I: Integer;
begin
  Result := 0;
  for I := 0 to Count - 1 do
    if Enabled(I) then
      Inc(Result);
end;

function TPointingDeviceSensorList.Enabled(Index: Integer): boolean;
begin
  Result := (not (Items[Index] is TAbstractPointingDeviceSensorNode)) or
    TAbstractPointingDeviceSensorNode(Items[Index]).FdEnabled.Value;
end;

procedure TPointingDeviceSensorList.Assign(Source: TPointingDeviceSensorList);
begin
  inherited Assign(Source);
  Transform := Source.Transform;
  InvertedTransform := Source.InvertedTransform;
end;

{ Rest of nodes -------------------------------------------------------------- }

procedure TAbstractPointingDeviceSensorNode.CreateNode;
begin
  inherited;

  FFdDescription := TSFString.Create(Self, 'description', '');
  Fields.Add(FFdDescription);

  FEventIsOver := TX3DEvent.Create(Self, 'isOver', TSFBool, false);
  Events.Add(FEventIsOver);
end;

procedure TAbstractPointingDeviceSensorNode.Activate(const Time: TX3DTime;
  const ATransform, AInvertedTransform: TMatrix4Single;
  const OverPoint: TVector3Single);
begin
  EventIsActive.Send(true, Time);
end;

procedure TAbstractPointingDeviceSensorNode.Deactivate(const Time: TX3DTime);
begin
  EventIsActive.Send(false, Time);
end;

procedure TAbstractDragSensorNode.CreateNode;
begin
  inherited;

  FFdAutoOffset := TSFBool.Create(Self, 'autoOffset', true);
  Fields.Add(FFdAutoOffset);

  FEventTrackPoint_changed := TX3DEvent.Create(Self, 'trackPoint_changed', TSFVec3f, false);
  Events.Add(FEventTrackPoint_changed);

  Fdenabled.ChangesAlways := FdEnabled.ChangesAlways + [chDragSensorEnabled];
end;

procedure TAbstractDragSensorNode.Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single);
begin
  { Nothing to do in this class }
end;

procedure TAbstractTouchSensorNode.CreateNode;
begin
  inherited;

  FEventTouchTime := TX3DEvent.Create(Self, 'touchTime', TSFTime, false);
  Events.Add(FEventTouchTime);
end;

procedure TCylinderSensorNode.CreateNode;
begin
  inherited;

  FFdAxisRotation := TSFRotation.Create(Self, 'axisRotation', Vector3Single(0, 1, 0), 0);
  Fields.Add(FFdAxisRotation);

  FFdDiskAngle := TSFFloat.Create(Self, 'diskAngle', Pi/12);
  Fields.Add(FFdDiskAngle);
  { X3D specification comment: [0,Pi/2] }

  FFdMaxAngle := TSFFloat.Create(Self, 'maxAngle', -1);
  Fields.Add(FFdMaxAngle);
  { X3D specification comment: [-2Pi,2Pi] }

  FFdMinAngle := TSFFloat.Create(Self, 'minAngle', 0);
  Fields.Add(FFdMinAngle);
  { X3D specification comment: [-2Pi,2Pi] }

  FFdOffset := TSFFloat.Create(Self, 'offset', 0);
  Fields.Add(FFdOffset);
  { X3D specification comment: (-Inf,Inf) }

  FEventRotation_changed := TX3DEvent.Create(Self, 'rotation_changed', TSFRotation, false);
  Events.Add(FEventRotation_changed);

  DefaultContainerField := 'children';
end;

class function TCylinderSensorNode.ClassNodeTypeName: string;
begin
  Result := 'CylinderSensor';
end;

class function TCylinderSensorNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

procedure TCylinderSensorNode.Activate(const Time: TX3DTime;
  const ATransform, AInvertedTransform: TMatrix4Single;
  const OverPoint: TVector3Single);
var
  Transform, M, IM: TMatrix4Single;
  CapsPlaneDir: PVector3Single;
begin
  inherited;

  Transform := ATransform;
  InvertedTransform := AInvertedTransform;

  { Do not apply rotation when it's 0. A small optimization for a common case. }
  if FdAxisRotation.RotationRad <> 0 then
  begin
    RotationMatricesRad(FdAxisRotation.RotationRad, FdAxisRotation.Axis, M, IM);
    Transform := MatrixMult(Transform, M);
    InvertedTransform := MatrixMult(IM, InvertedTransform);
  end;

  OriginalIntersection := MatrixMultPoint(InvertedTransform, OverPoint);
  Caps := AngleRadBetweenVectors(OriginalIntersection,
    Vector3Single(0, 1, 0)) < FdDiskAngle.Value;

  OriginalIntersection[1] := 0;

  if Caps then
  begin
    { CapsPlane is parallel to Y=0 plane
      (transformed by current sensor transform and by axisRotation),
      and passing though PlaneOrigin. }
    CapsPlaneDir := PVector3Single(@CapsPlane);
    CapsPlaneDir^ := MatrixMultDirection(Transform, UnitVector3Single[1]);
    CapsPlane[3] := -VectorDotProduct(CapsPlaneDir^, OverPoint);
  end else
  begin
    CylinderAxisOrigin := MatrixMultPoint(Transform, ZeroVector3Single);
    CylinderAxis := MatrixMultDirection(Transform, UnitVector3Single[1]);
    CylinderRadius := Sqrt(PointToLineDistanceSqr(
      CylinderAxisOrigin, CylinderAxis, OverPoint));
  end;

  WasRotation := false;
end;

procedure TCylinderSensorNode.Deactivate(const Time: TX3DTime);
begin
  if FdAutoOffset.Value and WasRotation then
    FdOffset.Send(RotationAngle);

  inherited;
end;

procedure TCylinderSensorNode.Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single);
var
  Intersection, LocalIntersection: TVector3Single;
  WasIntersection: boolean;
begin
  inherited;

  if Caps then
    WasIntersection := TryPlaneRayIntersection(Intersection,
      CapsPlane, RayOrigin, RayDirection) else
    WasIntersection := TryCylinderRayIntersection(Intersection,
      CylinderAxisOrigin, CylinderAxis, CylinderRadius, RayOrigin, RayDirection);

  if WasIntersection then
  begin
    try
      LocalIntersection := MatrixMultPoint(InvertedTransform, Intersection);
    except
      on ETransformedResultInvalid do
      begin
        if Log then
          WritelnLog('Drag sensor', 'Sensor transformation matrix^-1 cannot transform points.');
        Exit;
      end;
    end;
    EventTrackPoint_changed.Send(LocalIntersection, Time);

    { both OriginalIntersection and LocalIntersection have Y component set to 0
      for the sake of calculating RotationAngle. They are both assumed to lie
      nicely on a CapsPlane. }
    LocalIntersection[1] := 0;

    RotationAngle := RotationAngleRadBetweenVectors(
      OriginalIntersection, LocalIntersection, UnitVector3Single[1]);

    { add offset, and clamp by min/maxAngle }
    RotationAngle += FdOffset.Value;
    if FdMinAngle.Value <= FdMaxAngle.Value then
      Clamp(RotationAngle, FdMinAngle.Value, FdMaxAngle.Value);

    EventRotation_changed.Send(Vector4Single(0, 1, 0, RotationAngle), Time);
    WasRotation := true;
  end;
end;

procedure TPlaneSensorNode.CreateNode;
begin
  inherited;

  FFdAxisRotation := TSFRotation.Create(Self, 'axisRotation', Vector3Single(0, 0, 1), 0);
  Fields.Add(FFdAxisRotation);

  FFdMaxPosition := TSFVec2f.Create(Self, 'maxPosition', Vector2Single(-1, -1));
  Fields.Add(FFdMaxPosition);
  { X3D specification comment: (-Inf,Inf) }

  FFdMinPosition := TSFVec2f.Create(Self, 'minPosition', Vector2Single(0, 0));
  Fields.Add(FFdMinPosition);
  { X3D specification comment: (-Inf,Inf) }

  FFdOffset := TSFVec3f.Create(Self, 'offset', Vector3Single(0, 0, 0));
  Fields.Add(FFdOffset);
  { X3D specification comment: (-Inf,Inf) }

  FEventTranslation_changed := TX3DEvent.Create(Self, 'translation_changed', TSFVec3f, false);
  Events.Add(FEventTranslation_changed);

  DefaultContainerField := 'children';
end;

class function TPlaneSensorNode.ClassNodeTypeName: string;
begin
  Result := 'PlaneSensor';
end;

class function TPlaneSensorNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

procedure TPlaneSensorNode.Activate(const Time: TX3DTime;
  const ATransform, AInvertedTransform: TMatrix4Single;
  const OverPoint: TVector3Single);
var
  PlaneDir: PVector3Single;
  Transform, M, IM: TMatrix4Single;
begin
  inherited;

  PlaneOrigin := OverPoint;

  Transform := ATransform;
  InvertedTransform := AInvertedTransform;

  { Do not apply rotation when it's 0. A small optimization for a common case. }
  if FdAxisRotation.RotationRad <> 0 then
  begin
    RotationMatricesRad(FdAxisRotation.RotationRad, FdAxisRotation.Axis, M, IM);
    Transform := MatrixMult(Transform, M);
    InvertedTransform := MatrixMult(IM, InvertedTransform);
  end;

  try
    { Plane is parallel to Z=0 plane
      (transformed by current sensor transform and by axisRotation),
      and passing though PlaneOrigin. }
    PlaneDir := PVector3Single(@Plane);
    PlaneDir^ := MatrixMultDirection(Transform, UnitVector3Single[2]);
    Plane[3] := -VectorDotProduct(PlaneDir^, PlaneOrigin);

    { +X, +Y vectors, transformed by current sensor transform and
      by axisRotation, normalized. }
    PlaneX := Normalized(MatrixMultDirection(Transform, UnitVector3Single[0]));
    PlaneY := Normalized(MatrixMultDirection(Transform, UnitVector3Single[1]));
  except
    on ETransformedResultInvalid do
    begin
      { Transform matrix doesn't manage to transform directions.
        So just assume it's identity, nothing more sensible to do. }
      Plane := Vector4Single(0, 0, 1, -PlaneOrigin[2]);
      PlaneX := UnitVector3Single[0];
      PlaneY := UnitVector3Single[1];
      Transform := IdentityMatrix4Single;
      InvertedTransform := IdentityMatrix4Single;
      if Log then
        WritelnLog('Drag sensor', 'Sensor transformation matrix cannot transform directions.');
    end;
  end;

  WasTranslation := false;
end;

procedure TPlaneSensorNode.Deactivate(const Time: TX3DTime);
begin
  if FdAutoOffset.Value and WasTranslation then
    FdOffset.Send(Translation);

  inherited;
end;

procedure TPlaneSensorNode.Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single);
var
  Intersection, TranslationGlobal: TVector3Single;
begin
  inherited;

  { If no intersection, it's Ok to do nothing? }

  if TryPlaneRayIntersection(Intersection, Plane, RayOrigin, RayDirection) then
  begin
    try
      { trackPoint_changed should be in the local sensor coordinates
        (with axisRotation), without worrying about offset
        (like for translation_changed).

        This is sensible:
        - track point should visualize the underlying geometry of the drag sensor
          (plane, in this case)
        - this makes track point sensible also for Sphere/CylinderSensor
          (where offset is for rotations, and cannot be applied to
          trackPoint_changed).

        About using local coordinates:
        FreeWRL and OpenVRML seems to also do this in sources,
        and Octaga and InstantReality behavior suggests they do it too.

        About using local coordinates with axisRotation:
        That's more difficult, see
        http://castle-engine.sourceforge.net/x3d_implementation_pointingdevicesensor.php }
      EventTrackPoint_changed.Send(
        MatrixMultPoint(InvertedTransform, Intersection), Time);
    except
      on ETransformedResultInvalid do
      begin
        EventTrackPoint_changed.Send(Intersection, Time);
        if Log then
          WritelnLog('Drag sensor', 'Sensor transformation matrix^-1 cannot transform points.');
      end;
    end;

    { An alternative implementation would transform Intersection to
      local coords (with axisRotation, and with origin at PointOrigin).

      Then applying the PointOrigin, PlaneX, PlaneY would be much simpler:
      PointOrigin is just zero, and PlaneX = just (1, 0, 0).
      So instead of VectorDotProduct(V, PlaneX) just take V[0]. }

    TranslationGlobal := Intersection - PlaneOrigin;

    { map TranslationGlobal to the plane local coord system
      (with axisRotation) }
    Translation[0] := VectorDotProduct(TranslationGlobal, PlaneX);
    Translation[1] := VectorDotProduct(TranslationGlobal, PlaneY);
    Translation[2] := 0;

    Translation += FdOffset.Value;

    if FdMinPosition.Value[0] <= FdMaxPosition.Value[0] then
      Clamp(Translation[0], FdMinPosition.Value[0], FdMaxPosition.Value[0]);
    if FdMinPosition.Value[1] <= FdMaxPosition.Value[1] then
      Clamp(Translation[1], FdMinPosition.Value[1], FdMaxPosition.Value[1]);

    EventTranslation_changed.Send(Translation, Time);
    WasTranslation := true;
  end;
end;

procedure TSphereSensorNode.CreateNode;
begin
  inherited;

  FFdOffset := TSFRotation.Create(Self, 'offset', Vector3Single(0, 1, 0), 0);
  Fields.Add(FFdOffset);
  { X3D specification comment: [-1,1],(-Inf,Inf) }

  FEventRotation_changed := TX3DEvent.Create(Self, 'rotation_changed', TSFRotation, false);
  Events.Add(FEventRotation_changed);

  DefaultContainerField := 'children';
end;

class function TSphereSensorNode.ClassNodeTypeName: string;
begin
  Result := 'SphereSensor';
end;

class function TSphereSensorNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

procedure TSphereSensorNode.Activate(const Time: TX3DTime;
  const ATransform, AInvertedTransform: TMatrix4Single;
  const OverPoint: TVector3Single);
begin
  inherited;

  InvertedTransform := AInvertedTransform;

  OriginalIntersection := MatrixMultPoint(AInvertedTransform, OverPoint);

  SphereCenter := MatrixMultPoint(ATransform, ZeroVector3Single);
  SphereRadius := PointsDistance(OverPoint, SphereCenter);

  WasRotation := false;
end;

procedure TSphereSensorNode.Deactivate(const Time: TX3DTime);
begin
  if FdAutoOffset.Value and WasRotation then
    FdOffset.Send(Rotation);

  inherited;
end;

procedure TSphereSensorNode.Drag(const Time: TX3DTime; const RayOrigin, RayDirection: TVector3Single);
var
  Intersection, LocalIntersection, RotationAxis: TVector3Single;
  RotationAngle: Single;
  RotationQ: TQuaternion;
begin
  inherited;

  { If no intersection, it's Ok to do nothing? }

  if TrySphereRayIntersection(Intersection, SphereCenter, SphereRadius,
    RayOrigin, RayDirection) then
  begin
    try
      LocalIntersection := MatrixMultPoint(InvertedTransform, Intersection);
    except
      on ETransformedResultInvalid do
      begin
        if Log then
          WritelnLog('Drag sensor', 'Sensor transformation matrix^-1 cannot transform points.');
        Exit;
      end;
    end;
    EventTrackPoint_changed.Send(LocalIntersection, Time);

    { Rotation always contains offset }
    RotationQ := QuatFromAxisAngle(FdOffset.Axis, FdOffset.RotationRad);

    { Add to RotationQ rotation from OriginalIntersection to current. }
    RotationAxis := OriginalIntersection >< LocalIntersection;
    if not ZeroVector(RotationAxis) then
    begin
      RotationAngle := RotationAngleRadBetweenVectors(
        OriginalIntersection, LocalIntersection);
      RotationQ := QuatFromAxisAngle(
        Normalized(RotationAxis), RotationAngle) * RotationQ;
    end;

    Rotation := RotationQ.ToAxisAngle;

    EventRotation_changed.Send(Rotation, Time);
    WasRotation := true;
  end;
end;

procedure TTouchSensorNode.CreateNode;
begin
  inherited;

  FEventHitNormal_changed := TX3DEvent.Create(Self, 'hitNormal_changed', TSFVec3f, false);
  Events.Add(FEventHitNormal_changed);

  FEventHitPoint_changed := TX3DEvent.Create(Self, 'hitPoint_changed', TSFVec3f, false);
  Events.Add(FEventHitPoint_changed);

  FEventHitTexCoord_changed := TX3DEvent.Create(Self, 'hitTexCoord_changed', TSFVec2f, false);
  Events.Add(FEventHitTexCoord_changed);

  DefaultContainerField := 'children';
end;

class function TTouchSensorNode.ClassNodeTypeName: string;
begin
  Result := 'TouchSensor';
end;

class function TTouchSensorNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

procedure RegisterPointingDeviceSensorNodes;
begin
  NodesManager.RegisterNodeClasses([
    TCylinderSensorNode,
    TPlaneSensorNode,
    TSphereSensorNode,
    TTouchSensorNode
  ]);
end;

{$endif read_implementation}