This file is indexed.

/usr/src/castle-game-engine-4.1.1/x3d/x3dnodes_cone_cylinder.inc is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
{
  Copyright 2002-2013 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Utilities for making cone and cylinder shapes. }

{ Generate circle points.
  Circle is on const Y = Height, centered on XZ = (0, 0) with given Radius.
  We generate QuadricSlices points, writing them into Points array.
  Order of coords is along -Z, then -X, then +Z, then +X.

  When Radius = exactly 0, the points are guaranteed to be exactly equal.

  Assumes QuadricSlices >= 1.

  This is exactly like LOOP_OVER_CIRCLE macro,
  except it adds points to Points[] instead of calling a procedure on them. }
procedure GenerateCircle(const QuadricSlices: Cardinal;
  const Radius, Height: Single; Points: PVector3Single);
var
  AngleRad: Single;
  AngleSin, AngleCos: Float;
  I: integer;
begin
  if Radius <> 0 then
  begin
    Points^ := Vector3Single(0, Height, -Radius);
    Inc(Points);

    for I := 1 to QuadricSlices - 1 do
    begin
      AngleRad := (I / QuadricSlices) * 2 * Pi;
      SinCos(AngleRad, AngleSin, AngleCos);

      Points^ := Vector3Single(-AngleSin * Radius, Height, -AngleCos * Radius);
      Inc(Points);
    end;
  end else
  begin
    { Actually, above code would also make points exactly equal.
      But below is still faster. }
    for I := 0 to QuadricSlices - 1 do
    begin
      Points^[0] := 0;
      Points^[1] := Height;
      Points^[2] := 0;
      Inc(Points);
    end;
  end;
end;

{ Generate QuadricSlices points on a 2D circle of radius 1.
  Shift things such that instead of [-1, 1] x [-1, 1],
  circle is inside [0, 1] x [0, 1].

  @param(InvertT Allows you to invert texture, suitable for top cap.) }
procedure GenerateTexCoordCircle(const QuadricSlices: Cardinal;
  Points: PVector2Single; const InvertT: boolean);
var
  AngleRad: Single;
  AngleSin, AngleCos: Float;
  I: integer;
begin
  if InvertT then
    Points^ := Vector2Single(0.5, 1) else
    Points^ := Vector2Single(0.5, 0);
  Inc(Points);

  for I := 1 to QuadricSlices - 1 do
  begin
    AngleRad := (I / QuadricSlices) * 2 * Pi;
    SinCos(AngleRad, AngleSin, AngleCos);

    AngleSin := -AngleSin;
    if not InvertT then AngleCos := -AngleCos;

    Points^ := Vector2Single((AngleSin + 1) / 2, (AngleCos + 1) / 2 );
    Inc(Points);
  end;
end;

{ Make a cylinder (with bottom and top radius
  potentially different) or a cone (which is indicated by TopRadius = 0).
  Generates values suitable e.g. for VRML/X3D IndexedFaceSet.
  This is a universal utility, for both VRML 1.0 and >= 2.0.

  Just like gluCylinder, it makes sense to implement cone and cylinder
  at once. Their topology is the same (yes, even at the cone top,
  see comments in the implementation).

  @param(TexCoord Texture coordinates to generate.
    Pass @nil if you don't need them.)

  @param(MaterialIndex VRML 1.0 material index, generated like for
    material binding per part. Will be used with
    material binding BIND_PER_FACE_INDEXED.
    We use PER_FACE_INDEXED instead of PER_VERTEX_INDEXED because
    PER_VERTEX_INDEXED isn't perfectly implemented (see OutsideBeginEnd
    notes), besides it matches our needs better.

    Pass @nil if you don't need it.)

  @param(TopRadius Radius of the upper cap.
    May be = 0, then Top does not matter (we'll never make
    a top cap in this case.)) }
procedure CylinderCone_Proxy(CoordIndex: TLongIntList;
  Coord: TVector3SingleList; Normal: TVector3SingleList;
  TexCoord: TVector2SingleList; MaterialIndex: TLongIntList;
  OverTriangulate: boolean; const BottomRadius, TopRadius, Height: Single;
  const Bottom, Side, Top: boolean;
  KambiTriangulation: TKambiTriangulationNode);

{ How to make nice normals at the top of the cone?

    It's simply impossible to get nice smooth normals without OverTriangulate.
    OpenGL gluCylinder also fails to make smooth cone normals
    when stacks = 1 (corresponding to our OverTriangulate = false).

    Ideas:
    1. We can't use a single vertex (with one normal)
      at the top of the cone, obviously. This would smooth our normal
      vector between all side faces.

    2. First real idea for a fix was to use QuadricSlices * top points,
      and make each cone side face a triangle with different top vertex.
      However, this doesn't make cone side edges smooth: as each triangle
      has different normal vector at the top vertex, so normals are not
      matching on neighboring edges.

    3. Another idea was to cheat: represent each cone face as a quad.
      This means that each cone side face
      has 2 top vertexes, which may have different normal vectors.

      This is also what OpenGL GLU quadrics do --- you have to use gluCylinder
      with top radius 0 to get a cone. And at least SGI implementation
      (see http://cgit.freedesktop.org/mesa/mesa/tree/src/glu/sgi/libutil/quad.c)
      will actually use GL_QUAD_STRIP (just like for regular cylinder),
      and the top vertex will be simply duplicated on each face.

      For a moment I thought this will work, i.e. will make edges smooth.
      Normals match across neighboring edges, right?

      ... Except it doesn't. Probably because we simply split this
      quad into 2 triangles (during IndexedFaceSet rendering).
      And OpenGL quad rendering does the same, at least on chantal GPU.
      So one triangle is simply empty (rasterization doesn't produce anything),
      and the edges are still sharp.

      This *would* work if OpenGL would rasterize quads, interpolating
      across them correctly.

    After all, I use the 2. idea, duplicating top verts but not cheating
    with quads. Reasons:
    - since 3. doesn't work anyway, why waste memory
      (and bandwidth to OpenGL) for sending dummy triangles?
    - Besides, 3. makes TrianglesCount reported as more than the number
      of items inside the octree (because degenerate triangles are removed).
      While this is unavoidable in general (actual IndexedFaceSet may have
      degenerate triangles), there's no need to cause confusion in this case
      when we can avoid it.

  Why explicit normals?

    Initially, I thought that explicit normals are needed to set
    correct normals at the top of the cone. But, eventually,
    I found out that it's impossible to make them really smooth
    --- see the above discussion.

    The current reason: because we can. It's easy and already implemented.

  We use normal not NULL, with normalPerVertex = TRUE, and normalIndex empty.
  So coordIndex will be used to index normals.

  Why not use specific normalIndex?

    Using normalIndex would allow us to have shorter Coordinate array.
    For example top/bottom circle, and cone top vertexes, would not have
    to be duplicated in Coordinate array
    (just because it needs different normals on different faces).
    However, this is worthless optimization: for OpenGL vertex array rendering,
    we would have to replicate the vertex coord anyway, because for OpenGL arrays
    we can pass only one index (there is no separate index for coords, normals etc.).
    So we would not save anything (and only increase the work needed for
    OpenGL rendering).

    Besides, texCoordIndex would then have to be equal to normalIndex.
}

var
  QuadricSlices: Cardinal;

  { For given angle, calculate side face normal vector.
    Where Angle is in [0...QuadricSlices] range,
    we will automatically adjust it for correct angle in radians. }
  function SideNormal(const Angle: Single): TVector3Single;
  var
    AngleSin, AngleCos: Float;
  begin
    SinCos((Angle / QuadricSlices) * 2 * Pi, AngleSin, AngleCos);

    Result[0] := -AngleSin;

    if TopRadius = 0 then
      { Why? Draw a ortho view of cone, and note that two triangles are
        similar, and notice a proportion
        1 / Height = Result[1] / BottomRadius. }
      Result[1] := BottomRadius / Height else
      { This assumes that BottomRadius = TopRadius.
        It's Ok, this procedure is used now only for straight cylinder
        or a cone. }
      Result[1] := 0;
    Result[2] := -AngleCos;

    { When Result[1] is zero (straight cylinder), it's already normalized }
    if Result[1] <> 0 then
      NormalizeTo1st(Result);
  end;

var
  I, J: Integer;
  BottomCircleIndex, BottomMiddleIndex, BottomFaceIndex: Integer;
  TopCircleIndex, TopMiddleIndex, TopFaceIndex: Integer;
  SideBottomCircleIndex, SideTopCircleIndex, MiddleCircleIndex,
    MiddleFaceIndex, SideFaceIndex: Integer;
  QuadricStacks: Cardinal;
  Stack: Single;
begin
  { For VRML 1.0, some of these MF fields by default have non-empty content.
    It's safest to just clean them. }
  CoordIndex.Count := 0;
  Coord.Count := 0;
  Normal.Count := 0;
  if TexCoord <> nil then TexCoord.Count := 0;
  if MaterialIndex <> nil then MaterialIndex.Count := 0;

  QuadricSlices := KambiTriangulation.QuadricSlices;
  QuadricStacks := KambiTriangulation.QuadricStacks;

  if Bottom then
  begin
    BottomCircleIndex := Coord.Count;
    Coord.Count := Coord.Count + QuadricSlices;
    GenerateCircle(QuadricSlices, BottomRadius, -Height / 2, Addr(Coord.L[BottomCircleIndex]));
    Normal.Count := Normal.Count + QuadricSlices;
    for I := 0 to QuadricSlices - 1 do
      Normal.L[BottomCircleIndex + I] := Vector3Single(0, -1, 0);
    if TexCoord <> nil then
    begin
      TexCoord.Count := TexCoord.Count + QuadricSlices;
      GenerateTexCoordCircle(QuadricSlices, Addr(TexCoord.L[BottomCircleIndex]), false);
    end;

    BottomMiddleIndex := Coord.Count;
    Coord.Add^ := Vector3Single(0, -Height / 2, 0);
    Normal.Add^ := Vector3Single(0, -1, 0);
    if TexCoord <> nil then
      TexCoord.Add^ := Vector2Single(0.5, 0.5);

    BottomFaceIndex := CoordIndex.Count;
    CoordIndex.Count := CoordIndex.Count + QuadricSlices * 4;
    for I := 0 to QuadricSlices - 1 do
    begin
      if I <> QuadricSlices - 1 then
        CoordIndex.L[BottomFaceIndex + I * 4  ] := BottomCircleIndex + I + 1 else
        CoordIndex.L[BottomFaceIndex + I * 4  ] := BottomCircleIndex;
      CoordIndex.L[BottomFaceIndex + I * 4 + 1] := BottomCircleIndex + I;
      CoordIndex.L[BottomFaceIndex + I * 4 + 2] := BottomMiddleIndex;
      CoordIndex.L[BottomFaceIndex + I * 4 + 3] := -1;
    end;

    if MaterialIndex <> nil then
    begin
      { fill materialIndex for bottom disk.
        For VRML 1.0 Cone (TopRadius = 0), this is material 1,
        for VRML 1.0 Cylinder this is material 2. }
      if TopRadius = 0 then
        MaterialIndex.AddDuplicate(1, QuadricSlices) else
        MaterialIndex.AddDuplicate(2, QuadricSlices);
    end;
  end;

  if Top and (TopRadius <> 0) then
  begin
    TopCircleIndex := Coord.Count;
    Coord.Count := Coord.Count + QuadricSlices;
    GenerateCircle(QuadricSlices, TopRadius, Height / 2, Addr(Coord.L[TopCircleIndex]));
    Normal.Count := Normal.Count + QuadricSlices;
    for I := 0 to QuadricSlices - 1 do
      Normal.L[TopCircleIndex + I] := Vector3Single(0, 1, 0);
    if TexCoord <> nil then
    begin
      TexCoord.Count := TexCoord.Count + QuadricSlices;
      GenerateTexCoordCircle(QuadricSlices, Addr(TexCoord.L[TopCircleIndex]), true);
    end;

    TopMiddleIndex := Coord.Count;
    Coord.Add^ := Vector3Single(0, Height / 2, 0);
    Normal.Add^ := Vector3Single(0, 1, 0);
    if TexCoord <> nil then
      TexCoord.Add^ := Vector2Single(0.5, 0.5);

    TopFaceIndex := CoordIndex.Count;
    CoordIndex.Count := CoordIndex.Count + QuadricSlices * 4;
    for I := 0 to QuadricSlices - 1 do
    begin
      CoordIndex.L[TopFaceIndex + I * 4    ] := TopCircleIndex + I;
      if I <> QuadricSlices - 1 then
        CoordIndex.L[TopFaceIndex + I * 4 + 1] := TopCircleIndex + I + 1 else
        CoordIndex.L[TopFaceIndex + I * 4 + 1] := TopCircleIndex;
      CoordIndex.L[TopFaceIndex + I * 4 + 2] := TopMiddleIndex;
      CoordIndex.L[TopFaceIndex + I * 4 + 3] := -1;
    end;

    if MaterialIndex <> nil then
    begin
      { fill materialIndex for top disk (this will be called only for VRML 1.0
        Cylinder). }
      MaterialIndex.AddDuplicate(1, QuadricSlices);
    end;
  end;

  if Side then
  begin
    { Generate another circles, instead of reusing Bottom/TopCircleIndex.
      That's because these vertices need different normal vectors anyway,
      so we may as well duplicate their coords.

      We generate QuadricSlices + 1 edges (instead of making QuadricSlices
      edges, and reusing the first edge for the last edge).
      Reason: texture coordinates must be different at the last edge
      (1.0) than the first (0.0).
      Otherwise texture seam would not be correctly closed. }
    SideBottomCircleIndex := Coord.Count;
    Coord.Count := Coord.Count + QuadricSlices + 1;
    GenerateCircle(QuadricSlices, BottomRadius, -Height / 2, Addr(Coord.L[SideBottomCircleIndex]));
    Coord.L[Coord.Count - 1] := Coord.L[SideBottomCircleIndex];
    Normal.Count := Normal.Count + QuadricSlices + 1;
    for I := 0 to QuadricSlices - 1 do
      Normal.L[SideBottomCircleIndex + I] := SideNormal(I);
    Normal.L[Normal.Count - 1] := Normal.L[SideBottomCircleIndex];
    if TexCoord <> nil then
    begin
      TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
      for I := 0 to QuadricSlices do
        TexCoord.L[SideBottomCircleIndex + I] := Vector2Single(I / QuadricSlices, 0);
    end;

    { Add additional "stacks" to the geometry. }
    if OverTriangulate then
      for J := 1 to QuadricStacks - 1 do
      begin
        { stack height, in range [0..1] (0 = bottom, 1 = top). }
        Stack := J / QuadricStacks;

        MiddleCircleIndex := Coord.Count;
        Coord.Count := Coord.Count + QuadricSlices + 1;
        GenerateCircle(QuadricSlices, Lerp(Stack, BottomRadius, TopRadius), -Height / 2 + Stack * Height, Addr(Coord.L[MiddleCircleIndex]));
        Coord.L[Coord.Count - 1] := Coord.L[MiddleCircleIndex];
        Normal.Count := Normal.Count + QuadricSlices + 1;
        for I := 0 to QuadricSlices - 1 do
          Normal.L[MiddleCircleIndex + I] := Normal.L[SideBottomCircleIndex + I];
        Normal.L[Normal.Count - 1] := Normal.L[MiddleCircleIndex];
        if TexCoord <> nil then
        begin
          TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
          for I := 0 to QuadricSlices do
            TexCoord.L[MiddleCircleIndex + I] := Vector2Single(I / QuadricSlices, Stack);
        end;

        MiddleFaceIndex := CoordIndex.Count;
        CoordIndex.Count := CoordIndex.Count + QuadricSlices * 5;
        for I := 0 to QuadricSlices - 1 do
        begin
          CoordIndex.L[MiddleFaceIndex + I * 5    ] := MiddleCircleIndex     + I;
          CoordIndex.L[MiddleFaceIndex + I * 5 + 1] := SideBottomCircleIndex + I;
          CoordIndex.L[MiddleFaceIndex + I * 5 + 2] := SideBottomCircleIndex + I + 1;
          CoordIndex.L[MiddleFaceIndex + I * 5 + 3] := MiddleCircleIndex     + I + 1;
          CoordIndex.L[MiddleFaceIndex + I * 5 + 4] := -1;
        end;

        if MaterialIndex <> nil then
          MaterialIndex.AddDuplicate(0, QuadricSlices);

        { Next stack added. Now replace SideBottomCircleIndex,
          to say that the the current circle is the bottom now. }
        SideBottomCircleIndex := MiddleCircleIndex;
      end;

    SideTopCircleIndex := Coord.Count;
    Coord.Count := Coord.Count + QuadricSlices + 1;
    { Even when TopRadius = 0 (we make a cone), we still generate
      QuadricSlices * top points.
      See comments at the beginning about "How to make smooth normals...". }
    GenerateCircle(QuadricSlices, TopRadius, Height / 2, Addr(Coord.L[SideTopCircleIndex]));
    Coord.L[Coord.Count - 1] := Coord.L[SideTopCircleIndex];
    Normal.Count := Normal.Count + QuadricSlices + 1;
    for I := 0 to QuadricSlices - 1 do
      Normal.L[SideTopCircleIndex + I] := Normal.L[SideBottomCircleIndex + I];
    Normal.L[Normal.Count - 1] := Normal.L[SideTopCircleIndex];
    if TexCoord <> nil then
    begin
      TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
      for I := 0 to QuadricSlices do
        TexCoord.L[SideTopCircleIndex + I] := Vector2Single(I / QuadricSlices, 1);
    end;

    SideFaceIndex := CoordIndex.Count;
    if TopRadius <> 0 then
    begin
      CoordIndex.Count := CoordIndex.Count + QuadricSlices * 5;
      for I := 0 to QuadricSlices - 1 do
      begin
        CoordIndex.L[SideFaceIndex + I * 5    ] := SideTopCircleIndex    + I;
        CoordIndex.L[SideFaceIndex + I * 5 + 1] := SideBottomCircleIndex + I;
        CoordIndex.L[SideFaceIndex + I * 5 + 2] := SideBottomCircleIndex + I + 1;
        CoordIndex.L[SideFaceIndex + I * 5 + 3] := SideTopCircleIndex    + I + 1;
        CoordIndex.L[SideFaceIndex + I * 5 + 4] := -1;
      end;
    end else
    begin
      { We *could* use the above code, that treats each face as a quad,
        even in case TopRadius = 0. OpenGL rendering works (in practice,
        rects are converted into two triangles and one of them will not
        do anything), octree construction works (degenerate triangle is
        removed). But what's the point in wasting memory (and sending
        to OpenGL dummy triangles) then? }
      CoordIndex.Count := CoordIndex.Count + QuadricSlices * 4;
      for I := 0 to QuadricSlices - 1 do
      begin
        CoordIndex.L[SideFaceIndex + I * 4    ] := SideBottomCircleIndex + I;
        CoordIndex.L[SideFaceIndex + I * 4 + 1] := SideBottomCircleIndex + I + 1;
        CoordIndex.L[SideFaceIndex + I * 4 + 2] := SideTopCircleIndex    + I + 1;
        CoordIndex.L[SideFaceIndex + I * 4 + 3] := -1;
      end;
    end;

    if MaterialIndex <> nil then
      MaterialIndex.AddDuplicate(0, QuadricSlices);
  end;
end;

{ VRML 2 proxy --------------------------------------------------------------- }

function TCylinderNode.Proxy(var State: TX3DGraphTraverseState;
  const OverTriangulate: boolean): TAbstractGeometryNode;
var
  CoordNode: TCoordinateNode;
  NormalNode: TNormalNode;
  TexCoordNode: TTextureCoordinateNode;
  TexCoords: TVector2SingleList;
  IFS: TIndexedFaceSetNode absolute Result;
begin
  IFS := TIndexedFaceSetNode.Create(NodeName, BaseUrl);
  try
    CoordNode := TCoordinateNode.Create('', BaseUrl);
    IFS.FdCoord.Value := CoordNode;

    NormalNode := TNormalNode.Create('', BaseUrl);
    IFS.FdNormal.Value := NormalNode;
    IFS.FdNormalPerVertex.Value := true;

    if (FdTexCoord.Value <> nil) and FdTexCoord.CurrentChildAllowed then
    begin
      { No need for CylinderCone_Proxy to create tex coords. }
      IFS.FdTexCoord.Value := FdTexCoord.Value;
      TexCoords := nil;
    end else
    begin
      TexCoordNode := TTextureCoordinateNode.Create('', BaseUrl);
      IFS.FdTexCoord.Value := TexCoordNode;
      TexCoords := TexCoordNode.FdPoint.Items;
    end;

    CylinderCone_Proxy(IFS.FdCoordIndex.Items,
      CoordNode.FdPoint.Items, NormalNode.FdVector.Items, TexCoords, nil,
      OverTriangulate, FdRadius.Value, FdRadius.Value, FdHeight.Value,
      FdBottom.Value, FdSide.Value, FdTop.Value,
      State.LastNodes.KambiTriangulation);

    IFS.FdSolid.Value := FdSolid.Value;

    { Smooth everything. }
    IFS.FdCreaseAngle.Value := 4;
  except FreeAndNil(Result); raise end;
end;

function TConeNode.Proxy(var State: TX3DGraphTraverseState;
  const OverTriangulate: boolean): TAbstractGeometryNode;
var
  CoordNode: TCoordinateNode;
  NormalNode: TNormalNode;
  TexCoordNode: TTextureCoordinateNode;
  TexCoords: TVector2SingleList;
  IFS: TIndexedFaceSetNode absolute Result;
begin
  IFS := TIndexedFaceSetNode.Create(NodeName, BaseUrl);
  try
    CoordNode := TCoordinateNode.Create('', BaseUrl);
    IFS.FdCoord.Value := CoordNode;

    NormalNode := TNormalNode.Create('', BaseUrl);
    IFS.FdNormal.Value := NormalNode;
    IFS.FdNormalPerVertex.Value := true;

    if (FdTexCoord.Value <> nil) and FdTexCoord.CurrentChildAllowed then
    begin
      { No need for CylinderCone_Proxy to create tex coords. }
      IFS.FdTexCoord.Value := FdTexCoord.Value;
      TexCoords := nil;
    end else
    begin
      TexCoordNode := TTextureCoordinateNode.Create('', BaseUrl);
      IFS.FdTexCoord.Value := TexCoordNode;
      TexCoords := TexCoordNode.FdPoint.Items;
    end;

    CylinderCone_Proxy(IFS.FdCoordIndex.Items,
      CoordNode.FdPoint.Items, NormalNode.FdVector.Items, TexCoords, nil,
      OverTriangulate, FdBottomRadius.Value, 0, FdHeight.Value,
      FdBottom.Value, FdSide.Value, false,
      State.LastNodes.KambiTriangulation);

    IFS.FdSolid.Value := FdSolid.Value;

    { Smooth everything. }
    IFS.FdCreaseAngle.Value := 4;
  except FreeAndNil(Result); raise end;
end;

{ VRML 1 proxy --------------------------------------------------------------- }

function TCylinderNode_1.Proxy(var State: TX3DGraphTraverseState;
  const OverTriangulate: boolean): TAbstractGeometryNode;
var
  CoordNode: TCoordinate3Node_1;
  NormalNode: TNormalNode;
  NormalBinding: TNormalBindingNode_1;
  TexCoordNode: TTextureCoordinate2Node_1;
  ShapeHints: TShapeHintsNode_1;
  MaterialBinding: TMaterialBindingNode_1;
  MaterialIndex: TLongIntList;
  IFS: TIndexedFaceSetNode_1 absolute Result;
begin
  IFS := TIndexedFaceSetNode_1.Create(NodeName, BaseUrl);
  try
    { we have to modify State, so make a copy of it }
    State := TX3DGraphTraverseState.CreateCopy(State);

    CoordNode := TCoordinate3Node_1.Create('', BaseUrl);
    State.SetLastNodes(vsCoordinate3, CoordNode, true);

    NormalNode := TNormalNode.Create('', BaseUrl);
    State.SetLastNodes(vsNormal, NormalNode, true);

    NormalBinding := TNormalBindingNode_1.Create('', BaseUrl);
    { NormalBinding.value = PER_VERTEX means we use niPerVertexCoordIndexed,
      so coordIndex chooses the normal. }
    NormalBinding.FdValue.Value := BIND_PER_VERTEX;
    State.SetLastNodes(vsNormalBinding, NormalBinding, true);

    TexCoordNode := TTextureCoordinate2Node_1.Create('', BaseUrl);
    State.SetLastNodes(vsTextureCoordinate2, TexCoordNode, true);

    ShapeHints := TShapeHintsNode_1.Create('', BaseUrl);
    { For VRML 1.0, Cylinder is never solid. }
    ShapeHints.FdshapeType.Value := SHTYPE_UNKNOWN;
    ShapeHints.FdvertexOrdering.Value := VERTORDER_COUNTERCLOCKWISE;
    { Smooth everything. Not really needed, we use explicit normal node now. }
    ShapeHints.FdCreaseAngle.Value := 4;
    State.SetLastNodes(vsShapeHints, ShapeHints, true);

    { calculate MaterialBinding node and MaterialIndex }
    MaterialBinding := TMaterialBindingNode_1.Create('', BaseUrl);
    if State.LastNodes.MaterialBinding.FdValue.Value in
      [BIND_PER_PART, BIND_PER_PART_INDEXED] then
    begin
      MaterialIndex := IFS.FdMaterialIndex.Items;
      MaterialBinding.FdValue.Value := BIND_PER_FACE_INDEXED;
    end else
    begin
      MaterialIndex := nil;
      MaterialBinding.FdValue.Value := BIND_OVERALL;
    end;
    State.SetLastNodes(vsMaterialBinding, MaterialBinding, true);

    CylinderCone_Proxy(IFS.FdCoordIndex.Items,
      CoordNode.FdPoint.Items, NormalNode.FdVector.Items,
      TexCoordNode.FdPoint.Items, MaterialIndex,
      OverTriangulate, FdRadius.Value, FdRadius.Value, FdHeight.Value,
      FdParts.Flags[CYLINDER_PARTS_BOTTOM],
      FdParts.Flags[CYLINDER_PARTS_SIDES],
      FdParts.Flags[CYLINDER_PARTS_TOP],
      State.LastNodes.KambiTriangulation);

    { For VRML 1.0, unfortunately textureCoordIndex must be set
      (even though it's exactly equivalent to coordIndex).
      This is a problem of VRML 1.0 "state" idea --- there is no
      other way to "turn off" texture than to just use empty textureCoordIndex. }
    IFS.FdTextureCoordIndex.Items.Assign(IFS.FdCoordIndex.Items);
  except FreeAndNil(Result); raise end;
end;

function TConeNode_1.Proxy(var State: TX3DGraphTraverseState;
  const OverTriangulate: boolean): TAbstractGeometryNode;
var
  CoordNode: TCoordinate3Node_1;
  NormalNode: TNormalNode;
  NormalBinding: TNormalBindingNode_1;
  TexCoordNode: TTextureCoordinate2Node_1;
  ShapeHints: TShapeHintsNode_1;
  MaterialBinding: TMaterialBindingNode_1;
  MaterialIndex: TLongIntList;
  IFS: TIndexedFaceSetNode_1 absolute Result;
begin
  IFS := TIndexedFaceSetNode_1.Create(NodeName, BaseUrl);
  try
    { we have to modify State, so make a copy of it }
    State := TX3DGraphTraverseState.CreateCopy(State);

    CoordNode := TCoordinate3Node_1.Create('', BaseUrl);
    State.SetLastNodes(vsCoordinate3, CoordNode, true);

    NormalNode := TNormalNode.Create('', BaseUrl);
    State.SetLastNodes(vsNormal, NormalNode, true);

    NormalBinding := TNormalBindingNode_1.Create('', BaseUrl);
    { NormalBinding.value = PER_VERTEX means we use niPerVertexCoordIndexed,
      so coordIndex chooses the normal. }
    NormalBinding.FdValue.Value := BIND_PER_VERTEX;
    State.SetLastNodes(vsNormalBinding, NormalBinding, true);

    TexCoordNode := TTextureCoordinate2Node_1.Create('', BaseUrl);
    State.SetLastNodes(vsTextureCoordinate2, TexCoordNode, true);

    ShapeHints := TShapeHintsNode_1.Create('', BaseUrl);
    { For VRML 1.0, Cone is never solid. }
    ShapeHints.FdshapeType.Value := SHTYPE_UNKNOWN;
    ShapeHints.FdvertexOrdering.Value := VERTORDER_COUNTERCLOCKWISE;
    { Smooth everything. Not really needed, we use explicit normal node now. }
    ShapeHints.FdCreaseAngle.Value := 4;
    State.SetLastNodes(vsShapeHints, ShapeHints, true);

    { calculate MaterialBinding node and MaterialIndex }
    MaterialBinding := TMaterialBindingNode_1.Create('', BaseUrl);
    if State.LastNodes.MaterialBinding.FdValue.Value in
      [BIND_PER_PART, BIND_PER_PART_INDEXED] then
    begin
      MaterialIndex := IFS.FdMaterialIndex.Items;
      MaterialBinding.FdValue.Value := BIND_PER_FACE_INDEXED;
    end else
    begin
      MaterialIndex := nil;
      MaterialBinding.FdValue.Value := BIND_OVERALL;
    end;
    State.SetLastNodes(vsMaterialBinding, MaterialBinding, true);

    CylinderCone_Proxy(IFS.FdCoordIndex.Items,
      CoordNode.FdPoint.Items, NormalNode.FdVector.Items,
      TexCoordNode.FdPoint.Items, MaterialIndex,
      OverTriangulate, FdBottomRadius.Value, 0, FdHeight.Value,
      FdParts.Flags[CONE_PARTS_BOTTOM], FdParts.Flags[CONE_PARTS_SIDES], false,
      State.LastNodes.KambiTriangulation);

    { For VRML 1.0, unfortunately textureCoordIndex must be set
      (even though it's exactly equivalent to coordIndex).
      This is a problem of VRML 1.0 "state" idea --- there is no
      other way to "turn off" texture than to just use empty textureCoordIndex. }
    IFS.FdTextureCoordIndex.Items.Assign(IFS.FdCoordIndex.Items);
  except FreeAndNil(Result); raise end;
end;