This file is indexed.

/usr/src/castle-game-engine-4.1.1/x3d/x3dnodes_sphere.inc is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
{
  Copyright 2002-2013 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Make a sphere. }
procedure Sphere_Proxy(CoordIndex: TLongIntList;
  Coord: TVector3SingleList; Normal: TVector3SingleList;
  TexCoord: TVector2SingleList;
  OverTriangulate: boolean; const Radius: Single;
  KambiTriangulation: TKambiTriangulationNode);
var
  QuadricSlices, QuadricStacks: Cardinal;

  { We have rings numbered 0 ... QuadricStacks.
    The rings nr 0 and QuadricStacks have 0 radius (bottom and top of the sphere). }

  { For stack number calculate it's radius and height (in y). }
  procedure StackCircle(StackNum: integer; out StackRadius, Height: Single);
  var
    Alpha, S, C: Float;
  begin
    { Calculate correct StackRadius and Height for sphere of radius 1,
      and then scale by Radius. }

    { Divide the vertical ring into QuadricStacks equal pieces.
      This is much better idea than simply dividing along the Height,
      because it allows the top/bottom of the sphere to look much better.
      This is also what OpenGL quadrics do.
      You can compare by using below

        StackRadius := Sqrt( 1 - Sqr(1 - 2*StackNum/QuadricStacks) ) * Radius;
        Height := (-1 + StackNum * 2/QuadricStacks) * Radius;
    }
    Alpha := Pi * StackNum / QuadricStacks;
    SinCos(Alpha, S, C);
    StackRadius :=  S * Radius;
    Height      := -C * Radius;
  end;

var
  StackRadius, StackHeight: Single;
  StackFaceIndex, BottomIndex, TopIndex, BottomCircleIndex, CircleIndex,
    StackNum, I: Integer;
begin
  { For VRML 1.0, some of these MF fields by default have non-empty content.
    It's safest to just clean them. }
  CoordIndex.Count := 0;
  Coord.Count := 0;
  Normal.Count := 0;
  if TexCoord <> nil then TexCoord.Count := 0;

  QuadricSlices := KambiTriangulation.QuadricSlices;
  QuadricStacks := KambiTriangulation.QuadricStacks;

  { We generate QuadricSlices + 1 points, not just QuadricSlices for each stack.
    Reason: texture coordinates must be different at the last point
    (1.0) than the first (0.0).
    Otherwise texture seam would not be correctly closed. }

  { Even for the bottom/top point, we create many points, because
    they need different tex coords. }
  BottomIndex := Coord.Count;
  Coord.Count := Coord.Count + QuadricSlices + 1;
  Normal.Count := Normal.Count + QuadricSlices + 1;
  for I := 0 to QuadricSlices do
  begin
    Coord.L[BottomIndex + I] := Vector3Single(0, -Radius, 0);
    Normal.L[BottomIndex + I] := Vector3Single(0, -1, 0);
  end;
  if TexCoord <> nil then
  begin
    TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
    for I := 0 to QuadricSlices do
      TexCoord.L[BottomIndex + I] := Vector2Single(I / QuadricSlices, 0);
  end;

  BottomCircleIndex := Coord.Count;
  Coord.Count := Coord.Count + QuadricSlices + 1;
  StackCircle(1, StackRadius, StackHeight);
  GenerateCircle(QuadricSlices, StackRadius, StackHeight, Addr(Coord.L[BottomCircleIndex]));
  Coord[Coord.Count - 1] := Coord.L[BottomCircleIndex];
  Normal.Count := Normal.Count + QuadricSlices + 1;
  for I := 0 to QuadricSlices - 1 do
    Normal.L[BottomCircleIndex + I] := Normalized(Coord.L[BottomCircleIndex + I]);
  Normal[Normal.Count - 1] := Normal.L[BottomCircleIndex];
  if TexCoord <> nil then
  begin
    TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
    for I := 0 to QuadricSlices  do
      TexCoord.L[BottomCircleIndex + I] := Vector2Single(I / QuadricSlices, 1 / QuadricStacks);
  end;

  { Bottom stack, from triangles }
  StackFaceIndex := CoordIndex.Count;
  CoordIndex.Count := CoordIndex.Count + QuadricSlices * 4;
  for I := 0 to QuadricSlices - 1 do
  begin
    CoordIndex.L[StackFaceIndex + I * 4    ] := BottomCircleIndex + I + 1;
    CoordIndex.L[StackFaceIndex + I * 4 + 1] := BottomCircleIndex + I;
    CoordIndex.L[StackFaceIndex + I * 4 + 2] := BottomIndex + I;
    CoordIndex.L[StackFaceIndex + I * 4 + 3] := -1;
  end;

  for StackNum := 2 to QuadricStacks - 1 do
  begin
    StackCircle(StackNum, StackRadius, StackHeight);

    CircleIndex := Coord.Count;
    Coord.Count := Coord.Count + QuadricSlices + 1;
    StackCircle(StackNum, StackRadius, StackHeight);
    GenerateCircle(QuadricSlices, StackRadius, StackHeight, Addr(Coord.L[CircleIndex]));
    Coord[Coord.Count - 1] := Coord.L[CircleIndex];
    Normal.Count := Normal.Count + QuadricSlices + 1;
    for I := 0 to QuadricSlices - 1 do
      Normal.L[CircleIndex + I] := Normalized(Coord.L[CircleIndex + I]);
    Normal[Normal.Count - 1] := Normal.L[CircleIndex];
    if TexCoord <> nil then
    begin
      TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
      for I := 0 to QuadricSlices  do
        TexCoord.L[CircleIndex + I] := Vector2Single(I / QuadricSlices, StackNum / QuadricStacks);
    end;

    { Next stack, from quads }
    StackFaceIndex := CoordIndex.Count;
    CoordIndex.Count := CoordIndex.Count + QuadricSlices * 5;
    for I := 0 to QuadricSlices - 1 do
    begin
      CoordIndex.L[StackFaceIndex + I * 5    ] := BottomCircleIndex + I;
      CoordIndex.L[StackFaceIndex + I * 5 + 1] := BottomCircleIndex + I + 1;
      CoordIndex.L[StackFaceIndex + I * 5 + 2] := CircleIndex + I + 1;
      CoordIndex.L[StackFaceIndex + I * 5 + 3] := CircleIndex + I;
      CoordIndex.L[StackFaceIndex + I * 5 + 4] := -1;
    end;

    BottomCircleIndex := CircleIndex;
  end;

  TopIndex := Coord.Count;
  Coord.Count := Coord.Count + QuadricSlices + 1;
  Normal.Count := Normal.Count + QuadricSlices + 1;
  for I := 0 to QuadricSlices do
  begin
    Coord.L[TopIndex + I] := Vector3Single(0, Radius, 0);
    Normal.L[TopIndex + I] := Vector3Single(0, 1, 0);
  end;
  if TexCoord <> nil then
  begin
    TexCoord.Count := TexCoord.Count + QuadricSlices + 1;
    for I := 0 to QuadricSlices do
      TexCoord.L[TopIndex + I] := Vector2Single(I / QuadricSlices, 1);
  end;

  { Top stack, from triangles }
  StackFaceIndex := CoordIndex.Count;
  CoordIndex.Count := CoordIndex.Count + QuadricSlices * 4;
  for I := 0 to QuadricSlices - 1 do
  begin
    CoordIndex.L[StackFaceIndex + I * 4    ] := BottomCircleIndex + I;
    CoordIndex.L[StackFaceIndex + I * 4 + 1] := BottomCircleIndex + I + 1;
    CoordIndex.L[StackFaceIndex + I * 4 + 2] := TopIndex + I;
    CoordIndex.L[StackFaceIndex + I * 4 + 3] := -1;
  end;
end;

function TSphereNode.Proxy(var State: TX3DGraphTraverseState;
  const OverTriangulate: boolean): TAbstractGeometryNode;
var
  CoordNode: TCoordinateNode;
  NormalNode: TNormalNode;
  TexCoordNode: TTextureCoordinateNode;
  TexCoords: TVector2SingleList;
  IFS: TIndexedFaceSetNode absolute Result;
begin
  IFS := TIndexedFaceSetNode.Create(NodeName, BaseUrl);
  try
    CoordNode := TCoordinateNode.Create('', BaseUrl);
    IFS.FdCoord.Value := CoordNode;

    NormalNode := TNormalNode.Create('', BaseUrl);
    IFS.FdNormal.Value := NormalNode;
    IFS.FdNormalPerVertex.Value := true;

    if (FdTexCoord.Value <> nil) and FdTexCoord.CurrentChildAllowed then
    begin
      { No need for CylinderCone_Proxy to create tex coords. }
      IFS.FdTexCoord.Value := FdTexCoord.Value;
      TexCoords := nil;
    end else
    begin
      TexCoordNode := TTextureCoordinateNode.Create('', BaseUrl);
      IFS.FdTexCoord.Value := TexCoordNode;
      TexCoords := TexCoordNode.FdPoint.Items;
    end;

    Sphere_Proxy(IFS.FdCoordIndex.Items,
      CoordNode.FdPoint.Items, NormalNode.FdVector.Items, TexCoords,
      OverTriangulate, FdRadius.Value,
      State.LastNodes.KambiTriangulation);

    IFS.FdSolid.Value := FdSolid.Value;

    { Smooth everything. }
    IFS.FdCreaseAngle.Value := 4;
  except FreeAndNil(Result); raise end;
end;

function TSphereNode_1.Proxy(var State: TX3DGraphTraverseState;
  const OverTriangulate: boolean): TAbstractGeometryNode;
var
  CoordNode: TCoordinate3Node_1;
  NormalNode: TNormalNode;
  NormalBinding: TNormalBindingNode_1;
  TexCoordNode: TTextureCoordinate2Node_1;
  ShapeHints: TShapeHintsNode_1;
  MaterialBinding: TMaterialBindingNode_1;
  IFS: TIndexedFaceSetNode_1 absolute Result;
begin
  IFS := TIndexedFaceSetNode_1.Create(NodeName, BaseUrl);
  try
    { we have to modify State, so make a copy of it }
    State := TX3DGraphTraverseState.CreateCopy(State);

    CoordNode := TCoordinate3Node_1.Create('', BaseUrl);
    State.SetLastNodes(vsCoordinate3, CoordNode, true);

    NormalNode := TNormalNode.Create('', BaseUrl);
    State.SetLastNodes(vsNormal, NormalNode, true);

    NormalBinding := TNormalBindingNode_1.Create('', BaseUrl);
    { NormalBinding.value = PER_VERTEX means we use niPerVertexCoordIndexed,
      so coordIndex chooses the normal. }
    NormalBinding.FdValue.Value := BIND_PER_VERTEX;
    State.SetLastNodes(vsNormalBinding, NormalBinding, true);

    TexCoordNode := TTextureCoordinate2Node_1.Create('', BaseUrl);
    State.SetLastNodes(vsTextureCoordinate2, TexCoordNode, true);

    ShapeHints := TShapeHintsNode_1.Create('', BaseUrl);
    { For VRML 1.0, Sphere is never solid. }
    ShapeHints.FdshapeType.Value := SHTYPE_UNKNOWN;
    ShapeHints.FdvertexOrdering.Value := VERTORDER_COUNTERCLOCKWISE;
    { Smooth everything. Not really needed, we use explicit normal node now. }
    ShapeHints.FdCreaseAngle.Value := 4;
    State.SetLastNodes(vsShapeHints, ShapeHints, true);

    { calculate MaterialBinding. Sphere has always only 1 material. }
    MaterialBinding := TMaterialBindingNode_1.Create('', BaseUrl);
    MaterialBinding.FdValue.Value := BIND_OVERALL;
    State.SetLastNodes(vsMaterialBinding, MaterialBinding, true);

    Sphere_Proxy(IFS.FdCoordIndex.Items,
      CoordNode.FdPoint.Items, NormalNode.FdVector.Items,
      TexCoordNode.FdPoint.Items,
      OverTriangulate, FdRadius.Value,
      State.LastNodes.KambiTriangulation);

    { For VRML 1.0, unfortunately textureCoordIndex must be set
      (even though it's exactly equivalent to coordIndex).
      This is a problem of VRML 1.0 "state" idea --- there is no
      other way to "turn off" texture than to just use empty textureCoordIndex. }
    IFS.FdTextureCoordIndex.Items.Assign(IFS.FdCoordIndex.Items);
  except FreeAndNil(Result); raise end;
end;