/usr/lib/python2.7/dist-packages/ClusterShell/RangeSet.py is in clustershell 1.6-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | #
# Copyright CEA/DAM/DIF (2012)
# Contributor: Stephane THIELL <stephane.thiell@cea.fr>
#
# This file is part of the ClusterShell library.
#
# This software is governed by the CeCILL-C license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL-C
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL-C license and that you accept its terms.
"""
Cluster range set module.
Instances of RangeSet provide similar operations than the builtin set type,
extended to support cluster ranges-like format and stepping support ("0-8/2").
"""
__all__ = ['RangeSetException',
'RangeSetParseError',
'RangeSetPaddingError',
'RangeSet']
class RangeSetException(Exception):
"""Base RangeSet exception class."""
class RangeSetParseError(RangeSetException):
"""Raised when RangeSet parsing cannot be done properly."""
def __init__(self, part, msg):
if part:
msg = "%s : \"%s\"" % (msg, part)
RangeSetException.__init__(self, msg)
# faulty subrange; this allows you to target the error
self.part = part
class RangeSetPaddingError(RangeSetParseError):
"""Raised when a fatal padding incoherency occurs"""
def __init__(self, part, msg):
RangeSetParseError.__init__(self, part, "padding mismatch (%s)" % msg)
class RangeSet(set):
"""
Mutable set of cluster node indexes featuring a fast range-based API.
This class aims to ease the management of potentially large cluster range
sets and is used by the NodeSet class.
RangeSet basic constructors:
>>> rset = RangeSet() # empty RangeSet
>>> rset = RangeSet("5,10-42") # contains 5, 10 to 42
>>> rset = RangeSet("0-10/2") # contains 0, 2, 4, 6, 8, 10
Since v1.6, any iterable of integers can be specified as first argument:
>>> RangeSet([3, 6, 8, 7, 1])
1,3,6-8
>>> rset2 = RangeSet(rset)
Padding of ranges (eg. "003-009") can be managed through a public RangeSet
instance variable named padding. It may be changed at any time. Since v1.6,
padding is a simple display feature per RangeSet object, thus current
padding value is not taken into account when computing set operations.
Since v1.6, RangeSet is itself an iterator over its items as integers
(instead of strings). To iterate over string items as before (with
optional padding), you can now use the RangeSet.striter() method.
RangeSet provides methods like union(), intersection(), difference(),
symmetric_difference() and their in-place versions update(),
intersection_update(), difference_update(),
symmetric_difference_update() which conform to the Python Set API.
"""
_VERSION = 3 # serial version number
# define __new__() to workaround built-in set subclassing with Python 2.4
def __new__(cls, pattern=None, autostep=None):
"""Object constructor"""
return set.__new__(cls)
def __init__(self, pattern=None, autostep=None):
"""Initialize RangeSet with optional string pattern and autostep
threshold.
"""
if pattern is None or isinstance(pattern, str):
set.__init__(self)
else:
set.__init__(self, pattern)
if isinstance(pattern, RangeSet):
self._autostep = pattern._autostep
self.padding = pattern.padding
else:
self._autostep = None
self.padding = None
self.autostep = autostep
if isinstance(pattern, str):
self._parse(pattern)
def _parse(self, pattern):
"""Parse string of comma-separated x-y/step -like ranges"""
# Comma separated ranges
if pattern.find(',') < 0:
subranges = [pattern]
else:
subranges = pattern.split(',')
for subrange in subranges:
if subrange.find('/') < 0:
step = 1
baserange = subrange
else:
baserange, step = subrange.split('/', 1)
try:
step = int(step)
except ValueError:
raise RangeSetParseError(subrange,
"cannot convert string to integer")
if baserange.find('-') < 0:
if step != 1:
raise RangeSetParseError(subrange,
"invalid step usage")
begin = end = baserange
else:
begin, end = baserange.split('-', 1)
# compute padding and return node range info tuple
try:
pad = 0
if int(begin) != 0:
begins = begin.lstrip("0")
if len(begin) - len(begins) > 0:
pad = len(begin)
start = int(begins)
else:
if len(begin) > 1:
pad = len(begin)
start = 0
if int(end) != 0:
ends = end.lstrip("0")
else:
ends = end
stop = int(ends)
except ValueError:
raise RangeSetParseError(subrange,
"cannot convert string to integer")
# check preconditions
if stop > 1e100 or start > stop or step < 1:
raise RangeSetParseError(subrange,
"invalid values in range")
self.add_range(start, stop + 1, step, pad)
@classmethod
def fromlist(cls, rnglist, autostep=None):
"""Class method that returns a new RangeSet with ranges from provided
list."""
inst = RangeSet(autostep=autostep)
inst.updaten(rnglist)
return inst
@classmethod
def fromone(cls, index, pad=0, autostep=None):
"""Class method that returns a new RangeSet of one single item or
a single range (from integer or slice object)."""
inst = RangeSet(autostep=autostep)
# support slice object with duck-typing
try:
inst.add(index, pad)
except TypeError:
if not index.stop:
raise ValueError("Invalid range upper limit (%s)" % index.stop)
inst.add_range(index.start or 0, index.stop, index.step or 1, pad)
return inst
def get_autostep(self):
"""Get autostep value (property)"""
if self._autostep >= 1E100:
return None
else:
return self._autostep + 1
def set_autostep(self, val):
"""Set autostep value (property)"""
if val is None:
# disabled by default for pdsh compat (+inf is 1E400, but a bug in
# python 2.4 makes it impossible to be pickled, so we use less)
# NOTE: Later, we could consider sys.maxint here
self._autostep = 1E100
else:
# - 1 because user means node count, but we means real steps
self._autostep = int(val) - 1
autostep = property(get_autostep, set_autostep)
def _sorted(self):
"""Get sorted list from inner set."""
return sorted(set.__iter__(self))
def __iter__(self):
"""Iterate over each element in RangeSet."""
return iter(self._sorted())
def striter(self):
"""Iterate over each (optionally padded) string element in RangeSet."""
pad = self.padding or 0
for i in self._sorted():
yield "%0*d" % (pad, i)
def contiguous(self):
"""Object-based iterator over contiguous range sets."""
pad = self.padding or 0
for sli in self._contiguous_slices():
yield RangeSet.fromone(slice(sli.start, sli.stop, sli.step), pad)
def __reduce__(self):
"""Return state information for pickling."""
return self.__class__, (str(self),), \
{ 'padding': self.padding, \
'_autostep': self._autostep, \
'_version' : RangeSet._VERSION }
def __setstate__(self, dic):
"""called upon unpickling"""
self.__dict__.update(dic)
if getattr(self, '_version', 0) < RangeSet._VERSION:
# unpickle from old version?
if getattr(self, '_version', 0) <= 1:
# v1 (no object versioning) - CSv1.3
setattr(self, '_ranges', [(slice(start, stop + 1, step), pad) \
for start, stop, step, pad in getattr(self, '_ranges')])
elif hasattr(self, '_ranges'):
# v2 - CSv1.4-1.5
self_ranges = getattr(self, '_ranges')
if self_ranges and type(self_ranges[0][0]) is not slice:
# workaround for object pickled from Python < 2.5
setattr(self, '_ranges', [(slice(start, stop, step), pad) \
for (start, stop, step), pad in self_ranges])
# convert to v3
for sli, pad in getattr(self, '_ranges'):
self.add_range(sli.start, sli.stop, sli.step, pad)
delattr(self, '_ranges')
delattr(self, '_length')
def _strslices(self):
"""Stringify slices list (x-y/step format)"""
pad = self.padding or 0
for sli in self.slices():
if sli.start + 1 == sli.stop:
yield "%0*d" % (pad, sli.start)
else:
assert sli.step >= 0, "Internal error: sli.step < 0"
if sli.step == 1:
yield "%0*d-%0*d" % (pad, sli.start, pad, sli.stop - 1)
else:
yield "%0*d-%0*d/%d" % (pad, sli.start, pad, sli.stop - 1, \
sli.step)
def __str__(self):
"""Get comma-separated range-based string (x-y/step format)."""
return ','.join(self._strslices())
# __repr__ is the same as __str__ as it is a valid expression that
# could be used to recreate a RangeSet with the same value
__repr__ = __str__
def _contiguous_slices(self):
"""Internal iterator over contiguous slices in RangeSet."""
k = j = None
for i in self._sorted():
if k is None:
k = j = i
if i - j > 1:
yield slice(k, j + 1, 1)
k = i
j = i
if k is not None:
yield slice(k, j + 1, 1)
def _folded_slices(self):
"""Internal generator that is able to retrieve ranges organized by step.
Complexity: O(n) with n = number of ranges in tree."""
if len(self) == 0:
return
prng = None # pending range
istart = None # processing starting indice
m = 0 # processing step
for sli in self._contiguous_slices():
start = sli.start
stop = sli.stop
unitary = (start + 1 == stop) # one indice?
if istart is None: # first loop
if unitary:
istart = start
else:
prng = [start, stop, 1]
istart = stop - 1
i = k = istart
elif m == 0: # istart is set but step is unknown
if not unitary:
if prng is not None:
# yield and replace pending range
yield slice(*prng)
else:
yield slice(istart, istart + 1, 1)
prng = [start, stop, 1]
istart = k = stop - 1
continue
i = start
else: # step m > 0
assert m > 0
i = start
# does current range lead to broken step?
if m != i - k or not unitary:
#j = i if m == i - k else k
if m == i - k: j = i
else: j = k
# stepped is True when autostep setting does apply
stepped = (j - istart >= self._autostep * m)
if prng: # yield pending range?
if stepped:
prng[1] -= 1
else:
istart += m
yield slice(*prng)
prng = None
if m != i - k:
# case: step value has changed
if stepped:
yield slice(istart, k + 1, m)
else:
for j in range(istart, k - m + 1, m):
yield slice(j, j + 1, 1)
if not unitary:
yield slice(k, k + 1, 1)
if unitary:
if stepped:
istart = i = k = start
else:
istart = k
else:
prng = [start, stop, 1]
istart = i = k = stop - 1
elif not unitary:
# case: broken step by contiguous range
if stepped:
# yield 'range/m' by taking first indice of new range
yield slice(istart, i + 1, m)
i += 1
else:
# autostep setting does not apply in that case
for j in range(istart, i - m + 1, m):
yield slice(j, j + 1, 1)
if stop > i + 1: # current->pending only if not unitary
prng = [i, stop, 1]
istart = i = k = stop - 1
m = i - k # compute step
k = i
# exited loop, process pending range or indice...
if m == 0:
if prng:
yield slice(*prng)
else:
yield slice(istart, istart + 1, 1)
else:
assert m > 0
stepped = (k - istart >= self._autostep * m)
if prng:
if stepped:
prng[1] -= 1
else:
istart += m
yield slice(*prng)
prng = None
if stepped:
yield slice(istart, i + 1, m)
else:
for j in range(istart, i + 1, m):
yield slice(j, j + 1, 1)
def slices(self):
"""
Iterate over RangeSet ranges as Python slice objects.
"""
# return an iterator
if self._autostep >= 1E100:
return self._contiguous_slices()
else:
return self._folded_slices()
def __getitem__(self, index):
"""
Return the element at index or a subrange when a slice is specified.
"""
if isinstance(index, slice):
inst = RangeSet()
inst._autostep = self._autostep
inst.padding = self.padding
inst.update(self._sorted()[index])
return inst
elif isinstance(index, int):
return self._sorted()[index]
else:
raise TypeError, \
"%s indices must be integers" % self.__class__.__name__
def split(self, nbr):
"""
Split the rangeset into nbr sub-rangesets (at most). Each
sub-rangeset will have the same number of elements more or
less 1. Current rangeset remains unmodified. Returns an
iterator.
>>> RangeSet("1-5").split(3)
RangeSet("1-2")
RangeSet("3-4")
RangeSet("foo5")
"""
assert(nbr > 0)
# We put the same number of element in each sub-nodeset.
slice_size = len(self) / nbr
left = len(self) % nbr
begin = 0
for i in range(0, min(nbr, len(self))):
length = slice_size + int(i < left)
yield self[begin:begin + length]
begin += length
def add_range(self, start, stop, step=1, pad=0):
"""
Add a range (start, stop, step and padding length) to RangeSet.
Like the Python built-in function range(), the last element is
the largest start + i * step less than stop.
"""
assert start < stop, "please provide ordered node index ranges"
assert step > 0
assert pad >= 0
assert stop - start < 1e9, "range too large"
if pad > 0 and self.padding is None:
self.padding = pad
set.update(self, range(start, stop, step))
def copy(self):
"""Return a shallow copy of a RangeSet."""
cpy = self.__class__()
cpy._autostep = self._autostep
cpy.padding = self.padding
cpy.update(self)
return cpy
__copy__ = copy # For the copy module
def __eq__(self, other):
"""
RangeSet equality comparison.
"""
# Return NotImplemented instead of raising TypeError, to
# indicate that the comparison is not implemented with respect
# to the other type (the other comparand then gets a change to
# determine the result, then it falls back to object address
# comparison).
if not isinstance(other, RangeSet):
return NotImplemented
return len(self) == len(other) and self.issubset(other)
# Standard set operations: union, intersection, both differences.
# Each has an operator version (e.g. __or__, invoked with |) and a
# method version (e.g. union).
# Subtle: Each pair requires distinct code so that the outcome is
# correct when the type of other isn't suitable. For example, if
# we did "union = __or__" instead, then Set().union(3) would return
# NotImplemented instead of raising TypeError (albeit that *why* it
# raises TypeError as-is is also a bit subtle).
def _wrap_set_op(self, fun, arg):
"""Wrap built-in set operations for RangeSet to workaround built-in set
base class issues (RangeSet.__new/init__ not called)"""
result = fun(self, arg)
result._autostep = self._autostep
result.padding = self.padding
return result
def __or__(self, other):
"""Return the union of two RangeSets as a new RangeSet.
(I.e. all elements that are in either set.)
"""
if not isinstance(other, set):
return NotImplemented
return self.union(other)
def union(self, other):
"""Return the union of two RangeSets as a new RangeSet.
(I.e. all elements that are in either set.)
"""
return self._wrap_set_op(set.union, other)
def __and__(self, other):
"""Return the intersection of two RangeSets as a new RangeSet.
(I.e. all elements that are in both sets.)
"""
if not isinstance(other, set):
return NotImplemented
return self.intersection(other)
def intersection(self, other):
"""Return the intersection of two RangeSets as a new RangeSet.
(I.e. all elements that are in both sets.)
"""
return self._wrap_set_op(set.intersection, other)
def __xor__(self, other):
"""Return the symmetric difference of two RangeSets as a new RangeSet.
(I.e. all elements that are in exactly one of the sets.)
"""
if not isinstance(other, set):
return NotImplemented
return self.symmetric_difference(other)
def symmetric_difference(self, other):
"""Return the symmetric difference of two RangeSets as a new RangeSet.
(ie. all elements that are in exactly one of the sets.)
"""
return self._wrap_set_op(set.symmetric_difference, other)
def __sub__(self, other):
"""Return the difference of two RangeSets as a new RangeSet.
(I.e. all elements that are in this set and not in the other.)
"""
if not isinstance(other, set):
return NotImplemented
return self.difference(other)
def difference(self, other):
"""Return the difference of two RangeSets as a new RangeSet.
(I.e. all elements that are in this set and not in the other.)
"""
return self._wrap_set_op(set.difference, other)
# Membership test
def __contains__(self, element):
"""Report whether an element is a member of a RangeSet.
Element can be either another RangeSet object, a string or an
integer.
(Called in response to the expression `element in self'.)
"""
if isinstance(element, set):
return element.issubset(self)
return set.__contains__(self, int(element))
# Subset and superset test
def issubset(self, other):
"""Report whether another set contains this RangeSet."""
self._binary_sanity_check(other)
return set.issubset(self, other)
def issuperset(self, other):
"""Report whether this RangeSet contains another set."""
self._binary_sanity_check(other)
return set.issuperset(self, other)
# Inequality comparisons using the is-subset relation.
__le__ = issubset
__ge__ = issuperset
def __lt__(self, other):
self._binary_sanity_check(other)
return len(self) < len(other) and self.issubset(other)
def __gt__(self, other):
self._binary_sanity_check(other)
return len(self) > len(other) and self.issuperset(other)
# Assorted helpers
def _binary_sanity_check(self, other):
"""Check that the other argument to a binary operation is also a set,
raising a TypeError otherwise."""
if not isinstance(other, set):
raise TypeError, "Binary operation only permitted between sets"
# In-place union, intersection, differences.
# Subtle: The xyz_update() functions deliberately return None,
# as do all mutating operations on built-in container types.
# The __xyz__ spellings have to return self, though.
def __ior__(self, other):
"""Update a RangeSet with the union of itself and another."""
self._binary_sanity_check(other)
set.__ior__(self, other)
return self
def union_update(self, other):
"""Update a RangeSet with the union of itself and another."""
self.update(other)
def __iand__(self, other):
"""Update a RangeSet with the intersection of itself and another."""
self._binary_sanity_check(other)
set.__iand__(self, other)
return self
def intersection_update(self, other):
"""Update a RangeSet with the intersection of itself and another."""
set.intersection_update(self, other)
def __ixor__(self, other):
"""Update a RangeSet with the symmetric difference of itself and
another."""
self._binary_sanity_check(other)
set.symmetric_difference_update(self, other)
return self
def symmetric_difference_update(self, other):
"""Update a RangeSet with the symmetric difference of itself and
another."""
set.symmetric_difference_update(self, other)
def __isub__(self, other):
"""Remove all elements of another set from this RangeSet."""
self._binary_sanity_check(other)
set.difference_update(self, other)
return self
def difference_update(self, other, strict=False):
"""Remove all elements of another set from this RangeSet.
If strict is True, raise KeyError if an element cannot be removed.
(strict is a RangeSet addition)"""
if strict and other not in self:
raise KeyError(other.difference(self)[0])
set.difference_update(self, other)
# Python dict-like mass mutations: update, clear
def update(self, iterable):
"""Add all integers from an iterable (such as a list)."""
if isinstance(iterable, RangeSet):
# keep padding unless is has not been defined yet
if self.padding is None and iterable.padding is not None:
self.padding = iterable.padding
assert type(iterable) is not str
set.update(self, iterable)
def updaten(self, rangesets):
"""
Update a rangeset with the union of itself and several others.
"""
for rng in rangesets:
if isinstance(rng, set):
self.update(rng)
else:
self.update(RangeSet(rng))
# py2.5+
#self.update(rng if isinstance(rng, set) else RangeSet(rng))
def clear(self):
"""Remove all elements from this RangeSet."""
set.clear(self)
self.padding = None
# Single-element mutations: add, remove, discard
def add(self, element, pad=0):
"""Add an element to a RangeSet.
This has no effect if the element is already present.
"""
set.add(self, int(element))
if pad > 0 and self.padding is None:
self.padding = pad
def remove(self, element):
"""Remove an element from a RangeSet; it must be a member.
Raise KeyError if element is not contained in RangeSet.
Raise ValueError if element is not castable to integer.
"""
set.remove(self, int(element))
def discard(self, element):
"""Remove element from the RangeSet if it is a member.
If the element is not a member, do nothing.
"""
try:
i = int(element)
set.discard(self, i)
except ValueError:
pass # ignore other object types
|