This file is indexed.

/usr/share/pyshared/asrun/multiple.py is in code-aster-run 1.13.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# -*- coding: utf-8 -*-

# ==============================================================================
# COPYRIGHT (C) 1991 - 2003  EDF R&D                  WWW.CODE-ASTER.ORG
# THIS PROGRAM IS FREE SOFTWARE; YOU CAN REDISTRIBUTE IT AND/OR MODIFY
# IT UNDER THE TERMS OF THE GNU GENERAL PUBLIC LICENSE AS PUBLISHED BY
# THE FREE SOFTWARE FOUNDATION; EITHER VERSION 2 OF THE LICENSE, OR
# (AT YOUR OPTION) ANY LATER VERSION.
#
# THIS PROGRAM IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT
# WITHOUT ANY WARRANTY; WITHOUT EVEN THE IMPLIED WARRANTY OF
# MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SEE THE GNU
# GENERAL PUBLIC LICENSE FOR MORE DETAILS.
#
# YOU SHOULD HAVE RECEIVED A COPY OF THE GNU GENERAL PUBLIC LICENSE
# ALONG WITH THIS PROGRAM; IF NOT, WRITE TO EDF R&D CODE_ASTER,
#    1 AVENUE DU GENERAL DE GAULLE, 92141 CLAMART CEDEX, FRANCE.
# ==============================================================================

"""
Functions for multiple executions
"""

import os
import os.path as osp
import time

from asrun.common.i18n  import _
from asrun.mystring     import print3, ufmt, add_to_tail, indent
from asrun.thread       import Dispatcher
from asrun.repart       import ResourceManager
from asrun.common.utils import now, version2tuple, YES_VALUES
from asrun.common.sysutils import local_host, same_hosts, short_hostname
from asrun.distrib      import DistributionTask
from asrun.client       import (
    ClientConfig,
    AsterCalcHdlrMulti,
    SERVER_CONF,
    MULTIDIR,
)


fmt_head = '%s %s %s %s %s %s' % (_(u"job").center(12), _(u"result").center(18),
        _(u"cpu").rjust(8), _(u"sys").rjust(8), _(u"cpu+sys").rjust(8), _(u"elapsed").rjust(8) )
fmt_resu = '%-12s %-18s %8.2f %8.2f %8.2f %8.2f'
fmt_res2 = '%%4d %s %%4d %s    %%8.2f %%8.2f %%8.2f %%8.2f' \
    % (_("jobs").ljust(7), _("errors").ljust(10))
fmt_tot = '-'*12+' '+'-'*18+' '+'-'*8+' '+'-'*8+' '+'-'*8+' '+'-'*8


class DistribMultipleTask(DistributionTask):
    """Manage several Code_Aster executions.
    items are couples (username, hostname)
    attributes (init during instanciation) :
    IN :
        run      : AsterRun object
        hostrc   : ResourceManager object
        prof     : AsterProfil object
        info     : information level
    OUT :
        nbnook (indiced by threadid)
        exec_result : list of (label, params, diag, tcpu, tsys, ttot, telap)
    """
    # declare attrs
    exec_result = keywords = resudir = result_on_client = None

    def _mess_timeout(self, dt, timeout, job, refused):
        """Emit a message when submission timeout occurs."""
        self.run.Mess(ufmt(_(u"no submission for last %.0f s " \
            "(timeout %.0f s, equal to 2 * the time requested by the main job), " \
            "job '%s' cancelled after %d attempts."), dt, timeout, job, refused))

    def _mess_running_timeout(self, dt, timeout, job):
        """Emit a message when running timeout occured."""
        self.run.Mess(ufmt(_(u"The job '%s' has been submitted since %.0f s and is "\
            "not ended (timeout %.0f s, equal to 4 * the time asked for the main job). " \
            "You can kill it and get other results or wait again..."),
            job, dt, timeout))

    def create_calcul(self, job, opts, itemid, pid):
        """Create a (derived) instance of AsterCalcul.
        """
        cfg = opts.copy()
        cfg['result_on_client'] = self.result_on_client
        calcul = AsterCalcHdlrMulti(self.run, job, prof=self.prof,
                                     pid=pid, config=cfg)
        return calcul


    def get_calcul_state(self, calcul):
        """Function to retreive the state of a calculation."""
        etat, diag, output = calcul.tail(nbline=5)
        if etat != 'ENDED':
            self.run.Mess(ufmt(_(u"job status is %-6s on %s"), etat, calcul.host), 'SILENT')
            txt = [line for line in output.splitlines() \
                if line.strip() != '' and (not line.strip().startswith('JOB=')) \
                and (not line.strip().startswith('<INFO>')) ]
            txt = os.linesep.join(txt).strip()
            if etat != 'PEND' and txt != '':
                txt = indent(txt, "%s: " % calcul.host)
                add_to_tail(self.reptrav, txt)
                print3(txt)
            etat = calcul.get_state()[0]
        if not calcul.is_ended():
            dt = time.time() - calcul.start_time
            if dt > self.run_timeout > 0:
                self._mess_running_timeout(dt, self.run_timeout, calcul.name)
        return etat


    def get_calcul_diag(self, calcul):
        """Function to retreive the diagnostic of the calculation."""
        res = calcul.get_diag()
        return res


    def ended(self, job, opts, itemid, calcul, res):
        """Call when a job is ended.
        """
        line = self.summary_line(job, opts, res)
        print3(line)
        add_to_tail(self.reptrav, line)
        # count nook for each thread
        gravity = self.run.GetGrav(calcul.diag)
        if gravity == -9 or gravity >= self.run.GetGrav('NOOK'):
            self.nbnook[opts['threadid']] += 1
        output_filename = _(u'no error or flashdir not defined')
        # copy output/error to flashdir
        fflash = calcul.copy_flash()
        output_filename = fflash['output'].repr()
        result = [job, opts]
        result.extend(res)
        result.append(output_filename)
        # clean flasheur
        calcul.kill()
        return result


    def result(self, *l_resu, **kwargs):
        """Function called after each task to treat results of execute.
        Arguments are 'execute' results + keywords args.
        'result' is called thread-safely, so can store results in attributes.
        """
        nf = len(self.exec_result)
        self.exec_result.extend(l_resu)
        for job, opts, diag, tcpu, tsys, ttot, telap, output in l_resu:
            nf += 1
            if self.info >= 2:
                self.run.Mess(ufmt(_(u'%s completed (%d/%d), diagnostic : %s'),
                        job, nf, self.nbitem, diag), 'SILENT')


def Multiple(run, prof, mpi_info, numthread='auto'):
    """Run a multiple execution.
    """
    run.print_timer = True

    # 1. ----- initializations
    jn = run['num_job']

    # 1.2. rep_trav from profile or from run[...]
    reptrav = mpi_info.reptrav()

    run.Mess(_(u'Code_Aster multiple execution'), 'TITLE')
    mpi_info.set_cpuinfo(1, 1)

    # ----- how many threads ?
    try:
        numthread = int(numthread)
    except (TypeError, ValueError):
        numthread = run.GetCpuInfo('numthread')

    # 1.3. content of the profile
    serv_list = prof['multiple_server_list'][0]
    if not serv_list:
        run.Mess(_(u'List of servers ("multiple_server_list" parameter) not found'),
                 '<F>_ERROR')
    serv_list = serv_list.split()
    nbval = len(serv_list)
    # tell if results have to be transfered on the client server
    # or let on each host.
    result_on_client = prof['multiple_result_on_client'][0] in YES_VALUES

    # this hostrc object is only used to check the hosts availability
    tit = _(u"Checking hosts")
    run.timer.Start(tit)
    client = ClientConfig(run.rcdir)
    client.init_server_config()
    avail_servers = client.get_server_list()
    dhost = {}
    couples = []
    for sname in serv_list:
        found = False
        for label in avail_servers:
            cfg = client.get_server_config(label)
            if same_hosts(sname, cfg['nom_complet']):
                found = True
                client.refresh_server_config([label])
                cfg = client.get_server_config(label)
                if version2tuple(cfg['asrun_vers']) >= (1, 9, 2):
                    couples.append( (short_hostname(sname), cfg) )
                    dhost[sname] = { 'user' : cfg['login'] }
                else:
                    run.Mess(ufmt(_(u"Version 1.9.2 or newer is required to run " \
                        "multiple executions. It is %s on %s (installed in %s)."),
                        cfg['asrun_vers'], label, cfg['rep_serv']), '<E>_ERROR')
                break
        if not found:
            run.Mess(ufmt(_(u"Host '%s' is not available in %s."), sname,
                          client.rcfile(SERVER_CONF)), "<E>_ERROR")
    run.DBG("couples :", couples, all=True)

    hostrc = ResourceManager(dhost)
    n_avail, n_tot = hostrc.CheckHosts(run, numthread=numthread)
    run.timer.Stop(tit)
    run.Mess(_(u'Number of available hosts : %d/%d') % (n_avail, n_tot), "SILENT")
    if n_avail < 1:
        run.Mess(_(u"No available host. Run cancelled."), "<F>_ERROR")
    if n_avail < len(serv_list):
        run.Mess(_(u"All the hosts are not available. Run cancelled."), "<F>_ERROR")

    # define a hostrc object to allow a lot of simultaneous executions
    hostinfo = { local_host : { 'mem' : 999999, 'cpu' : 999999 }}
    hostrc = ResourceManager(hostinfo)

    #XXX tpsjob : max elapsed time ?
    try:
        timeout = prof.get_timeout() * 2.
    except Exception, reason:
        run.Mess(_(u"incorrect value for tpsjob : %s") % reason, '<F>_INVALID_PARAMETER')

    # print a summary
    summary = _(u"""
--- Profile executed on %2d servers   : %s
--- Run started at %s
--- Parameters used for this run :
    Code_Aster version               : %s
    Results directory                : %s
    Submission timeout (seconds)     : %.0f""")

    sum_thread = _(u"""    Number of threads                : %d""")
    sum_end = _(u"""
--- All executions finished at %s

--- Results :
""")
    jobname = prof['nomjob'][0]
    ldir = ", ".join(["%s/%s_%s" % (MULTIDIR, jobname, val[0]) for val in couples])
    if result_on_client:
        ldir = osp.expandvars(ldir)
    else:
        ldir = "(" + _(u"on each host") + ") " + ldir
    info_start = ( nbval, ", ".join(serv_list), now(),
        prof.get_version_path(), ldir, timeout )
    txt_summary = [ ufmt(summary, *info_start), ]
    if numthread > 1:
        txt_summary.append( sum_thread % numthread )
    txt_summary.append('')
    text_summary = os.linesep.join(txt_summary)
    print3(text_summary)

    # ----- Execute calcutions in parallel using a Dispatcher object
    # elementary task...
    task = DistribMultipleTask( # IN
                          run=run, prof=prof,
                          hostrc=hostrc,
                          nbmaxitem=0,
                          timeout=timeout, run_timeout=2. * timeout,
                          reptrav=reptrav,
                          result_on_client=result_on_client,
                          info=1,
                          # OUT
                          nbnook=[0,]*numthread, exec_result=[])
    # ... and dispatch task on 'serv_list'
    tit = _(u'Multiple execution')
    run.timer.Start(tit)
    execution = Dispatcher(couples, task, numthread=numthread)
    cpu_dt, sys_dt, tot_dt = run.timer.StopAndGet(tit)

    # Summary
    run.Mess(_(u'Summary of the run'), 'TITLE')
    print3(text_summary)
    print3(sum_end % now())
    t = [0., 0., 0., 0.]
    print3(fmt_head)
    print3(fmt_tot)
    task.exec_result.sort()
    for result in task.exec_result:
        lin = result[:-1]
        del lin[1] # job, opts, diag, tcpu, tsys, ttot, telap, output
        t[0] += lin[2]
        t[1] += lin[3]
        t[2] += lin[4]
        t[3] += lin[5]
        print3(fmt_resu % tuple(lin))
    print3(fmt_tot)
    print3(fmt_res2 % (len(task.exec_result), sum(task.nbnook), t[0], t[1], t[2], t[3]))

    # check the number of calculations really run
    if len(task.exec_result) != len(couples):
        run.Mess(_(u'%d studies to run, %d really run !') \
            % (len(couples), len(task.exec_result)), '<E>_ERROR')

    # force global diagnostic to <F>_ERROR if errors occured
    if sum(task.nbnook) > 0:
        run.diag = '<E>_ERROR'

    if hostrc is not None:
        print3(os.linesep + hostrc.repr_history())

    run.CheckOK()
    run.Mess(_(u'All calculations run successfully'), 'OK')