This file is indexed.

/usr/share/code_saturne/user/usalcl.f90 is in code-saturne-data 3.2.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
!-------------------------------------------------------------------------------

!                      Code_Saturne version 3.2.1
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2013 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

!===============================================================================
! Function:
! ---------

!> \file usalcl.f90
!>
!> \brief User subroutine dedicated the use of ALE (Arbitrary Lagrangian
!> Eulerian) Method:
!>  - Fills boundary conditions (ialtyb, icodcl, rcodcl) for mesh velocity.
!>  - This subroutine also enables one to fix displacement on nodes.
!>
!> \section intro Introduction
!>
!> Here one defines boundary conditions on a per-face basis.
!>
!> Boundary faces may be identified using the \ref getfbr subroutine.
!> The syntax of this subroutine is described in
!> cs_user_boundary_conditions.f90 subroutine,
!> but a more thorough description can be found in the user guide.
!>
!> Boundary conditions setup for standard variables (pressure, velocity,
!> turbulence, scalars) is described precisely in
!> cs_user_boundary_conditions.f90 subroutine.
!>
!> Detailed explanation will be found in the theory guide.
!>
!> \section bc_types Boundary condition types
!>
!> Boundary conditions may be assigned in two ways.
!>
!>
!> \subsection std_bcs For "standard" boundary conditions
!>
!> One defines a code in the \c ialtyb array (of dimensions number of
!> boundary faces). The available codes are:
!>
!>  - \c ialtyb(ifac) = \c ibfixe: the face \c ifac is considered to be motionless.
!>           A zero Dirichlet boundary condition is automatically imposed on mesh
!>           velocity. Moreover the displacement of corresponding nodes will
!>           automatically be set to 0 (for further information please
!>           read the paragraph dedicated to the description of \c impale array in the
!>           usalcl.f90 subroutine), unless the USER has modified the condition of
!>           at least one  component of mesh velocity (modification of \c icodcl array,
!>           please read the following paragraph \ref non_std_bc)
!>
!>  - \c ialtyb(ifac) = \c igliss: The mesh slides on corresponding face \c ifac.
!>           The normal component of mesh velocity is automatically set to 0.
!>           A homogeneous Neumann condition is automatically prescribed for the
!>           other components, as it's the case for 'Symmetry' fluid condition.
!>
!>  - \c ialtyb(ifac) = \c ivimpo: the mesh velocity is imposed on face \c ifac. Thus,
!>           the users needs to specify the mesh velocity values filling \c rcodcl
!>           arrays as follows:
!>            - \c rcodcl(ifac,iuma,1) = mesh velocity in 'x' direction
!>            - \c rcodcl(ifac,ivma,1) = mesh velocity in 'y' direction
!>            - \c rcodcl(ifac,iwma,1) = mesh velocity in 'z' direction
!>            .
!>           Components of \c rcodcl(.,i.ma,1) arrays that are not specified by user
!>           will automatically be set to 0, meaning that user only needs to specify
!>           non zero mesh velocity components.
!>
!>
!> \subsection non_std_bc For "non-standard" conditions
!>
!> Other than (fixed boundary, sliding mesh boundary, fixed velocity), one
!> defines for each face and each component \c IVAR = IUMA, IVMA, IWMA:
!>  - a code
!>    - \c icodcl(ifac, ivar)
!>  - three real values:
!>    - \c rcodcl(ifac, ivar, 1)
!>    - \c rcodcl(ifac, ivar, 2)
!>    - \c rcodcl(ifac, ivar, 3)
!>
!> The value of \c icodcl is taken from the following:
!>  - 1: Dirichlet
!>  - 3: Neumann
!>  - 4: Symmetry
!>
!> The values of the 3 \c rcodcl components are:
!>  - \c rcodcl(ifac, ivar, 1):
!>     Dirichlet for the variable if \c icodcl(ifac, ivar) = 1
!>     The dimension of \c rcodcl(ifac, ivar, 1) is in m/s
!>  - \c rcodcl(ifac, ivar, 2):
!>    "exterior" exchange coefficient (between the prescribed value
!>                      and the value at the domain boundary)
!>                      rinfin = infinite by default
!>    \c  rcodcl(ifac,ivar,2) =  (VISCMA) / d
!>          (D has the dimension of a distance in m, VISCMA stands for
!>          the mesh viscosity)
!>    \remark the definition of \c rcodcl(.,.,2) is based on the manner
!>            other standard variables are managed in the same case.
!>            This type of boundary condition appears nonsense
!>            concerning mesh in that context.
!>
!>  - \c rcodcl(ifac,ivar,3) :
!>    Flux density (in kg/m s2) = J if icodcl(ifac, ivar) = 3
!>                 (<0 if gain, n outwards-facing normal)
!>    \c rcodcl(ifac,ivar,3) = -(VISCMA)* (grad Um).n
!>              (Um represents mesh velocity)
!>    \remark note that the definition of condition \c rcodcl(ifac,ivar,3)
!>            is based on the manner other standard variables are
!>            managed in the same case.
!>            \c rcodcl(.,.,3) = 0.d0 enables one to specify a homogeneous
!>            Neuman condition on mesh velocity. Any other value will be
!>            physically nonsense in that context.
!>
!> Note that if the user assigns a value to \c ialtyb equal to \c ibfixe, \c igliss,
!> or \c ivimpo and does not modify \c icodcl (zero value by
!> default), \c ialtyb will define the boundary condition type.
!>
!> To the contrary, if the user prescribes \c icodcl(ifac, ivar) (nonzero),
!> the values assigned to rcodcl will be used for the considered face
!> and variable (if rcodcl values are not set, the default values will
!> be used for the face and variable, so:
!>                         - \c rcodcl(ifac, ivar, 1) = 0.d0
!>                         - \c rcodcl(ifac, ivar, 2) = rinfin
!>                         - \c rcodcl(ifac, ivar, 3) = 0.d0)
!>
!> If the user decides to prescribe his own non-standard boundary conditions
!> it will be necessary to assign values to \c icodcl AND to rcodcl for ALL
!> mesh velocity components. Thus, the user does not need to assign values
!> to \c IALTYB for each associated face, as it will not be taken into account
!> in the code.
!>
!>
!> \subsection cons_rul Consistency rules
!>
!> A consistency rules between \c icodcl codes for variables with
!> non-standard boundary conditions:
!>  - If a symmetry code (\c icodcl=4) is imposed for one mesh velocity
!>    component, one must have the same condition for all other mesh
!>    velocity components.
!>
!>
!> \subsection fix_nod Fixed displacement on nodes
!>
!> For a better precision concerning mesh displacement, one can also assign values
!> of displacement to certain internal and/or boundary nodes. Thus, one
!> need to fill \c DEPALE and \c impale arrays :
!>  - \c depale(1,inod) = displacement of node inod in 'x' direction
!>  - \c depale(2,inod) = displacement of node inod in 'y' direction
!>  - \c depale(3,inod) = displacement of node inod in 'z' direction
!> This array is defined as the total displacement of the node compared
!> its initial position in initial mesh.
!> \c impale(inod) = 1 indicates that the displacement of node inod is imposed
!> \note Note that \c impale array is initialized to the value of 0; if its value
!>       is not modified, corresponding value in \c DEPALE array will not be
!>       taken into account
!>
!> During mesh's geometry re-calculation at each time step, the position of the
!> nodes, which displacement is fixed (i.e. \c impale=1), is not calculated
!> using the value of mesh velocity at the center of corresponding cell, but
!> directly filled using the values of \c DEPALE.
!>
!> If the displacement is fixed for all nodes of a boundary face it's not
!> necessary to prescribe boundary conditions at this face on mesh velocity.
!> \c icodcl and \c rcodcl values will be overwritten:
!>  - \c icodcl is automatically set to 1 (Dirichlet)
!>  - \c rcodcl value will be automatically set to face's mean mesh velocity
!>    value, that is calculated using \c DEPALE array.
!>
!> If a fixed boundary condition (\c ialtyb(ifac)=ibfixe) is imposed to the face
!> \c ifac, the displacement of each node inod belonging to ifac is considered
!> to be fixed, meaning that \c impale(inod) = 1 and \c depale(.,inod) = 0.d0.
!>
!>
!> \subsubsection nod_des Description of nodes
!>
!> \c nnod gives the total (internal and boundary) number of nodes.
!> Vertices coordinates are given by \c xyznod(3, nnod) array. This table is
!> updated at each time step of the calculation.
!> \c xyzno0(3,nnod) gives the coordinates of initial mesh at the beginning
!> of the calculation.
!>
!> The faces - nodes connectivity is stored by means of four integer arrays :
!> \c ipnfac, \c nodfac, \c ipnfbr, \c nodfbr.
!>
!> \c nodfac(nodfbr) stores sequentially the index-numbers of the nodes of each
!> internal (boundary) face.
!> \c ipnfac(ipnfbr) gives the position of the first node of each internal
!> (boundary) face in the array \c nodfac(nodfbr).
!>
!> For example, in order to get all nodes of internal face \c ifac, one can
!> use the following loop:
!>
!> \code
!> do ii = ipnfac(ifac), ipnfac(ifac+1)-1 !! index number of nodfac array
!>                                        !! corresponding to ifac
!>
!>   inod = nodfac(ii)                    !! index-number iith node of face ifac.
!>   !! ...
!> enddo
!> \endcode
!>
!>
!> \subsection flui_bc Influence on boundary conditions related to fluid velocity
!>
!> The effect of fluid velocity and ALE modeling on boundary faces that
!> are declared as walls (\c itypfb = \c iparoi or \c iparug) really depends on
!> the physical nature of this interface.
!>
!> Indeed when studying an immersed structure the motion of corresponding
!> boundary faces is the one of the structure, meaning that it leads to
!> fluid motion. On the other hand when studying a piston the motion of vertices
!> belonging to lateral boundaries has no physical meaning therefore it has
!> no influence on fluid motion.
!>
!> Whatever the case, mesh velocity component that is normal to the boundary
!> face is always taken into account
!> (\f$ \vect{u}_{fluid} \cdot \vect{n} = \vect{w}_{mesh} \cdot \vect{n} \f$).
!>
!> The modeling of tangential mesh velocity component differs from one case
!> to another.
!>
!> The influence of mesh velocity on boundary conditions for fluid modeling is
!> managed and modeled in Code_Saturne as follows:
!>  - If \c ialtyb(ifac) = ibfixe: mesh velocity equals 0. (In case of 'fluid sliding
!>  wall' modeling corresponding condition will be specified in Code_Saturne
!>  Interface or in cs_user_boundary_conditions.f90 subroutine.)
!>  - If \c ialtyb(ifac) = ivimpo: tangential mesh velocity is modeled as a sliding
!>  wall velocity in fluid boundary conditions unless a value for fluid sliding
!>  wall velocity has been specified by USER in Code_Saturne Interface
!>  or in cs_user_boundary_conditions.f90 subroutine.
!>  - If \c ialtyb(ifac) = igliss: tangential mesh velocity is not taken into account
!>  in fluid boundary conditions (In case of 'fluid sliding wall' modeling
!>  corresponding condition will be specified in Code_Saturne Interface
!>  or in cs_user_boundary_conditions.f90 subroutine.)
!>  - If \c impale(inod) = 1 for all vertices of a boundary face: tangential mesh
!>  velocity value that has been derived from nodes displacement is modeled as a
!>  sliding wall velocity in fluid boundary conditions unless a value for fluid
!>  sliding wall velocity has been specified by USER in Code_Saturne Interface or
!>  in 'cs_user_boundary_conditions' subroutine.
!>
!> Note that mesh velocity has no influence on modeling of
!> boundary faces with 'inlet' or 'free outlet' fluid boundary condition.
!>
!> For "non standard" conditions USER has to manage the influence of boundary
!> conditions for ALE method (i.e. mesh velocity) on the ones for Navier Stokes
!> equations(i.e. fluid velocity). (Note that fluid boundary conditions can be
!> specified in this subroutine.)
!>
!>
!>\subsubsection cell_id Cells identification
!>
!> Cells may be identified using the getcel subroutine.
!> The syntax of this subroutine is described in the
!> cs_user_boundary_conditions.f90 subroutine,
!> but a more thorough description can be found in the user guide.
!>
!>
!> \subsubsection fac_id Faces identification
!>
!> Faces may be identified using the \ref getfbr subroutine.
!> The syntax of this subroutine is described in the
!> cs_user_boundary_conditions.f90 subroutine,
!> but a more thorough description can be found in the user guide.

!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! Arguments
!______________________________________________________________________________.
!  mode           name          role                                           !
!______________________________________________________________________________!
!> \param[in]     itrale        number of iterations for ALE method
!> \param[in]     nvar          total number of variables
!> \param[in]     nscal         total number of scalars
!> \param[out]    icodcl        boundary condition code:
!>                               - 1 Dirichlet
!>                               - 2 Radiative outlet
!>                               - 3 Neumann
!>                               - 4 sliding and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 5 smooth wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 6 rought wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 9 free inlet/outlet
!>                                 (input mass flux blocked to 0)
!> \param[in,out] itypfb        boundary face types
!> \param[out]    ialtyb        boundary face types for mesh velocity
!> \param[in]     impale        indicator for fixed node displacement
!> \param[in]     dt            time step (per cell)
!> \param[in]     rtp, rtpa     calculated variables at cell centers
!> \param[in]                    (at current and previous time steps)
!> \param[in]     propce        physical properties at cell centers
!> \param[in,out] rcodcl        boundary condition values:
!>                               - rcodcl(1) value of the dirichlet
!>                               - rcodcl(2) value of the exterior exchange
!>                                 coefficient (infinite if no exchange)
!>                               - rcodcl(3) value flux density
!>                                 (negative if gain) in w/m2 or roughtness
!>                                 in m if icodcl=6
!>                                 -# for the velocity \f$ (\mu+\mu_T)
!>                                    \gradv \vect{u} \cdot \vect{n}  \f$
!>                                 -# for the pressure \f$ \Delta t
!>                                    \grad P \cdot \vect{n}  \f$
!>                                 -# for a scalar \f$ cp \left( K +
!>                                     \dfrac{K_T}{\sigma_T} \right)
!>                                     \grad T \cdot \vect{n} \f$
!> \param[in,out] depale        nodes displacement
!> \param[in]     xyzno0        vertex coordinates of initial mesh
!_______________________________________________________________________________

subroutine usalcl &
 ( itrale ,                                                       &
   nvar   , nscal  ,                                              &
   icodcl , itypfb , ialtyb , impale ,                            &
   dt     , rtp    , rtpa   , propce ,                            &
   rcodcl , xyzno0 , depale )

!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use numvar
use optcal
use cstphy
use cstnum
use entsor
use parall
use period
use ihmpre
use mesh

!===============================================================================

implicit none

! Arguments

integer          itrale
integer          nvar   , nscal

integer          icodcl(nfabor,nvarcl)
integer          itypfb(nfabor), ialtyb(nfabor)
integer          impale(nnod)

double precision dt(ncelet), rtp(ncelet,*), rtpa(ncelet,*)
double precision propce(ncelet,*)
double precision rcodcl(nfabor,nvarcl,3)
double precision depale(3,nnod), xyzno0(3,nnod)

! Local variables

integer          ifac, iel, ii
integer          inod
integer          ilelt, nlelt

double precision delta, deltaa

integer, allocatable, dimension(:) :: lstelt

!===============================================================================


!===============================================================================
! 1.  Initialization
!===============================================================================

! Allocate a temporary array for boundary faces selection
allocate(lstelt(nfabor))

!===============================================================================
! 2.  Assign boundary conditions to boundary faces here

!     One may use selection criteria to filter boundary case subsets
!       Loop on faces from a subset
!         Set the boundary condition for each face
!===============================================================================


! Calculation of displacement at current time step
deltaa = sin(3.141596d0*(ntcabs-1)/50.d0)
delta  = sin(3.141596d0*ntcabs/50.d0)


! Example: For boundary faces of color 4 assign a fixed velocity

if (.false.) then

  call getfbr('4', nlelt, lstelt)
  !==========

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)
    ! Element adjacent a la face de bord
    iel = ifabor(ifac)

    ialtyb(ifac) = ivimpo
    rcodcl(ifac,iuma,1) = 0.d0
    rcodcl(ifac,ivma,1) = 0.d0
    rcodcl(ifac,iwma,1) = (delta-deltaa)/dt(iel)

  enddo

endif

! Example: For boundary faces of color 5 assign a fixed displacement on nodes

if (.false.) then

  call getfbr('5', nlelt, lstelt)
  !==========

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)

    do ii = ipnfbr(ifac), ipnfbr(ifac+1)-1
      inod = nodfbr(ii)
      if (impale(inod).eq.0) then
        depale(1,inod) = 0.d0
        depale(2,inod) = 0.d0
        depale(3,inod) = delta
        impale(inod) = 1
      endif
    enddo

  enddo

endif

! Example: For boundary faces of color 6 assign a sliding boundary

if (.false.) then

  call getfbr('6', nlelt, lstelt)
  !==========

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)

    ialtyb(ifac) = igliss

  enddo

endif

! Example: prescribe elsewhere a fixed boundary

if (.false.) then

  call getfbr('not (4 or 5 or 6)', nlelt, lstelt)
  !==========

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)

    ialtyb(ifac) = ibfixe

  enddo

endif

!--------
! Formats
!--------

!----
! End
!----

! Deallocate the temporary array
deallocate(lstelt)

return
end subroutine usalcl