/usr/share/code_saturne/user/uslag2.f90 is in code-saturne-data 3.2.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | !-------------------------------------------------------------------------------
! Code_Saturne version 3.2.1
! --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2013 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.
!-------------------------------------------------------------------------------
subroutine uslag2 &
!================
( nvar , nscal , &
nbpmax , nvp , nvp1 , nvep , nivep , &
ntersl , nvlsta , nvisbr , &
itypfb , itrifb , itepa , ifrlag , &
dt , rtpa , propce , &
ettp , tepa )
!===============================================================================
! Purpose:
! ----------
! Subroutine of the Lagrangian particle-tracking module:
! -------------------------------------
! User subroutine (Mandatory intervention)
! User subroutine for the boundary conditions associated to the particles
! (inlet and treatment of the other boundaries)
! Boundary faces identification
! =============================
! Boundary faces may be identified using the 'getfbr' subroutine.
! The syntax of this subroutine is described in the
! 'cs_user_boundary_conditions' subroutine,
! but a more thorough description can be found in the user guide.
!-------------------------------------------------------------------------------
! Arguments
!__________________.____._____.________________________________________________.
! name !type!mode ! role !
!__________________!____!_____!________________________________________________!
! nvar ! i ! <-- ! total number of variables !
! nscal ! i ! <-- ! total number of scalars !
! nbpmax ! i ! <-- ! maximum number of particles allowed !
! nvp ! i ! <-- ! number of particle variables !
! nvp1 ! i ! <-- ! nvp minus position, fluid and part. velocities !
! nvep ! i ! <-- ! number of particle properties (integer) !
! nivep ! i ! <-- ! number of particle properties (integer) !
! ntersl ! i ! <-- ! number of source terms of return coupling !
! nvlsta ! i ! <-- ! nb of Lagrangian statistical variables !
! nvisbr ! i ! <-- ! number of boundary statistics !
! itrifb(nfabor) ! ia ! <-- ! indirection for the sorting of the !
! itypfb(nfabor) ! ia ! <-- ! type of the boundary faces !
! ifrlag(nfabor ! ia ! --> ! type of the Lagrangian boundary faces !
! itepa ! ia ! <-- ! particle information (integers) !
! (nbpmax,nivep ! ! ! !
! dt(ncelet) ! ra ! <-- ! time step (per cell) !
! rtpa ! ra ! <-- ! transported variables at the previous !
! (ncelet,*) ! ! ! time step !
! propce ! ra ! <-- ! physical properties at cell centers !
! (ncelet,*) ! ! ! !
! ettp ! ra ! <-- ! array of the variables associated to !
! (nbpmax,nvp) ! ! ! the particles at the current time step !
! tepa ! ra ! <-- ! particle information (real) (statis. weight..) !
! (nbpmax,nvep) ! ! ! !
!__________________!____!_____!________________________________________________!
! Type: i (integer), r (real), s (string), a (array), l (logical),
! and composite types (ex: ra real array)
! mode: <-- input, --> output, <-> modifies data, --- work array
!===============================================================================
!===============================================================================
! Module files
!===============================================================================
use paramx
use numvar
use optcal
use cstnum
use cstphy
use entsor
use lagpar
use lagran
use ppppar
use ppthch
use cpincl
use ihmpre
use mesh
!===============================================================================
implicit none
! Arguments
integer nvar , nscal
integer nbpmax , nvp , nvp1 , nvep , nivep
integer ntersl , nvlsta , nvisbr
integer itypfb(nfabor) , itrifb(nfabor)
integer itepa(nbpmax,nivep) , ifrlag(nfabor)
double precision dt(ncelet) , rtpa(ncelet,*)
double precision propce(ncelet,*)
double precision ettp(nbpmax,nvp) , tepa(nbpmax,nvep)
! Local variables
integer ifac , izone, nbclas, iclas
integer icoal , ilayer
integer ilelt, nlelt
double precision pis6 , mp0 , temp
integer, dimension(ndlaim) :: iczpar
double precision, dimension(ndlagm) :: rczpar
integer, allocatable, dimension(:) :: lstelt
!===============================================================================
!===============================================================================
! 1. Memory management
!===============================================================================
! Allocate a temporary array for boundary faces selection
allocate(lstelt(nfabor))
!===============================================================================
! 2. Initialization
!===============================================================================
pis6 = pi / 6.d0
!===============================================================================
! 3. Construction of the boundary zones
!===============================================================================
! Definition of the boundary zones
! --------------------------------
! For the Lagrangian module, the user defines nfrlag boundary zones
! from the color of the boundary faces, or more generally from their
! properties (colors, groups..) or from the boundary conditions prescribed
! in cs_user_boundary_conditions, or even from their coordinates. To do
! that, we fill the ifrlag(nfabor) array which gives for every boundary
! face the number of the zone to which it belongs ifrlag(ifac)
!
! Be careful, all the boundary faces must have been assigned.
!
! The number of the zones (thus the values of ifrlag(ifac)) is arbitrarily
! chosen by the user, but must be a positive integer and inferior or equal
! to nflagm (parameter prescribed in lagpar.h).
!
! Afterwards, we assign to every zone a type named itylag that will be used
! to impose global boundary conditions.
izone = -1
! ---> First zone numbered izone=1 ( = color 10)
call getfbr('10',nlelt,lstelt)
!==========
do ilelt = 1, nlelt
ifac = lstelt(ilelt)
izone = 1
ifrlag(ifac) = izone
enddo
! ---> Second zone numbered izone=2 ( = part of color 4)
call getfbr('4 and y < 1.0',nlelt,lstelt)
!==========
do ilelt = 1, nlelt
ifac = lstelt(ilelt)
izone = 2
ifrlag(ifac) = izone
enddo
! ---> Third zone numbered izone=3 ( = inlet)
do ifac = 1, nfabor
if(itypfb(ifac).eq.ientre) then
izone = 4
ifrlag(ifac) = izone
endif
enddo
! ---> Nth zone numbered izone=5 (= color 3)
call getfbr('3',nlelt,lstelt)
!==========
do ilelt = 1, nlelt
ifac = lstelt(ilelt)
izone = 5
ifrlag(ifac) = izone
enddo
!===============================================================================
! 4. Injection per particle class into the calculation domain
!===============================================================================
! TO PROVIDE INFORMATION ABOUT THE PARTICLE CLASSES,
! WE FOLLOW A TWO-STEP PROCEDURE:
! 1) FIRST, THE NUMBER OF PARTICLE CLASSES IS PRESCRIBED
! FOR EACH BOUNDARY ZONE: IUSNCL (by default, this parameter is equal to zero)
! 2) AFTERWARDS, FOR EACH ZONE AND FOR EACH CLASS, WE PRESCRIBE
! THE PHYSICAL PROPERTIES OF THE PARTICLES
!
! --> Number of particle classes entering the domain
! We assign here the number of classes for each zone previously identified.
!
! This number is zero by default.
! The maximal number of classes is nclagm (defined in lagpar.h)
! ---> First zone numbered izone = 1: 1 class injected
izone = 1
nbclas = 1
iusncl(izone) = nbclas
! ---> Second zone numbered izone = 2: 0 class injected
izone = 2
nbclas = 0
iusncl(izone) = nbclas
! ---> Third zone numbered izone = 4 : 0 class injected
izone = 4
nbclas = 0
iusncl(izone) = nbclas
! ---> Zone numbered izone = 5 : 0 class injected
izone = 5
nbclas = 0
iusncl(izone) = nbclas
! --> For every class associated with a zone,
! we give the following information.
! iusncl number of classes per zone
! iusclb boundary conditions for the particles
! = ientrl -> zone of particle inlet
! = isortl -> particle outlet
! = irebol -> rebound of the particles
! = idepo1 -> definitive deposition
! = idepo2 -> definitive deposition, but the particle remains in memory
! (useful only if iensi2 = 1)
! = idepfa -> deposition of the particle with DLVO forces
! = iencrl -> fouling (coal only iphyla = 2)
! = isymtl -> symmetry condition for the particles (zero flux)
! Array iczpar:
! ============
! ijnbp : number of particles per class and per zone
! ijfre : injection frequency. If ijfre = 0, then the injection
! occurs only at the first absolute iteration.
! iclst : number of the group to which the particle belongs
! (only if one wishes to calculate statistics per group)
! ijuvw : type of condition on the velocity
! = -1 imposed flow velocity
! = 0 imposed velocity along the normal direction of the
! boundary face, with norm equal to rczpar(iuno)
! = 1 imposed velocity: we prescribe rczpar(iupt)
! rczpar(ivpt)
! rczpar(iwpt)
! = 2 user-defined profile
! ijprtp : type of temperature condition
! = 1 imposed temperature: we prescribe rczpar(itpt)
! = 2 user-defined profile
! ijprdp : type of diameter condition
! = 1 imposed diameter: we prescribe rczpar(idpt)
! rczpar(ivdpt)
! = 2 user-defined profile
! ijprtp : type of temperature condition
! = 1 imposed temperature: we prescribe rczpar(itpt)
! = 2 user-defined profile
! inuchl : number of the coal of the particle (only if iphyla = 2)
! irawcl : type of coal injection composition (only if iphyla = 2)
! = 0 coal injected with an user-defined composition
! = 1 raw coal injection
! Array rczpar:
! ============
! iuno : Norm of the velocity (m/s)
! iupt : Velocity along the X axis, for each class and for each zone (m/s)
! ivpt : Velocity along the Y axis, for each class and for each zone (m/s)
! iwpt : Velocity along the Z axis, for each class and for each zone (m/s
! ipoit : Statistical weight (number of samples) associated
! to the particle (automatically computed to respect a mass
! flow rate if it is defined)
! idebt : Mass flow rate (kg/s)
! Physical characteristics:
! idpt : diameter (m)
! ivdpt : standard deviation of the diameter (m)
! iropt : density (kg/m3)
! itpt : temperature in Celsius degress (no enthalpy)
! icpt : specific heat (J/kg/K)
! iepsi : emissivity (if =0 then no radiative effect is taken into account)
! If coal (iphyla=2)
! ihpt : temperature in Kelvin degres (no enthalpy) (layer by layer)
! ifrmwt : mass fraction of moisture in the particle
! ifrmch : mass fraction of reactive coal in the particle (layer by layer)
! ifrmck : mass fraction of coke coal in the particle (layer by layer)
! irdck : coke diameter (m)
! ird0p : coal particle initial diameter (m)
! irhock0 : density of coke at the end of the pyrolysis (kg/m³) (layer by layer)
! ---> EXAMPLE : First zone, numbered IZONE = 1 (NBCLAS classes)
! IUSCLB : adherence of the particle to a boundary face
! IJNBP : 10 particles for each class,
! IJFRE : injection every other time step
! IJUVW, IUPT, IVPT, IWPT : imposed velocity on 1.1D0, 0.0D0, 0.0D0
! ICPT : cp equal to 10000
! ITPT : temperature equal to 25 Celsius degress
! IDPT : diameter equal to 50.E-6 m
! IEPSI : emissivity equal to 0.7
! IVDPT : constant diameter ==> standard deviation null
! IROPT : density
! IPOIT : statistical weight (number of physical particles
! represented by one statistical particle)
! IDEBT : mass flow rate
izone = 1
nbclas = iusncl(izone)
iusclb(izone) = ientrl
do iclas = 1, nbclas
! Ensure defaults are set
call lagr_init_zone_class_param(iczpar, rczpar)
!==============================
! Now define parameters for this class and zone
iczpar(ijnbp) = 10
iczpar(ijfre) = 2
if (nbclst.gt.0) then
iczpar(iclst) = 1
endif
iczpar(ijuvw) = -1
rczpar(iupt) = 1.1d0
rczpar(ivpt) = 0.0d0
rczpar(iwpt) = 0.0d0
iczpar(ijprpd)= 1
rczpar(ipoit) = 1.d0
rczpar(idebt) = 0.d0
! if the physics is " simple"
if (iphyla.eq.0 .or. iphyla.eq.1) then
! Mean value and standard deviation of the diameter
iczpar(ijprdp)= 1
rczpar(idpt) = 50.d-6
rczpar(ivdpt) = 0.d0
! Density
rczpar(iropt) = 2500.d0
if (iphyla.eq.1) then
! Temperature and Cp
if ( itpvar.eq.1 ) then
iczpar(ijprtp) = 1
rczpar(itpt) = 20.d0
rczpar(icpt) = 1400.d0
rczpar(iepsi) = 0.7d0
endif
endif
! Coal
else if ( iphyla.eq.2 ) then
! CAUTION : 1) To transport and burn coal particles with the Lagrangian
! module, a specific physics for the dispersed phase must
! be activated for the carrier phase.
!
! 2) The physical properties of the coal particles are known
! from the thermo-chemical file: dp_FCP
!
! 3) For the current phase ICLAS, and for the current boundary
! zone NB, we assign to the coal particles the properties of
! the coal ICOAL of the ICOAL class taken from the file dp_FCP.
!
! 4) icoal : number of the coal between 1 and ncharb defined by
! the user in the file dp_FCP.
! Mean value and standard deviation of the diameter
rczpar(idpt) = 1.0d-5
rczpar(ivdpt) = 0.d0
! Number of the coal
icoal = 1
iczpar(inuchl) = icoal
! Temperature (in K)
temp = 800.d0
do ilayer = 1, nlayer
rczpar(ihpt(ilayer)) = temp
enddo
! Raw coal or user defined coal injection condition
iczpar(irawcl) = 1
if (iczpar(irawcl) .eq. 0) then
! Example of user-defined injection, coal after devolatilisation
! Density
rczpar(iropt) = xashch(icoal)*rho0ch(icoal) + &
(1.0d0-xwatch(icoal)-xashch(icoal)) * rho0ch(icoal) &
* (1.d0-(y1ch(icoal)+y2ch(icoal))/2.0d0)
! Specific heat
rczpar(icpt) = cp2ch(icoal)
! water mass fraction in the particle
rczpar(ifrmwt) = 0.0d0
! reactive coal mass fraction in the particle
do ilayer = 1, nlayer
rczpar(ifrmch(ilayer)) = 0.0d0
enddo
! coke mass fraction in the particle
do ilayer = 1, nlayer
rczpar(ifrmck(ilayer)) = ((1.0d0-xwatch(icoal)-xashch(icoal)) &
* rho0ch(icoal) &
* (1.d0-(y1ch(icoal)+y2ch(icoal))/2.0d0)) &
/ rczpar(iropt)
enddo
! coke diameter
rczpar(irdck) = rczpar(idpt)
! initial particle diameter
rczpar(ird0p) = rczpar(idpt)
! coke density after pyrolysis
do ilayer = 1, nlayer
rczpar(irhock0(ilayer)) = rczpar(iropt)*rczpar(ifrmck(ilayer))
enddo
endif
endif
! Complete definition of parameters for this class and zone
call lagr_define_zone_class_param(iclas, izone, iczpar, rczpar)
!================================
enddo
! ---> Second zone, numbered izone = 2
! IUSCLB : rebound of the particle
izone = 2
iusclb (izone) = irebol
! same procedure for the other zones...
!===============================================================================
!--------
! Formats
!--------
!----
! End
!----
! Deallocate the temporary array
deallocate(lstelt)
return
end subroutine uslag2
|