This file is indexed.

/usr/share/cyclograph/slope.py is in cyclograph 1.6.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# -*- coding: utf-8 -*-
#slope.py
"""This module provides a model for Cyclograph"""

# Copyright (C) 2008, 2009, 2010, 2011, 2013 Federico Brega, Pierluigi Villani

# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

from __future__ import unicode_literals
import math
import glal
from themes import ThemeManager

class Slope:
    """Model of a slope"""
    def __init__(self):
        """Create a slope model."""
        self.cps = []
        self.coords = []
        self.grad = []
        self.dercp = []
        self.name = ''
        self.country = ''
        self.author = ''
        self.email = ''
        self.comment = ''
        self.url = ''
        self.reset_calculated()
    def __len__(self):
        return len(self.cps)
        
    def reset_calculated(self):
        self.average_grad = 0
        self.max_grad = 0
        self.height_difference = 0
        self.height_gain = 0

    def add_cp(self, distance, altitude, name):
        """ Adds a check-point to a Slope.
        A check point must have an altitude and a distance from start,
       it can have also a name or description.
        """
        new_cp = (distance, altitude, name)
        #check if there is already a cp with the same distance
        #and in this case remove it
        # WARNING: when loading from a file this cause complexity to be O(|#cps|^2)
        #If slowliness occurs consider using a binary search instead.
        for i in range(len(self.cps)):
            if self.cps[i][0] == distance:
                del self.cps[i]
                break
        self.cps.append(new_cp)
        self.cps.sort()
        self.grad = []
        self.reset_calculated()
        return self.cps.index(new_cp)
    def add_coord(self, latitude, longitude):
        """ Adds a coordinate to a Slope.
        A coordinate must have latitude and longitude.
        """
        new_coord = (latitude, longitude)
        self.coords.append(new_coord)
    def remove_cp(self, num):
        """ Removes check-point num from current slope and clears data."""
        del self.cps[num]
        self.grad = []
        self.reset_calculated()
    def calc(self):
        """ Update gradient and altitude bounds"""
        if len(self.cps) > 1:
            cps = self.cps[:]  #Multithread safe?
            derivate = lambda p0, p1 : (p1[1] - p0[1])/(p1[0] - p0[0])
            self.grad = [derivate(cps[i], cps[i+1])/10 for i in range(len(cps)-1)]
            self.average_grad = 0
            self.max_grad = self.grad[0]
            for i in range(len(self.grad)):
                if self.grad[i] > self.max_grad:
                    self.max_grad = self.grad[i]           
            self.height_gain = 0
            for i in range(len(cps)-1):
                self.height_gain += max(cps[i+1][1]-cps[i][1], 0)
            #find max & min altitude
            #float("inf") doesn't work on Windows
            self.max_h = -float("1e1000")
            self.min_h = +float("1e1000")
            for cpi in self.cps:
                if cpi[1] > self.max_h:
                    self.max_h = cpi[1]
                if cpi[1] < self.min_h:
                    self.min_h = cpi[1]
            self.height_difference = self.max_h - self.min_h
            self.max_h += 100
            self.min_h = int(math.floor(self.min_h/100)) * 100
            #min distance is always in the first item
            self.min_d = self.cps[0][0]
            #max distance is always in the last item
            self.max_d = self.cps[-1][0]

            if self.max_d != 0:
                self.average_grad = (self.cps[-1][1] - self.cps[0][1]) / (self.max_d * 10)

            self.dercp = self.smooth()

    def smooth(self):
        # References:
        #     Subroutine PCHIM, F. N. Fritsch, Lawrence Livermore National Laboratory.
        #     F. N. Fritsch and J. Butland, "A method for constructing local monotone
        #     piecewise cubic interpolants", SIAM J. Sci. Stat. Comput., vol. 5,
        #     pp. 300-304, June 1984.

        if not self.grad:
            return []
        if len(self.cps) < 3:
            #If less than 3 points draw a rect
            return [self.grad[0] * 10] * 2
        der = [0] * len(self.cps)

        #Inspired by Octave code in dpchim.f
        grad1 = self.grad[0] * 10
        grad2 = self.grad[1] * 10
        (h1, h2) = (self.cps[1][0] - self.cps[0][0], self.cps[2][0] - self.cps[1][0])
        w1 = (2 * h1 + h2) / (h1 + h2)
        w2 = -h1 / (h1 + h2)
        der[0] = w1 * grad1 + w2 * grad2
        if der[0] * grad1 <= 0:
            der[0] = 0
        elif grad1 * grad2 < 0:
            dmax = 3 * grad1
            if abs(der[0]) > abs(dmax):
                der[0] = dmax

        # Using brodlie modification of butland's formula
        for i in range(len(self.cps)-2):
            (h1, h2) = (float(self.cps[i][0] - self.cps[i-1][0]), float(self.cps[i+1][0] - self.cps[i][0]))
            grad1 = self.grad[i] * 10
            grad2 = self.grad[i+1] * 10
            if grad1 * grad2 <= 0:
                der[i] = 0
                continue
            dmax = max(abs(grad1), abs(grad2))
            dmin = min(abs(grad1), abs(grad2))
            w1 = (2 * h1 + h2) / (3 * (h1 + h2))
            w2 = (2 * h2 + h1) / (3 * (h1 + h2))
            der[i+1] = dmin / (w1 * grad1 / dmax + w2 * grad2 / dmax)

        grad1 = self.grad[-2] * 10
        grad2 = self.grad[-1] * 10
        (h1, h2) = (self.cps[1][0] - self.cps[0][0], self.cps[2][0] - self.cps[1][0])
        w1 = - h2 / (h1 + h2)
        w2 = (2 * h2 + h1) / (h1 + h2)
        der[-1] = w1 * grad1 + w2 * grad2
        if der[-1] * grad2 <= 0:
            der[-1] = 0
        elif grad1 * grad2 < 0:
            dmax = 3.0 * grad2
            if abs(der[-1]) > abs(dmax):
                der[-1] = dmax
        return der

    depth = 100
    def paint(self, settings, devc):
        """ Paint devc from plot"""
        #upper, lower, right and left margin of area where draw the slope
        theme = ThemeManager().gettheme(settings['theme'])
        updownmar = (180, 30)
        leftrightmar = (50, 10)
        margins = (updownmar, leftrightmar)
        (upp_mar, low_mar) = updownmar
        (lef_mar, rig_mar) = leftrightmar

        theme.paintbackground(devc, devc.size_x, devc.size_y)

        (max_x, max_y) = devc.getsize()
        if settings['3d']:
            devc.shear(theme.shear*self.depth/100)
            min_y = max_x*self.depth/100/10
            rig_mar = 10 + 20*self.depth/100
        else:
            min_y = 0

        theme.gradback(devc, max_x, max_y, settings['fdesc'])

        #draw altitude bar
        metersize = (max_y - upp_mar - low_mar - min_y) \
                    / (self.max_h - self.min_h)
        self.h_incr = 100 #draw a line every 100m

        if settings['olines']:
            theme.olines(devc, self, margins, max_x, max_y, metersize)

        theme.alttext(devc, self, margins, max_y, metersize)
        theme.yaxis(devc, self, margins, max_y, metersize)

        if settings['3d']:
            (dx, dy) = (20*self.depth/100, 10*self.depth/100)
        else:
            (dx, dy) = (0, 0)
        #draw km bar
        devc.setpen('black', 1)
        increments = [1, 2, 5, 10, 20, 50, 100] #km bar resolutions
        for d_incr in increments:
            #draw less than 30 bars
            if (self.max_d - self.min_d)  <= 30 * d_incr:
                break
        #this must be float otherwise there are problems with long slopes
        kmsize = (max_x - lef_mar - rig_mar ) / (self.max_d - int(self.min_d))

        theme.xaxis(devc, self, margins, max_y, d_incr, kmsize, dx, dy)

        #draw slope's name
        s_info = (self.name,
                  _("Average gradient:")+" "+"%.1f" % self.average_grad+" %",
                  _("Max gradient:")+" "+"%.1f" % self.max_grad+" %",
                  _("Height difference:")+" "+str(self.height_difference)+" m",
                  _("Height gain")+": "+str(self.height_gain)+" m")
        theme.drawslopeinfo(devc, s_info, settings, lef_mar+20, min_y+upp_mar-140)

        #draw first info text
        font = settings['fdesc']
        theme.desctext(devc, "%.0f %s" % (self.cps[0][1], self.cps[0][2]),
                     lef_mar + int(self.cps[0][0] * kmsize) + 3,
                     max_y -low_mar -10 \
                            - int((self.cps[0][1] - self.min_h) * metersize),
                     font)

        #plot the slope
        #plot orizzontal polygon in reverse order to prevent bad visualization in 3d mode
        if (dx != 0) and (dy != 0):
            linkpoints = []
            spath_back = []
            colorlisth = []
            for i in range(len(self.cps)-1):
                #i = len(self.cps)-1 - k
                v_a = ( int((self.cps[i][0]-int(self.min_d))* kmsize) ,
                        int((self.cps[i][1]-self.min_h)* metersize))
                v_b = ( int((self.cps[i+1][0]-int(self.min_d))* kmsize) ,
                        int((self.cps[i+1][1]-self.min_h)* metersize))

                points = [(lef_mar +v_a[0], max_y -low_mar - v_a[1]),
                        (lef_mar +v_b[0], max_y -low_mar - v_b[1]),
                        (lef_mar +v_b[0]+dx, max_y -low_mar - v_b[1]+dy),
                        (lef_mar +v_a[0]+dx, max_y -low_mar - v_a[1]+dy)]
                linkpoints.append(points)
                spath_back.append(polytoBezier(points[0],
                  self.dercp[i] * (-metersize / kmsize),
                  points[1],
                  self.dercp[i+1] * (-metersize / kmsize)))
            #theme.fillhslopecontour(devc, spath_back, dx, dy)

            for k in range(len(self.cps)-1):
                i = len(self.cps)-1 - k-1
                color = (theme.getcolor(settings['colors'], settings['levels'], self.grad[i]))
                colorlisth.append(color)
                theme.fillhpoly(devc, linkpoints[i], color)
            theme.fillhslopecontour(devc, spath_back, dx, dy, colorlisth)
            #draw the first polygon
            v_a = ( int((self.cps[0][0]-int(self.min_d))* kmsize) ,
                    int((self.cps[0][1]-self.min_h)* metersize))

            points = ((lef_mar +v_a[0], max_y -low_mar ),
                    (lef_mar +v_a[0], max_y -low_mar - v_a[1]),
                    (lef_mar +v_a[0]+dx, max_y -low_mar - v_a[1]+dy),
                    (lef_mar +v_a[0]+dx, max_y -low_mar + dy))
            color = (theme.getcolor(settings['colors'], settings['levels'], self.grad[0]))
            theme.fillfirsthpoly(devc, points, color)
        vpolygons = []
        spath_pnts = []
        colorlistv = []
        for i in range(len(self.cps)-1):
            v_a = (int((self.cps[i][0]-int(self.min_d))* kmsize) ,
                   int((self.cps[i][1]-self.min_h)* metersize))
            v_b = (int((self.cps[i+1][0]-int(self.min_d))* kmsize) ,
                   int((self.cps[i+1][1]-self.min_h)* metersize))

            #points that delimitate the area to color
            points = [(lef_mar +v_a[0], max_y -low_mar),
                    (lef_mar +v_b[0], max_y -low_mar),
                    (lef_mar +v_b[0], max_y -low_mar - v_b[1]),
                    (lef_mar +v_a[0], max_y -low_mar - v_a[1])]
            points = [(p[0] + dx, p[1] + dy) for p in points]
            vpolygons.append(points)
            spath_pnts.append(polytoBezier(points[3],
               self.dercp[i] * (-metersize / kmsize),
               points[2],
               self.dercp[i+1] * (-metersize / kmsize)))
            color = (theme.getcolor(settings['colors'], settings['levels'], self.grad[i]))
            colorlistv.append(color)
        #add also the two lower points (those near km bar)
        spath_pnts = [vpolygons[0][0]] + spath_pnts + [vpolygons[-1][1]]
        theme.fillvslopecontour(devc, spath_pnts,
                                max_y -low_mar +self.min_h*metersize,
                                max_y -low_mar -(1000 - self.min_h)*metersize,
                                vpolygons, colorlistv)
        infotext_x = []
        for i in range(len(self.cps)-1):
            points = vpolygons[i]
            color = (theme.getcolor(settings['colors'], settings['levels'], self.grad[i]))
            theme.fillvpoly(devc, points, color)

            #draw gradient text
            font = settings['fgrad']
            if (points[1][0] - points[0][0] > devc.gettextwidth("%.1f%%" % self.grad[i])):
                theme.gradtext(devc, "%.1f%%" % self.grad[i],
                         points[0][0] + 3, points[0][1] - 20,
                         font)
            infotext_x.append(points[2][0] -dx -4)
        infotext_x.append(infotext_x[len(self.cps)-2]+50)

        for i in range(len(self.cps)-1):
            #another cycle to prevent text to be hidden by polygons
            points = vpolygons[i]

            #draw info text
            font = settings['fdesc']
            infotext = "%.0f %s" % (self.cps[i + 1][1], self.cps[i + 1][2])
            diffx = infotext_x[i+1] - infotext_x[i]
            diffx = diffx - devc.gettextheight(infotext) -2
            if diffx < 0:
                diffx = diffx/2
                infotext_x[i+1] -= diffx
                theme.desctext(devc, infotext,
                     infotext_x[i] + diffx, points[2][1] -dy - 10, font)
            else:
                theme.desctext(devc, infotext,
                     infotext_x[i], points[2][1] -dy - 10, font)

class SlopeList:
    """Wrapper for a list of slopes, according to MCV"""
    def __init__(self):
        """ Wraps a list of slopes, according to MCV"""
        self._lst = []
        self.message = glal.Message()
    def __len__(self):
        """"Gives how many slopes are in the list"""
        return len(self._lst)

    def new_slope(self):
        """ Add a new slope to the list. """
        self._lst.append(Slope())
        return (len(self._lst) - 1)
    def del_slope(self, slope_number):
        """ Remove a slope from the list """
        del self._lst[slope_number]
        #It doesen't send a SLOPE CHANGED message because
        #other slopes are not been modified.
    def get_slope_copy(self, slope_number):
        """ Get a copy of a slope in the list. """
        return self._lst[slope_number]

    def set_name(self, slope_number, name):
        """ Set the name of a slope in the list. """
        self._lst[slope_number].name = name
        #This updates the title in the tab.
        self.message.send("UPDATE_TAB", slope_number, 0)
    def set_country(self, slope_number, country):
        """ Set the country of a slope in the list."""
        self._lst[slope_number].country = country
    def set_author(self, slope_number, author):
        """ Set the author of a slope in the list."""
        self._lst[slope_number].author = author
    def set_email(self, slope_number, email):
        """ Set the email of the author of a slope."""
        self._lst[slope_number].email = email
    def set_comment(self, slope_number, comment):
        """ Ser a comment to a slope in the list. """
        self._lst[slope_number].comment = comment
    def set_url(self, slope_number, url):
        """ Add a URL referring to a slope in the list """
        self._lst[slope_number].url = url

    def get_name(self, slope_number):
        """ Get name """
        return self._lst[slope_number].name
    def get_state(self, slope_number):
        """ Get country """
        return self._lst[slope_number].country
    def get_author(self, slope_number):
        """ Get author """
        return self._lst[slope_number].author
    def get_email(self, slope_number):
        """ Get email """
        return self._lst[slope_number].email
    def get_comment(self, slope_number):
        """ Get comment """
        return self._lst[slope_number].comment
    def get_average_grad(self, slope_number):
        """ Get average gradient """
        return self._lst[slope_number].average_grad
    def get_max_grad(self, slope_number):
        """ Get max gradient """
        return self._lst[slope_number].max_grad
    def get_height_difference(self, slope_number):
        """ Get height difference"""
        return self._lst[slope_number].height_difference
    def get_height_gain(self, slopenumber):
        """ Get height gain"""
        return self._lst[slopenumber].height_gain
    def get_url(self, slope_number):
        """ Get URL """
        return self._lst[slope_number].url
    def get_coords(self, slope_number):
        """ Get coords """
        return self._lst[slope_number].coords
    def add_coord(self, slope_number, latitude, longitude):
        """ Add a coordinate to a slope in the list."""
        sel_lst = self._lst[slope_number]
        sel_lst.add_coord(latitude, longitude)

    def add_cp(self, slope_number, distance, altitude, name=""):
        """ Add a check point to a slope in the list."""
        sel_lst = self._lst[slope_number]
        orig_len = len(sel_lst)
        row_num = sel_lst.add_cp(distance, altitude, name)
        if len(sel_lst) == orig_len:
            #if the slope isn't grown then a cp has been modified.
            self.message.send("SLOPE_DEL", slope_number, row_num)
        self.message.send("SLOPE_ADD", slope_number, row_num)
    def remove_cp(self, slope_number, cp_num):
        """ Remove a check point from a slope in the list."""
        self._lst[slope_number].remove_cp(cp_num)
        self.message.send("SLOPE_DEL", slope_number, cp_num)



### Below this line fuctions are part of the view according MCV pattern ###
def polytoBezier(p0, m1, p3, m2):
    """Covert from polynomial function to Beziér curve
    p0 is the start point (as tuple of dimension 2) of the Beziér curve
    p1 is the end point of the Beziér curve
    m1 is the value of the derivate in p0
    m2 is the value of the derivate in p3

    returns the four control points of a cubic Beziér curve (p1, p2, p3, p4)
    """
    (x0, y0) = p0
    (x3, y3) = p3
    h = x3 - x0

    x1 = x0 + h/3
    y1 = m1*(x1 - x0) + y0
    p1 = (x1, y1)

    x2 = x0 + 2*h/3
    y2 = m2*(x2 - x3) + y3
    p2 = (x2, y2)

    return (p0, p1, p2, p3)

# vim:sw=4:softtabstop=4:expandtab