This file is indexed.

/usr/share/dynare/matlab/@dseries/minus.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function A = minus(B,C) % --*-- Unitary tests --*--

%@info:
%! @deftypefn {Function File} {@var{A} =} minus (@var{B},@var{C})
%! @anchor{@dseries/minus}
%! @sp 1
%! Overloads the minus method for the Dynare time series class (@ref{dseries}).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item B
%! Dynare time series object instantiated by @ref{dseries}.
%! @item C
%! Dynare time series object instantiated by @ref{dseries}.
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item A
%! Dynare time series object.
%! @end deftypefn
%@eod:

% Copyright (C) 2012-2014, Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if isnumeric(B) && (isscalar(B) ||  isvector(B))
    if ~isdseries(C)
        error('dseries::minus: Second input argument must be a dseries object!')
    end
    A = C;
    A.data = bsxfun(@minus,C.data,B);
    return;
end

if isnumeric(C) && (isscalar(C) || isvector(C))
    if ~isdseries(B)
        error('dseries::minus: First input argument must be a dseries object!')
    end
    A = B;
    A.data = bsxfun(@minus,B.data,C);
    return
end

if ~isequal(B.vobs,C.vobs) && ~(isequal(B.vobs,1) || isequal(C.vobs,1))
    error(['dseries::minus: Cannot substract ' inputname(1) ' and ' inputname(2) ' (wrong number of variables)!'])
else
    if B.vobs>C.vobs
        idB = 1:B.vobs;
        idC = ones(1:B.vobs);
    elseif B.vobs<C.vobs
        idB = ones(1,C.vobs);
        idC = 1:C.vobs;
    else
        idB = 1:B.vobs;
        idC = 1:C.vobs;
    end
end

if ~isequal(B.freq,C.freq)
    error(['dseries::plus: Cannot substract ' inputname(1) ' and ' inputname(2) ' (frequencies are different)!'])
end

if ~isequal(B.nobs,C.nobs) || ~isequal(B.init,C.init)
    [B, C] = align(B, C);
end

if isempty(B)
    A = -C;
    return
end

if isempty(C)
    A = B;
    return
end

A = dseries();

A.freq = B.freq;
A.init = B.init;
A.dates = B.dates;
A.nobs = max(B.nobs,C.nobs);
A.vobs = max(B.vobs,C.vobs);
A.name = cell(A.vobs,1);
A.tex = cell(A.vobs,1);
for i=1:A.vobs
    A.name(i) = {['minus(' B.name{idB(i)} ',' C.name{idC(i)} ')']};
    A.tex(i) = {['(' B.tex{idB(i)} '-' C.tex{idC(i)} ')']};
end
A.data = bsxfun(@minus,B.data,C.data);

%@test:1
%$ % Define a datasets.
%$ A = rand(10,2); B = randn(10,1);
%$
%$ % Define names
%$ A_name = {'A1';'A2'}; B_name = {'B1'};
%$
%$ t = zeros(5,1);
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = dseries(B,[],B_name,[]);
%$    ts3 = ts1-ts2;
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ if length(t)>1
%$    t(2) = dyn_assert(ts3.vobs,2);
%$    t(3) = dyn_assert(ts3.nobs,10);
%$    t(4) = dyn_assert(ts3.data,[A(:,1)-B, A(:,2)-B],1e-15);
%$    t(5) = dyn_assert(ts3.name,{'minus(A1,B1)';'minus(A2,B1)'});
%$ end
%$ T = all(t);
%@eof:1

%@test:3
%$ % Define a datasets.
%$ A = rand(10,2); B = randn(5,1);
%$
%$ % Define names
%$ A_name = {'A1';'A2'}; B_name = {'B1'};
%$
%$ t = zeros(5,1);
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = dseries(B,[],B_name,[]);
%$    ts3 = ts1-ts2;
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ if length(t)>1
%$    t(2) = dyn_assert(ts3.vobs,2);
%$    t(3) = dyn_assert(ts3.nobs,10);
%$    t(4) = dyn_assert(ts3.data,[A(1:5,1)-B(1:5), A(1:5,2)-B(1:5) ; NaN(5,2)],1e-15);
%$    t(5) = dyn_assert(ts3.name,{'minus(A1,B1)';'minus(A2,B1)'});
%$ end
%$ T = all(t);
%@eof:3