/usr/share/dynare/matlab/McMCDiagnostics.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | function oo_ = McMCDiagnostics(options_, estim_params_, M_, oo_)
% function McMCDiagnostics
% Computes convergence tests
%
% INPUTS
% options_ [structure]
% estim_params_ [structure]
% M_ [structure]
%
% OUTPUTS
% oo_ [structure]
%
% SPECIAL REQUIREMENTS
% none
%
% PARALLEL CONTEXT
% See the comment in random_walk_metropolis_hastings.m funtion.
% Copyright (C) 2005-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
OutputFolder = CheckPath('Output',M_.dname);
MetropolisFolder = CheckPath('metropolis',M_.dname);
ModelName = M_.fname;
TeX = options_.TeX;
nblck = options_.mh_nblck;
npar = estim_params_.nvx;
npar = npar + estim_params_.nvn;
npar = npar + estim_params_.ncx;
npar = npar + estim_params_.ncn;
npar = npar + estim_params_.np ;
MAX_nruns = ceil(options_.MaxNumberOfBytes/(npar+2)/8);
load_last_mh_history_file(MetropolisFolder, ModelName);
NumberOfMcFilesPerBlock = record.LastFileNumber;
% Check that the declared number of blocks is consistent with informations saved in mh-history files.
if ~isequal(nblck,record.Nblck)
disp(['Estimation::mcmc::diagnostics: The number of MCMC chains you declared (' num2str(nblck) ') is inconsistent with the information available in the mh-history files (' num2str(record.Nblck) ' chains)!'])
disp([' I reset the number of MCMC chains to ' num2str(record.Nblck) '.'])
nblck = record.Nblck;
end
% check if all the mh files are available.
issue_an_error_message = 0;
for b = 1:nblck
nfiles = length(dir([MetropolisFolder ,filesep, ModelName '_mh*_blck' num2str(b) '.mat']));
if ~isequal(NumberOfMcFilesPerBlock,nfiles)
issue_an_error_message = 1;
disp(['Estimation::mcmc::diagnostics: The number of MCMC files in chain ' num2str(b) ' is ' num2str(nfiles) ' while the mh-history files indicate that we should have ' num2str(NumberOfMcFilesPerBlock) ' MCMC files per chain!'])
end
end
if issue_an_error_message
error('Estimation::mcmc::diagnostics: I cannot proceed because some MCMC files are missing. Check your MCMC files...')
end
if nblck == 1 % Brooks and Gelman tests need more than one block
convergence_diagnostics_geweke=zeros(npar,4+2*length(options_.convergence.geweke.taper_steps));
if any(options_.convergence.geweke.geweke_interval<0) || any(options_.convergence.geweke.geweke_interval>1) || length(any(options_.convergence.geweke.geweke_interval<0))~=2 ...
|| (options_.convergence.geweke.geweke_interval(2)-options_.convergence.geweke.geweke_interval(1)<0)
fprintf('\nCONVERGENCE DIAGNOSTICS: Invalid option for geweke_interval. Using the default of [0.2 0.5].\n')
options_.convergence.geweke.geweke_interval=[0.2 0.5];
end
first_obs_begin_sample = max(1,ceil(options_.mh_drop*options_.mh_replic));
last_obs_begin_sample = first_obs_begin_sample+round(options_.convergence.geweke.geweke_interval(1)*options_.mh_replic*options_.mh_drop);
first_obs_end_sample = first_obs_begin_sample+round(options_.convergence.geweke.geweke_interval(2)*options_.mh_replic*options_.mh_drop);
param_name=[];
for jj=1:npar
param_name = strvcat(param_name,get_the_name(jj,options_.TeX,M_,estim_params_,options_));
end
fprintf('\nGeweke (1992) Convergence Tests, based on means of draws %d to %d vs %d to %d.\n',first_obs_begin_sample,last_obs_begin_sample,first_obs_end_sample,options_.mh_replic);
fprintf('p-values are for Chi2-test for equality of means.\n');
Geweke_header={'Parameter', 'Post. Mean', 'Post. Std', 'p-val No Taper'};
print_string=['%',num2str(size(param_name,2)+3),'s \t %12.3f \t %12.3f \t %12.3f'];
print_string_header=['%',num2str(size(param_name,2)+3),'s \t %12s \t %12s \t %12s'];
for ii=1:length(options_.convergence.geweke.taper_steps)
Geweke_header=[Geweke_header, ['p-val ' num2str(options_.convergence.geweke.taper_steps(ii)),'% Taper']];
print_string=[print_string,'\t %12.3f'];
print_string_header=[print_string_header,'\t %12s'];
end
print_string=[print_string,'\n'];
print_string_header=[print_string_header,'\n'];
fprintf(print_string_header,Geweke_header{1,:});
for jj=1:npar
startline=0;
for n = 1:NumberOfMcFilesPerBlock
load([MetropolisFolder '/' ModelName '_mh',int2str(n),'_blck1.mat'],'x2');
nx2 = size(x2,1);
param_draws(startline+(1:nx2),1) = x2(:,jj);
startline = startline + nx2;
end
[results_vec, results_struct] = geweke_moments(param_draws,options_);
convergence_diagnostics_geweke(jj,:)=results_vec;
param_draws1 = param_draws(first_obs_begin_sample:last_obs_begin_sample,:);
param_draws2 = param_draws(first_obs_end_sample:end,:);
[results_vec1] = geweke_moments(param_draws1,options_);
[results_vec2] = geweke_moments(param_draws2,options_);
results_struct = geweke_chi2_test(results_vec1,results_vec2,results_struct,options_);
eval(['oo_.convergence.geweke.',param_name(jj,:),'=results_struct;'])
fprintf(print_string,param_name(jj,:),results_struct.posteriormean,results_struct.posteriorstd,results_struct.prob_chi2_test)
end
skipline(2);
return;
end
PastDraws = sum(record.MhDraws,1);
LastFileNumber = PastDraws(2);
LastLineNumber = record.MhDraws(end,3);
NumberOfDraws = PastDraws(1);
Origin = 1000;
StepSize = ceil((NumberOfDraws-Origin)/100);% So that the computational time does not
ALPHA = 0.2; % increase too much with the number of simulations.
time = 1:NumberOfDraws;
xx = Origin:StepSize:NumberOfDraws;
NumberOfLines = length(xx);
tmp = zeros(NumberOfDraws*nblck,3);
UDIAG = zeros(NumberOfLines,6,npar);
if NumberOfDraws < Origin
disp('Estimation::mcmc::diagnostics: The number of simulations is too small to compute the MCMC convergence diagnostics.')
return
end
if TeX
fidTeX = fopen([OutputFolder '/' ModelName '_UnivariateDiagnostics.TeX'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by McmcDiagnostics.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
disp('Estimation::mcmc::diagnostics: Univariate convergence diagnostic, Brooks and Gelman (1998):')
% The mandatory variables for local/remote parallel
% computing are stored in localVars struct.
localVars.MetropolisFolder = MetropolisFolder;
localVars.nblck = nblck;
localVars.NumberOfMcFilesPerBlock = NumberOfMcFilesPerBlock;
localVars.Origin = Origin;
localVars.StepSize = StepSize;
localVars.mh_drop = options_.mh_drop;
localVars.NumberOfDraws = NumberOfDraws;
localVars.NumberOfLines = NumberOfLines;
localVars.time = time;
localVars.M_ = M_;
% Like sequential execution!
if isnumeric(options_.parallel),
fout = McMCDiagnostics_core(localVars,1,npar,0);
UDIAG = fout.UDIAG;
clear fout
% Parallel execution!
else
ModelName = ModelName;
if ~isempty(M_.bvar)
ModelName = [ModelName '_bvar'];
end
NamFileInput={[M_.dname '/metropolis/'],[ModelName '_mh*_blck*.mat']};
[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel, 1, npar,NamFileInput,'McMCDiagnostics_core', localVars, [], options_.parallel_info);
UDIAG = fout(1).UDIAG;
for j=2:totCPU,
UDIAG = cat(3,UDIAG ,fout(j).UDIAG);
end
end
UDIAG(:,[2 4 6],:) = UDIAG(:,[2 4 6],:)/nblck;
skipline()
clear pmet temp moyenne CSUP CINF csup cinf n linea iter tmp;
pages = floor(npar/3);
k = 0;
for i = 1:pages
h=dyn_figure(options_,'Name','MCMC univariate convergence diagnostic (Brooks and Gelman,1998)');
boxplot = 1;
for j = 1:3 % Loop over parameters
k = k+1;
[nam,namtex] = get_the_name(k,TeX,M_,estim_params_,options_);
for crit = 1:3% Loop over criteria
if crit == 1
plt1 = UDIAG(:,1,k);
plt2 = UDIAG(:,2,k);
namnam = [nam , ' (Interval)'];
elseif crit == 2
plt1 = UDIAG(:,3,k);
plt2 = UDIAG(:,4,k);
namnam = [nam , ' (m2)'];
elseif crit == 3
plt1 = UDIAG(:,5,k);
plt2 = UDIAG(:,6,k);
namnam = [nam , ' (m3)'];
end
if TeX
if j==1
NAMES = deblank(namnam);
TEXNAMES = deblank(namtex);
else
NAMES = char(NAMES,deblank(namnam));
TEXNAMES = char(TEXNAMES,deblank(namtex));
end
end
subplot(3,3,boxplot);
plot(xx,plt1,'-b'); % Pooled
hold on;
plot(xx,plt2,'-r'); % Within (mean)
hold off;
xlim([xx(1) xx(NumberOfLines)])
title(namnam,'Interpreter','none')
boxplot = boxplot + 1;
end
end
dyn_saveas(h,[OutputFolder '/' ModelName '_udiag' int2str(i)],options_);
if TeX
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:size(NAMES,1)
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TEXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_udiag%s}\n',[OutputFolder '/' ModelName],int2str(i));
fprintf(fidTeX,'\\caption{Univariate convergence diagnostics for the Metropolis-Hastings.\n');
fprintf(fidTeX,'The first, second and third columns are respectively the criteria based on\n');
fprintf(fidTeX,'the eighty percent interval, the second and third moments.}');
fprintf(fidTeX,'\\label{Fig:UnivariateDiagnostics:%s}\n',int2str(i));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,'\n');
end
end
reste = npar-k;
if reste
if reste == 1
nr = 3;
nc = 1;
elseif reste == 2;
nr = 2;
nc = 3;
end
h = dyn_figure(options_,'Name','MCMC univariate convergence diagnostic (Brooks and Gelman, 1998)');
boxplot = 1;
for j = 1:reste
k = k+1;
[nam,namtex] = get_the_name(k,TeX,M_,estim_params_,options_);
for crit = 1:3
if crit == 1
plt1 = UDIAG(:,1,k);
plt2 = UDIAG(:,2,k);
namnam = [nam , ' (Interval)'];
elseif crit == 2
plt1 = UDIAG(:,3,k);
plt2 = UDIAG(:,4,k);
namnam = [nam , ' (m2)'];
elseif crit == 3
plt1 = UDIAG(:,5,k);
plt2 = UDIAG(:,6,k);
namnam = [nam , ' (m3)'];
end
if TeX
if j==1
NAMES = deblank(namnam);
TEXNAMES = deblank(namtex);
else
NAMES = char(NAMES,deblank(namnam));
TEXNAMES = char(TEXNAMES,deblank(namtex));
end
end
subplot(nr,nc,boxplot);
plot(xx,plt1,'-b'); % Pooled
hold on;
plot(xx,plt2,'-r'); % Within (mean)
hold off;
xlim([xx(1) xx(NumberOfLines)]);
title(namnam,'Interpreter','none');
boxplot = boxplot + 1;
end
end
dyn_saveas(h,[ OutputFolder '/' ModelName '_udiag' int2str(pages+1)],options_);
if TeX
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:size(NAMES,1);
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TEXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_udiag%s}\n',[OutputFolder '/' ModelName],int2str(pages+1));
if reste == 2
fprintf(fidTeX,'\\caption{Univariate convergence diagnostics for the Metropolis-Hastings.\n');
fprintf(fidTeX,'The first, second and third columns are respectively the criteria based on\n');
fprintf(fidTeX,'the eighty percent interval, the second and third moments.}');
elseif reste == 1
fprintf(fidTeX,'\\caption{Univariate convergence diagnostics for the Metropolis-Hastings.\n');
fprintf(fidTeX,'The first, second and third rows are respectively the criteria based on\n');
fprintf(fidTeX,'the eighty percent interval, the second and third moments.}');
end
fprintf(fidTeX,'\\label{Fig:UnivariateDiagnostics:%s}\n',int2str(pages+1));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,'\n');
fprintf(fidTeX,'% End Of TeX file.');
fclose(fidTeX);
end
end % if reste > 0
clear UDIAG;
%
% Multivariate diagnostic.
%
if TeX
fidTeX = fopen([OutputFolder '/' ModelName '_MultivariateDiagnostics.TeX'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by McmcDiagnostics.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
tmp = zeros(NumberOfDraws*nblck,3);
MDIAG = zeros(NumberOfLines,6);
for b = 1:nblck
startline = 0;
for n = 1:NumberOfMcFilesPerBlock
load([MetropolisFolder '/' ModelName '_mh',int2str(n),'_blck' int2str(b) '.mat'],'logpo2');
nlogpo2 = size(logpo2,1);
tmp((b-1)*NumberOfDraws+startline+(1:nlogpo2),1) = logpo2;
startline = startline+nlogpo2;
end
end
clear logpo2;
tmp(:,2) = kron(transpose(1:nblck),ones(NumberOfDraws,1));
tmp(:,3) = kron(ones(nblck,1),time');
tmp = sortrows(tmp,1);
ligne = 0;
for iter = Origin:StepSize:NumberOfDraws
ligne = ligne+1;
linea = ceil(options_.mh_drop*iter);
n = iter-linea+1;
cinf = round(n*ALPHA/2);
csup = round(n*(1-ALPHA/2));
CINF = round(nblck*n*ALPHA/2);
CSUP = round(nblck*n*(1-ALPHA/2));
temp = tmp(find((tmp(:,3)>=linea) & (tmp(:,3)<=iter)),1:2);
MDIAG(ligne,1) = temp(CSUP,1)-temp(CINF,1);
moyenne = mean(temp(:,1));%% Pooled mean.
MDIAG(ligne,3) = sum((temp(:,1)-moyenne).^2)/(nblck*n-1);
MDIAG(ligne,5) = sum(abs(temp(:,1)-moyenne).^3)/(nblck*n-1);
for i=1:nblck
pmet = temp(find(temp(:,2)==i));
MDIAG(ligne,2) = MDIAG(ligne,2) + pmet(csup,1)-pmet(cinf,1);
moyenne = mean(pmet,1); %% Within mean.
MDIAG(ligne,4) = MDIAG(ligne,4) + sum((pmet(:,1)-moyenne).^2)/(n-1);
MDIAG(ligne,6) = MDIAG(ligne,6) + sum(abs(pmet(:,1)-moyenne).^3)/(n-1);
end
end
MDIAG(:,[2 4 6],:) = MDIAG(:,[2 4 6],:)/nblck;
h = dyn_figure(options_,'Name','Multivariate convergence diagnostic');
boxplot = 1;
for crit = 1:3
if crit == 1
plt1 = MDIAG(:,1);
plt2 = MDIAG(:,2);
namnam = 'Interval';
elseif crit == 2
plt1 = MDIAG(:,3);
plt2 = MDIAG(:,4);
namnam = 'm2';
elseif crit == 3
plt1 = MDIAG(:,5);
plt2 = MDIAG(:,6);
namnam = 'm3';
end
if TeX
if crit == 1
NAMES = deblank(namnam);
else
NAMES = char(NAMES,deblank(namnam));
end
end
subplot(3,1,boxplot);
plot(xx,plt1,'-b'); % Pooled
hold on
plot(xx,plt2,'-r'); % Within (mean)
hold off
xlim([xx(1) xx(NumberOfLines)])
title(namnam,'Interpreter','none');
boxplot = boxplot + 1;
end
dyn_saveas(h,[ OutputFolder '/' ModelName '_mdiag'],options_);
if TeX
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:3
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),' ');
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_mdiag}\n',[OutputFolder '/' ModelName]);
fprintf(fidTeX,'\\caption{Multivariate convergence diagnostics for the Metropolis-Hastings.\n');
fprintf(fidTeX,'The first, second and third rows are respectively the criteria based on\n');
fprintf(fidTeX,'the eighty percent interval, the second and third moments. The different \n');
fprintf(fidTeX,'parameters are aggregated using the posterior kernel.}');
fprintf(fidTeX,'\\label{Fig:MultivariateDiagnostics}\n');
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,'\n');
fprintf(fidTeX,'% End Of TeX file.');
fclose(fidTeX);
end
|