/usr/share/dynare/matlab/UnivariateSpectralDensity.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | function [omega,f] = UnivariateSpectralDensity(dr,var_list)
% This function computes the theoretical spectral density of each
% endogenous variable declared in var_list. Results are stored in
% oo_ and may be plotted. Plots are saved into the graphs-folder.
%
% Adapted from th_autocovariances.m.
% Copyright (C) 2006-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_
omega = []; f = [];
if options_.order > 1
disp('UnivariateSpectralDensity :: I Cannot compute the theoretical spectral density')
disp('with a second order approximation of the DSGE model!')
disp('Please set order = 1. I abort')
return
end
pltinfo = options_.SpectralDensity.plot;
cutoff = options_.SpectralDensity.cutoff;
sdl = options_.SpectralDensity.sdl;
omega = (0:sdl:pi)';
GridSize = length(omega);
exo_names_orig_ord = M_.exo_names_orig_ord;
if isoctave
warning('off', 'Octave:divide-by-zero')
else
warning off MATLAB:dividebyzero
end
if nargin<2
var_list = [];
end
if size(var_list,1) == 0
var_list = M_.endo_names(1:M_.orig_endo_nbr, :);
end
nvar = size(var_list,1);
ivar=zeros(nvar,1);
for i=1:nvar
i_tmp = strmatch(var_list(i,:),M_.endo_names,'exact');
if isempty(i_tmp)
error (['One of the variables specified does not exist']) ;
else
ivar(i) = i_tmp;
end
end
f = zeros(nvar,GridSize);
ghx = dr.ghx;
ghu = dr.ghu;
nspred = M_.nspred;
nstatic = M_.nstatic;
kstate = dr.kstate;
order = dr.order_var;
iv(order) = [1:length(order)];
nx = size(ghx,2);
ikx = [nstatic+1:nstatic+nspred];
A = zeros(nx,nx);
k0 = kstate(find(kstate(:,2) <= M_.maximum_lag+1),:);
i0 = find(k0(:,2) == M_.maximum_lag+1);
i00 = i0;
n0 = length(i0);
A(i0,:) = ghx(ikx,:);
AS = ghx(:,i0);
ghu1 = zeros(nx,M_.exo_nbr);
ghu1(i0,:) = ghu(ikx,:);
for i=M_.maximum_lag:-1:2
i1 = find(k0(:,2) == i);
n1 = size(i1,1);
j1 = zeros(n1,1);
j2 = j1;
for k1 = 1:n1
j1(k1) = find(k0(i00,1)==k0(i1(k1),1));
j2(k1) = find(k0(i0,1)==k0(i1(k1),1));
end
AS(:,j1) = AS(:,j1)+ghx(:,i1);
i0 = i1;
end
Gamma = zeros(nvar,cutoff+1);
[A,B] = kalman_transition_matrix(dr,ikx',1:nx,M_.exo_nbr);
[vx, u] = lyapunov_symm(A,B*M_.Sigma_e*B',options_.qz_criterium,options_.lyapunov_complex_threshold);
iky = iv(ivar);
if ~isempty(u)
iky = iky(find(any(abs(ghx(iky,:)*u) < options_.Schur_vec_tol,2)));
ivar = dr.order_var(iky);
end
aa = ghx(iky,:);
bb = ghu(iky,:);
if options_.hp_filter == 0
tmp = aa*vx*aa'+ bb*M_.Sigma_e*bb';
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,1) = diag(tmp);
vxy = (A*vx*aa'+ghu1*M_.Sigma_e*bb');
tmp = aa*vxy;
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,2) = diag(tmp);
for i=2:cutoff
vxy = A*vxy;
tmp = aa*vxy;
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,i+1) = diag(tmp);
end
else
iky = iv(ivar);
aa = ghx(iky,:);
bb = ghu(iky,:);
lambda = options_.hp_filter;
ngrid = options_.hp_ngrid;
freqs = 0 : ((2*pi)/ngrid) : (2*pi*(1 - .5/ngrid));
tpos = exp( sqrt(-1)*freqs);
tneg = exp(-sqrt(-1)*freqs);
hp1 = 4*lambda*(1 - cos(freqs)).^2 ./ (1 + 4*lambda*(1 - cos(freqs)).^2);
mathp_col = [];
IA = eye(size(A,1));
IE = eye(M_.exo_nbr);
for ig = 1:ngrid
f_omega =(1/(2*pi))*( [inv(IA-A*tneg(ig))*ghu1;IE]...
*M_.Sigma_e*[ghu1'*inv(IA-A'*tpos(ig)) IE]); % state variables
g_omega = [aa*tneg(ig) bb]*f_omega*[aa'*tpos(ig); bb']; % selected variables
f_hp = hp1(ig)^2*g_omega; % spectral density of selected filtered series
mathp_col = [mathp_col ; (f_hp(:))']; % store as matrix row
% for ifft
end;
imathp_col = real(ifft(mathp_col))*(2*pi);
tmp = reshape(imathp_col(1,:),nvar,nvar);
k = find(abs(tmp)<1e-12);
tmp(k) = 0;
Gamma(:,1) = diag(tmp);
sy = sqrt(Gamma(:,1));
sy = sy *sy';
for i=1:cutoff-1
tmp = reshape(imathp_col(i+1,:),nvar,nvar)./sy;
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,i+1) = diag(tmp);
end
end
H = 1:cutoff;
for i=1:nvar
f(i,:) = Gamma(i,1)/(2*pi) + Gamma(i,H+1)*cos(H'*omega')/pi;
end
if isoctave
warning('on', 'Octave:divide-by-zero')
else
warning on MATLAB:dividebyzero
end
if pltinfo
if ~exist(M_.fname, 'dir')
mkdir('.',M_.fname);
end
if ~exist([M_.fname '/graphs'])
mkdir(M_.fname,'graphs');
end
for i= 1:nvar
hh = dyn_figure(options_,'Name',['Spectral Density of ' deblank(M_.endo_names(ivar(i),:)) '.']);
plot(omega,f(i,:),'-k','linewidth',2)
xlabel('0 \leq \omega \leq \pi')
ylabel('f(\omega)')
box on
axis tight
dyn_saveas(hh,[M_.fname ,filesep,'graphs', filesep, 'SpectralDensity_' deblank(M_.endo_names(ivar(i),:))],options_)
end
end
|