This file is indexed.

/usr/share/dynare/matlab/csminwel1.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
function [fh,xh,gh,H,itct,fcount,retcodeh] = csminwel1(fcn,x0,H0,grad,crit,nit,method,epsilon,varargin)
%[fhat,xhat,ghat,Hhat,itct,fcount,retcodehat] = csminwel1(fcn,x0,H0,grad,crit,nit,method,epsilon,varargin)
% fcn:   string naming the objective function to be minimized
% x0:    initial value of the parameter vector
% H0:    initial value for the inverse Hessian.  Must be positive definite.
% grad:  Either a string naming a function that calculates the gradient, or the null matrix.
%        If it's null, the program calculates a numerical gradient.  In this case fcn must
%        be written so that it can take a matrix argument and produce a row vector of values.
% crit:  Convergence criterion.  Iteration will cease when it proves impossible to improve the
%        function value by more than crit.
% nit:   Maximum number of iterations.
% method: integer scalar, 2, 3 or 5 points formula.
% epsilon: scalar double, numerical differentiation increment
% varargin: A list of optional length of additional parameters that get handed off to fcn each
%        time it is called.
%        Note that if the program ends abnormally, it is possible to retrieve the current x,
%        f, and H from the files g1.mat and H.mat that are written at each iteration and at each
%        hessian update, respectively.  (When the routine hits certain kinds of difficulty, it
%        write g2.mat and g3.mat as well.  If all were written at about the same time, any of them
%        may be a decent starting point.  One can also start from the one with best function value.)

% Original file downloaded from:
% http://sims.princeton.edu/yftp/optimize/mfiles/csminwel.m

% Copyright (C) 1993-2007 Christopher Sims
% Copyright (C) 2006-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global objective_function_penalty_base

fh = [];
xh = [];
[nx,no]=size(x0);
nx=max(nx,no);
Verbose=1;
NumGrad= isempty(grad);
done=0;
itct=0;
fcount=0;
snit=100;
gh = [];
H = [];
retcodeh = [];
%tailstr = ')';
%stailstr = [];
% Lines below make the number of Pi's optional.  This is inefficient, though, and precludes
% use of the matlab compiler.  Without them, we use feval and the number of Pi's must be
% changed with the editor for each application.  Places where this is required are marked
% with ARGLIST comments
%for i=nargin-6:-1:1
%   tailstr=[ ',P' num2str(i)  tailstr];
%   stailstr=[' P' num2str(i) stailstr];
%end

[f0,junk1,junk2,cost_flag] = feval(fcn,x0,varargin{:});

if ~cost_flag
    disp('Bad initial parameter.')
    return
end

if NumGrad
    switch method
      case 2
        [g,badg] = numgrad2(fcn, f0, x0, epsilon, varargin{:});
      case 3
        [g,badg] = numgrad3(fcn, f0, x0, epsilon, varargin{:});
      case 5
        [g,badg] = numgrad5(fcn, f0, x0, epsilon, varargin{:});
      case 13
        [g,badg] = numgrad3_(fcn, f0, x0, epsilon, varargin{:});
      case 15
        [g,badg] = numgrad5_(fcn, f0, x0, epsilon, varargin{:});
      otherwise
        error('csminwel1: Unknown method for gradient evaluation!')
    end
elseif ischar(grad)
    [g,badg] = feval(grad,x0,varargin{:});
else
    g=junk1;
    badg=0;
end
retcode3=101;
x=x0;
f=f0;
H=H0;
cliff=0;
while ~done
    % penalty for dsge_likelihood and dsge_var_likelihood
    objective_function_penalty_base = f;

    g1=[]; g2=[]; g3=[];
    %addition fj. 7/6/94 for control
    disp('-----------------')
    disp('-----------------')
    %disp('f and x at the beginning of new iteration')
    disp(sprintf('f at the beginning of new iteration, %20.10f',f))
    %-----------Comment out this line if the x vector is long----------------
    %   disp([sprintf('x = ') sprintf('%15.8g %15.8g %15.8g %15.8g\n',x)]);
    %-------------------------
    itct=itct+1;
    [f1 x1 fc retcode1] = csminit1(fcn,x,f,g,badg,H,varargin{:});
    %ARGLIST
    %[f1 x1 fc retcode1] = csminit(fcn,x,f,g,badg,H,P1,P2,P3,P4,P5,P6,P7,...
    %           P8,P9,P10,P11,P12,P13);
    % itct=itct+1;
    fcount = fcount+fc;
    % erased on 8/4/94
    % if (retcode == 1) || (abs(f1-f) < crit)
    %    done=1;
    % end
    % if itct > nit
    %    done = 1;
    %    retcode = -retcode;
    % end
    if retcode1 ~= 1
        if retcode1==2 || retcode1==4
            wall1=1; badg1=1;
        else
            if NumGrad
                switch method
                  case 2
                    [g1 badg1] = numgrad2(fcn, f1, x1, epsilon, varargin{:});
                  case 3
                    [g1 badg1] = numgrad3(fcn, f1, x1, epsilon, varargin{:});
                  case 5
                    [g1,badg1] = numgrad5(fcn, f1, x1, epsilon, varargin{:});
                  case 13
                    [g1,badg1] = numgrad3_(fcn, f1, x1, epsilon, varargin{:});
                  case 15
                    [g1,badg1] = numgrad5_(fcn, f1, x1, epsilon, varargin{:});
                  otherwise
                    error('csminwel1: Unknown method for gradient evaluation!')
                end
            elseif ischar(grad),
                [g1 badg1] = feval(grad,x1,varargin{:});
            else
                [junk1,g1,junk2, cost_flag] = feval(fcn,x1,varargin{:});
                badg1 = ~cost_flag;
            end
            wall1=badg1;
            % g1
            save g1.mat g1 x1 f1 varargin;
            %ARGLIST
            %save g1 g1 x1 f1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
        end
        if wall1 % && (~done) by Jinill
                 % Bad gradient or back and forth on step length.  Possibly at
                 % cliff edge.  Try perturbing search direction.
                 %
                 %fcliff=fh;xcliff=xh;
            Hcliff=H+diag(diag(H).*rand(nx,1));
            disp('Cliff.  Perturbing search direction.')
            [f2 x2 fc retcode2] = csminit1(fcn,x,f,g,badg,Hcliff,varargin{:});
            %ARGLIST
            %[f2 x2 fc retcode2] = csminit(fcn,x,f,g,badg,Hcliff,P1,P2,P3,P4,...
            %     P5,P6,P7,P8,P9,P10,P11,P12,P13);
            fcount = fcount+fc; % put by Jinill
            if  f2 < f
                if retcode2==2 || retcode2==4
                    wall2=1; badg2=1;
                else
                    if NumGrad
                        switch method
                          case 2
                            [g2 badg2] = numgrad2(fcn, f2, x2, epsilon, varargin{:});
                          case 3
                            [g2 badg2] = numgrad3(fcn, f2, x2, epsilon, varargin{:});
                          case 5
                            [g2,badg2] = numgrad5(fcn, f2, x2, epsilon, varargin{:});
                          case 13
                            [g2,badg2] = numgrad3_(fcn, f2, x2, epsilon, varargin{:});
                          case 15
                            [g2,badg2] = numgrad5_(fcn, f2, x2, epsilon, varargin{:});
                          otherwise
                            error('csminwel1: Unknown method for gradient evaluation!')
                        end
                    elseif ischar(grad),
                        [g2 badg2] = feval(grad,x2,varargin{:});
                    else
                        [junk1,g2,junk2, cost_flag] = feval(fcn,x1,varargin{:});
                        badg2 = ~cost_flag;
                    end
                    wall2=badg2;
                    % g2
                    badg2
                    save g2.mat g2 x2 f2 varargin
                    %ARGLIST
                    %save g2 g2 x2 f2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
                end
                if wall2
                    disp('Cliff again.  Try traversing')
                    if norm(x2-x1) < 1e-13
                        f3=f; x3=x; badg3=1;retcode3=101;
                    else
                        gcliff=((f2-f1)/((norm(x2-x1))^2))*(x2-x1);
                        if(size(x0,2)>1), gcliff=gcliff', end
                        [f3 x3 fc retcode3] = csminit1(fcn,x,f,gcliff,0,eye(nx),varargin{:});
                        %ARGLIST
                        %[f3 x3 fc retcode3] = csminit(fcn,x,f,gcliff,0,eye(nx),P1,P2,P3,...
                        %         P4,P5,P6,P7,P8,...
                        %      P9,P10,P11,P12,P13);
                        fcount = fcount+fc; % put by Jinill
                        if retcode3==2 || retcode3==4
                            wall3=1; badg3=1;
                        else
                            if NumGrad
                                switch method
                                  case 2
                                    [g3 badg3] = numgrad2(fcn, f3, x3, epsilon, varargin{:});
                                  case 3
                                    [g3 badg3] = numgrad3(fcn, f3, x3, epsilon, varargin{:});
                                  case 5
                                    [g3,badg3] = numgrad5(fcn, f3, x3, epsilon, varargin{:});
                                  case 13
                                    [g3,badg3] = numgrad3_(fcn, f3, x3, epsilon, varargin{:});
                                  case 15
                                    [g3,badg3] = numgrad5_(fcn, f3, x3, epsilon, varargin{:});
                                  otherwise
                                    error('csminwel1: Unknown method for gradient evaluation!')
                                end
                            elseif ischar(grad),
                                [g3 badg3] = feval(grad,x3,varargin{:});
                            else
                                [junk1,g3,junk2, cost_flag] = feval(fcn,x1,varargin{:});
                                badg3 = ~cost_flag;
                            end
                            wall3=badg3;
                            % g3
                            save g3.mat g3 x3 f3 varargin;
                            %ARGLIST
                            %save g3 g3 x3 f3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
                        end
                    end
                else
                    f3=f; x3=x; badg3=1; retcode3=101;
                end
            else
                f3=f; x3=x; badg3=1;retcode3=101;
            end
        else
            % normal iteration, no walls, or else we're finished here.
            f2=f; f3=f; badg2=1; badg3=1; retcode2=101; retcode3=101;
        end
    else
        f2=f;f3=f;f1=f;retcode2=retcode1;retcode3=retcode1;
    end
    %how to pick gh and xh
    if f3 < f - crit && badg3==0 && f3 < f2 && f3 < f1
        ih=3;
        fh=f3;xh=x3;gh=g3;badgh=badg3;retcodeh=retcode3;
    elseif f2 < f - crit && badg2==0 && f2 < f1
        ih=2;
        fh=f2;xh=x2;gh=g2;badgh=badg2;retcodeh=retcode2;
    elseif f1 < f - crit && badg1==0
        ih=1;
        fh=f1;xh=x1;gh=g1;badgh=badg1;retcodeh=retcode1;
    else
        [fh,ih] = min([f1,f2,f3]);
        %disp(sprintf('ih = %d',ih))
        %eval(['xh=x' num2str(ih) ';'])
        switch ih
          case 1
            xh=x1;
          case 2
            xh=x2;
          case 3
            xh=x3;
        end %case
            %eval(['gh=g' num2str(ih) ';'])
            %eval(['retcodeh=retcode' num2str(ih) ';'])
        retcodei=[retcode1,retcode2,retcode3];
        retcodeh=retcodei(ih);
        if exist('gh')
            nogh=isempty(gh);
        else
            nogh=1;
        end
        if nogh
            if NumGrad
                switch method
                  case 2
                    [gh,badgh] = numgrad2(fcn, fh, xh, epsilon, varargin{:});
                  case 3
                    [gh,badgh] = numgrad3(fcn, fh, xh, epsilon, varargin{:});
                  case 5
                    [gh,badgh] = numgrad5(fcn, fh, xh, epsilon, varargin{:});
                  case 13
                    [gh,badgh] = numgrad3_(fcn, fh, xh, epsilon, varargin{:});
                  case 15
                    [gh,badgh] = numgrad5_(fcn, fh, xh, epsilon, varargin{:});
                  otherwise
                    error('csminwel1: Unknown method for gradient evaluation!')
                end
            elseif ischar(grad),
                [gh badgh] = feval(grad, xh,varargin{:});
            else
                [junk1,gh,junk2, cost_flag] = feval(fcn,x1,varargin{:});
                badgh = ~cost_flag;
            end
        end
        badgh=1;
    end
    %end of picking
    %ih
    %fh
    %xh
    %gh
    %badgh
    stuck = (abs(fh-f) < crit);
    if (~badg) && (~badgh) && (~stuck)
        H = bfgsi1(H,gh-g,xh-x);
    end
    if Verbose
        disp('----')
        disp(sprintf('Improvement on iteration %d = %18.9f',itct,f-fh))
    end
    % if Verbose
    if itct > nit
        disp('iteration count termination')
        done = 1;
    elseif stuck
        disp('improvement < crit termination')
        done = 1;
    end
    rc=retcodeh;
    if rc == 1
        disp('zero gradient')
    elseif rc == 6
        disp('smallest step still improving too slow, reversed gradient')
    elseif rc == 5
        disp('largest step still improving too fast')
    elseif (rc == 4) || (rc==2)
        disp('back and forth on step length never finished')
    elseif rc == 3
        disp('smallest step still improving too slow')
    elseif rc == 7
        disp('warning: possible inaccuracy in H matrix')
    end
    % end
    f=fh;
    x=xh;
    g=gh;
    badg=badgh;
end
% what about making an m-file of 10 lines including numgrad.m
% since it appears three times in csminwel.m