/usr/share/dynare/matlab/cycle_reduction.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | function [X, info] = cycle_reduction(A0, A1, A2, cvg_tol, ch) % --*-- Unitary tests --*--
%@info:
%! @deftypefn {Function File} {[@var{X}, @var{info}] =} cycle_reduction (@var{A0},@var{A1},@var{A2},@var{cvg_tol},@var{ch})
%! @anchor{cycle_reduction}
%! @sp 1
%! Solves the quadratic matrix equation A2*X^2 + A1*X + A0 = 0.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item A0
%! Square matrix of doubles, n*n.
%! @item A1
%! Square matrix of doubles, n*n.
%! @item A2
%! Square matrix of doubles, n*n.
%! @item cvg_tol
%! Scalar double, tolerance parameter.
%! @item ch
%! Any matlab object, if not empty the solution is checked.
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item X
%! Square matrix of doubles, n*n, solution of the matrix equation.
%! @item info
%! Scalar integer, if nonzero the algorithm failed in finding the solution of the matrix equation.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @strong{References:}
%! @sp 1
%! D.A. Bini, G. Latouche, B. Meini (2002), "Solving matrix polynomial equations arising in queueing problems", Linear Algebra and its Applications 340, pp. 222-244
%! @sp 1
%! D.A. Bini, B. Meini (1996), "On the solution of a nonlinear matrix equation arising in queueing problems", SIAM J. Matrix Anal. Appl. 17, pp. 906-926.
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
max_it = 300;
it = 0;
info = 0;
X = [];
crit = Inf;
A0_0 = A0;
Ahat1 = A1;
if (nargin == 5 && ~isempty(ch) )
A1_0 = A1;
A2_0 = A2;
end
n = length(A0);
id0 = 1:n;
id2 = id0+n;
cont = 1;
while cont
tmp = ([A0; A2]/A1)*[A0 A2];
A1 = A1 - tmp(id0,id2) - tmp(id2,id0);
A0 = -tmp(id0,id0);
A2 = -tmp(id2,id2);
Ahat1 = Ahat1 -tmp(id2,id0);
crit = norm(A0,1);
if crit < cvg_tol
% keep iterating until condition on A2 is met
if norm(A2,1) < cvg_tol
cont = 0;
end
elseif isnan(crit) || it == max_it
if crit < cvg_tol
info(1) = 4;
info(2) = log(norm(A2,1));
else
info(1) = 3;
info(2) = log(norm(A1,1));
end
return
end
it = it + 1;
end
X = -Ahat1\A0_0;
if (nargin == 5 && ~isempty(ch) )
%check the solution
res = A0_0 + A1_0 * X + A2_0 * X * X;
if (sum(sum(abs(res))) > cvg_tol)
disp(['the norm residual of the residu ' num2str(res) ' compare to the tolerance criterion ' num2str(cvg_tol)]);
end
end
%@test:1
%$
%$ t = zeros(3,1);
%$
%$ % Set the dimension of the problem to be solved.
%$ n = 500;
%$
%$ % Set the equation to be solved
%$ A = eye(n);
%$ B = diag(30*ones(n,1)); B(1,1) = 20; B(end,end) = 20; B = B - diag(10*ones(n-1,1),-1); B = B - diag(10*ones(n-1,1),1);
%$ C = diag(15*ones(n,1)); C = C - diag(5*ones(n-1,1),-1); C = C - diag(5*ones(n-1,1),1);
%$
%$ % Solve the equation with the cycle reduction algorithm
%$ try
%$ t=cputime; X1 = cycle_reduction(C,B,A,1e-7); elapsedtime = cputime-t;
%$ disp(['cputime for cycle reduction algorithm is: ' num2str(elapsedtime) ' (n=' int2str(n) ').'])
%$ t(1) = 1;
%$ catch
%$ % nothing to do here.
%$ end
%$
%$ % Solve the equation with the logarithmic reduction algorithm
%$ try
%$ t=cputime; X2 = logarithmic_reduction(A,B,C,1e-16,100); elapsedtime = cputime-t;
%$ disp(['cputime for logarithmic reduction algorithm is: ' num2str(elapsedtime) ' (n=' int2str(n) ').'])
%$ t(2) = 1;
%$ catch
%$ % nothing to do here.
%$ end
%$
%$ % Check the results.
%$ if t(1) && t(2)
%$ t(3) = dyn_assert(X1,X2,1e-12);
%$ end
%$
%$ T = all(t);
%@eof:1
|