/usr/share/dynare/matlab/dsge_likelihood.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | function [fval,DLIK,Hess,exit_flag,ys,trend_coeff,info,Model,DynareOptions,BayesInfo,DynareResults] = dsge_likelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults,derivatives_info)
% Evaluates the posterior kernel of a dsge model.
%@info:
%! @deftypefn {Function File} {[@var{fval},@var{exit_flag},@var{ys},@var{trend_coeff},@var{info},@var{Model},@var{DynareOptions},@var{BayesInfo},@var{DynareResults},@var{DLIK},@var{AHess}] =} dsge_likelihood (@var{xparam1},@var{DynareDataset},@var{DynareOptions},@var{Model},@var{EstimatedParameters},@var{BayesInfo},@var{DynareResults},@var{derivatives_flag})
%! @anchor{dsge_likelihood}
%! @sp 1
%! Evaluates the posterior kernel of a dsge model.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item xparam1
%! Vector of doubles, current values for the estimated parameters.
%! @item DynareDataset
%! Matlab's structure describing the dataset (initialized by dynare, see @ref{dataset_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item Model
%! Matlab's structure describing the Model (initialized by dynare, see @ref{M_}).
%! @item EstimatedParamemeters
%! Matlab's structure describing the estimated_parameters (initialized by dynare, see @ref{estim_params_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @item derivates_flag
%! Integer scalar, flag for analytical derivatives of the likelihood.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item fval
%! Double scalar, value of (minus) the likelihood.
%! @item exit_flag
%! Integer scalar, equal to zero if the routine return with a penalty (one otherwise).
%! @item ys
%! Vector of doubles, steady state level for the endogenous variables.
%! @item trend_coeffs
%! Matrix of doubles, coefficients of the deterministic trend in the measurement equation.
%! @item info
%! Integer scalar, error code.
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @item info==30
%! Ergodic variance can't be computed.
%! @item info==41
%! At least one parameter is violating a lower bound condition.
%! @item info==42
%! At least one parameter is violating an upper bound condition.
%! @item info==43
%! The covariance matrix of the structural innovations is not positive definite.
%! @item info==44
%! The covariance matrix of the measurement errors is not positive definite.
%! @item info==45
%! Likelihood is not a number (NaN).
%! @item info==46
%! Likelihood is a complex valued number.
%! @item info==47
%! Posterior kernel is not a number (logged prior density is NaN)
%! @item info==48
%! Posterior kernel is a complex valued number (logged prior density is complex).
%! @end table
%! @item Model
%! Matlab's structure describing the model (initialized by dynare, see @ref{M_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @item DLIK
%! Vector of doubles, score of the likelihood.
%! @item AHess
%! Matrix of doubles, asymptotic hessian matrix.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{dynare_estimation_1}, @ref{mode_check}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{dynare_resolve}, @ref{lyapunov_symm}, @ref{schur_statespace_transformation}, @ref{kalman_filter_d}, @ref{missing_observations_kalman_filter_d}, @ref{univariate_kalman_filter_d}, @ref{kalman_steady_state}, @ref{getH}, @ref{kalman_filter}, @ref{score}, @ref{AHessian}, @ref{missing_observations_kalman_filter}, @ref{univariate_kalman_filter}, @ref{priordens}
%! @end deftypefn
%@eod:
% Copyright (C) 2004-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT FR
global objective_function_penalty_base
% Initialization of the returned variables and others...
fval = [];
ys = [];
trend_coeff = [];
exit_flag = 1;
info = 0;
singularity_flag = 0;
DLIK = [];
Hess = [];
if DynareOptions.estimation_dll
[fval,exit_flag,ys,trend_coeff,info,params,H,Q] ...
= logposterior(xparam1,DynareDataset, DynareOptions,Model, ...
EstimatedParameters,BayesInfo,DynareResults);
mexErrCheck('logposterior', exit_flag);
Model.params = params;
if ~isequal(Model.H,0)
Model.H = H;
end
Model.Sigma_e = Q;
DynareResults.dr.ys = ys;
return
end
% Set flag related to analytical derivatives.
analytic_derivation = DynareOptions.analytic_derivation;
if analytic_derivation && DynareOptions.loglinear
error('The analytic_derivation and loglinear options are not compatible')
end
if nargout==1,
analytic_derivation=0;
end
if analytic_derivation,
kron_flag=DynareOptions.analytic_derivation_mode;
end
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
% Return, with endogenous penalty, if some parameters are smaller than the lower bound of the prior domain.
if ~isequal(DynareOptions.mode_compute,1) && any(xparam1<BayesInfo.lb)
k = find(xparam1<BayesInfo.lb);
fval = objective_function_penalty_base+sum((BayesInfo.lb(k)-xparam1(k)).^2);
exit_flag = 0;
info = 41;
if analytic_derivation,
DLIK=ones(length(xparam1),1);
end
return
end
% Return, with endogenous penalty, if some parameters are greater than the upper bound of the prior domain.
if ~isequal(DynareOptions.mode_compute,1) && any(xparam1>BayesInfo.ub)
k = find(xparam1>BayesInfo.ub);
fval = objective_function_penalty_base+sum((xparam1(k)-BayesInfo.ub(k)).^2);
exit_flag = 0;
info = 42;
if analytic_derivation,
DLIK=ones(length(xparam1),1);
end
return
end
% Get the diagonal elements of the covariance matrices for the structural innovations (Q) and the measurement error (H).
Model = set_all_parameters(xparam1,EstimatedParameters,Model);
Q = Model.Sigma_e;
H = Model.H;
% Test if Q is positive definite.
if ~issquare(Q) || EstimatedParameters.ncx || isfield(EstimatedParameters,'calibrated_covariances')
[Q_is_positive_definite, penalty] = ispd(Q);
if ~Q_is_positive_definite
fval = objective_function_penalty_base+penalty;
exit_flag = 0;
info = 43;
return
end
if isfield(EstimatedParameters,'calibrated_covariances')
correct_flag=check_consistency_covariances(Q);
if ~correct_flag
penalty = sum(Q(EstimatedParameters.calibrated_covariances.position).^2);
fval = objective_function_penalty_base+penalty;
exit_flag = 0;
info = 71;
return
end
end
end
% Test if H is positive definite.
if ~issquare(H) || EstimatedParameters.ncn || isfield(EstimatedParameters,'calibrated_covariances_ME')
[H_is_positive_definite, penalty] = ispd(H);
if ~H_is_positive_definite
fval = objective_function_penalty_base+penalty;
exit_flag = 0;
info = 44;
return
end
if isfield(EstimatedParameters,'calibrated_covariances_ME')
correct_flag=check_consistency_covariances(H);
if ~correct_flag
penalty = sum(H(EstimatedParameters.calibrated_covariances_ME.position).^2);
fval = objective_function_penalty_base+penalty;
exit_flag = 0;
info = 72;
return
end
end
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Linearize the model around the deterministic sdteadystate and extract the matrices of the state equation (T and R).
[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict');
% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1) == 1 || info(1) == 2 || info(1) == 5 || info(1) == 7 || info(1) ...
== 8 || info(1) == 22 || info(1) == 24 || info(1) == 19
fval = objective_function_penalty_base+1;
info = info(1);
exit_flag = 0;
if analytic_derivation,
DLIK=ones(length(xparam1),1);
end
return
elseif info(1) == 3 || info(1) == 4 || info(1)==6 || info(1) == 20 || info(1) == 21 || info(1) == 23
fval = objective_function_penalty_base+info(2);
info = info(1);
exit_flag = 0;
if analytic_derivation,
DLIK=ones(length(xparam1),1);
end
return
end
% check endogenous prior restrictions
info=endogenous_prior_restrictions(T,R,Model,DynareOptions,DynareResults);
if info(1),
fval = objective_function_penalty_base+info(2);
info = info(1);
exit_flag = 0;
if analytic_derivation,
DLIK=ones(length(xparam1),1);
end
return
end
%
% Define a vector of indices for the observed variables. Is this really usefull?...
BayesInfo.mf = BayesInfo.mf1;
% Define the constant vector of the measurement equation.
if DynareOptions.noconstant
constant = zeros(DynareDataset.info.nvobs,1);
else
if DynareOptions.loglinear
constant = log(SteadyState(BayesInfo.mfys));
else
constant = SteadyState(BayesInfo.mfys);
end
end
% Define the deterministic linear trend of the measurement equation.
if BayesInfo.with_trend
trend_coeff = zeros(DynareDataset.info.nvobs,1);
t = DynareOptions.trend_coeffs;
for i=1:length(t)
if ~isempty(t{i})
trend_coeff(i) = evalin('base',t{i});
end
end
trend = repmat(constant,1,DynareDataset.info.ntobs)+trend_coeff*[1:DynareDataset.info.ntobs];
else
trend = repmat(constant,1,DynareDataset.info.ntobs);
end
% Get needed informations for kalman filter routines.
start = DynareOptions.presample+1;
Z = BayesInfo.mf; % old mf
no_missing_data_flag = ~DynareDataset.missing.state;
mm = length(T); % old np
pp = DynareDataset.info.nvobs;
rr = length(Q);
kalman_tol = DynareOptions.kalman_tol;
riccati_tol = DynareOptions.riccati_tol;
Y = DynareDataset.data-trend;
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
kalman_algo = DynareOptions.kalman_algo;
% resetting measurement errors covariance matrix for univariate filters
if (kalman_algo == 2) || (kalman_algo == 4)
if isequal(H,0)
H = zeros(pp,1);
mmm = mm;
else
if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
H = diag(H);
mmm = mm;
else
Z = [Z, eye(pp)];
T = blkdiag(T,zeros(pp));
Q = blkdiag(Q,H);
R = blkdiag(R,eye(pp));
Pstar = blkdiag(Pstar,H);
Pinf = blckdiag(Pinf,zeros(pp));
H = zeros(pp,1);
mmm = mm+pp;
end
end
end
diffuse_periods = 0;
correlated_errors_have_been_checked = 0;
singular_diffuse_filter = 0;
switch DynareOptions.lik_init
case 1% Standard initialization with the steady state of the state equation.
if kalman_algo~=2
% Use standard kalman filter except if the univariate filter is explicitely choosen.
kalman_algo = 1;
end
if DynareOptions.lyapunov_fp == 1
Pstar = lyapunov_symm(T,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 3, R);
elseif DynareOptions.lyapunov_db == 1
Pstar = disclyap_fast(T,R*Q*R',DynareOptions.lyapunov_doubling_tol);
elseif DynareOptions.lyapunov_srs == 1
Pstar = lyapunov_symm(T,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 4, R);
else
Pstar = lyapunov_symm(T,R*Q*R',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
end;
Pinf = [];
a = zeros(mm,1);
Zflag = 0;
case 2% Initialization with large numbers on the diagonal of the covariance matrix if the states (for non stationary models).
if kalman_algo ~= 2
% Use standard kalman filter except if the univariate filter is explicitely choosen.
kalman_algo = 1;
end
Pstar = DynareOptions.Harvey_scale_factor*eye(mm);
Pinf = [];
a = zeros(mm,1);
Zflag = 0;
case 3% Diffuse Kalman filter (Durbin and Koopman)
% Use standard kalman filter except if the univariate filter is explicitely choosen.
if kalman_algo == 0
kalman_algo = 3;
elseif ~((kalman_algo == 3) || (kalman_algo == 4))
error(['diffuse filter: options_.kalman_algo can only be equal ' ...
'to 0 (default), 3 or 4'])
end
[Z,T,R,QT,Pstar,Pinf] = schur_statespace_transformation(Z,T,R,Q,DynareOptions.qz_criterium);
Zflag = 1;
% Run diffuse kalman filter on first periods.
if (kalman_algo==3)
% Multivariate Diffuse Kalman Filter
if no_missing_data_flag
[dLIK,dlik,a,Pstar] = kalman_filter_d(Y, 1, size(Y,2), ...
zeros(mm,1), Pinf, Pstar, ...
kalman_tol, riccati_tol, DynareOptions.presample, ...
T,R,Q,H,Z,mm,pp,rr);
else
[dLIK,dlik,a,Pstar] = missing_observations_kalman_filter_d(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations, ...
Y, 1, size(Y,2), ...
zeros(mm,1), Pinf, Pstar, ...
kalman_tol, riccati_tol, DynareOptions.presample, ...
T,R,Q,H,Z,mm,pp,rr);
end
diffuse_periods = length(dlik);
if isinf(dLIK)
% Go to univariate diffuse filter if singularity problem.
singular_diffuse_filter = 1;
end
end
if singular_diffuse_filter || (kalman_algo==4)
% Univariate Diffuse Kalman Filter
if isequal(H,0)
H1 = zeros(pp,1);
mmm = mm;
else
if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
H1 = diag(H);
mmm = mm;
else
Z = [Z, eye(pp)];
T = blkdiag(T,zeros(pp));
Q = blkdiag(Q,H);
R = blkdiag(R,eye(pp));
Pstar = blkdiag(Pstar,H);
Pinf = blckdiag(Pinf,zeros(pp));
H1 = zeros(pp,1);
mmm = mm+pp;
end
end
% no need to test again for correlation elements
correlated_errors_have_been_checked = 1;
[dLIK,dlik,a,Pstar] = univariate_kalman_filter_d(DynareDataset.missing.aindex,...
DynareDataset.missing.number_of_observations,...
DynareDataset.missing.no_more_missing_observations, ...
Y, 1, size(Y,2), ...
zeros(mmm,1), Pinf, Pstar, ...
kalman_tol, riccati_tol, DynareOptions.presample, ...
T,R,Q,H1,Z,mmm,pp,rr);
diffuse_periods = length(dlik);
end
if isnan(dLIK),
info = 45;
fval = objective_function_penalty_base + 100;
exit_flag = 0;
return
end
case 4% Start from the solution of the Riccati equation.
if kalman_algo ~= 2
kalman_algo = 1;
end
if isequal(H,0)
[err,Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(Z,mm,length(Z))));
else
[err,Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(Z,mm,length(Z))),H);
end
if err
disp(['dsge_likelihood:: I am not able to solve the Riccati equation, so I switch to lik_init=1!']);
DynareOptions.lik_init = 1;
Pstar = lyapunov_symm(T,R*Q*R',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
end
Pinf = [];
a = zeros(mm,1);
Zflag = 0;
case options_.lik_init == 5 % Old diffuse Kalman filter only for the non stationary variables
[eigenvect, eigenv] = eig(T);
eigenv = diag(eigenv);
nstable = length(find(abs(abs(eigenv)-1) > 1e-7));
unstable = find(abs(abs(eigenv)-1) < 1e-7);
V = eigenvect(:,unstable);
indx_unstable = find(sum(abs(V),2)>1e-5);
stable = find(sum(abs(V),2)<1e-5);
nunit = length(eigenv) - nstable;
Pstar = options_.Harvey_scale_factor*eye(np);
if kalman_algo ~= 2
kalman_algo = 1;
end
R_tmp = R(stable, :);
T_tmp = T(stable,stable);
if DynareOptions.lyapunov_fp == 1
Pstar_tmp = lyapunov_symm(T_tmp,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 3, R_tmp);
elseif DynareOptions.lyapunov_db == 1
Pstar_tmp = disclyap_fast(T_tmp,R_tmp*Q*R_tmp',DynareOptions.lyapunov_doubling_tol);
elseif DynareOptions.lyapunov_srs == 1
Pstar_tmp = lyapunov_symm(T_tmp,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 4, R_tmp);
else
Pstar_tmp = lyapunov_symm(T_tmp,R_tmp*Q*R_tmp',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
end
Pstar(stable, stable) = Pstar_tmp;
Pinf = [];
otherwise
error('dsge_likelihood:: Unknown initialization approach for the Kalman filter!')
end
if analytic_derivation,
offset = EstimatedParameters.nvx;
offset = offset+EstimatedParameters.nvn;
offset = offset+EstimatedParameters.ncx;
offset = offset+EstimatedParameters.ncn;
no_DLIK = 0;
full_Hess = analytic_derivation==2;
asy_Hess = analytic_derivation==-2;
outer_product_gradient = analytic_derivation==-1;
if asy_Hess,
analytic_derivation=1;
end
if outer_product_gradient,
analytic_derivation=1;
end
DLIK = [];
AHess = [];
iv = DynareResults.dr.restrict_var_list;
if nargin<8 || isempty(derivatives_info)
[A,B,nou,nou,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults);
if ~isempty(EstimatedParameters.var_exo)
indexo=EstimatedParameters.var_exo(:,1);
else
indexo=[];
end
if ~isempty(EstimatedParameters.param_vals)
indparam=EstimatedParameters.param_vals(:,1);
else
indparam=[];
end
if full_Hess,
[dum, DT, DOm, DYss, dum2, D2T, D2Om, D2Yss] = getH(A, B, Model,DynareResults,DynareOptions,kron_flag,indparam,indexo,iv);
clear dum dum2;
else
[dum, DT, DOm, DYss] = getH(A, B, Model,DynareResults,DynareOptions,kron_flag,indparam,indexo,iv);
end
else
DT = derivatives_info.DT(iv,iv,:);
DOm = derivatives_info.DOm(iv,iv,:);
DYss = derivatives_info.DYss(iv,:);
if isfield(derivatives_info,'full_Hess'),
full_Hess = derivatives_info.full_Hess;
end
if full_Hess,
D2T = derivatives_info.D2T;
D2Om = derivatives_info.D2Om;
D2Yss = derivatives_info.D2Yss;
end
if isfield(derivatives_info,'no_DLIK'),
no_DLIK = derivatives_info.no_DLIK;
end
clear('derivatives_info');
end
DYss = [zeros(size(DYss,1),offset) DYss];
DH=zeros([length(H),length(H),length(xparam1)]);
DQ=zeros([size(Q),length(xparam1)]);
DP=zeros([size(T),length(xparam1)]);
if full_Hess,
for j=1:size(D2Yss,1),
tmp(j,:,:) = blkdiag(zeros(offset,offset), squeeze(D2Yss(j,:,:)));
end
D2Yss = tmp;
D2H=sparse(size(D2Om,1),size(D2Om,2)); %zeros([size(H),length(xparam1),length(xparam1)]);
D2P=sparse(size(D2Om,1),size(D2Om,2)); %zeros([size(T),length(xparam1),length(xparam1)]);
jcount=0;
end
if DynareOptions.lik_init==1,
for i=1:EstimatedParameters.nvx
k =EstimatedParameters.var_exo(i,1);
DQ(k,k,i) = 2*sqrt(Q(k,k));
dum = lyapunov_symm(T,DOm(:,:,i),DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
% kk = find(abs(dum) < 1e-12);
% dum(kk) = 0;
DP(:,:,i)=dum;
if full_Hess
for j=1:i,
jcount=jcount+1;
dum = lyapunov_symm(T,dyn_unvech(D2Om(:,jcount)),DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
% kk = (abs(dum) < 1e-12);
% dum(kk) = 0;
D2P(:,jcount)=dyn_vech(dum);
% D2P(:,:,j,i)=dum;
end
end
end
end
offset = EstimatedParameters.nvx;
for i=1:EstimatedParameters.nvn
k = EstimatedParameters.var_endo(i,1);
DH(k,k,i+offset) = 2*sqrt(H(k,k));
if full_Hess
D2H(k,k,i+offset,i+offset) = 2;
end
end
offset = offset + EstimatedParameters.nvn;
if DynareOptions.lik_init==1,
for j=1:EstimatedParameters.np
dum = lyapunov_symm(T,DT(:,:,j+offset)*Pstar*T'+T*Pstar*DT(:,:,j+offset)'+DOm(:,:,j+offset),DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
% kk = find(abs(dum) < 1e-12);
% dum(kk) = 0;
DP(:,:,j+offset)=dum;
if full_Hess
DTj = DT(:,:,j+offset);
DPj = dum;
for i=1:j+offset,
jcount=jcount+1;
DTi = DT(:,:,i);
DPi = DP(:,:,i);
D2Tij = reshape(D2T(:,jcount),size(T));
D2Omij = dyn_unvech(D2Om(:,jcount));
tmp = D2Tij*Pstar*T' + T*Pstar*D2Tij' + DTi*DPj*T' + DTj*DPi*T' + T*DPj*DTi' + T*DPi*DTj' + DTi*Pstar*DTj' + DTj*Pstar*DTi' + D2Omij;
dum = lyapunov_symm(T,tmp,DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
% dum(abs(dum)<1.e-12) = 0;
D2P(:,jcount) = dyn_vech(dum);
% D2P(:,:,j+offset,i) = dum;
end
end
end
end
if analytic_derivation==1,
analytic_deriv_info={analytic_derivation,DT,DYss,DOm,DH,DP,asy_Hess};
else
analytic_deriv_info={analytic_derivation,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P};
clear DT DYss DOm DH DP D2T D2Yss D2Om D2H D2P,
end
else
analytic_deriv_info={0};
end
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
if ((kalman_algo==1) || (kalman_algo==3))% Multivariate Kalman Filter
if no_missing_data_flag
if DynareOptions.block
[err, LIK] = block_kalman_filter(T,R,Q,H,Pstar,Y,start,Z,kalman_tol,riccati_tol, Model.nz_state_var, Model.n_diag, Model.nobs_non_statevar);
mexErrCheck('block_kalman_filter', err);
else
[LIK,lik] = kalman_filter(Y,diffuse_periods+1,size(Y,2), ...
a,Pstar, ...
kalman_tol, riccati_tol, ...
DynareOptions.presample, ...
T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods, ...
analytic_deriv_info{:});
end
else
if 0 %DynareOptions.block
[err, LIK,lik] = block_kalman_filter(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations,...
T,R,Q,H,Pstar,Y,start,Z,kalman_tol,riccati_tol, Model.nz_state_var, Model.n_diag, Model.nobs_non_statevar);
else
[LIK,lik] = missing_observations_kalman_filter(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations,Y,diffuse_periods+1,size(Y,2), ...
a, Pstar, ...
kalman_tol, DynareOptions.riccati_tol, ...
DynareOptions.presample, ...
T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods);
end
end
if analytic_derivation,
LIK1=LIK;
LIK=LIK1{1};
lik1=lik;
lik=lik1{1};
end
if isinf(LIK)
if DynareOptions.use_univariate_filters_if_singularity_is_detected
if kalman_algo == 1
kalman_algo = 2;
else
kalman_algo = 4;
end
else
if isinf(LIK)
info = 66;
fval = objective_function_penalty_base+1;
exit_flag = 0;
return
end
end
else
if DynareOptions.lik_init==3
LIK = LIK + dLIK;
if analytic_derivation==0 && nargout==2,
lik = [dlik; lik];
end
end
end
end
if (kalman_algo==2) || (kalman_algo==4)
% Univariate Kalman Filter
% resetting measurement error covariance matrix when necessary %
if ~correlated_errors_have_been_checked
if isequal(H,0)
H1 = zeros(pp,1);
mmm = mm;
if analytic_derivation,
DH = zeros(pp,length(xparam1));
end
else
if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
H1 = diag(H);
mmm = mm;
clear tmp
if analytic_derivation,
for j=1:pp,
tmp(j,:)=DH(j,j,:);
end
DH=tmp;
end
else
Z = [Z, eye(pp)];
T = blkdiag(T,zeros(pp));
Q = blkdiag(Q,H);
R = blkdiag(R,eye(pp));
Pstar = blkdiag(Pstar,H);
Pinf = blckdiag(Pinf,zeros(pp));
H1 = zeros(pp,1);
mmm = mm+pp;
end
end
if analytic_derivation,
analytic_deriv_info{5}=DH;
end
end
[LIK, lik] = univariate_kalman_filter(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations,Y,diffuse_periods+1,size(Y,2), ...
a,Pstar, ...
DynareOptions.kalman_tol, ...
DynareOptions.riccati_tol, ...
DynareOptions.presample, ...
T,Q,R,H1,Z,mmm,pp,rr,Zflag,diffuse_periods,analytic_deriv_info{:});
if analytic_derivation,
LIK1=LIK;
LIK=LIK1{1};
lik1=lik;
lik=lik1{1};
end
if DynareOptions.lik_init==3
LIK = LIK+dLIK;
if analytic_derivation==0 && nargout==2,
lik = [dlik; lik];
end
end
end
if analytic_derivation
if no_DLIK==0
DLIK = LIK1{2};
% [DLIK] = score(T,R,Q,H,Pstar,Y,DT,DYss,DOm,DH,DP,start,Z,kalman_tol,riccati_tol);
end
if full_Hess ,
Hess = -LIK1{3};
% [Hess, DLL] = get_Hessian(T,R,Q,H,Pstar,Y,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P,start,Z,kalman_tol,riccati_tol);
% Hess0 = getHessian(Y,T,DT,D2T, R*Q*transpose(R),DOm,D2Om,Z,DYss,D2Yss);
end
if asy_Hess,
% if ~((kalman_algo==2) || (kalman_algo==4)),
% [Hess] = AHessian(T,R,Q,H,Pstar,Y,DT,DYss,DOm,DH,DP,start,Z,kalman_tol,riccati_tol);
% else
Hess = LIK1{3};
% end
end
end
if isnan(LIK)
info = 45;
fval = objective_function_penalty_base + 100;
exit_flag = 0;
return
end
if imag(LIK)~=0
info = 46;
fval = objective_function_penalty_base + 100;
exit_flag = 0;
return
end
likelihood = LIK;
% ------------------------------------------------------------------------------
% 5. Adds prior if necessary
% ------------------------------------------------------------------------------
if analytic_derivation
if full_Hess,
[lnprior, dlnprior, d2lnprior] = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
Hess = Hess - d2lnprior;
else
[lnprior, dlnprior] = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
end
if no_DLIK==0
DLIK = DLIK - dlnprior';
end
if outer_product_gradient,
dlik = lik1{2};
dlik=[- dlnprior; dlik(start:end,:)];
Hess = dlik'*dlik;
end
else
lnprior = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
end
if DynareOptions.endogenous_prior==1
if DynareOptions.lik_init==2 || DynareOptions.lik_init==3
error('Endogenous prior not supported with non-stationary models')
else
[lnpriormom] = endogenous_prior(Y,Pstar,BayesInfo,H);
fval = (likelihood-lnprior-lnpriormom);
end
else
fval = (likelihood-lnprior);
end
if isnan(fval)
info = 47;
fval = objective_function_penalty_base + 100;
exit_flag = 0;
return
end
if imag(fval)~=0
info = 48;
fval = objective_function_penalty_base + 100;
exit_flag = 0;
return
end
% Update DynareOptions.kalman_algo.
DynareOptions.kalman_algo = kalman_algo;
if analytic_derivation==0 && nargout==2,
lik=lik(start:end,:);
DLIK=[-lnprior; lik(:)];
end
|