/usr/share/dynare/matlab/dynare_identification.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | function [pdraws, TAU, GAM, LRE, gp, H, JJ] = dynare_identification(options_ident, pdraws0)
%function [pdraws, TAU, GAM, LRE, gp, H, JJ] = dynare_identification(options_ident, pdraws0)
%
% INPUTS
% o options_ident [structure] identification options
% o pdraws0 [matrix] optional: matrix of MC sample of model params.
%
% OUTPUTS
% o pdraws [matrix] matrix of MC sample of model params used
% o TAU, [matrix] MC sample of entries in the model solution (stacked vertically)
% o GAM, [matrix] MC sample of entries in the moments (stacked vertically)
% o LRE, [matrix] MC sample of entries in LRE model (stacked vertically)
% o gp, [matrix] derivatives of the Jacobian (LRE model)
% o H, [matrix] derivatives of the model solution
% o JJ [matrix] derivatives of the moments
%
% SPECIAL REQUIREMENTS
% None
% main
%
% Copyright (C) 2010-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_ bayestopt_ estim_params_
if isoctave
warning('off'),
else
warning off,
end
fname_ = M_.fname;
if ~isfield(M_,'dname'),
M_.dname = M_.fname;
end
options_ident = set_default_option(options_ident,'gsa_sample_file',0);
options_ident = set_default_option(options_ident,'parameter_set','prior_mean');
options_ident = set_default_option(options_ident,'load_ident_files',0);
options_ident = set_default_option(options_ident,'useautocorr',0);
options_ident = set_default_option(options_ident,'ar',1);
options_ident = set_default_option(options_ident,'prior_mc',1);
options_ident = set_default_option(options_ident,'prior_range',0);
options_ident = set_default_option(options_ident,'periods',300);
options_ident = set_default_option(options_ident,'replic',100);
options_ident = set_default_option(options_ident,'advanced',0);
options_ident = set_default_option(options_ident,'normalize_jacobians',1);
options_ident = set_default_option(options_ident,'lik_init',1);
options_ident = set_default_option(options_ident,'analytic_derivation',1);
if isfield(options_ident,'nograph'),
options_.nograph=options_ident.nograph;
end
if isfield(options_ident,'nodisplay'),
options_.nodisplay=options_ident.nodisplay;
end
if isfield(options_ident,'graph_format'),
options_.graph_format=options_ident.graph_format;
end
if options_ident.gsa_sample_file,
GSAFolder = checkpath('gsa',M_.dname);
if options_ident.gsa_sample_file==1,
load([GSAFolder,filesep,fname_,'_prior'],'lpmat','lpmat0','istable');
elseif options_ident.gsa_sample_file==2,
load([GSAFolder,filesep,fname_,'_mc'],'lpmat','lpmat0','istable');
else
load([GSAFolder,filesep,options_ident.gsa_sample_file],'lpmat','lpmat0','istable');
end
if isempty(istable),
istable=1:size(lpmat,1);
end
if ~isempty(lpmat0),
lpmatx=lpmat0(istable,:);
else
lpmatx=[];
end
pdraws0 = [lpmatx lpmat(istable,:)];
clear lpmat lpmat0 istable;
elseif nargin==1,
pdraws0=[];
end
external_sample=0;
if nargin==2 || ~isempty(pdraws0),
options_ident.prior_mc=size(pdraws0,1);
options_ident.load_ident_files = 0;
external_sample=1;
end
if isempty(estim_params_),
options_ident.prior_mc=1;
options_ident.prior_range=0;
prior_exist=0;
else
prior_exist=1;
parameters = options_ident.parameter_set;
end
% options_ident.load_ident_files=1;
iload = options_ident.load_ident_files;
%options_ident.advanced=1;
advanced = options_ident.advanced;
nlags = options_ident.ar;
periods = options_ident.periods;
replic = options_ident.replic;
useautocorr = options_ident.useautocorr;
options_.order=1;
options_.ar=nlags;
options_.prior_mc = options_ident.prior_mc;
options_.options_ident = options_ident;
options_.Schur_vec_tol = 1.e-8;
options_.nomoments=0;
options_.analytic_derivation=1;
options_ = set_default_option(options_,'datafile','');
options_.mode_compute = 0;
options_.plot_priors = 0;
options_.smoother=1;
[dataset_,xparam1,hh, M_, options_, oo_, estim_params_,bayestopt_]=dynare_estimation_init(M_.endo_names,fname_,1, M_, options_, oo_, estim_params_, bayestopt_);
options_ident.analytic_derivation_mode = options_.analytic_derivation_mode;
if isempty(dataset_),
dataset_.info.ntobs = periods;
dataset_.info.nvobs = rows(options_.varobs);
dataset_.info.varobs = options_.varobs;
dataset_.rawdata = [];
dataset_.missing.state = 0;
for jdata=1:periods,
temp1{jdata}=[1:dataset_.info.nvobs]';
end
dataset_.missing.aindex = temp1;
dataset_.missing.vindex = [];
dataset_.missing.number_of_observations = [];
dataset_.missing.no_more_missing_observations = 1;
dataset_.descriptive.mean = [];
dataset_.data = [];
% data_info.gend = periods;
% data_info.data = [];
% data_info.data_index = [];
% data_info.number_of_observations = periods*size(options_.varobs,1);
% data_info.no_more_missing_observations = 0;
% data_info.missing_value = 0;
end
% results = prior_sampler(0,M_,bayestopt_,options_,oo_);
if prior_exist
if any(bayestopt_.pshape > 0)
if options_ident.prior_range
prior_draw(1,1);
else
prior_draw(1);
end
else
options_ident.prior_mc=1;
end
end
SampleSize = options_ident.prior_mc;
if ~(exist('sylvester3','file')==2),
dynareroot = strrep(which('dynare'),'dynare.m','');
addpath([dynareroot 'gensylv'])
end
IdentifDirectoryName = CheckPath('identification',M_.dname);
if prior_exist,
indx = [];
if ~isempty(estim_params_.param_vals),
indx = estim_params_.param_vals(:,1);
end
indexo=[];
if ~isempty(estim_params_.var_exo)
indexo = estim_params_.var_exo(:,1);
end
nparam = length(bayestopt_.name);
np = estim_params_.np;
name = bayestopt_.name;
name_tex = char(M_.exo_names_tex(indexo,:),M_.param_names_tex(indx,:));
offset = estim_params_.nvx;
offset = offset + estim_params_.nvn;
offset = offset + estim_params_.ncx;
offset = offset + estim_params_.ncn;
else
indx = [1:M_.param_nbr];
indexo = [1:M_.exo_nbr];
offset = M_.exo_nbr;
np = M_.param_nbr;
nparam = np+offset;
name = [cellstr(M_.exo_names); cellstr(M_.param_names)];
name_tex = [cellstr(M_.exo_names_tex); cellstr(M_.param_names_tex)];
end
skipline()
disp(['==== Identification analysis ====' ]),
skipline()
if nparam<2,
options_ident.advanced=0;
advanced = options_ident.advanced;
disp('There is only one parameter to study for identitification.')
disp('The advanced option is re-set to 0.')
skipline()
end
options_ident = set_default_option(options_ident,'max_dim_cova_group',min([2,nparam-1]));
options_ident.max_dim_cova_group = min([options_ident.max_dim_cova_group,nparam-1]);
MaxNumberOfBytes=options_.MaxNumberOfBytes;
store_options_ident = options_ident;
if iload <=0,
[I,J]=find(M_.lead_lag_incidence');
if prior_exist,
% if exist([fname_,'_mean.mat'],'file'),
% % disp('Testing posterior mean')
% load([fname_,'_mean'],'xparam1')
% pmean = xparam1';
% clear xparam1
% end
% if exist([fname_,'_mode.mat'],'file'),
% % disp('Testing posterior mode')
% load([fname_,'_mode'],'xparam1')
% pmode = xparam1';
% clear xparam1
% end
params = set_prior(estim_params_,M_,options_)';
if all(bayestopt_.pshape == 0)
parameters = 'ML_Starting_value';
disp('Testing ML Starting value')
else
switch parameters
case 'posterior_mode'
disp('Testing posterior mode')
params(1,:) = get_posterior_parameters('mode');
case 'posterior_mean'
disp('Testing posterior mean')
params(1,:) = get_posterior_parameters('mean');
case 'posterior_median'
disp('Testing posterior median')
params(1,:) = get_posterior_parameters('median');
case 'prior_mode'
disp('Testing prior mode')
params(1,:) = bayestopt_.p5(:);
case 'prior_mean'
disp('Testing prior mean')
params(1,:) = bayestopt_.p1;
otherwise
disp('The option parameter_set has to be equal to:')
disp(' ''posterior_mode'', ')
disp(' ''posterior_mean'', ')
disp(' ''posterior_median'', ')
disp(' ''prior_mode'' or')
disp(' ''prior_mean''.')
error;
end
end
else
params = [sqrt(diag(M_.Sigma_e))', M_.params'];
parameters = 'Current_params';
disp('Testing current parameter values')
end
[idehess_point, idemoments_point, idemodel_point, idelre_point, derivatives_info_point, info] = ...
identification_analysis(params,indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
if info(1)~=0,
skipline()
disp('----------- ')
disp('Parameter error:')
disp(['The model does not solve for ', parameters, ' with error code info = ', int2str(info(1))]),
skipline()
if info(1)==1,
disp('info==1 %! The model doesn''t determine the current variables uniquely.')
elseif info(1)==2,
disp('info==2 %! MJDGGES returned an error code.')
elseif info(1)==3,
disp('info==3 %! Blanchard & Kahn conditions are not satisfied: no stable equilibrium. ')
elseif info(1)==4,
disp('info==4 %! Blanchard & Kahn conditions are not satisfied: indeterminacy. ')
elseif info(1)==5,
disp('info==5 %! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure. ')
elseif info(1)==6,
disp('info==6 %! The jacobian evaluated at the deterministic steady state is complex.')
elseif info(1)==19,
disp('info==19 %! The steadystate routine thrown an exception (inconsistent deep parameters). ')
elseif info(1)==20,
disp('info==20 %! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations). ')
elseif info(1)==21,
disp('info==21 %! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.')
elseif info(1)==22,
disp('info==22 %! The steady has NaNs. ')
elseif info(1)==23,
disp('info==23 %! M_.params has been updated in the steadystate routine and has complex valued scalars. ')
elseif info(1)==24,
disp('info==24 %! M_.params has been updated in the steadystate routine and has some NaNs. ')
elseif info(1)==30,
disp('info==30 %! Ergodic variance can''t be computed. ')
end
disp('----------- ')
skipline()
if any(bayestopt_.pshape)
disp('Try sampling up to 50 parameter sets from the prior.')
kk=0;
while kk<50 && info(1),
kk=kk+1;
params = prior_draw();
[idehess_point, idemoments_point, idemodel_point, idelre_point, derivatives_info_point, info] = ...
identification_analysis(params,indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
end
end
if info(1)
skipline()
disp('----------- ')
disp('Identification stopped:')
if any(bayestopt_.pshape)
disp('The model did not solve for any of 50 attempts of random samples from the prior')
end
disp('----------- ')
skipline()
return
else
parameters = 'Random_prior_params';
end
else
idehess_point.params=params;
% siH = idemodel_point.siH;
% siJ = idemoments_point.siJ;
% siLRE = idelre_point.siLRE;
% normH = max(abs(siH)')';
% normJ = max(abs(siJ)')';
% normLRE = max(abs(siLRE)')';
save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_point', 'idemoments_point','idemodel_point', 'idelre_point','store_options_ident')
save([IdentifDirectoryName '/' M_.fname '_' parameters '_identif.mat'], 'idehess_point', 'idemoments_point','idemodel_point', 'idelre_point','store_options_ident')
disp_identification(params, idemodel_point, idemoments_point, name, advanced);
if ~options_.nograph,
plot_identification(params,idemoments_point,idehess_point,idemodel_point,idelre_point,advanced,parameters,name,IdentifDirectoryName);
end
end
if SampleSize > 1,
skipline()
disp('Monte Carlo Testing')
h = dyn_waitbar(0,'Monte Carlo identification checks ...');
iteration = 0;
loop_indx = 0;
file_index = 0;
run_index = 0;
options_MC=options_ident;
options_MC.advanced=0;
else
iteration = 1;
pdraws = [];
end
while iteration < SampleSize,
loop_indx = loop_indx+1;
if external_sample,
params = pdraws0(iteration+1,:);
else
params = prior_draw();
end
[dum1, ideJ, ideH, ideGP, dum2 , info] = ...
identification_analysis(params,indx,indexo,options_MC,dataset_, prior_exist, name_tex,0);
if iteration==0 && info(1)==0,
MAX_tau = min(SampleSize,ceil(MaxNumberOfBytes/(size(ideH.siH,1)*nparam)/8));
stoH = zeros([size(ideH.siH,1),nparam,MAX_tau]);
stoJJ = zeros([size(ideJ.siJ,1),nparam,MAX_tau]);
stoLRE = zeros([size(ideGP.siLRE,1),np,MAX_tau]);
TAU = zeros(size(ideH.siH,1),SampleSize);
GAM = zeros(size(ideJ.siJ,1),SampleSize);
LRE = zeros(size(ideGP.siLRE,1),SampleSize);
pdraws = zeros(SampleSize,nparam);
idemoments.indJJ = ideJ.indJJ;
idemodel.indH = ideH.indH;
idelre.indLRE = ideGP.indLRE;
idemoments.ind0 = zeros(SampleSize,nparam);
idemodel.ind0 = zeros(SampleSize,nparam);
idelre.ind0 = zeros(SampleSize,np);
idemoments.jweak = zeros(SampleSize,nparam);
idemodel.jweak = zeros(SampleSize,nparam);
idelre.jweak = zeros(SampleSize,np);
idemoments.jweak_pair = zeros(SampleSize,nparam*(nparam+1)/2);
idemodel.jweak_pair = zeros(SampleSize,nparam*(nparam+1)/2);
idelre.jweak_pair = zeros(SampleSize,np*(np+1)/2);
idemoments.cond = zeros(SampleSize,1);
idemodel.cond = zeros(SampleSize,1);
idelre.cond = zeros(SampleSize,1);
idemoments.Mco = zeros(SampleSize,nparam);
idemodel.Mco = zeros(SampleSize,nparam);
idelre.Mco = zeros(SampleSize,np);
idemoments.S = zeros(SampleSize,min(8,nparam));
idemoments.V = zeros(SampleSize,nparam,min(8,nparam));
delete([IdentifDirectoryName '/' M_.fname '_identif_*.mat'])
end
if info(1)==0,
iteration = iteration + 1;
run_index = run_index + 1;
TAU(:,iteration)=ideH.TAU;
LRE(:,iteration)=ideGP.LRE;
GAM(:,iteration)=ideJ.GAM;
idemoments.cond(iteration,1)=ideJ.cond;
idemodel.cond(iteration,1)=ideH.cond;
idelre.cond(iteration,1)=ideGP.cond;
idemoments.ino(iteration,1)=ideJ.ino;
idemodel.ino(iteration,1)=ideH.ino;
idelre.ino(iteration,1)=ideGP.ino;
idemoments.ind0(iteration,:)=ideJ.ind0;
idemodel.ind0(iteration,:)=ideH.ind0;
idelre.ind0(iteration,:)=ideGP.ind0;
idemoments.jweak(iteration,:)=ideJ.jweak;
idemodel.jweak(iteration,:)=ideH.jweak;
idelre.jweak(iteration,:)=ideGP.jweak;
idemoments.jweak_pair(iteration,:)=ideJ.jweak_pair;
idemodel.jweak_pair(iteration,:)=ideH.jweak_pair;
idelre.jweak_pair(iteration,:)=ideGP.jweak_pair;
idemoments.Mco(iteration,:)=ideJ.Mco;
idemodel.Mco(iteration,:)=ideH.Mco;
idelre.Mco(iteration,:)=ideGP.Mco;
idemoments.S(iteration,:)=ideJ.S;
idemoments.V(iteration,:,:)=ideJ.V;
stoLRE(:,:,run_index) = ideGP.siLRE;
stoH(:,:,run_index) = ideH.siH;
stoJJ(:,:,run_index) = ideJ.siJ;
pdraws(iteration,:) = params;
if run_index==MAX_tau || iteration==SampleSize,
file_index = file_index + 1;
if run_index<MAX_tau,
stoH = stoH(:,:,1:run_index);
stoJJ = stoJJ(:,:,1:run_index);
stoLRE = stoLRE(:,:,1:run_index);
end
save([IdentifDirectoryName '/' M_.fname '_identif_' int2str(file_index) '.mat'], 'stoH', 'stoJJ', 'stoLRE')
run_index = 0;
stoH = zeros(size(stoH));
stoJJ = zeros(size(stoJJ));
stoLRE = zeros(size(stoLRE));
end
if SampleSize > 1,
% if isoctave || options_.console_mode,
% console_waitbar(0,iteration/SampleSize);
% else
dyn_waitbar(iteration/SampleSize,h,['MC identification checks ',int2str(iteration),'/',int2str(SampleSize)])
% end
end
end
end
if SampleSize > 1,
if isoctave || options_.console_mode,
fprintf('\n');
diary on;
else
close(h),
end
normTAU=std(TAU')';
normLRE=std(LRE')';
normGAM=std(GAM')';
normaliz1=std(pdraws);
iter=0;
for ifile_index = 1:file_index,
load([IdentifDirectoryName '/' M_.fname '_identif_' int2str(ifile_index) '.mat'], 'stoH', 'stoJJ', 'stoLRE')
for irun=1:size(stoH,3),
iter=iter+1;
siJnorm(iter,:) = vnorm(stoJJ(:,:,irun)./repmat(normGAM,1,nparam)).*normaliz1;
siHnorm(iter,:) = vnorm(stoH(:,:,irun)./repmat(normTAU,1,nparam)).*normaliz1;
siLREnorm(iter,:) = vnorm(stoLRE(:,:,irun)./repmat(normLRE,1,nparam-offset)).*normaliz1(offset+1:end);
end
end
idemoments.siJnorm = siJnorm;
idemodel.siHnorm = siHnorm;
idelre.siLREnorm = siLREnorm;
save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'pdraws', 'idemodel', 'idemoments', 'idelre', ... %'indJJ', 'indH', 'indLRE', ...
'TAU', 'GAM', 'LRE','-append')
else
siJnorm = idemoments_point.siJnorm;
siHnorm = idemodel_point.siHnorm;
siLREnorm = idelre_point.siLREnorm;
end
else
load([IdentifDirectoryName '/' M_.fname '_identif'])
% identFiles = dir([IdentifDirectoryName '/' M_.fname '_identif_*']);
parameters = store_options_ident.parameter_set;
options_ident.parameter_set = parameters;
options_ident.prior_mc=size(pdraws,1);
SampleSize = options_ident.prior_mc;
options_.options_ident = options_ident;
end
if nargout>3 && iload,
filnam = dir([IdentifDirectoryName '/' M_.fname '_identif_*.mat']);
H=[];
JJ = [];
gp = [];
for j=1:length(filnam),
load([IdentifDirectoryName '/' M_.fname '_identif_',int2str(j),'.mat']);
H = cat(3,H, stoH(:,abs(iload),:));
JJ = cat(3,JJ, stoJJ(:,abs(iload),:));
gp = cat(3,gp, stoLRE(:,abs(iload),:));
end
end
if iload,
disp(['Testing ',parameters])
disp_identification(idehess_point.params, idemodel_point, idemoments_point, name,advanced);
if ~options_.nograph,
plot_identification(idehess_point.params,idemoments_point,idehess_point,idemodel_point,idelre_point,advanced,parameters,name,IdentifDirectoryName);
end
end
if SampleSize > 1,
fprintf('\n')
disp('Testing MC sample')
disp_identification(pdraws, idemodel, idemoments, name);
if ~options_.nograph,
plot_identification(pdraws,idemoments,idehess_point,idemodel,idelre,advanced,'MC sample - ',name, IdentifDirectoryName);
end
if advanced,
jcrit=find(idemoments.ino);
if length(jcrit)<SampleSize,
if isempty(jcrit),
[dum,jmax]=max(idemoments.cond);
fprintf('\n')
tittxt = 'Draw with HIGHEST condition number';
fprintf('\n')
disp(['Testing ',tittxt, '. Press ENTER']), pause(5),
if ~iload,
[idehess_max, idemoments_max, idemodel_max, idelre_max, derivatives_info_max] = ...
identification_analysis(pdraws(jmax,:),indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_max', 'idemoments_max','idemodel_max', 'idelre_max', 'jmax', '-append');
end
disp_identification(pdraws(jmax,:), idemodel_max, idemoments_max, name,1);
close all,
if ~options_.nograph,
plot_identification(pdraws(jmax,:),idemoments_max,idehess_max,idemodel_max,idelre_max,1,tittxt,name,IdentifDirectoryName);
end
[dum,jmin]=min(idemoments.cond);
fprintf('\n')
tittxt = 'Draw with SMALLEST condition number';
fprintf('\n')
disp(['Testing ',tittxt, '. Press ENTER']), pause(5),
if ~iload,
[idehess_min, idemoments_min, idemodel_min, idelre_min, derivatives_info_min] = ...
identification_analysis(pdraws(jmin,:),indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_min', 'idemoments_min','idemodel_min', 'idelre_min', 'jmin', '-append');
end
disp_identification(pdraws(jmin,:), idemodel_min, idemoments_min, name,1);
close all,
if ~options_.nograph,
plot_identification(pdraws(jmin,:),idemoments_min,idehess_min,idemodel_min,idelre_min,1,tittxt,name,IdentifDirectoryName);
end
else
for j=1:length(jcrit),
tittxt = ['Rank deficient draw n. ',int2str(j)];
fprintf('\n')
disp(['Testing ',tittxt, '. Press ENTER']), pause(5),
if ~iload,
[idehess_(j), idemoments_(j), idemodel_(j), idelre_(j), derivatives_info_(j)] = ...
identification_analysis(pdraws(jcrit(j),:),indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
end
disp_identification(pdraws(jcrit(j),:), idemodel_(j), idemoments_(j), name,1);
close all,
if ~options_.nograph,
plot_identification(pdraws(jcrit(j),:),idemoments_(j),idehess_(j),idemodel_(j),idelre_(j),1,tittxt,name,IdentifDirectoryName);
end
end
if ~iload,
save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_', 'idemoments_','idemodel_', 'idelre_', 'jcrit', '-append');
end
end
end
end
end
if isoctave
warning('on'),
else
warning on,
end
skipline()
disp(['==== Identification analysis completed ====' ]),
skipline(2)
|