This file is indexed.

/usr/share/dynare/matlab/dynare_identification.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
function [pdraws, TAU, GAM, LRE, gp, H, JJ] = dynare_identification(options_ident, pdraws0)
%function [pdraws, TAU, GAM, LRE, gp, H, JJ] = dynare_identification(options_ident, pdraws0)
%
% INPUTS
%    o options_ident    [structure] identification options
%    o pdraws0          [matrix] optional: matrix of MC sample of model params. 
%    
% OUTPUTS
%    o pdraws           [matrix] matrix of MC sample of model params used
%    o TAU,             [matrix] MC sample of entries in the model solution (stacked vertically)
%    o GAM,             [matrix] MC sample of entries in the moments (stacked vertically)
%    o LRE,             [matrix] MC sample of entries in LRE model (stacked vertically)
%    o gp,              [matrix] derivatives of the Jacobian (LRE model)
%    o H,               [matrix] derivatives of the model solution
%    o JJ               [matrix] derivatives of the  moments
%    
% SPECIAL REQUIREMENTS
%    None

% main 
%
% Copyright (C) 2010-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_ oo_ bayestopt_ estim_params_

if isoctave
    warning('off'),
else
    warning off,
end

fname_ = M_.fname;
if ~isfield(M_,'dname'),
    M_.dname = M_.fname;
end
options_ident = set_default_option(options_ident,'gsa_sample_file',0);
options_ident = set_default_option(options_ident,'parameter_set','prior_mean');
options_ident = set_default_option(options_ident,'load_ident_files',0);
options_ident = set_default_option(options_ident,'useautocorr',0);
options_ident = set_default_option(options_ident,'ar',1);
options_ident = set_default_option(options_ident,'prior_mc',1);
options_ident = set_default_option(options_ident,'prior_range',0);
options_ident = set_default_option(options_ident,'periods',300);
options_ident = set_default_option(options_ident,'replic',100);
options_ident = set_default_option(options_ident,'advanced',0);
options_ident = set_default_option(options_ident,'normalize_jacobians',1);
options_ident = set_default_option(options_ident,'lik_init',1);
options_ident = set_default_option(options_ident,'analytic_derivation',1);
if isfield(options_ident,'nograph'),
    options_.nograph=options_ident.nograph;
end
if isfield(options_ident,'nodisplay'),
    options_.nodisplay=options_ident.nodisplay;
end
if isfield(options_ident,'graph_format'),
    options_.graph_format=options_ident.graph_format;
end

if options_ident.gsa_sample_file,
    GSAFolder = checkpath('gsa',M_.dname);
    if options_ident.gsa_sample_file==1,
        load([GSAFolder,filesep,fname_,'_prior'],'lpmat','lpmat0','istable');
    elseif options_ident.gsa_sample_file==2,
        load([GSAFolder,filesep,fname_,'_mc'],'lpmat','lpmat0','istable');
    else
        load([GSAFolder,filesep,options_ident.gsa_sample_file],'lpmat','lpmat0','istable');
    end
    if isempty(istable),
        istable=1:size(lpmat,1);
    end
    if ~isempty(lpmat0),
        lpmatx=lpmat0(istable,:);
    else
        lpmatx=[];
    end
    pdraws0 = [lpmatx lpmat(istable,:)];
    clear lpmat lpmat0 istable;
elseif nargin==1,
    pdraws0=[];
end
external_sample=0;
if nargin==2 || ~isempty(pdraws0),
    options_ident.prior_mc=size(pdraws0,1);
    options_ident.load_ident_files = 0;
    external_sample=1;
end
if isempty(estim_params_),
    options_ident.prior_mc=1;
    options_ident.prior_range=0;
    prior_exist=0;
else
    prior_exist=1;
    parameters = options_ident.parameter_set;
end

% options_ident.load_ident_files=1;
iload = options_ident.load_ident_files;
%options_ident.advanced=1;
advanced = options_ident.advanced;
nlags = options_ident.ar;
periods = options_ident.periods;
replic = options_ident.replic;
useautocorr = options_ident.useautocorr;
options_.order=1;
options_.ar=nlags;
options_.prior_mc = options_ident.prior_mc;
options_.options_ident = options_ident;
options_.Schur_vec_tol = 1.e-8;
options_.nomoments=0;
options_.analytic_derivation=1;

options_ = set_default_option(options_,'datafile','');
options_.mode_compute = 0;
options_.plot_priors = 0;
options_.smoother=1;
[dataset_,xparam1,hh, M_, options_, oo_, estim_params_,bayestopt_]=dynare_estimation_init(M_.endo_names,fname_,1, M_, options_, oo_, estim_params_, bayestopt_);
options_ident.analytic_derivation_mode = options_.analytic_derivation_mode;
if isempty(dataset_),
    dataset_.info.ntobs = periods;
    dataset_.info.nvobs = rows(options_.varobs);
    dataset_.info.varobs = options_.varobs;
    dataset_.rawdata = [];
    dataset_.missing.state = 0;
    for jdata=1:periods,
        temp1{jdata}=[1:dataset_.info.nvobs]';
    end
    dataset_.missing.aindex = temp1;
    dataset_.missing.vindex = [];
    dataset_.missing.number_of_observations = [];
    dataset_.missing.no_more_missing_observations = 1;
    dataset_.descriptive.mean = [];
    dataset_.data = [];

%     data_info.gend = periods;
%     data_info.data = [];
%     data_info.data_index = [];
%     data_info.number_of_observations = periods*size(options_.varobs,1);
%     data_info.no_more_missing_observations = 0;
%     data_info.missing_value = 0;
end

% results = prior_sampler(0,M_,bayestopt_,options_,oo_);

if prior_exist
    if any(bayestopt_.pshape > 0)
        if options_ident.prior_range
            prior_draw(1,1);
        else
            prior_draw(1);
        end
    else
        options_ident.prior_mc=1;
    end
end

SampleSize = options_ident.prior_mc;

if ~(exist('sylvester3','file')==2),

    dynareroot = strrep(which('dynare'),'dynare.m','');
    addpath([dynareroot 'gensylv'])
end

IdentifDirectoryName = CheckPath('identification',M_.dname);
if prior_exist,

    indx = [];
    if ~isempty(estim_params_.param_vals),
        indx = estim_params_.param_vals(:,1);
    end
    indexo=[];
    if ~isempty(estim_params_.var_exo)
        indexo = estim_params_.var_exo(:,1);
    end

    nparam = length(bayestopt_.name);
    np = estim_params_.np;
    name = bayestopt_.name;
    name_tex = char(M_.exo_names_tex(indexo,:),M_.param_names_tex(indx,:));

    offset = estim_params_.nvx;
    offset = offset + estim_params_.nvn;
    offset = offset + estim_params_.ncx;
    offset = offset + estim_params_.ncn;
else
    indx = [1:M_.param_nbr];
    indexo = [1:M_.exo_nbr];
    offset = M_.exo_nbr;
    np = M_.param_nbr;
    nparam = np+offset;
    name = [cellstr(M_.exo_names); cellstr(M_.param_names)];
    name_tex = [cellstr(M_.exo_names_tex); cellstr(M_.param_names_tex)];
end

skipline()
disp(['==== Identification analysis ====' ]),
skipline()
if nparam<2,
    options_ident.advanced=0;
    advanced = options_ident.advanced;
    disp('There is only one parameter to study for identitification.')
    disp('The advanced option is re-set to 0.')
    skipline()
end

options_ident = set_default_option(options_ident,'max_dim_cova_group',min([2,nparam-1]));
options_ident.max_dim_cova_group = min([options_ident.max_dim_cova_group,nparam-1]);


MaxNumberOfBytes=options_.MaxNumberOfBytes;
store_options_ident = options_ident;

if iload <=0,
    
    [I,J]=find(M_.lead_lag_incidence');
    if prior_exist,
%         if exist([fname_,'_mean.mat'],'file'),
% %             disp('Testing posterior mean')
%             load([fname_,'_mean'],'xparam1')
%             pmean = xparam1';
%             clear xparam1
%         end
%         if exist([fname_,'_mode.mat'],'file'),
% %             disp('Testing posterior mode')
%             load([fname_,'_mode'],'xparam1')
%             pmode = xparam1';
%             clear xparam1
%         end
        params = set_prior(estim_params_,M_,options_)';
        if all(bayestopt_.pshape == 0)
            parameters = 'ML_Starting_value';
            disp('Testing ML Starting value')
        else
        switch parameters
            case 'posterior_mode'
                disp('Testing posterior mode')
                params(1,:) = get_posterior_parameters('mode');
            case 'posterior_mean'
                disp('Testing posterior mean')
                params(1,:) = get_posterior_parameters('mean');
            case 'posterior_median'
                disp('Testing posterior median')
                params(1,:) = get_posterior_parameters('median');
            case 'prior_mode'
                disp('Testing prior mode')
                params(1,:) = bayestopt_.p5(:);
            case 'prior_mean'
                disp('Testing prior mean')
                params(1,:) = bayestopt_.p1;
            otherwise
                disp('The option parameter_set has to be equal to:')
                disp('                   ''posterior_mode'', ')
                disp('                   ''posterior_mean'', ')
                disp('                   ''posterior_median'', ')
                disp('                   ''prior_mode'' or')
                disp('                   ''prior_mean''.')
                error;
        end
        end
    else
        params = [sqrt(diag(M_.Sigma_e))', M_.params'];
        parameters = 'Current_params';
        disp('Testing current parameter values')
    end
    [idehess_point, idemoments_point, idemodel_point, idelre_point, derivatives_info_point, info] = ...
        identification_analysis(params,indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
    if info(1)~=0,
        skipline()
        disp('----------- ')
        disp('Parameter error:')
        disp(['The model does not solve for ', parameters, ' with error code info = ', int2str(info(1))]),
        skipline()
        if info(1)==1,
        disp('info==1 %! The model doesn''t determine the current variables uniquely.')
        elseif info(1)==2,
        disp('info==2 %! MJDGGES returned an error code.')
        elseif info(1)==3,
        disp('info==3 %! Blanchard & Kahn conditions are not satisfied: no stable equilibrium. ')
        elseif info(1)==4,
        disp('info==4 %! Blanchard & Kahn conditions are not satisfied: indeterminacy. ')
        elseif info(1)==5,
        disp('info==5 %! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure. ')
        elseif info(1)==6,
        disp('info==6 %! The jacobian evaluated at the deterministic steady state is complex.')
        elseif info(1)==19,
        disp('info==19 %! The steadystate routine thrown an exception (inconsistent deep parameters). ')
        elseif info(1)==20,
        disp('info==20 %! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations). ')
        elseif info(1)==21,
        disp('info==21 %! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.')
        elseif info(1)==22,
        disp('info==22 %! The steady has NaNs. ')
        elseif info(1)==23,
        disp('info==23 %! M_.params has been updated in the steadystate routine and has complex valued scalars. ')
        elseif info(1)==24,
        disp('info==24 %! M_.params has been updated in the steadystate routine and has some NaNs. ')
        elseif info(1)==30,
        disp('info==30 %! Ergodic variance can''t be computed. ')
        end
        disp('----------- ')
        skipline()
        if any(bayestopt_.pshape)
            disp('Try sampling up to 50 parameter sets from the prior.')
            kk=0;
            while kk<50 && info(1),
                kk=kk+1;
                params = prior_draw();
                [idehess_point, idemoments_point, idemodel_point, idelre_point, derivatives_info_point, info] = ...
                    identification_analysis(params,indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
            end
        end
        if info(1)
            skipline()
            disp('----------- ')
            disp('Identification stopped:')
            if any(bayestopt_.pshape)
                disp('The model did not solve for any of 50 attempts of random samples from the prior')
            end
            disp('----------- ')
            skipline()
            return
        else
            parameters = 'Random_prior_params';
        end
    else
    idehess_point.params=params;
%     siH = idemodel_point.siH;
%     siJ = idemoments_point.siJ;
%     siLRE = idelre_point.siLRE;
%     normH = max(abs(siH)')';
%     normJ = max(abs(siJ)')';
%     normLRE = max(abs(siLRE)')';
    save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_point', 'idemoments_point','idemodel_point', 'idelre_point','store_options_ident')
    save([IdentifDirectoryName '/' M_.fname '_' parameters '_identif.mat'], 'idehess_point', 'idemoments_point','idemodel_point', 'idelre_point','store_options_ident')
    disp_identification(params, idemodel_point, idemoments_point, name, advanced);
    if ~options_.nograph,
        plot_identification(params,idemoments_point,idehess_point,idemodel_point,idelre_point,advanced,parameters,name,IdentifDirectoryName);
    end
    end

    if SampleSize > 1,
        skipline()
        disp('Monte Carlo Testing')
        h = dyn_waitbar(0,'Monte Carlo identification checks ...');
        iteration = 0;
        loop_indx = 0;
        file_index = 0;
        run_index = 0;
        options_MC=options_ident;
        options_MC.advanced=0;
    else
        iteration = 1;
        pdraws = [];
    end
    while iteration < SampleSize,
        loop_indx = loop_indx+1;
        if external_sample,
            params = pdraws0(iteration+1,:);
        else
            params = prior_draw();
        end
        [dum1, ideJ, ideH, ideGP, dum2 , info] = ...
            identification_analysis(params,indx,indexo,options_MC,dataset_, prior_exist, name_tex,0);
        if iteration==0 && info(1)==0,
            MAX_tau   = min(SampleSize,ceil(MaxNumberOfBytes/(size(ideH.siH,1)*nparam)/8));
            stoH = zeros([size(ideH.siH,1),nparam,MAX_tau]);
            stoJJ = zeros([size(ideJ.siJ,1),nparam,MAX_tau]);
            stoLRE = zeros([size(ideGP.siLRE,1),np,MAX_tau]);
            TAU = zeros(size(ideH.siH,1),SampleSize);
            GAM = zeros(size(ideJ.siJ,1),SampleSize);
            LRE = zeros(size(ideGP.siLRE,1),SampleSize);
            pdraws = zeros(SampleSize,nparam);
            idemoments.indJJ = ideJ.indJJ;
            idemodel.indH = ideH.indH;
            idelre.indLRE = ideGP.indLRE;
            idemoments.ind0 = zeros(SampleSize,nparam);
            idemodel.ind0 = zeros(SampleSize,nparam);
            idelre.ind0 = zeros(SampleSize,np);
            idemoments.jweak = zeros(SampleSize,nparam);
            idemodel.jweak = zeros(SampleSize,nparam);
            idelre.jweak = zeros(SampleSize,np);
            idemoments.jweak_pair = zeros(SampleSize,nparam*(nparam+1)/2);
            idemodel.jweak_pair = zeros(SampleSize,nparam*(nparam+1)/2);
            idelre.jweak_pair = zeros(SampleSize,np*(np+1)/2);
            idemoments.cond = zeros(SampleSize,1);
            idemodel.cond = zeros(SampleSize,1);
            idelre.cond = zeros(SampleSize,1);
            idemoments.Mco = zeros(SampleSize,nparam);
            idemodel.Mco = zeros(SampleSize,nparam);
            idelre.Mco = zeros(SampleSize,np);
            idemoments.S = zeros(SampleSize,min(8,nparam));
            idemoments.V = zeros(SampleSize,nparam,min(8,nparam));
            delete([IdentifDirectoryName '/' M_.fname '_identif_*.mat'])
        end
        if info(1)==0,
            iteration = iteration + 1;
            run_index = run_index + 1;
            TAU(:,iteration)=ideH.TAU;
            LRE(:,iteration)=ideGP.LRE;
            GAM(:,iteration)=ideJ.GAM;
            idemoments.cond(iteration,1)=ideJ.cond;
            idemodel.cond(iteration,1)=ideH.cond;
            idelre.cond(iteration,1)=ideGP.cond;
            idemoments.ino(iteration,1)=ideJ.ino;
            idemodel.ino(iteration,1)=ideH.ino;
            idelre.ino(iteration,1)=ideGP.ino;
            idemoments.ind0(iteration,:)=ideJ.ind0;
            idemodel.ind0(iteration,:)=ideH.ind0;
            idelre.ind0(iteration,:)=ideGP.ind0;
            idemoments.jweak(iteration,:)=ideJ.jweak;
            idemodel.jweak(iteration,:)=ideH.jweak;
            idelre.jweak(iteration,:)=ideGP.jweak;
            idemoments.jweak_pair(iteration,:)=ideJ.jweak_pair;
            idemodel.jweak_pair(iteration,:)=ideH.jweak_pair;
            idelre.jweak_pair(iteration,:)=ideGP.jweak_pair;
            idemoments.Mco(iteration,:)=ideJ.Mco;
            idemodel.Mco(iteration,:)=ideH.Mco;
            idelre.Mco(iteration,:)=ideGP.Mco;
            idemoments.S(iteration,:)=ideJ.S;
            idemoments.V(iteration,:,:)=ideJ.V;
            stoLRE(:,:,run_index) = ideGP.siLRE;
            stoH(:,:,run_index) = ideH.siH;
            stoJJ(:,:,run_index) = ideJ.siJ;
            pdraws(iteration,:) = params;
            if run_index==MAX_tau || iteration==SampleSize,
                file_index = file_index + 1;
                if run_index<MAX_tau,
                    stoH = stoH(:,:,1:run_index);
                    stoJJ = stoJJ(:,:,1:run_index);
                    stoLRE = stoLRE(:,:,1:run_index);
                end
                save([IdentifDirectoryName '/' M_.fname '_identif_' int2str(file_index) '.mat'], 'stoH', 'stoJJ', 'stoLRE')
                run_index = 0;
                stoH = zeros(size(stoH));
                stoJJ = zeros(size(stoJJ));
                stoLRE = zeros(size(stoLRE));
                
            end
            
            if SampleSize > 1,
%                 if isoctave || options_.console_mode,
%                     console_waitbar(0,iteration/SampleSize);
%                 else
                    dyn_waitbar(iteration/SampleSize,h,['MC identification checks ',int2str(iteration),'/',int2str(SampleSize)])
%                 end
            end
        end
        
    end
    
    
    if SampleSize > 1,
        if isoctave || options_.console_mode,
            fprintf('\n');
            diary on;
        else
            close(h),
        end
        normTAU=std(TAU')';
        normLRE=std(LRE')';
        normGAM=std(GAM')';
        normaliz1=std(pdraws);
        iter=0;
        for ifile_index = 1:file_index,
            load([IdentifDirectoryName '/' M_.fname '_identif_' int2str(ifile_index) '.mat'], 'stoH', 'stoJJ', 'stoLRE')
            for irun=1:size(stoH,3),
                iter=iter+1;
                siJnorm(iter,:) = vnorm(stoJJ(:,:,irun)./repmat(normGAM,1,nparam)).*normaliz1;
                siHnorm(iter,:) = vnorm(stoH(:,:,irun)./repmat(normTAU,1,nparam)).*normaliz1;
                siLREnorm(iter,:) = vnorm(stoLRE(:,:,irun)./repmat(normLRE,1,nparam-offset)).*normaliz1(offset+1:end);
            end
            
        end
        idemoments.siJnorm = siJnorm;
        idemodel.siHnorm = siHnorm;
        idelre.siLREnorm = siLREnorm;
        save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'pdraws', 'idemodel', 'idemoments', 'idelre', ... %'indJJ', 'indH', 'indLRE', ...
            'TAU', 'GAM', 'LRE','-append')
    else
        siJnorm = idemoments_point.siJnorm;
        siHnorm = idemodel_point.siHnorm;
        siLREnorm = idelre_point.siLREnorm;
    end
    
else
    load([IdentifDirectoryName '/' M_.fname '_identif'])
%     identFiles = dir([IdentifDirectoryName '/' M_.fname '_identif_*']);
    parameters = store_options_ident.parameter_set;
    options_ident.parameter_set = parameters;
    options_ident.prior_mc=size(pdraws,1);
    SampleSize = options_ident.prior_mc;
    options_.options_ident = options_ident;
end  

if nargout>3 && iload,
    filnam = dir([IdentifDirectoryName '/' M_.fname '_identif_*.mat']);
    H=[];
    JJ = [];
    gp = [];
    for j=1:length(filnam),
        load([IdentifDirectoryName '/' M_.fname '_identif_',int2str(j),'.mat']);
        H = cat(3,H, stoH(:,abs(iload),:));
        JJ = cat(3,JJ, stoJJ(:,abs(iload),:));
        gp = cat(3,gp, stoLRE(:,abs(iload),:));
        
    end
end

if iload,
    disp(['Testing ',parameters])
    disp_identification(idehess_point.params, idemodel_point, idemoments_point, name,advanced);
    if ~options_.nograph,
        plot_identification(idehess_point.params,idemoments_point,idehess_point,idemodel_point,idelre_point,advanced,parameters,name,IdentifDirectoryName);
    end
end
if SampleSize > 1,
    fprintf('\n')
    disp('Testing MC sample')
    disp_identification(pdraws, idemodel, idemoments, name);
    if ~options_.nograph,
        plot_identification(pdraws,idemoments,idehess_point,idemodel,idelre,advanced,'MC sample - ',name, IdentifDirectoryName);
    end
    if advanced,
        jcrit=find(idemoments.ino);
        if length(jcrit)<SampleSize,
            if isempty(jcrit),
                [dum,jmax]=max(idemoments.cond);
                fprintf('\n')
                tittxt = 'Draw with HIGHEST condition number';
                fprintf('\n')
                disp(['Testing ',tittxt, '. Press ENTER']), pause(5),
                if ~iload,
                    [idehess_max, idemoments_max, idemodel_max, idelre_max, derivatives_info_max] = ...
                        identification_analysis(pdraws(jmax,:),indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
                    save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_max', 'idemoments_max','idemodel_max', 'idelre_max', 'jmax', '-append');
                end
                disp_identification(pdraws(jmax,:), idemodel_max, idemoments_max, name,1);
                close all,
                if ~options_.nograph,
                    plot_identification(pdraws(jmax,:),idemoments_max,idehess_max,idemodel_max,idelre_max,1,tittxt,name,IdentifDirectoryName);
                end
                [dum,jmin]=min(idemoments.cond);
                fprintf('\n')
                tittxt = 'Draw with SMALLEST condition number';
                fprintf('\n')
                disp(['Testing ',tittxt, '. Press ENTER']), pause(5),
                if ~iload,
                    [idehess_min, idemoments_min, idemodel_min, idelre_min, derivatives_info_min] = ...
                        identification_analysis(pdraws(jmin,:),indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
                    save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_min', 'idemoments_min','idemodel_min', 'idelre_min', 'jmin', '-append');
                end
                disp_identification(pdraws(jmin,:), idemodel_min, idemoments_min, name,1);
                close all,
                if ~options_.nograph,
                    plot_identification(pdraws(jmin,:),idemoments_min,idehess_min,idemodel_min,idelre_min,1,tittxt,name,IdentifDirectoryName);
                end
            else
                for j=1:length(jcrit),
                    tittxt = ['Rank deficient draw n. ',int2str(j)];
                    fprintf('\n')
                    disp(['Testing ',tittxt, '. Press ENTER']), pause(5),
                    if ~iload,
                        [idehess_(j), idemoments_(j), idemodel_(j), idelre_(j), derivatives_info_(j)] = ...
                            identification_analysis(pdraws(jcrit(j),:),indx,indexo,options_ident,dataset_, prior_exist, name_tex,1);
                    end
                    disp_identification(pdraws(jcrit(j),:), idemodel_(j), idemoments_(j), name,1);
                    close all,
                    if ~options_.nograph,
                        plot_identification(pdraws(jcrit(j),:),idemoments_(j),idehess_(j),idemodel_(j),idelre_(j),1,tittxt,name,IdentifDirectoryName);
                    end
                end
                if ~iload,
                    save([IdentifDirectoryName '/' M_.fname '_identif.mat'], 'idehess_', 'idemoments_','idemodel_', 'idelre_', 'jcrit', '-append');
                end
            end
        end
    end
end

if isoctave
    warning('on'),
else
    warning on,
end

skipline()
disp(['==== Identification analysis completed ====' ]),
skipline(2)