This file is indexed.

/usr/share/dynare/matlab/dynare_solve.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
% function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
% proposes different solvers
%
% INPUTS
%    func:             name of the function to be solved
%    x:                guess values
%    jacobian_flag=1:  jacobian given by the 'func' function
%    jacobian_flag=0:  jacobian obtained numerically
%    varargin:         list of arguments following jacobian_flag
%    
% OUTPUTS
%    x:                solution
%    info=1:           the model can not be solved
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2001-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_

tolf = options_.solve_tolf ;
info = 0;
nn = size(x,1);

% checking initial values
if jacobian_flag
    [fvec,fjac] = feval(func,x,varargin{:});
    if any(any(isinf(fjac) | isnan(fjac)))
        [infrow,infcol]=find(isinf(fjac) | isnan(fjac));
        M=evalin('base','M_'); %get variable names from workspace
        fprintf('\nSTEADY:  The Jacobian contains Inf or NaN. The problem arises from: \n\n')
        for ii=1:length(infrow)
            if infcol(ii)<=M.orig_endo_nbr
                fprintf('STEADY:  Derivative of Equation %d with respect to Variable %s  (initial value of %s: %g) \n',infrow(ii),deblank(M.endo_names(infcol(ii),:)),deblank(M.endo_names(infcol(ii),:)),x(infcol(ii)))
            else %auxiliary vars
                orig_var_index=M.aux_vars(1,infcol(ii)-M.orig_endo_nbr).orig_index;
                fprintf('STEADY:  Derivative of Equation %d with respect to Variable %s  (initial value of %s: %g) \n',infrow(ii),deblank(M.endo_names(orig_var_index,:)),deblank(M.endo_names(orig_var_index,:)),x(infcol(ii)))            
            end
        end
        fprintf('\nSTEADY:  The problem most often occurs, because a variable with\n')
        fprintf('STEADY:  exponent smaller than 1 has been initialized to 0. Taking the derivative\n')
        fprintf('STEADY:  and evaluating it at the steady state then results in a division by 0.\n')
        error('An element of the Jacobian is not finite or NaN') 
    end

else
    fvec = feval(func,x,varargin{:});
    fjac = zeros(nn,nn) ;
end

i = find(~isfinite(fvec));

if ~isempty(i)
    disp(['STEADY:  numerical initial values or parameters incompatible with the following' ...
          ' equations'])
    disp(i')
    disp('Please check for example')
    disp('   i) if all parameters occurring in these equations are defined')
    disp('  ii) that no division by an endogenous variable initialized to 0 occurs') 
    info = 1;
    x = NaN;
    return;
end

if max(abs(fvec)) < tolf
    return ;
end

if options_.solve_algo == 0
    if ~isoctave
        if ~user_has_matlab_license('optimization_toolbox')
            error('You can''t use solve_algo=0 since you don''t have MATLAB''s Optimization Toolbox')
        end
    end
    options=optimset('fsolve');
    options.MaxFunEvals = 50000;
    options.MaxIter = 2000;
    options.TolFun=1e-8;
    options.Display = 'iter';
    if jacobian_flag
        options.Jacobian = 'on';
    else
        options.Jacobian = 'off';
    end
    if ~isoctave
        [x,fval,exitval,output] = fsolve(func,x,options,varargin{:});
    else
        % Under Octave, use a wrapper, since fsolve() does not have a 4th arg
        func2 = str2func(func);
        func = @(x) func2(x, varargin{:});
        % The Octave version of fsolve does not converge when it starts from the solution
        fvec = feval(func,x);
        if max(abs(fvec)) >= tolf
            [x,fval,exitval,output] = fsolve(func,x,options);
        else
            exitval = 3;
        end;
    end
    
    if exitval > 0
        info = 0;
    else
        info = 1;
    end
elseif options_.solve_algo == 1
    [x,info]=solve1(func,x,1:nn,1:nn,jacobian_flag,1,options_.gstep, ...
                    tolf,options_.solve_tolx, ...
                    options_.steady.maxit,options_.debug,varargin{:});
elseif options_.solve_algo == 2 || options_.solve_algo == 4
    if ~jacobian_flag
        fjac = zeros(nn,nn) ;
        dh = max(abs(x),options_.gstep(1)*ones(nn,1))*eps^(1/3);
        for j = 1:nn
            xdh = x ;
            xdh(j) = xdh(j)+dh(j) ;
            fjac(:,j) = (feval(func,xdh,varargin{:}) - fvec)./dh(j) ;
        end
    end

    [j1,j2,r,s] = dmperm(fjac);
    
    if options_.debug
        disp(['DYNARE_SOLVE (solve_algo=2|4): number of blocks = ' num2str(length(r))]);
    end

    % Activate bad conditioning flag for solve_algo = 2, but not for solve_algo = 4
    bad_cond_flag = (options_.solve_algo == 2);
    
    for i=length(r)-1:-1:1
        if options_.debug
            disp(['DYNARE_SOLVE (solve_algo=2|4): solving block ' num2str(i) ', of size ' num2str(r(i+1)-r(i)) ]);
        end
        [x,info]=solve1(func,x,j1(r(i):r(i+1)-1),j2(r(i):r(i+1)-1),jacobian_flag, ...
                        bad_cond_flag, options_.gstep, ...
                        tolf,options_.solve_tolx, ...
                        options_.steady.maxit,options_.debug,varargin{:});
        if info
            return
        end
    end
    fvec = feval(func,x,varargin{:});
    if max(abs(fvec)) > tolf
        [x,info]=solve1(func,x,1:nn,1:nn,jacobian_flag, bad_cond_flag, ...
                        options_.gstep, tolf,options_.solve_tolx, ...
                        options_.steady.maxit,options_.debug,varargin{:});
    end
elseif options_.solve_algo == 3
    if jacobian_flag
        [x,info] = csolve(func,x,func,1e-6,500,varargin{:});
    else
        [x,info] = csolve(func,x,[],1e-6,500,varargin{:});
    end
else
    error('DYNARE_SOLVE: option solve_algo must be one of [0,1,2,3,4]')
end