This file is indexed.

/usr/share/dynare/matlab/gsa/smirnov.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [H,prob,d] = smirnov(x1 , x2 , alpha, iflag )
% Smirnov test for 2 distributions
%   [H,prob,d] = smirnov(x1 , x2 , alpha, iflag )
%
% Written by Marco Ratto
% Joint Research Centre, The European Commission,
% (http://eemc.jrc.ec.europa.eu/),
% marco.ratto@jrc.it 
%
% Reference:
% M. Ratto, Global Sensitivity Analysis for Macroeconomic models, MIMEO, 2006.

% Copyright (C) 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if nargin<3
    alpha  =  0.05;
end
if nargin<4,
    iflag=0;
end

% empirical cdfs.
xmix= [x1;x2];
bin = [-inf ; sort(xmix) ; inf];

ncount1 = histc (x1 , bin);
ncount1 = ncount1(:);
ncount2 = histc (x2 , bin);
ncount2 = ncount2(:);

cum1  =  cumsum(ncount1)./sum(ncount1);
cum1  =  cum1(1:end-1);

cum2  =  cumsum(ncount2)./sum(ncount2);
cum2  =  cum2(1:end-1);

n1=  length(x1);
n2=  length(x2);
n =  n1*n2 /(n1+n2);

% Compute the d(n1,n2) statistics.

if iflag==0,
    d  =  max(abs(cum1 - cum2));
elseif iflag==-1
    d  =  max(cum2 - cum1);
elseif iflag==1
    d  =  max(cum1 - cum2);
end
%
% Compute P-value check H0 hypothesis
%

lam =  max((sqrt(n) + 0.12 + 0.11/sqrt(n)) * d , 0);
if iflag == 0        
    j       =  [1:101]';
    prob  =  2 * sum((-1).^(j-1).*exp(-2*lam*lam*j.^2));
    
    prob=max(prob,0);
    prob=min(1,prob);
else
    prob  =  exp(-2*lam*lam);
end

H  =  (alpha >= prob);