This file is indexed.

/usr/share/dynare/matlab/imcforecast.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
function imcforecast(constrained_paths, constrained_vars, options_cond_fcst)
% Computes conditional forecasts.
%
% INPUTS
%  o constrained_paths    [double]      m*p array, where m is the number of constrained endogenous variables and p is the number of constrained periods. 
%  o constrained_vars     [char]        m*x array holding the names of the controlled endogenous variables. 
%  o options_cond_fcst    [structure]   containing the options. The fields are:
%                                                             + replic              [integer]   scalar, number of monte carlo simulations.
%                                                             + parameter_set       [char]      values of the estimated parameters:
%                                                                                               "posterior_mode", 
%                                                                                               "posterior_mean", 
%                                                                                               "posterior_median", 
%                                                                                               "prior_mode" or 
%                                                                                               "prior mean". 
%                                                                                   [double]     np*1 array, values of the estimated parameters.
%                                                             + controlled_varexo   [char]       m*x array, list of controlled exogenous variables.
%                                                             + conf_sig            [double]     scalar in [0,1], probability mass covered by the confidence bands. 
%
% OUTPUTS
%  None.
% 
% SPECIAL REQUIREMENTS
%  This routine has to be called after an estimation statement or an estimated_params block.
%
% REMARKS
%  [1] Results are stored in a structure which is saved in a mat file called conditional_forecasts.mat.
%  [2] Use the function plot_icforecast to plot the results. 

% Copyright (C) 2006-2014 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_ oo_ M_ bayestopt_


if ~isfield(options_cond_fcst,'parameter_set') || isempty(options_cond_fcst.parameter_set)
    options_cond_fcst.parameter_set = 'posterior_mode';
end

if ~isfield(options_cond_fcst,'replic') || isempty(options_cond_fcst.replic)
    options_cond_fcst.replic = 5000;
end

if ~isfield(options_cond_fcst,'periods') || isempty(options_cond_fcst.periods)
    options_cond_fcst.periods = 40;
end

if ~isfield(options_cond_fcst,'conf_sig') || isempty(options_cond_fcst.conf_sig)
    options_cond_fcst.conf_sig = .8;
end

if isequal(options_cond_fcst.parameter_set,'calibration')
    estimated_model = 0;
else
    estimated_model = 1;
end

if estimated_model
    if ischar(options_cond_fcst.parameter_set)
        switch options_cond_fcst.parameter_set
          case 'posterior_mode'
            xparam = get_posterior_parameters('mode');
            graph_title='Posterior Mode';
          case 'posterior_mean'
            xparam = get_posterior_parameters('mean');
            graph_title='Posterior Mean';
          case 'posterior_median'
            xparam = get_posterior_parameters('median');
            graph_title='Posterior Median';
          case 'prior_mode'
            xparam = bayestopt_.p5(:);
            graph_title='Prior Mode';
          case 'prior_mean'
            xparam = bayestopt_.p1;
            graph_title='Prior Mean';
          otherwise
            disp('imcforecast:: If the input argument is a string, then it has to be equal to:')
            disp('                   ''calibration'', ')
            disp('                   ''posterior_mode'', ')
            disp('                   ''posterior_mean'', ')
            disp('                   ''posterior_median'', ')
            disp('                   ''prior_mode'' or')
            disp('                   ''prior_mean''.')
            error('imcforecast:: Wrong argument type!')
        end
    else
        xparam = options_cond_fcst.parameter_set;
        if length(xparam)~=length(M_.params)
            error('imcforecast:: The dimension of the vector of parameters doesn''t match the number of estimated parameters!')
        end
    end

    set_parameters(xparam);

    % Load and transform data.
    transformation = [];
    if options_.loglinear && ~options_.logdata
        transformation = @log;
    end
    xls.sheet = options_.xls_sheet;
    xls.range = options_.xls_range;
    
    if ~isfield(options_,'nobs')
        options_.nobs = [];
    end
    
    dataset_ = initialize_dataset(options_.datafile,options_.varobs,options_.first_obs,options_.nobs,transformation,options_.prefilter,xls);

    data = dataset_.data;
    data_index = dataset_.missing.aindex;
    gend = options_.nobs;
    missing_value = dataset_.missing.state;

    [atT,innov,measurement_error,filtered_state_vector,ys,trend_coeff] = DsgeSmoother(xparam,gend,data,data_index,missing_value);

    trend = repmat(ys,1,options_cond_fcst.periods+1);
    for i=1:M_.endo_nbr
        j = strmatch(deblank(M_.endo_names(i,:)),options_.varobs,'exact');
        if ~isempty(j)
            trend(i,:) = trend(i,:)+trend_coeff(j)*(gend+(0:options_cond_fcst.periods));
        end
    end
    trend = trend(oo_.dr.order_var,:);

    InitState(:,1) = atT(:,end);
else
    InitState(:,1) = zeros(M_.endo_nbr,1);
    trend = repmat(oo_.steady_state(oo_.dr.order_var),1,options_cond_fcst.periods+1);
    graph_title='Calibration';
end

if isempty(options_.qz_criterium)
    options_.qz_criterium = 1+1e-6;
end
[T,R,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);

sQ = sqrt(M_.Sigma_e);

NumberOfStates = length(InitState);
FORCS1 = zeros(NumberOfStates,options_cond_fcst.periods+1,options_cond_fcst.replic);

FORCS1(:,1,:) = repmat(InitState,1,options_cond_fcst.replic);

EndoSize = M_.endo_nbr;
ExoSize = M_.exo_nbr;

n1 = size(constrained_vars,1);
n2 = size(options_cond_fcst.controlled_varexo,1);

if n1 ~= n2
    error(['imcforecast:: The number of constrained variables doesn''t match the number of controlled shocks'])
end

idx = [];
jdx = [];

for i = 1:n1
    idx = [idx ; oo_.dr.inv_order_var(constrained_vars(i,:))];
    jdx = [jdx ; strmatch(deblank(options_cond_fcst.controlled_varexo(i,:)),M_.exo_names,'exact')];
end
mv = zeros(n1,NumberOfStates);
mu = zeros(ExoSize,n2);
for i=1:n1
    mv(i,idx(i)) = 1;
    mu(jdx(i),i) = 1;
end

% number of periods with constrained values
cL = size(constrained_paths,2);

constrained_paths = bsxfun(@minus,constrained_paths,trend(idx,1:cL));

%randn('state',0);

for b=1:options_cond_fcst.replic
    shocks = sQ*randn(ExoSize,options_cond_fcst.periods);
    shocks(jdx,:) = zeros(length(jdx),options_cond_fcst.periods);
    FORCS1(:,:,b) = mcforecast3(cL,options_cond_fcst.periods,constrained_paths,shocks,FORCS1(:,:,b),T,R,mv, mu)+trend;
end

mFORCS1 = mean(FORCS1,3);

tt = (1-options_cond_fcst.conf_sig)/2;
t1 = round(options_cond_fcst.replic*tt);
t2 = round(options_cond_fcst.replic*(1-tt));

forecasts.controlled_variables = constrained_vars;
forecasts.instruments = options_cond_fcst.controlled_varexo;

for i = 1:EndoSize
    eval(['forecasts.cond.Mean.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ' = mFORCS1(i,:)'';']);
    tmp = sort(squeeze(FORCS1(i,:,:))');
    eval(['forecasts.cond.ci.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ...
          ' = [tmp(t1,:)'' ,tmp(t2,:)'' ]'';']);
end

clear FORCS1;

FORCS2 = zeros(NumberOfStates,options_cond_fcst.periods+1,options_cond_fcst.replic);
for b=1:options_cond_fcst.replic
    FORCS2(:,1,b) = InitState;
end

%randn('state',0);

for b=1:options_cond_fcst.replic
    shocks = sQ*randn(ExoSize,options_cond_fcst.periods);
    shocks(jdx,:) = zeros(length(jdx),options_cond_fcst.periods);
    FORCS2(:,:,b) = mcforecast3(0,options_cond_fcst.periods,constrained_paths,shocks,FORCS2(:,:,b),T,R,mv, mu)+trend;
end

mFORCS2 = mean(FORCS2,3);

for i = 1:EndoSize
    eval(['forecasts.uncond.Mean.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ' = mFORCS2(i,:)'';']);
    tmp = sort(squeeze(FORCS2(i,:,:))');
    eval(['forecasts.uncond.ci.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ...
          ' = [tmp(t1,:)'' ,tmp(t2,:)'' ]'';']);
end
forecasts.graph.title=graph_title;
forecasts.graph.fname=M_.fname;

save('conditional_forecasts.mat','forecasts');