/usr/share/dynare/matlab/imcforecast.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | function imcforecast(constrained_paths, constrained_vars, options_cond_fcst)
% Computes conditional forecasts.
%
% INPUTS
% o constrained_paths [double] m*p array, where m is the number of constrained endogenous variables and p is the number of constrained periods.
% o constrained_vars [char] m*x array holding the names of the controlled endogenous variables.
% o options_cond_fcst [structure] containing the options. The fields are:
% + replic [integer] scalar, number of monte carlo simulations.
% + parameter_set [char] values of the estimated parameters:
% "posterior_mode",
% "posterior_mean",
% "posterior_median",
% "prior_mode" or
% "prior mean".
% [double] np*1 array, values of the estimated parameters.
% + controlled_varexo [char] m*x array, list of controlled exogenous variables.
% + conf_sig [double] scalar in [0,1], probability mass covered by the confidence bands.
%
% OUTPUTS
% None.
%
% SPECIAL REQUIREMENTS
% This routine has to be called after an estimation statement or an estimated_params block.
%
% REMARKS
% [1] Results are stored in a structure which is saved in a mat file called conditional_forecasts.mat.
% [2] Use the function plot_icforecast to plot the results.
% Copyright (C) 2006-2014 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_ bayestopt_
if ~isfield(options_cond_fcst,'parameter_set') || isempty(options_cond_fcst.parameter_set)
options_cond_fcst.parameter_set = 'posterior_mode';
end
if ~isfield(options_cond_fcst,'replic') || isempty(options_cond_fcst.replic)
options_cond_fcst.replic = 5000;
end
if ~isfield(options_cond_fcst,'periods') || isempty(options_cond_fcst.periods)
options_cond_fcst.periods = 40;
end
if ~isfield(options_cond_fcst,'conf_sig') || isempty(options_cond_fcst.conf_sig)
options_cond_fcst.conf_sig = .8;
end
if isequal(options_cond_fcst.parameter_set,'calibration')
estimated_model = 0;
else
estimated_model = 1;
end
if estimated_model
if ischar(options_cond_fcst.parameter_set)
switch options_cond_fcst.parameter_set
case 'posterior_mode'
xparam = get_posterior_parameters('mode');
graph_title='Posterior Mode';
case 'posterior_mean'
xparam = get_posterior_parameters('mean');
graph_title='Posterior Mean';
case 'posterior_median'
xparam = get_posterior_parameters('median');
graph_title='Posterior Median';
case 'prior_mode'
xparam = bayestopt_.p5(:);
graph_title='Prior Mode';
case 'prior_mean'
xparam = bayestopt_.p1;
graph_title='Prior Mean';
otherwise
disp('imcforecast:: If the input argument is a string, then it has to be equal to:')
disp(' ''calibration'', ')
disp(' ''posterior_mode'', ')
disp(' ''posterior_mean'', ')
disp(' ''posterior_median'', ')
disp(' ''prior_mode'' or')
disp(' ''prior_mean''.')
error('imcforecast:: Wrong argument type!')
end
else
xparam = options_cond_fcst.parameter_set;
if length(xparam)~=length(M_.params)
error('imcforecast:: The dimension of the vector of parameters doesn''t match the number of estimated parameters!')
end
end
set_parameters(xparam);
% Load and transform data.
transformation = [];
if options_.loglinear && ~options_.logdata
transformation = @log;
end
xls.sheet = options_.xls_sheet;
xls.range = options_.xls_range;
if ~isfield(options_,'nobs')
options_.nobs = [];
end
dataset_ = initialize_dataset(options_.datafile,options_.varobs,options_.first_obs,options_.nobs,transformation,options_.prefilter,xls);
data = dataset_.data;
data_index = dataset_.missing.aindex;
gend = options_.nobs;
missing_value = dataset_.missing.state;
[atT,innov,measurement_error,filtered_state_vector,ys,trend_coeff] = DsgeSmoother(xparam,gend,data,data_index,missing_value);
trend = repmat(ys,1,options_cond_fcst.periods+1);
for i=1:M_.endo_nbr
j = strmatch(deblank(M_.endo_names(i,:)),options_.varobs,'exact');
if ~isempty(j)
trend(i,:) = trend(i,:)+trend_coeff(j)*(gend+(0:options_cond_fcst.periods));
end
end
trend = trend(oo_.dr.order_var,:);
InitState(:,1) = atT(:,end);
else
InitState(:,1) = zeros(M_.endo_nbr,1);
trend = repmat(oo_.steady_state(oo_.dr.order_var),1,options_cond_fcst.periods+1);
graph_title='Calibration';
end
if isempty(options_.qz_criterium)
options_.qz_criterium = 1+1e-6;
end
[T,R,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
sQ = sqrt(M_.Sigma_e);
NumberOfStates = length(InitState);
FORCS1 = zeros(NumberOfStates,options_cond_fcst.periods+1,options_cond_fcst.replic);
FORCS1(:,1,:) = repmat(InitState,1,options_cond_fcst.replic);
EndoSize = M_.endo_nbr;
ExoSize = M_.exo_nbr;
n1 = size(constrained_vars,1);
n2 = size(options_cond_fcst.controlled_varexo,1);
if n1 ~= n2
error(['imcforecast:: The number of constrained variables doesn''t match the number of controlled shocks'])
end
idx = [];
jdx = [];
for i = 1:n1
idx = [idx ; oo_.dr.inv_order_var(constrained_vars(i,:))];
jdx = [jdx ; strmatch(deblank(options_cond_fcst.controlled_varexo(i,:)),M_.exo_names,'exact')];
end
mv = zeros(n1,NumberOfStates);
mu = zeros(ExoSize,n2);
for i=1:n1
mv(i,idx(i)) = 1;
mu(jdx(i),i) = 1;
end
% number of periods with constrained values
cL = size(constrained_paths,2);
constrained_paths = bsxfun(@minus,constrained_paths,trend(idx,1:cL));
%randn('state',0);
for b=1:options_cond_fcst.replic
shocks = sQ*randn(ExoSize,options_cond_fcst.periods);
shocks(jdx,:) = zeros(length(jdx),options_cond_fcst.periods);
FORCS1(:,:,b) = mcforecast3(cL,options_cond_fcst.periods,constrained_paths,shocks,FORCS1(:,:,b),T,R,mv, mu)+trend;
end
mFORCS1 = mean(FORCS1,3);
tt = (1-options_cond_fcst.conf_sig)/2;
t1 = round(options_cond_fcst.replic*tt);
t2 = round(options_cond_fcst.replic*(1-tt));
forecasts.controlled_variables = constrained_vars;
forecasts.instruments = options_cond_fcst.controlled_varexo;
for i = 1:EndoSize
eval(['forecasts.cond.Mean.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ' = mFORCS1(i,:)'';']);
tmp = sort(squeeze(FORCS1(i,:,:))');
eval(['forecasts.cond.ci.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ...
' = [tmp(t1,:)'' ,tmp(t2,:)'' ]'';']);
end
clear FORCS1;
FORCS2 = zeros(NumberOfStates,options_cond_fcst.periods+1,options_cond_fcst.replic);
for b=1:options_cond_fcst.replic
FORCS2(:,1,b) = InitState;
end
%randn('state',0);
for b=1:options_cond_fcst.replic
shocks = sQ*randn(ExoSize,options_cond_fcst.periods);
shocks(jdx,:) = zeros(length(jdx),options_cond_fcst.periods);
FORCS2(:,:,b) = mcforecast3(0,options_cond_fcst.periods,constrained_paths,shocks,FORCS2(:,:,b),T,R,mv, mu)+trend;
end
mFORCS2 = mean(FORCS2,3);
for i = 1:EndoSize
eval(['forecasts.uncond.Mean.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ' = mFORCS2(i,:)'';']);
tmp = sort(squeeze(FORCS2(i,:,:))');
eval(['forecasts.uncond.ci.' deblank(M_.endo_names(oo_.dr.order_var(i),:)) ...
' = [tmp(t1,:)'' ,tmp(t2,:)'' ]'';']);
end
forecasts.graph.title=graph_title;
forecasts.graph.fname=M_.fname;
save('conditional_forecasts.mat','forecasts');
|