This file is indexed.

/usr/share/dynare/matlab/lnsrch1.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function [x,f,fvec,check]=lnsrch1(xold,fold,g,p,stpmax,func,j1,j2,varargin)
% function [x,f,fvec,check]=lnsrch1(xold,fold,g,p,stpmax,func,j1,j2,varargin)
% Computes the optimal step by minimizing the residual sum of squares
%
% INPUTS
%   xold:     actual point
%   fold:     residual sum of squares at the point xold
%   g:        gradient
%   p:        Newton direction
%   stpmax:   maximum step
%   func:     name of the function
%   j1:       equations index to be solved
%   j2:       unknowns index
%   varargin: list of arguments following j2
%
% OUTPUTS
%   x:        chosen point
%   f:        residual sum of squares value for a given x
%   fvec:     residuals vector
%   check=1:  problem of the looping which continues indefinitely
%
% 
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2001-2010 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_

alf = 1e-4 ;
tolx = options_.solve_tolx;
alam = 1;

x = xold;
nn = length(j2);
summ = sqrt(sum(p.*p)) ;
if ~isfinite(summ)
    eq_number_string=[];
    for ii=1:length(j1)-1
        eq_number_string=[eq_number_string, num2str(j1(ii)), ', '];
    end
    eq_number_string=[eq_number_string, num2str(j1(end))];
    var_string=[];
    Model=evalin('base','M_');
    for ii=1:length(j2)-1
        var_string=[var_string, deblank(Model.endo_names(j2(ii),:)), ', '];
    end
    var_string=[var_string, deblank(Model.endo_names(j2(end),:))];
    fprintf('\nAn infinite element was encountered when trying to solve equation(s) %s \n',eq_number_string) 
    fprintf('with respect to the variable(s): %s.\n',var_string)
    fprintf('The values of the endogenous variables when the problem was encountered were:\n')
    for ii=1:length(xold)
        fprintf('%-s % 8.4g \n',Model.endo_names(ii,:),xold(ii));
    end
    skipline();    
    error(['Some element of Newton direction isn''t finite. Jacobian maybe' ...
           ' singular or there is a problem with initial values'])
end

if summ > stpmax
    p=p.*stpmax/summ ;
end

slope = g'*p ;

test = max(abs(p)'./max([abs(xold(j2))';ones(1,nn)])) ;
alamin = tolx/test ;

if alamin > 0.1
    alamin = 0.1;
end

while 1
    if alam < alamin
        check = 1 ;
        return
    end
    
    x(j2) = xold(j2) + (alam*p) ;
    fvec = feval(func,x,varargin{:}) ;
    fvec = fvec(j1);
    f = 0.5*fvec'*fvec ;

    if any(isnan(fvec))
        alam = alam/2 ;
        alam2 = alam ;
        f2 = f ;
        fold2 = fold ;
    else

        if f <= fold+alf*alam*slope
            check = 0;
            break ;
        else
            if alam == 1
                tmplam = -slope/(2*(f-fold-slope)) ;
            else
                rhs1 = f-fold-alam*slope ;
                rhs2 = f2-fold2-alam2*slope ;
                a = (rhs1/(alam^2)-rhs2/(alam2^2))/(alam-alam2) ;
                b = (-alam2*rhs1/(alam^2)+alam*rhs2/(alam2^2))/(alam-alam2) ;
                if a == 0
                    tmplam = -slope/(2*b) ;
                else
                    disc = (b^2)-3*a*slope ;

                    if disc < 0
                        error ('Roundoff problem in nlsearch') ;
                    else
                        tmplam = (-b+sqrt(disc))/(3*a) ;
                    end

                end

                if tmplam > 0.5*alam
                    tmplam = 0.5*alam;
                end

            end

            alam2 = alam ;
            f2 = f ;
            fold2 = fold ;
            alam = max([tmplam;(0.1*alam)]) ;
        end
    end
end

% 01/14/01 MJ lnsearch is now a separate function
% 01/12/03 MJ check for finite summ to avoid infinite loop when Jacobian
%             is singular or model is denormalized