/usr/share/dynare/matlab/model_comparison.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | function PosteriorOddsTable = model_comparison(ModelNames,ModelPriors,oo,options_,fname)
% Bayesian model comparison. This function computes Odds ratios and
% estimate a posterior density over a colletion of models.
%
% INPUTS
% ModelNames [string] m*1 cell array of string.
% ModelPriors [double] m*1 vector of prior probabilities
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2007-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
NumberOfModels = size(ModelNames,2);
skipline(2)
if isempty(ModelPriors)
prior_flag = 0;% empty_prior=0
ModelPriors = ones(NumberOfModels,1)/NumberOfModels;
else % The prior density has to sum up to one.
prior_flag = 1;
improper = abs(sum(ModelPriors)-1)>1e-6;
if improper
disp('model_comparison:: The user supplied prior distribution over models is improper...')
disp('model_comparison:: The distribution is automatically rescaled!')
ModelPriors=ModelPriors/sum(ModelPriors);
end
end
% The marginal densities are based on Laplace approxiations (default) or
% modified harmonic mean estimators.
if isfield(options_,'model_comparison_approximation')
type = options_.model_comparison_approximation;
if strcmp(type,'Laplace')
type = 'LaplaceApproximation';
end
else
type = 'LaplaceApproximation';
end
% Get the estimated logged marginal densities.
MarginalLogDensity = zeros(NumberOfModels,1);
ShortModelNames = get_short_names(ModelNames);
iname = strmatch(fname,ShortModelNames,'exact');
for i=1:NumberOfModels
if i==iname
mstruct.oo_ = oo;
else
if strcmpi(ModelNames{i}(end-3:end),'.mod') || strcmpi(ModelNames{i}(end-3:end),'.dyn')
mstruct = load([ModelNames{i}(1:end-4) '_results.mat' ],'oo_');
else
mstruct = load([ModelNames{i} '_results.mat' ],'oo_');
end
end
try
eval(['MarginalLogDensity(i) = mstruct.oo_.MarginalDensity.' type ';'])
catch
if strcmpi(type,'LaplaceApproximation')
disp(['MODEL_COMPARISON: I cant''t find the Laplace approximation associated to model ' ModelNames{i}])
return
elseif strcmpi(type,'ModifiedHarmonicMean')
disp(['MODEL_COMPARISON: I cant''t find the modified harmonic mean estimate associated to model ' ModelNames{i}])
return
end
end
end
% In order to avoid overflow, we divide the numerator and the denominator
% of the Posterior Odds Ratio by the largest Marginal Posterior Density
lmpd = log(ModelPriors)+MarginalLogDensity;
[maxval,k] = max(lmpd);
elmpd = exp(lmpd-maxval);
% Now I display the posterior probabilities.
title = 'Model Comparison';
headers = char('Model',ShortModelNames{:});
if prior_flag
labels = char('Priors','Log Marginal Density','Bayes Ratio', ...
'Posterior Model Probability');
values = [ModelPriors';MarginalLogDensity';exp(lmpd-lmpd(1))'; ...
elmpd'/sum(elmpd)];
else
labels = char('Priors','Log Marginal Density','Bayes Ratio','Posterior Odds Ratio', ...
'Posterior Model Probability');
values = [ModelPriors';MarginalLogDensity'; exp(MarginalLogDensity-MarginalLogDensity(1))'; ...
exp(lmpd-lmpd(1))'; elmpd'/sum(elmpd)];
end
dyntable(title,headers,labels,values, 0, 15, 6);
function name = get_model_name_without_path(modelname)
idx = strfind(modelname,'\');
if isempty(idx)
idx = strfind(modelname,'/');
end
if isempty(idx)
name = modelname;
return
end
name = modelname(idx(end)+1:end);
function name = get_model_name_without_extension(modelname)
idx = strfind(modelname,'.mod');
if isempty(idx)
idx = strfind(modelname,'.dyn')
end
if isempty(idx)
name = modelname;
return
end
name = modelname(1:end-4);
function modellist = get_short_names(modelnames)
n = length(modelnames);
modellist = {};
for i=1:n
name = get_model_name_without_extension(modelnames{i});
name = get_model_name_without_path(name);
modellist = {modellist{:} name};
end
|