/usr/share/dynare/matlab/model_info.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | function model_info(varargin);
%function model_info;
% Copyright (C) 2008-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_;
if sum(strcmp(varargin,'static')) > 0
static_ = 1;
else
static_ = 0;
end;
if sum(strcmp(varargin,'incidence')) > 0
incidence = 1;
else
incidence = 0;
end;
if static_
fprintf(' Informations about %s (static model)\n',M_.fname);
block_structre_str = 'block_structure_stat';
nb_leadlag = 1;
else
fprintf(' Informations about %s (dynamic model)\n',M_.fname);
block_structre_str = 'block_structure';
nb_leadlag = 3;
end;
if(isfield(M_,block_structre_str))
if static_
block_structure = M_.block_structure_stat;
else
block_structure = M_.block_structure;
end;
fprintf(strcat(' ===================',char(ones(1,length(M_.fname))*'='),'\n\n'));
nb_blocks=length(block_structure.block);
fprintf('The model has %d equations and is decomposed in %d blocks as follow:\n',M_.endo_nbr,nb_blocks);
fprintf('===============================================================================================================\n');
fprintf('| %10s | %10s | %30s | %14s | %31s |\n','Block no','Size','Block Type',' Equation','Dependent variable');
fprintf('|============|============|================================|================|=================================|\n');
for i=1:nb_blocks
size_block=length(block_structure.block(i).equation);
if(i>1)
fprintf('|------------|------------|--------------------------------|----------------|---------------------------------|\n');
end;
for j=1:size_block
if(j==1)
fprintf('| %10d | %10d | %30s | %14d | %-6d %24s |\n',i,size_block,Sym_type(block_structure.block(i).Simulation_Type),block_structure.block(i).equation(j),block_structure.block(i).variable(j),M_.endo_names(block_structure.block(i).variable(j),:));
else
fprintf('| %10s | %10s | %30s | %14d | %-6d %24s |\n','','','',block_structure.block(i).equation(j),block_structure.block(i).variable(j),M_.endo_names(block_structure.block(i).variable(j),:));
end;
end;
end;
fprintf('===============================================================================================================\n');
fprintf('\n');
if static_
fprintf('%-30s %s','the variable','is used in equations Contemporaneously');
if(size(block_structure.incidence.sparse_IM,1)>0)
IM=sortrows(block_structure.incidence.sparse_IM,2);
else
IM=[];
end;
size_IM=size(IM,1);
last=99999999;
for i=1:size_IM
if(last~=IM(i,2))
fprintf('\n%-30s',M_.endo_names(IM(i,2),:));
end;
fprintf(' %5d',IM(i,1));
last=IM(i,2);
end;
fprintf('\n\n');
else
for k=1:M_.maximum_endo_lag+M_.maximum_endo_lead+1
if(k==M_.maximum_endo_lag+1)
fprintf('%-30s %s','the variable','is used in equations Contemporaneously');
elseif(k<M_.maximum_endo_lag+1)
fprintf('%-30s %s %d','the variable','is used in equations with lag ',M_.maximum_endo_lag+1-k);
else
fprintf('%-30s %s %d','the variable','is used in equations with lead ',k-(M_.maximum_endo_lag+1));
end;
if(size(block_structure.incidence(k).sparse_IM,1)>0)
IM=sortrows(block_structure.incidence(k).sparse_IM,2);
else
IM=[];
end;
size_IM=size(IM,1);
last=99999999;
for i=1:size_IM
if(last~=IM(i,2))
fprintf('\n%-30s',M_.endo_names(IM(i,2),:));
end;
fprintf(' %5d',IM(i,1));
last=IM(i,2);
end;
fprintf('\n\n');
end;
end;
%printing the gross incidence matrix
IM_star = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]);
for i = 1:nb_leadlag
n = size(block_structure.incidence(i).sparse_IM,1);
for j = 1:n
if ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var)
IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = 'X';
else
IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = '1';
end;
end;
end;
seq = 1: M_.endo_nbr;
blank = [ blanks(size(M_.endo_names,2)); blanks(size(M_.endo_names,2))];
for i = 1:M_.endo_nbr
if i == 1
var_names = [blank; M_.endo_names(i,:)];
else
var_names = [var_names; blank; M_.endo_names(i,:)];
end;
end;
if incidence
topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(size(M_.endo_names,2),1))) var_names' ];
bott = [int2str(seq') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star];
fprintf('\n Gross incidence matrix\n');
fprintf(' =======================\n');
disp([topp; bott]);
%printing the reordered incidence matrix
IM_star_reordered = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]);
eq(block_structure.equation_reordered) = seq;
va(block_structure.variable_reordered) = seq;
barre_blank = [ barre(size(M_.endo_names,2)); blanks(size(M_.endo_names,2))];
cur_block = 1;
for i = 1:M_.endo_nbr
past_block = cur_block;
while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0;
cur_block = cur_block + 1;
end;
if i == 1
var_names = [blank; M_.endo_names(block_structure.variable_reordered(i),:)];
else
if past_block ~= cur_block
var_names = [var_names; barre_blank; M_.endo_names(block_structure.variable_reordered(i),:)];
else
var_names = [var_names; blank; M_.endo_names(block_structure.variable_reordered(i),:)];
end
end;
end;
topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(size(M_.endo_names,2),1))) var_names' ];
n_state_var = length(M_.state_var);
IM_state_var = zeros(n_state_var, n_state_var);
inv_variable_reordered(block_structure.variable_reordered) = 1:M_.endo_nbr;
state_equation = block_structure.equation_reordered(inv_variable_reordered(M_.state_var));
for i = 1:nb_leadlag
n = size(block_structure.incidence(i).sparse_IM,1);
for j = 1:n
[tf, loc] = ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var);
if tf
IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = 'X';
[tfi, loci] = ismember(block_structure.incidence(i).sparse_IM(j,1), state_equation);
if tfi
IM_state_var(loci, loc) = 1;
end;
else
IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = '1';
end;
end;
end;
fprintf('1: non nul element, X: non nul element related to a state variable\n');
cur_block = 1;
i_last = 0;
block = {};
for i = 1:n_state_var;
past_block = cur_block;
while ismember(M_.state_var(i), block_structure.block(cur_block).variable) == 0;
cur_block = cur_block + 1;
end;
if (past_block ~= cur_block) || (past_block == cur_block && i == n_state_var)
block(past_block).IM_state_var(1:(i - 1 - i_last), 1:i - 1) = IM_state_var(i_last+1:i - 1, 1:i - 1);
i_last = i - 1;
end;
end;
cur_block = 1;
for i = 1:M_.endo_nbr
past_block = cur_block;
while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0;
cur_block = cur_block + 1;
end;
if past_block ~= cur_block
for j = 1:i-1
IM_star_reordered(j, 3 * (i - 1) - 1) = '|';
end;
end;
end
bott = [int2str(block_structure.equation_reordered') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star_reordered];
fprintf('\n Reordered incidence matrix\n');
fprintf(' ==========================\n');
disp([topp; bott]);
fprintf('1: non nul element, X: non nul element related to a state variable\n');
end;
else
fprintf('There is no block decomposition of the model.\nUse ''block'' model''s option.\n');
end;
function ret=Sym_type(type)
UNKNOWN=0;
EVALUATE_FORWARD=1;
EVALUATE_BACKWARD=2;
SOLVE_FORWARD_SIMPLE=3;
SOLVE_BACKWARD_SIMPLE=4;
SOLVE_TWO_BOUNDARIES_SIMPLE=5;
SOLVE_FORWARD_COMPLETE=6;
SOLVE_BACKWARD_COMPLETE=7;
SOLVE_TWO_BOUNDARIES_COMPLETE=8;
EVALUATE_FORWARD_R=9;
EVALUATE_BACKWARD_R=10;
switch (type)
case (UNKNOWN),
ret='UNKNOWN ';
case {EVALUATE_FORWARD,EVALUATE_FORWARD_R},
ret='EVALUATE FORWARD ';
case {EVALUATE_BACKWARD,EVALUATE_BACKWARD_R},
ret='EVALUATE BACKWARD ';
case SOLVE_FORWARD_SIMPLE,
ret='SOLVE FORWARD SIMPLE ';
case SOLVE_BACKWARD_SIMPLE,
ret='SOLVE BACKWARD SIMPLE ';
case SOLVE_TWO_BOUNDARIES_SIMPLE,
ret='SOLVE TWO BOUNDARIES SIMPLE ';
case SOLVE_FORWARD_COMPLETE,
ret='SOLVE FORWARD COMPLETE ';
case SOLVE_BACKWARD_COMPLETE,
ret='SOLVE BACKWARD COMPLETE ';
case SOLVE_TWO_BOUNDARIES_COMPLETE,
ret='SOLVE TWO BOUNDARIES COMPLETE';
end;
function ret = barre(n)
s = [];
for i=1:n;
s = [s '|'];
end;
ret = s;
|