This file is indexed.

/usr/share/dynare/matlab/model_info.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
function model_info(varargin);
%function model_info;

% Copyright (C) 2008-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_;
if sum(strcmp(varargin,'static')) > 0
    static_ = 1;
else
    static_ = 0;
end;
if sum(strcmp(varargin,'incidence')) > 0
    incidence = 1;
else
    incidence = 0;
end;
if static_
        fprintf('                                          Informations about %s (static model)\n',M_.fname);
        block_structre_str = 'block_structure_stat';
        nb_leadlag = 1;
    else
        fprintf('                                          Informations about %s (dynamic model)\n',M_.fname);
        block_structre_str = 'block_structure';
        nb_leadlag = 3;
    end;
if(isfield(M_,block_structre_str))
    if static_
        block_structure = M_.block_structure_stat;
    else
        block_structure = M_.block_structure;
    end;
    fprintf(strcat('                                          ===================',char(ones(1,length(M_.fname))*'='),'\n\n'));
    nb_blocks=length(block_structure.block);
    fprintf('The model has %d equations and is decomposed in %d blocks as follow:\n',M_.endo_nbr,nb_blocks);
    fprintf('===============================================================================================================\n');
    fprintf('| %10s | %10s | %30s | %14s | %31s |\n','Block no','Size','Block Type','   Equation','Dependent variable');
    fprintf('|============|============|================================|================|=================================|\n');
    for i=1:nb_blocks
        size_block=length(block_structure.block(i).equation);
        if(i>1)
            fprintf('|------------|------------|--------------------------------|----------------|---------------------------------|\n');
        end;
        for j=1:size_block
            if(j==1)
                fprintf('| %10d | %10d | %30s | %14d | %-6d %24s |\n',i,size_block,Sym_type(block_structure.block(i).Simulation_Type),block_structure.block(i).equation(j),block_structure.block(i).variable(j),M_.endo_names(block_structure.block(i).variable(j),:));
            else
                fprintf('| %10s | %10s | %30s | %14d | %-6d %24s |\n','','','',block_structure.block(i).equation(j),block_structure.block(i).variable(j),M_.endo_names(block_structure.block(i).variable(j),:));
            end;
        end;
    end;
    fprintf('===============================================================================================================\n');
    fprintf('\n');
    if static_
        fprintf('%-30s %s','the variable','is used in equations Contemporaneously');
        if(size(block_structure.incidence.sparse_IM,1)>0)
            IM=sortrows(block_structure.incidence.sparse_IM,2);
        else
            IM=[];
        end;
        size_IM=size(IM,1);
        last=99999999;
        for i=1:size_IM
            if(last~=IM(i,2))
                fprintf('\n%-30s',M_.endo_names(IM(i,2),:));
            end;
            fprintf(' %5d',IM(i,1));
            last=IM(i,2);
        end;
        fprintf('\n\n');
    else
        for k=1:M_.maximum_endo_lag+M_.maximum_endo_lead+1
            if(k==M_.maximum_endo_lag+1)
                fprintf('%-30s %s','the variable','is used in equations Contemporaneously');
            elseif(k<M_.maximum_endo_lag+1)
                fprintf('%-30s %s %d','the variable','is used in equations with lag ',M_.maximum_endo_lag+1-k);
            else
                fprintf('%-30s %s %d','the variable','is used in equations with lead ',k-(M_.maximum_endo_lag+1));
            end;
            if(size(block_structure.incidence(k).sparse_IM,1)>0)
                IM=sortrows(block_structure.incidence(k).sparse_IM,2);
            else
                IM=[];
            end;
            size_IM=size(IM,1);
            last=99999999;
            for i=1:size_IM
                if(last~=IM(i,2))
                    fprintf('\n%-30s',M_.endo_names(IM(i,2),:));
                end;
                fprintf(' %5d',IM(i,1));
                last=IM(i,2);
            end;
            fprintf('\n\n');
        end;
    end;
    
    %printing the gross incidence matrix
    IM_star = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]);
    for i = 1:nb_leadlag
        n = size(block_structure.incidence(i).sparse_IM,1);
        for j = 1:n
            if ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var)
                IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = 'X';
            else
                IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = '1';
            end;
        end;
    end;
    seq = 1: M_.endo_nbr;
    blank = [ blanks(size(M_.endo_names,2)); blanks(size(M_.endo_names,2))];
    for i = 1:M_.endo_nbr
        if i == 1
            var_names = [blank; M_.endo_names(i,:)];
        else
            var_names = [var_names; blank; M_.endo_names(i,:)];
        end;
    end;
    if incidence
        topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(size(M_.endo_names,2),1))) var_names' ];
        bott = [int2str(seq') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star];
        fprintf('\n                                          Gross incidence matrix\n');
        fprintf('                                          =======================\n');
        disp([topp; bott]);
    
        %printing the reordered incidence matrix
        IM_star_reordered = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]);
        eq(block_structure.equation_reordered) = seq;
        va(block_structure.variable_reordered) = seq;
        barre_blank = [ barre(size(M_.endo_names,2)); blanks(size(M_.endo_names,2))];
        cur_block = 1;
        for i = 1:M_.endo_nbr
            past_block = cur_block;
            while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0;
                cur_block = cur_block + 1;
            end;
            if i == 1
                var_names = [blank; M_.endo_names(block_structure.variable_reordered(i),:)];
            else
                if past_block ~= cur_block
                    var_names = [var_names; barre_blank; M_.endo_names(block_structure.variable_reordered(i),:)];
                else
                    var_names = [var_names; blank; M_.endo_names(block_structure.variable_reordered(i),:)];
                end
            end;
        end;
        topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(size(M_.endo_names,2),1))) var_names' ];
        n_state_var = length(M_.state_var);
        IM_state_var = zeros(n_state_var, n_state_var);
        inv_variable_reordered(block_structure.variable_reordered) = 1:M_.endo_nbr;
        state_equation = block_structure.equation_reordered(inv_variable_reordered(M_.state_var));
        for i = 1:nb_leadlag
            n = size(block_structure.incidence(i).sparse_IM,1);
            for j = 1:n
                [tf, loc] = ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var);
                if tf
                    IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = 'X';
                    [tfi, loci] = ismember(block_structure.incidence(i).sparse_IM(j,1), state_equation);
                    if tfi
                        IM_state_var(loci, loc) = 1;
                    end;
                else
                    IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = '1';
                end;
            end;
        end;
        fprintf('1: non nul element, X: non nul element related to a state variable\n');
        
        cur_block = 1;
        i_last = 0;
        block = {};
        for i = 1:n_state_var;
            past_block = cur_block;
            while ismember(M_.state_var(i), block_structure.block(cur_block).variable) == 0;
                cur_block = cur_block + 1;
            end;
            if (past_block ~= cur_block) || (past_block == cur_block && i == n_state_var)
                block(past_block).IM_state_var(1:(i - 1 - i_last), 1:i - 1) = IM_state_var(i_last+1:i - 1, 1:i - 1);
                i_last = i - 1;
            end;
        end;
        cur_block = 1;
        for i = 1:M_.endo_nbr
            past_block = cur_block;
            while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0;
                cur_block = cur_block + 1;
            end;
            if past_block ~= cur_block
                for j = 1:i-1
                   IM_star_reordered(j, 3 * (i - 1) - 1) = '|';
                end;
            end;
        end
        
        bott = [int2str(block_structure.equation_reordered') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star_reordered];
        fprintf('\n                                          Reordered incidence matrix\n');
        fprintf('                                          ==========================\n');
        disp([topp; bott]);
        fprintf('1: non nul element, X: non nul element related to a state variable\n');
     end;
else
    fprintf('There is no block decomposition of the model.\nUse ''block'' model''s option.\n');
end;

function ret=Sym_type(type)
UNKNOWN=0;
EVALUATE_FORWARD=1;
EVALUATE_BACKWARD=2;
SOLVE_FORWARD_SIMPLE=3;
SOLVE_BACKWARD_SIMPLE=4;
SOLVE_TWO_BOUNDARIES_SIMPLE=5;
SOLVE_FORWARD_COMPLETE=6;
SOLVE_BACKWARD_COMPLETE=7;
SOLVE_TWO_BOUNDARIES_COMPLETE=8;
EVALUATE_FORWARD_R=9;
EVALUATE_BACKWARD_R=10;
switch (type)
  case (UNKNOWN),
    ret='UNKNOWN                     ';
  case {EVALUATE_FORWARD,EVALUATE_FORWARD_R},
    ret='EVALUATE FORWARD            ';
  case {EVALUATE_BACKWARD,EVALUATE_BACKWARD_R},
    ret='EVALUATE BACKWARD            ';
  case SOLVE_FORWARD_SIMPLE,
    ret='SOLVE FORWARD SIMPLE        ';
  case SOLVE_BACKWARD_SIMPLE,
    ret='SOLVE BACKWARD SIMPLE        ';
  case SOLVE_TWO_BOUNDARIES_SIMPLE,
    ret='SOLVE TWO BOUNDARIES SIMPLE  ';
  case SOLVE_FORWARD_COMPLETE,
    ret='SOLVE FORWARD COMPLETE      ';
  case SOLVE_BACKWARD_COMPLETE,
    ret='SOLVE BACKWARD COMPLETE      ';
  case SOLVE_TWO_BOUNDARIES_COMPLETE,
    ret='SOLVE TWO BOUNDARIES COMPLETE';
end;


function ret = barre(n)
s = [];
for i=1:n;
    s = [s '|'];
end;
ret = s;