/usr/share/dynare/matlab/mr_hessian.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | function [hessian_mat, gg, htol1, ihh, hh_mat0, hh1] = mr_hessian(init,x,func,hflag,htol0,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults)
% [hessian_mat, gg, htol1, ihh, hh_mat0, hh1] = mr_hessian(init,x,func,hflag,htol0,varargin)
%
% numerical gradient and Hessian, with 'automatic' check of numerical
% error
%
% adapted from Michel Juillard original rutine hessian.m
%
% func = function handle. The function must give two outputs:
% - the log-likelihood AND the single contributions at times t=1,...,T
% of the log-likelihood to compute outer product gradient
% x = parameter values
% hflag = 0, Hessian computed with outer product gradient, one point
% increments for partial derivatives in gradients
% hflag = 1, 'mixed' Hessian: diagonal elements computed with numerical second order derivatives
% with correlation structure as from outer product gradient;
% two point evaluation of derivatives for partial derivatives
% in gradients
% hflag = 2, full numerical Hessian, computes second order partial derivatives
% uses Abramowitz and Stegun (1965) formulas 25.3.24 and 25.3.27
% p. 884.
% htol0 = 'precision' of increment of function values for numerical
% derivatives
%
% varargin: other parameters of func
% Copyright (C) 2004-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent h1 htol
n=size(x,1);
if init
gstep_=DynareOptions.gstep;
htol = 1.e-4;
h1=DynareOptions.gradient_epsilon*ones(n,1);
return
end
[f0, ff0]=feval(func,x,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
h2=BayesInfo.ub-BayesInfo.lb;
hmax=BayesInfo.ub-x;
hmax=min(hmax,x-BayesInfo.lb);
if isempty(ff0),
outer_product_gradient=0;
else
outer_product_gradient=1;
end
h1 = min(h1,0.5.*hmax);
if htol0<htol
htol=htol0;
end
xh1=x;
f1=zeros(size(f0,1),n);
f_1=f1;
if outer_product_gradient
ff1=zeros(size(ff0));
ff_1=ff1;
ggh=zeros(size(ff0,1),n);
end
i=0;
while i<n
i=i+1;
h10=h1(i);
hcheck=0;
xh1(i)=x(i)+h1(i);
try
[fx, ffx]=feval(func,xh1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
catch
fx=1.e8;
end
it=1;
dx=(fx-f0);
ic=0;
icount = 0;
h0=h1(i);
while (abs(dx(it))<0.5*htol || abs(dx(it))>(3*htol)) && icount<10 && ic==0
icount=icount+1;
if abs(dx(it))<0.5*htol
if abs(dx(it)) ~= 0,
h1(i)=min(max(1.e-10,0.3*abs(x(i))), 0.9*htol/abs(dx(it))*h1(i));
else
h1(i)=2.1*h1(i);
end
h1(i) = min(h1(i),0.5*hmax(i));
h1(i) = max(h1(i),1.e-10);
xh1(i)=x(i)+h1(i);
try
[fx, ffx]=feval(func,xh1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
catch
fx=1.e8;
end
end
if abs(dx(it))>(3*htol)
h1(i)= htol/abs(dx(it))*h1(i);
xh1(i)=x(i)+h1(i);
try
[fx, ffx]=feval(func,xh1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
catch
fx=1.e8;
end
while (fx-f0)==0
h1(i)= h1(i)*2;
xh1(i)=x(i)+h1(i);
[fx, ffx]=feval(func,xh1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
ic=1;
end
end
it=it+1;
dx(it)=(fx-f0);
h0(it)=h1(i);
if (h1(i)<1.e-12*min(1,h2(i)) && h1(i)<0.5*hmax(i))% || (icount==10 && abs(dx(it))>(3*htol)),
ic=1;
hcheck=1;
end
end
f1(:,i)=fx;
if outer_product_gradient,
if any(isnan(ffx)) || isempty(ffx),
ff1=ones(size(ff0)).*fx/length(ff0);
else
ff1=ffx;
end
end
xh1(i)=x(i)-h1(i);
[fx, ffx]=feval(func,xh1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
f_1(:,i)=fx;
if outer_product_gradient,
if any(isnan(ffx)) || isempty(ffx),
ff_1=ones(size(ff0)).*fx/length(ff0);
else
ff_1=ffx;
end
ggh(:,i)=(ff1-ff_1)./(2.*h1(i));
end
xh1(i)=x(i);
if hcheck && htol<1
htol=min(1,max(min(abs(dx))*2,htol*10));
h1(i)=h10;
i=0;
end
end
h_1=h1;
xh1=x;
xh_1=xh1;
gg=(f1'-f_1')./(2.*h1);
if outer_product_gradient,
if hflag==2
gg=(f1'-f_1')./(2.*h1);
hessian_mat = zeros(size(f0,1),n*n);
for i=1:n
if i > 1
k=[i:n:n*(i-1)];
hessian_mat(:,(i-1)*n+1:(i-1)*n+i-1)=hessian_mat(:,k);
end
hessian_mat(:,(i-1)*n+i)=(f1(:,i)+f_1(:,i)-2*f0)./(h1(i)*h_1(i));
temp=f1+f_1-f0*ones(1,n);
for j=i+1:n
xh1(i)=x(i)+h1(i);
xh1(j)=x(j)+h_1(j);
xh_1(i)=x(i)-h1(i);
xh_1(j)=x(j)-h_1(j);
temp1 = feval(func,xh1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
temp2 = feval(func,xh_1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
hessian_mat(:,(i-1)*n+j)=-(-temp1 -temp2+temp(:,i)+temp(:,j))./(2*h1(i)*h_1(j));
xh1(i)=x(i);
xh1(j)=x(j);
xh_1(i)=x(i);
xh_1(j)=x(j);
j=j+1;
end
i=i+1;
end
elseif hflag==1
hessian_mat = zeros(size(f0,1),n*n);
for i=1:n
dum = (f1(:,i)+f_1(:,i)-2*f0)./(h1(i)*h_1(i));
if dum>eps
hessian_mat(:,(i-1)*n+i)=dum;
else
hessian_mat(:,(i-1)*n+i)=max(eps, gg(i)^2);
end
end
end
gga=ggh.*kron(ones(size(ff1)),2.*h1'); % re-scaled gradient
hh_mat=gga'*gga; % rescaled outer product hessian
hh_mat0=ggh'*ggh; % outer product hessian
A=diag(2.*h1); % rescaling matrix
% igg=inv(hh_mat); % inverted rescaled outer product hessian
ihh=A'*(hh_mat\A); % inverted outer product hessian
if hflag>0 && min(eig(reshape(hessian_mat,n,n)))>0
hh0 = A*reshape(hessian_mat,n,n)*A'; %rescaled second order derivatives
hh = reshape(hessian_mat,n,n); %rescaled second order derivatives
sd0=sqrt(diag(hh0)); %rescaled 'standard errors' using second order derivatives
sd=sqrt(diag(hh_mat)); %rescaled 'standard errors' using outer product
hh_mat=hh_mat./(sd*sd').*(sd0*sd0'); %rescaled inverse outer product with 'true' std's
igg=inv(hh_mat); % rescaled outer product hessian with 'true' std's
ihh=A'*(hh_mat\A); % inverted outer product hessian
hh_mat0=inv(A)'*hh_mat*inv(A); % outer product hessian with 'true' std's
sd=sqrt(diag(ihh)); %standard errors
sdh=sqrt(1./diag(hh)); %diagonal standard errors
for j=1:length(sd)
sd0(j,1)=min(BayesInfo.p2(j), sd(j)); %prior std
sd0(j,1)=10^(0.5*(log10(sd0(j,1))+log10(sdh(j,1))));
end
ihh=ihh./(sd*sd').*(sd0*sd0'); %inverse outer product with modified std's
igg=inv(A)'*ihh*inv(A); % inverted rescaled outer product hessian with modified std's
hh_mat=inv(igg); % outer product rescaled hessian with modified std's
hh_mat0=inv(A)'*hh_mat*inv(A); % outer product hessian with modified std's
% sd0=sqrt(1./diag(hh0)); %rescaled 'standard errors' using second order derivatives
% sd=sqrt(diag(igg)); %rescaled 'standard errors' using outer product
% igg=igg./(sd*sd').*(sd0*sd0'); %rescaled inverse outer product with 'true' std's
% hh_mat=inv(igg); % rescaled outer product hessian with 'true' std's
% ihh=A'*igg*A; % inverted outer product hessian
% hh_mat0=inv(A)'*hh_mat*inv(A); % outer product hessian with 'true' std's
end
if hflag<2
hessian_mat=hh_mat0(:);
end
if any(isnan(hessian_mat))
hh_mat0=eye(length(hh_mat0));
ihh=hh_mat0;
hessian_mat=hh_mat0(:);
end
hh1=h1;
save hess.mat hessian_mat
else
hessian_mat=[];
ihh=[];
hh_mat0 = [];
hh1 = [];
end
htol1=htol;
|