/usr/share/dynare/matlab/myboxplot.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | function sout = myboxplot (data,notched,symbol,vertical,maxwhisker)
% sout = myboxplot (data,notched,symbol,vertical,maxwhisker)
%
% Copyright (C) 2010-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% % % % endif
if nargin < 5 || isempty(maxwhisker), maxwhisker = 1.5; end
if nargin < 4 || isempty(vertical), vertical = 1; end
if nargin < 3 || isempty(symbol), symbol = ['+','o']; end
if nargin < 2 || isempty(notched), notched = 0; end
if length(symbol)==1, symbol(2)=symbol(1); end
if notched==1, notched=0.25; end
a=1-notched;
% ## figure out how many data sets we have
if iscell(data),
nc = length(data);
else
% if isvector(data), data = data(:); end
nc = size(data,2);
end
% ## compute statistics
% ## s will contain
% ## 1,5 min and max
% ## 2,3,4 1st, 2nd and 3rd quartile
% ## 6,7 lower and upper confidence intervals for median
s = zeros(7,nc);
box = zeros(1,nc);
whisker_x = ones(2,1)*[1:nc,1:nc];
whisker_y = zeros(2,2*nc);
outliers_x = [];
outliers_y = [];
outliers2_x = [];
outliers2_y = [];
for i=1:nc
% ## Get the next data set from the array or cell array
if iscell(data)
col = data{i}(:);
else
col = data(:,i);
end
% ## Skip missing data
% % % % % % % col(isnan(col) | isna (col)) = [];
col(isnan(col)) = [];
% ## Remember the data length
nd = length(col);
box(i) = nd;
if (nd > 1)
% ## min,max and quartiles
% s(1:5,i) = statistics(col)(1:5);
s(1,i)=min(col);
s(5,i)=max(col);
s(2,i)=myprctilecol(col,25);
s(3,i)=myprctilecol(col,50);
s(4,i)=myprctilecol(col,75);
% ## confidence interval for the median
est = 1.57*(s(4,i)-s(2,i))/sqrt(nd);
s(6,i) = max([s(3,i)-est, s(2,i)]);
s(7,i) = min([s(3,i)+est, s(4,i)]);
% ## whiskers out to the last point within the desired inter-quartile range
IQR = maxwhisker*(s(4,i)-s(2,i));
whisker_y(:,i) = [min(col(col >= s(2,i)-IQR)); s(2,i)];
whisker_y(:,nc+i) = [max(col(col <= s(4,i)+IQR)); s(4,i)];
% ## outliers beyond 1 and 2 inter-quartile ranges
outliers = col((col < s(2,i)-IQR & col >= s(2,i)-2*IQR) | (col > s(4,i)+IQR & col <= s(4,i)+2*IQR));
outliers2 = col(col < s(2,i)-2*IQR | col > s(4,i)+2*IQR);
outliers_x = [outliers_x; i*ones(size(outliers))];
outliers_y = [outliers_y; outliers];
outliers2_x = [outliers2_x; i*ones(size(outliers2))];
outliers2_y = [outliers2_y; outliers2];
elseif (nd == 1)
% ## all statistics collapse to the value of the point
s(:,i) = col;
% ## single point data sets are plotted as outliers.
outliers_x = [outliers_x; i];
outliers_y = [outliers_y; col];
else
% ## no statistics if no points
s(:,i) = NaN;
end
end
% % % % if isempty(outliers2_y)
% % % % outliers2_y=
% ## Note which boxes don't have enough stats
chop = find(box <= 1);
% ## Draw a box around the quartiles, with width proportional to the number of
% ## items in the box. Draw notches if desired.
box = box*0.23/max(box);
quartile_x = ones(11,1)*[1:nc] + [-a;-1;-1;1;1;a;1;1;-1;-1;-a]*box;
quartile_y = s([3,7,4,4,7,3,6,2,2,6,3],:);
% ## Draw a line through the median
median_x = ones(2,1)*[1:nc] + [-a;+a]*box;
% median_x=median(col);
median_y = s([3,3],:);
% ## Chop all boxes which don't have enough stats
quartile_x(:,chop) = [];
quartile_y(:,chop) = [];
whisker_x(:,[chop,chop+nc]) = [];
whisker_y(:,[chop,chop+nc]) = [];
median_x(:,chop) = [];
median_y(:,chop) = [];
% % % %
% ## Add caps to the remaining whiskers
cap_x = whisker_x;
cap_x(1,:) =cap_x(1,:)- 0.05;
cap_x(2,:) =cap_x(2,:)+ 0.05;
cap_y = whisker_y([1,1],:);
% #quartile_x,quartile_y
% #whisker_x,whisker_y
% #median_x,median_y
% #cap_x,cap_y
%
% ## Do the plot
mm=min(min(data));
MM=max(max(data));
if isnan(mm), mm=0; MM=0; end,
if vertical
plot (quartile_x, quartile_y, 'b', ...
whisker_x, whisker_y, 'b--', ...
cap_x, cap_y, 'k', ...
median_x, median_y, 'r', ...
outliers_x, outliers_y, [symbol(1),'r'], ...
outliers2_x, outliers2_y, [symbol(2),'r']);
set(gca,'XTick',1:nc);
set(gca, 'XLim', [0.5, nc+0.5]);
set(gca, 'YLim', [mm-(MM-mm)*0.05-eps, MM+(MM-mm)*0.05+eps]);
else
% % % % % plot (quartile_y, quartile_x, "b;;",
% % % % % whisker_y, whisker_x, "b;;",
% % % % % cap_y, cap_x, "b;;",
% % % % % median_y, median_x, "r;;",
% % % % % outliers_y, outliers_x, [symbol(1),"r;;"],
% % % % % outliers2_y, outliers2_x, [symbol(2),"r;;"]);
end
if nargout,
sout=s;
end
% % % endfunction
|